The

INTER-BASE
Programming
Guide

Programming with INTER-BASE on
the BBC Micro

Martin T. Pickering

The
INTER-BASE

Programming
Guide

Programming with INTER-BASE on
the BBC Micro

First Edition March 1991
ISBN 0-946273-05-7

The
INTER-BASE

Programming
Guide

Programming with INTER-BASE on
the BBC Micro

By
Martin T. Pickering

Arlon House Publishing
Station Road ¢ Kings Langley e Hertfordshire ¢ WD4 8LF
Tel: (0923) 268328

Copyright © Martin T. Pickering, 1990
All Rights Reserved

No part of this publication may be copied by any means, stored in a
retrieval system or transmitted in any form without the prior consent of
the copyright holder.

Disclaimer

Due to the nature of computer programming, no responsibility can be accepted by the
author, the publisher or the manufacturer of the software for any loss or damage
caused either directly or indirectly by the use of information given in this book.
Efforts have been made to ensure that the information is correct at the time of
publication, but it is the responsibility of the user to ensure that data is properly
stored and backups made in order to prevent loss of data due to programming errors
or hardware failures.

Technical Assistance

This book is provided as an aid to learning programming in INTER-BASE and should
greatly reduce the need for you to write for technical assistance. The publishers are
unable to provide technical assistance relating to the contents of this book, but letters
will be passed to the Author.

Trademarks

“BBC B” and “Master” refer to computers made by Acorn Computers Ltd for the
British Broadcasting Company.

Thanks

Thanks are due to all employees of Computer Concepts but especially to Neville for
putting up with my incessant telephone calls. Thanks also to my brother, Rob, who
provided the help and hardware needed to create this book.

Published and printed in England by

Arlon House Publishing
Station Road

Kings Langley
Hertfordshire

WD4 8LF

Telephone (0923) 268328

Contents

ADOUL INTER-BASE ...ttt ettt et 1
The BASIC CONNECHION c..vveiiivieeeeiiie et ettt e et 2
OMLTOLEASE. .. e ettt e et esaare e e e es 3
ADOUL thiS DOOK et 4
TRE EXAMPLES .ottt 5
The EXample diSC oo 5
What you need to KNOWo.oooiiiiiiiiiiii 5

BASIC AIffOTOIICES vt 7

Simple program writing in |53 G T 9
CalCULATIONS oot 10
Program IOOPS ...o.evieiiiiiiiieii i 12
SEFINES oo 15
SUD PTOCEAUTES .ot 18
DIALS ettt aeaae e e e eans 19
Commands and FUNCHONS ...c.vvveeiiiieieiieceeeeee e 21
GOING It ALOME .o 21

Simple database programs in IBPL ..., 22
Reading fileS.......oovoiiiiiiii 23
WIHNG FIIES oo 27

Displaying, Printing and Editing 1€Cords.......cccooviiiiiiiiiniii, 30
Making use of dates.......cocoooieiiiiiiiii 39
More program examples ... 39

DCONVERT e et 40
RETRIEV ettt 41
ROM PrOGrams......cccoveuiiiiieiitieniieiiiieiiii it 41
Important key Wordsooooiiiiiiiii 41
TOKENISE ...ttt 41
INSTALL oottt et 42
REMOVE . ..o et 42
CLEAR oot 43
SAVE e e 43
LOAD e e e 43
SHOW oo et 44
Booting from diSC....oooviiiieiiiiiiiiii 45
Additional CommMaANAS......cooveeeririieiiiie ettt 46

Communicating with INTER-WORDcc.coooiiiniiniiienn 48

FUTTROT NOLES ettt saae e 52
Communicating with INTER-CHARTc.cooimiiniiiiiiinncccenas 53
EXPORT COMIMANAS .vvviiiiniriiiiiirieecreeeeereeeeenreeeeerveeeesssnaessssaesensseeessonnns 56
Embedded Commands in INTER-WORDccccevveiieeeiniieennns 58

Colon COMMEANAS...cuviieeiiieieceiereeeeeeerre ettt ereeerreeaeeeaeeesbeenane 58
Transferring teXt ..o 59

Calling programs from INTER-WORD..........cccououvrrnninnicnninnnn 61

Final notes about colon cOmmandsoocvveeeevrveeeeireeeeirieeeenneeeseneeeens 63
REfEIONCE SECHOM 1uvveeveitiieeeetee ettt ettt ee e eer e s eeb e e e save e s e sbessaessesnees 65
ADOUL INTER-MAIL ..ottt aae e e 283
IINTDEX .. oottt ettt ettt ettt ettt e e et en e e eaeene e eneeeebeeetsaeesreesaas 284

vi

About
INTER-BASE

Although it has little real relevance to programming, it is interesting to
know how INTER-BASE came to be the way it is.

With WordWise Plus and INTER-WORD selling literally tens of
thousands it was the users that continually pushed for a compatible
database program. Within Computer Concepts the need was also clearly
seen for a good database which would meet a wide variety of needs and
integrate with existing products. Database programs already on the
market were mainly written in BASIC and, while they performed simple
card index activities adequately, they did little else. A program from
Computer Concepts would have to do much more, or there would be
little point in creating it.

The success and flexibility of WordWise Plus indicated the usefulness of
an integral programming language. This, together with lessons learned
from traditional database programs such as DBase pointed the way
forward for INTER-BASE.

As part of the ROM-LINK series of packages, INTER-BASE could provide
the programmability to combine the actions of the INTER-WORD word
processor, INTER-SHEET spreadsheet, and INTER-CHART graph
plotting program. It was envisaged that activities such as combined word
processing, invoicing and stock control would easily be achieved.

In retrospect it’s easy to see that the aims were just too high. The BBC
Micro, powerful as it was for the early 1980s had too many limitations for
the ambitions held for INTER-BASE and the rest of the ROM-LINK family
approaching the 1990s. With a limit of about 25K of memory and the
majority of users running with just floppy disc drives, virtually every
useful application ran into difficulty.

INTER-BASE itself started out being written as a 16K program - the
maximum size which could fit into a programmable chip in a BBC Micro.
Like INTER-WORD, it soon grew too large. INTER-WORD was
introduced on a specially designed chip carrier to allow a 32K program to
fit on a standard machine. INTER-BASE grew and grew until eventually
an even more expensive 64K version had to be produced. As such INTER-
BASE is and probably always will be the largest machine code program to
be produced for the BBC Micro. It is hardly surprising then that it was
released some two years later than the original planned date.

Not all of the 64K EPROM chip is occupied with the INTER-BASE
programming language. When you start INTER-BASE, a pre-
programmed card index system is entered and its menu appears on the
screen. This allows users at least some operationality without the need for
programming. This card index was written using the INTER-BASE
programming language, but cleverly stored inside the same chip. This
way you don’t have to load the program from disc each time you switch
on, and it leaves more of the computer’s (limited) main memory free for
data.

INTER-BASE meets virtually all the criteria which the programming team
intended for it. It offers integration with the INTER-WORD, SHEET and
CHART; it is an extremely comprehensive programming language with
very powerful database commands and few limitations on record size or
maximum number of records. But it has one major failing — users without
programming ability can achieve little more with INTER-BASE than was
possible with the original ‘cheap and cheerful’ programs available several
years earlier at half the price. Specifically, they only have at their
fingertips the pre-programmed card index system which, because of
space constraints within the chip, uses only some of the facilities
supported in the programming language.

For those willing to put effort into programming, especially those who
actually enjoy programming almost for the sake of it, INTER-BASE is a
marvellous package. Even when you have programmed INTER-BASE for
many months you will still continue to reveal hidden depths of its design.

The BASIC connection

INTER-BASE is a complete programming language in its own right.
However, inventing a whole new language has the distinct disadvantage
that you have to teach everyone how to use it from scratch. The one

2

language that every programmer with a BBC Micro knows is BASIC, or
BBC BASIC to be more specific. For this reason INTER-BASE was
deliberately designed to be as similar to BASIC as possible, without
compromising too far.

If you don’t already know at least a little about programming in BASIC or
a similar language, you're probably going to find it hard work to
understand this book. I strongly suggest that you take the time to work
through one of the many books available which teach BBC BASIC
programming - virtually everything you learn will be useful in
programming INTER-BASE.

If you already know how to program in BASIC, you'll love INTER-BASE
because it removes just about all the annoying aspects of the language
and adds a whole host of new facilities. The next chapter highlights some
of the differences between BBC BASIC and IBPL!.

On release...

INTER-BASE was finally released in August 1987 as version 1.0A. In the
final desperate rush to get the package onto the market (more to appease
impatient customers than for sound commercial reasons), the
accompanying manual was short — far too short. The original intention
was to produce a four hundred page manual covering database
philosophies, a programming tutorial and a complete command
reference. However, after almost two years of well-intentioned delays
while more and more features were added, it was a ‘'now or never’
decision which forced it to the marketplace with a manual of about one
hundred pages.

Once again, the advantage of hindsight allows us to see this as a mistake.
If only an extra couple of months had been spent working on
documentation, INTER-BASE would have been better received and
would ultimately have sold in greater numbers. However, I think I would
be correct in saying that to Computer Concepts the thought of a further
delay at that stage of the project would have resulted in immediate
termination; INTER-BASE would never have seen the light of day.

1 IBPL stands for INTERBASE Programming Language.

At this stage, INTER-BASE contained quite a few unintentional features!!
Almost a year went by before these “features” were eliminated in version
1.10A. Unfortunately (or otherwise) the author was lent this pre-release
version and discovered a couple of new “features”. Finally, in August
1988, version 2.0A was released together with a new Reference manual
with more than 250 pages of information. Of these, over 200 refer to
programming. Still less than the originally intended volume of
documentation, but adequate for most users. It was because there was so
much more to be said that this book came about.

It is important that you have the latest significant release of the software;
there’s no point wasting time on features which have already been ironed
out. Computer Concepts are very good about upgrades. If you have a
version of INTER-BASE earlier than 2.0A then give them a call. They will
tell you how to upgrade to the latest version, including the new manual,
for only a small charge.

Although the 2.0A chip contains a number of revisions over 1.0A, most of
these are associated with the card index program rather than IBPL. To
find out which version is fitted in your computer type:-
*HELP<RETURN>.

About this book

This book is intended to help you to write programs in IBPL and will
supplement and clarify the information in the Reference Manual. It could
never entirely replace it, nor could it avoid duplicating a lot of
information already there. Some sections of the reference manual are very
comprehensive, and some are not. I hope to expand upon those parts
which the Reference Manual mentions "in passing" but to limit the
information about those parts already treated in detail.

A large part of this book is given over to the reference section which
contains the programming language keywords. The reasons for the
apparent duplication of this “list” already in the Reference Manual are to
provide an alphabetically ordered reference, to correct errors in the

I'A feature’ is the polite way to describe a bug - a programming error. Tell @ programmer there are bugs in
his software and he is immediately on the defensive; suggest that there may be some ‘unintentional features’,
keeping your tongue firmly in your cheek, and the conversation has a good chance of continuing!

4

original syntax, to add more explanations and to provide at least one
example for most keywords.

The Examples

This book concentrates heavily on examples. All of the examples are
working programs. All of them were written and tested in INTER-BASE 0
then transferred directly to INTER-WORD text by means of the EXPORT
command. I believe deeply in the use of examples instead of pages of
explanation. You should be able to find an example for most applications
you will need. If you can't find the example under the most likely
keyword then it is probably under an associated keyword. The following
chapters give fairly lengthy program examples which put into practice
the information given in the reference section. It is recommended that
you read through the reference section to get a "feel" for the commands
available; then read the programming chapters and make an effort to
understand the examples. It should be stressed, however, that the fastest
way to learn is by doing!

Note: Where an example would normally print a result on screen, a
typical printout is shown after the program.

The Example disc

Some of the examples shown in this book are included on an example
disc available separately. Please contact the publishers for details of price
and availability.

The example disc is available only as an 80 track 5.25”, formatted for
ADFS on the first side and DFS on the second. This combination provides
the widest compatibility. We regret that other formats can not be
supplied.

What you need to know

As already stated, it is assumed that you already have some familiarity
with the BBC BASIC programming language, upon which IBPL is heavily
based. If you do not have this knowledge, you will probably find it hard
work to follow this book. One of the BBC BASIC tutorial books is highly

recommended as the entry point for newcomers to programming. Public
libraries — even small local ones — usually have a selection of these.

Many aspects of this book build upon the information provided in the
INTER-BASE Reference Manual, 2nd Edition. It is important that you
read the Reference Manual or at least have it close to hand. Particularly
you should be familiar with the terminology of database structures and
operations. You should know about fields, records, files, indexes, data
types, sorting, searching, and so on. You should also know from the
Reference Manual how to change between the Card Index menu and the
IBPL menu, and how to enter and execute commands and programs.

BASIC
differences

Some of the main differences between IBPL and BASIC are listed below:

1. IBPL uses no line numbers but relies upon simple destination "labels"
(words preceded by a full stop). For those of you who have used BBC
BASIC assembly language the method of labelling will be familiar.

2. IBPL has many more ‘structured’ programming facilities, including
multi-line IF... THEN...ELSE, WHILE.. ENDWHILE, CASE...ENDCASE.

3. IBPL has very comprehensive record facilities which can work in a
similar way to BASIC’s arrays (with different syntax), but are far more
flexible. They allow any array to contain different numbers of elements at
each level, and any item can be of any data type (string, real, int, or even
another array).

4. IBPL strings may be any length and may include carriage returns (and
all other ASCII codes). BASIC strings are limited to 255 characters which
can be very limiting for many types of data.

5. IBPL programs are stored in memory in ordinary strings, usually in
plain ASCII form. This allows more than one program or sub-program to
reside in memory at the same time, and it allows a program to create or
modify another program. One common use of this facility is for a main
program to stay in memory and to load any one of a number of sub-
programs into another string for use only when they are required, giving
an almost unlimited program size.

6. IBPL offers a huge variety of string search and manipulation keywords.
These are designed specifically for the type of searching and sorting
which is required in database applications. operations which take
complex programming in BASIC are incredibly simple in IBPL.

8. Whilst BASIC contains rudimentary file handling commands, IBPL
contains sophisticated commands which make the construction of a
database and sorted index a relatively simple task.

10. IBPL supports the use of calendar dates, allowing them to be entered,
stored, added together, subtracted from one another and even printed in
any one of a number of common formats.

12. IBPL uses DATA in the form of a string, not as a DATA statement.

13. IBPL allows use of sideways RAM (as fitted as standard in the BBC
Master and Compact) to be used as a fast temporary disc storage.

14. IBPL allows programs to be stored in sideways RAM and even
permanently in EPROMS.

15. INTER-BASE contains a very flexible full or partial-screen text editor
which is not only available for entering and editing programs but is also
available as a command within IBPL. Programs can invite the user to
enter and edit long pieces of text while still remaining in control.

16. IBPL has many linking features allowing data to be transferred to or
from other ROM-LINK programs. For example, an IBPL program can
retrieve documents from within INTER-WORD and manipulate them.

If you are not very familiar with BASIC, the next chapter will lead you
gently into the art of IBPL programming.

Simple program
writing in IBPL

Switch on the computer and type *IB.PMENU <RETURN> (in upper case)
to enter INTER-BASE 0.

Press <ESCAPE> to enter the editor which operates like a simple word
processor. Text written in this editor can be MARKED, COPIED and
DELETED just as in INTER-WORD or WORDWISE.

Before using the editor you might like to alter the screen display mode
which is usually mode 7 by default. If you press <ESCAPE> to return to
the menu and type 73<RETURN> (BBC B) or 7131<RETURN> (Master)
then the editor will display your text in 80 column mode instead of 40
when you press <ESCAPE> again. If the screen flickers excessively,
return to the menu and type *TV0,1<RETURN> then press <ESCAPE>
twice.

A program may be written as plain text in INTER-BASE 0 without the
need for line numbers (in fact line numbers may NOT be used).

The name of the program must be typed after selecting option <5>.

The default program name is P$. To run a program type P <RETURN>

or type RUN P$ <RETURN>. If you had chosen the program name to be,
say, "JUNKPROG" then to run it type JUNKPROG <RETURN> or type
RUN JUNKPROG$ <RETURN>. At present, of course, there is no
program.

The main body of a program must always begin with .START

The main body of a program may end with RETURN or ENDPROC or
END (or with nothing provided that no sub-procedures follow it).

For reasons too complex to explain in this chapter it is safest to end with
RETURN

Here is the simplest form of program for you to try:

Example

. START

CLS

INPUT"Please enter a number from 1 to 3000 "mynumber
PRINT"Your number is "mynumber

RETURN

Explanation

The first program line after START clears the screen.

The next line prints the first message on the screen and waits for you to
type a number. It will continue to wait until you press <RETURN>.

The second message is then printed on the screen, followed by your
number.

The word "mynumber" is called a variable name. The variable
"mynumber"” is called a "real" variable and its contents may include a
decimal point if you wish and may also have a negative sign.

When you type in your chosen number the computer assigns it to the
variable "mynumber” and stores it in a specific place in computer
memory.

Type the program into P$. From the menu type P and press <RETURN>.

Calculations

Suppose we needed to calculate miles per gallon from a year's diary of
litres and miles. If the first journey of 244 miles used 28.6 litres then, with
a calculator, we must enter (say) the following sequence:
244/28.6x4.55=

To repeat this type of calculation many times will prove time-consuming.
On the computer keyboard we can achieve the same object by typing:

PRINT 244/28.6*4.55

Again, this method is tedious but if we use the programming capabilities
of the computer the task can be simplified.

The following program will simplify this task slightly:

10

Re-typing the following examples is rather time-consuming and introduces the
possibility of errors. As an alternative they are provided on an example disc. If
you have the disc, please load the file "EXAMPLE" into INTER-BASE 0 P§$.

All of the following programs are contained within the same file so, as you
proceed with these numbered examples, to run each program you must delete
those which precede it in P$. Only the first program will run. The rest will be
ignored after the RETURN instruction. Should you make a mistake simply
reload the complete EXAMPLE file back into P$.

If you don’t have the example disc simply type each example in turn.

Examplel

. START

INPUT"Miles ? '"miles
INPUT"Litres ? "litres
PRINT"MPG="miles/litres*4.55
RETURN

Type P<RETURN> to run this first example.
This program must be run for every entry and is still tedious to use but
the problem is solved quite easily by making it repeat by itself:

Press <ESCAPE> to edit P$. Delete examplel. Press <ESCAPE>.
Type P<RETURN> to run example2.

Example2

. START

INPUT"Miles ? "miles
INPUT"Litres ? "litres
PRINT"MPG="miles/litres*4.55
GOTO "START"

Now the program will request miles, litres, print MPG then repeat the
same thing again.

The use of "GOTO" in this manner is a very crude method of making a
program "loop" and to stop the sequence you must press <ESCAPE>.

11

Program loops

Example3

.START

CLS:PRINT'"'

REPEAT
INPUT"Miles ? "miles
INPUT"Litres ? "litres
mpg=miles/litres*4.55
PRINTmpg

UNTIL mpg>35

RETURN

The program loop created by REPEAT ... UNTIL will cause the relevant
portion of the program to repeat until an answer greater than 35 MPG is
achieved or until <ESCAPE> is pressed. This type of loop is called a
"conditional" loop since it stops after a specified condition is fulfilled.

Another method, if you know how may entries you have, is to use a FOR
... NEXT loop:

Example4
. START
CLS:PRINT''"'
INPUT"How many entries ";number$%
FOR X%=1 TO number$
INPUT"Miles ? "miles
INPUT"Litres ? "litres
PRINT"MPG="miles/litres*4.55
NEXT
RETURN

This example requests the number of entries and allocates this quantity to
the variable "number%". Since the number must be a whole number we
can use an "integer variable" which is designated by the percent symbol
"%". In a large program the use of an "integer variable" instead of a "real
variable" saves valuable memory space and can increase the running
speed of the program.

Another integer variable, X%, is used to keep track of how many times
the program loop is repeated.

12

We can make use of the additional information to help us calculate the
overall average MPG. However, it is necessary to introduce a variable to
hold the sub total mpg figure. For this any name would do but I chose
"sum". Note that "sum" must be initialised by making it zero.

Example5

. START

CLS:PRINT''"'

sum=0

INPUT"How many entries ? "number$%

FOR X%=1 TO number$%
INPUT"Miles ? "miles
INPUT"Litres ? "litres
gals=litres/4.55
mpg=miles/gals
PRINT"MPG="mpg
sum=sum+mpg

NEXT

PRINT"Average MPG= "sum/number$

RETURN

It is also possible to use REPEAT ... UNTIL to refine the program further
so the number of entries is not required. We must initialise count% to
zero. (This type of initialisation must be performed before a variable is
used on the right hand side of an = sign). We also need to keep a count of
the number of entries.

Example6

. START

ON ERROR:ON ERROR OFF:PRINT"OOPS" :RETURN

CLS:PRINT'"'

sum=0

count%=0

REPEAT
INPUT"Miles ? "miles
IF miles=0 THEN GOTO hop
INPUT"Litres ? "litres
gals=litres/4.55
mpg=miles/gals
PRINT"MPG="mpg
sum=sum+mpg
count%$=count%+1

13

.hop

UNTIL miles=0

PRINT"Average MPG= "sum/count$%
ON ERROR OFF

RETURN

The IF ... THEN condition causes the program to jump to the label ".hop"
if miles=0 (or if <RETURN> alone is pressed). Since the UNTIL miles=0
condition is fulfilled the program stops. If <RETURN> is pressed the first
time the loop is executed then a "division by zero" error will be
announced because count% is still zero.

To combat errors such as this, the ON ERROR statement is used. Note
that, when an error is encountered, it is important to turn ON ERROR
OFF. Equally important is to do this, also, at the end of the program.

Part of the skill in programming lies in the presentation so, just for fun,
let's introduce some graphics into this program!

The following example selects the high quality graphics mode 0 and
draws a circle. A text WINDOW is designated inside the circle to
constrain the print statements to that small area. At the end of the
program the window is cancelled by VDU26.

Notice how the <TAB> key is used to indent part of the program. You do
not have to do this but it helps to highlight the start and end of loops and
is particularly useful when one loop occurs within another (called "nested
loops").

Example7
. START
REM Example CIRCLE
MODE 0
S=SIN(RAD12) :C=COS (RAD12) :A=0:B=R
X=600:Y=500:R=300
MOVE X, Y+R
FOR A%=1 TO 31
Z=A*C+B*S
B=B*C-A*S
A=2Z
DRAW X+Z,Y+B
NEXT

14

WINDOW 28,12,24,4

ON ERROR:ON ERROR OFF:PRINT"OOPS":RETURN
sum=0
count%=0
REPEAT
INPUT"Miles ? "miles
IF miles=0 THEN GOTO hop
INPUT"Litres ? "litres
gals=litres/4.55
mpg=miles/gals
PRINT"MPG="mpg
sum=sum+mpg
count%=count%+1
.hop
UNTIL miles=0
PRINT"Average MPG= "sum/count$%
VDU26
ON ERROR OFF
RETURN

The circle routine can be used by itself for experimentation. There is no
harm in changing some of the numbers to see what happens!

Try substituting PLOT 85,X+Z,Y+B instead of DRAW X+Z,Y+B.

Strings

So far we have dealt with numbers but IBPL has very powerful
commands for dealing with text. We call a line of characters with no
particular numeric value a "string". Of course it is not feasible to multiply
or divide strings but you can certainly add and subtract them.

Example8

. START

INPUT"Please enter your last name "lastname$
INPUT"Please enter your first name "firstname$
INPUT"Please enter your full address "addr$
H$=firstnames$+" "+lastname$+", |[M"+addr$

PRINT H$

RETURN

15

This program adds together the three strings, putting a space between
first and last names and putting a carriage return after them. One serious
drawback, which becomes obvious when you try the program, is that it
accepts only the first line of your address. This is because the INPUT
function stops as soon as you press <RETURN>.

To combat this effect we can introduce a loop which will terminate only
after <RETURN> has been pressed twice in succession.

Example9
. START
INPUT"Please enter your last name "lastname$
INPUT"Please enter your first name "firstname$
addrs=""
PRINT"Please enter your full address "a$
REPEAT

INPUTLINE a$

addrS=+as$+" |M"
UNTIL a$=""
H$=firstname$+" "+lastname$+", |[M"+addrs$
PRINT H$
RETURN

Since the INPUT function does not accept punctuation such as commas
we have used INPUTLINE instead. By using INPUTLINE within a loop it
is possible to put each address line into the string "a$" and add it to the
string "addr$" together with a carriage return " IM".

Although the function INPUTLINE sees <RETURN> as the end of a line it does
not include a carriage return in the string itself, so we must explicitly add one.

There are many string handling commands available in IBPL but, since
there are very comprehensive examples in the Reference Section, no more
specific examples will be given, here.

The previous examples dealt with printing to the screen only. For most
applications it is useful to have a copy on paper. If you have a printer
connected to the PRINTER port on the computer you can use the
commands VDU?2 to send the output to the printer and VDU3 to stop it.

16

Examplel0
.START
ON ERROR:ON ERROR OFF:VDU3:PRINT"OOPS" :RETURN
CLS:PRINT'"'
sum=0
count%=0
PRINT"Ensure printer is switched on!"
PRINT"Then press a key."
G=GET
VDU2:PRINT"miles litres MPG":VDU3
REPEAT
INPUT"Miles ? "miles
IF miles=0 THEN GOTO hop
INPUT"Litres ? "litres
gals=litres/4.55
mpg=miles/gals
PRINT"MPG="mpg
sum=sum+mpg
count%=count%+1
FORMAT, 2,1
VDU2:PRINTTRIMSSTRSmiles+" "+TRIMSSTRS$1litres+SPC(3);
PRINTTRIMS$STRSmpg:VDU3
.hop
UNTIL miles=0
vDU2
PRINT"Average MPG= "sum/count$%
VvDU3
ON ERROR OFF
RETURN

Normally the program will print figures to seven decimal places. Since
such accuracy is ludicrous for our purpose we can use the FORMAT
command to alter the display to just one decimal place. This has no affect
on the accuracy of the calculation.

Since numbers are printed with leading spaces, these spaces are removed
by converting each number to a string of characters (STR$) and trimming
off the spaces (TRIM$). Try removing TRIMS to see its effect.

It is important to avoid using CLS after VDU2 since this statement clears the
screen by sending a stream of line feeds. Sending line feeds to your printer is a
good way of using lots of paper!

17

Sub Procedures

Sub procedures can be used as a means of splitting the program into
readable sections or to reduce duplication of routines.

Sub procedures must always begin with a label preceded by a full stop.

A label can be any combination of characters but not a keyword listed in
the reference section.

The sub procedures can come after the main body of the program or may
precede the .START label, or may be mixed:

By convention, however, sub procedures usually follow the main
program. A program may be shortened by the use of a sub procedure
which is used more than once, as shown in the next example:

Examplell

. START

PROClookup

PRINT"The date is ";date$
INPUTLINE"Type an interesting sentence: ";L$
PROClookup

PRINT"Your sentence was:-"'L$
PROClookup

END

.lookup

date$=ITEMS (TIMES,1,".")
date$=ITEMS (date$, 2)
time$=ITEMS (TIMES,2,".")
date@=@date$

date$=STRS$datel

PRINT'"The time is ";time$
RETURN

The time is 01:12:46
The date is 17th May 1989
Type an interesting sentence: Here is my sentence xxxx.

The time is 01:13:12
Your sentence was:-
Here is my sentence xxxx.

The time is 01:13:14

18

This example uses the calendar/clock found in the BBC Master which
returns TIMES in the format: "Wed,17 May 1989.01:12:46".

If the current time is to be found several times during the running of a
program then the use of such a Procedure will reduce the size of the
program.

Note:
If you are not using a BBC Master you can still try the example by
changing TIMES$ to XTIME$ and typing -

XTIME$="Wed,17 May 1989.01:12:46"

- before running the program. Of course the time and date will not
change!

Dates

The previous example program makes use of the special symbol "@"
which defines the variable as a date.

Date variables are translated by IBPL in a way which is defined by the
FORMAT command.

Example12

. START
date@=@"7.10.89"
FORMAT64:PRINT date@
FORMAT65:PRINT date@
FORMATG66:PRINT date@
FORMAT67:PRINT date@
FORMAT1:PRINT date@
FORMATO:PRINT date@
RETURN

07/10/1989
07/10/89

07/0CT/1989
07/0CT/89

7th October '89

7th October 1989

This example shows that to translate a string into a date we need simply
to put the "@" symbol in front of it.

19

The separator is of no consequence and the date string could have been
written as "7/10/89", "7 10 89", "7210z89" or any other single character.

Examplel3
.START
C$="6*5+89"
D@=QCS
PRINT D@
RETURN

6th May 1989
We can also perform calculations with dates:

Examplel4
. START
C$="6/5/89"
DE=@C%
PRINT D@-7
RETURN

29th April 1989

Examplel5
.START
C$="6*5+89"
D@=QCS
PRINT D@+30
RETURN

29th April 1989

Examplel6

.START
C$="6/May/89"
E$="6/JUNE/89"
ce@=ecs

E@=QES$

PRINT E@-C@;" days"
RETURN

31 days

20

Commands and Functions

In the foregoing examples you have seen several keywords such as
GOTO, PRINT and INPUT. Keywords can be commands or functions or
both, depending on their use.

PRINT, for instance, is very evidently a command whereas GET is
actually a function because it returns a value. In general, a keyword
which is a function will appear on the right hand side of an = sign.

A=GET
PRINT A

Going it alone

This chapter should have given you sufficient understanding of IBPL
programming techniques to allow you to write your own simple
programs.

Begin by modifying the examples already explained by introducing
different keywords from the Reference Section. The Reference section also
contains many more examples which you can try.

Once you have gained reasonable confidence in handling numbers and

strings it will be time for you to progress to the next chapter which deals
with database and index files.

21

Simple database
programs in IBPL

The main purpose of IBPL is to simplify disc file handling. In other words
it will allow you to write a simple program to save information to disc
and to load it back from disc. Furthermore, you will be able to sort some
of this information alphabetically or numerically and to search for certain
items of data in the disc file. Information stored on disc in this way is
called a "Database file". A disc file which contains information about the
alphabetical or numerical order of the database records is called an "Index
file".

The best way for you to learn to use IBPL is to USE it. Reading about it
will simply bore you and you will not assimilate the information.

A database is a program which handles files for holding information on
disc. Since the creation of a database is a little complex to begin with, a database
and index have been provided on the example disc.

The database called "MYDATAB'" has fourteen fields:

The first field is an integer field called "numb" and will be used to hold a
consecutive number for each "record card".

The second field is a string field called "name".

The third field is a multiple string field, called "addr", with seven lines
and will hold an address and postcode.

The fourth field is a string field called "cat" (category).

The fifth field is a string field called "tel".

The sixth field is a string field called "office"

The seventh field is a string field called "anniversary"

Fields 8 to 13 are string fields called "birthday".

Field 14 is a multiple string field, called "notes", with two lines.

N
[aS]

The index called "MYINDX" is based upon the first eight characters of the
field "name".

The name should always be of the form -

Simpson,Mr P.B.
or
Simpson,Philip

- so the alphabetical index is based upon the Surname.

The two files, "MYDATAB" and "MYINDX", are used many times
throughout the reference section of this book.

The following examples are all contained in the separately available example disc
in a file named "PROGS". This file should be loaded into P$ in INTER-BASE 0.
Delete from P$ those programs preceding the one you wish to try.

Reading files
Load "PROGS" from the example disc if you have one:-

Example: progl
.START

REMOVE array ()
DIM array(),1l4
READ DB"MYDATAB"
READ REC array ()
PRINT array ()
CLOSE"MYDATAB"
RETURN

Now run the program by typing P <RETURN>

Explanation:

We called the array "array()" for clarity but it could equally have some
other name such as "R()" or "FreddyFrog()".

The program REMOVEs the array in case it already exists and redefines it

as having 14 fields. The types of fields are not defined but will become
defined the first time the array is used.

23

An "array”, by the way, may be thought of as a chest of drawers. Each drawer or
"field” can hold a different type of item. In the case of IBPL the choice is: Integer
number, Real number (decimal point), String, Multiple line string or Date.

The program then opens the database file on disc for READ only.

The first record found at the start of the file is read into the array. (The
"chest of drawers" is now full).

The contents of the array are printed on the screen.

Note that only the multiple string arrays contain carriage returns.

The database disc file is closed.

Suppose that we wanted to read the third record in the database:

Example

. START

REMOVE array ()
DIM array (), 14
READ DB"MYDATAB"
SKIP2

READ REC array ()
PRINT array ()
CLOSE"MYDATARB"
RETURN

By using "SKIP2" we move to the third record and read that.

Try it! We can also print the contents of individual "drawers" or fields.
For instance PRINT array(2) would cause the contents of the field called
"name" to appear on the screen.

Try substituting PRINT array() with

PRINT array(2)

PRINT array(3)
PRINT array(l)

In addition you will find the string-handling abilities of IBPL useful in

dealing with array(3) since this is a multiple string field. In other words it
holds several lines, each separated from the next by a carriage return.

24

Example: prog2

.START

REMOVE array ()

DIM array(),1l4

READ DB"MYDATAB"

SKIP2

READ REC array ()

addr$=array (3)

FOR X%=7 TO 1 STEP -1
PRINT LINES (addr$, X%)

NEXT

CLOSE"MYDATAB"

RETURN

This little routine prints the lines of the address in reverse order! (If you
put a semi-colon at the end of PRINT LINES$(addr$,X%); to suppress the
carriage return then all the lines will be printed one after the other
without a line feed between them. Try it.)

The next example makes use of the alphabetical index.

Example: prog3

. START

REMOVE array ()

DIM array(),1l4

READ DB"MYDATAB"VIA"MYINDX"
READ REC array ()

PRINT array ()
CLOSE"MYDATAB"
CLOSE"MYINDX"

RETURN

This example prints the first record which the alphabetical index
indicates. That will not necessarily be the first record in the actual
database file on disc!

The following modification will print ALL the records listed in the index
file. It uses a conditional loop "WHILE NOT END" together with "SKIP"
so that each record is read in turn. In this instance the keyword "END"
refers to the end of the database file which is one SKIP after the last
record.

25

Example: progd
.START
REM
DIM array(),1l4
READ DB"MYDATAB"VIA"MYINDX"
WHILE NOT END

READ REC array ()

PRINT array()

SKIP
ENDWHILE
CLOSE"MYDATAB"
CLOSE"MYINDX"
RETURN

VE array ()

If your computer has sideways ram available you might like to try the
modified program as follows:-

Example: prog5
.START
REMOVE array ()
DIM array(),1l4
READ DB"MYDATAB"VIA"MYINDX"
SELECT RAM ALL
RESERVE "MYDATAB", 13000
RESERVE "MYINDX",2000
WHILE NOT END
READ REC array ()
PRINT array ()
SKIP
ENDWHILE
LOSE"MYDATAB"
LOSE"MYINDX"

ND

[ORE®]

]

In this example we make use of the sideways RAM as a buffer memory
for some of the records and index keys. There is an initial delay while
these files are loaded into RAM from disc but thereafter the program runs
considerably faster. The speed increase results from the fact that the
program is now reading the file copies from RAM instead of from disc.

Of course, if the database file is large, there will be a pause each time the
end of the RAM file is reached since more data will have to be transferred

26

from disc to RAM. If, however, your database is small, or you are
searching through only a small portion of it, then the increase in speed is
very useful! In addition, the BBC Master has several RAM banks available
so by reserving all the available RAM you can handle large "chunks" of
data.

Note that the amount of RAM reserved for the index is typically only a
tenth of that required for the database since each record is much longer
than its respective index key.

Since the records will be printed as fast as the program can find them you
might like to add the following after "SKIP":

PRINT'"Press a key"
G=GET
CLS

Having played with these examples you will appreciate that to READ a
record is quite simple!

Writing files

To WRITE a record requires a little more planning because, as in any
operation which WRITEs to disc files, there is a possibility of losing data.

Each record in the database file takes up a certain amount of space. We
call this space the Record Length. There is usually some spare length in
each record which is not used. For this reason, it is possible to alter a
record - perhaps to add a postcode or to change a name - and to save it
back in the same position on disc even though it is now longer. If,
however, it is too long to fit back an error message will be given. It is not
possible to corrupt the data, therefore, but once you have modified a
record and saved it back on disc the original version is over-written and
lost forever.

Example: progé

. START

REMOVE array ()

DIM array(),14

USE DB"MYDATAB"VIA"MYINDX"
READ REC array ()

PRINT array (3)

27

INPUT"New Postcode: "post$
PRINT"Which line of address ";
REPEAT

X$=GETS$

PRINT X$

X%$=VAL X$
UNTIL X%>0 AND X%<8
addr$=array (3)
LINES (addr$, X%) =posts$
array (3) =addr$
WRITE REC array ()
CLOSE"MYDATAB"
CLOSE"MYINDX"
PRINT array(3)
END

In this example we allow the postcode to be added or changed. Since it is
not readily possible to know which line holds the postcode the program
asks for this information. The new postcode replaces the old in the record
array, which is then written back to disc.

If we allow alteration of the name there is a different problem. The index
is derived from the first eight characters of each name (in lower case
letters). When a name is changed, therefore, we must not only write the
changed record back to disc but also modify the index to ensure that it is
still in alphabetical order.

The following program is simplified by the assumption that the record
will still fit back in the same position in the database file on disc. If that
were not so then it would be necessary to MARK the record as deleted
then to APPEND the longer version to the end of the database file.

Example: prog7

. START

REMOVE array ()

DIM array(),14

USE DB"MYDATAB"VIA"MYINDX"
WRITE INDEX"MYINDX"

READ REC array ()

PRINT array ()

INPUT"New name: "names$

oldname$=array (2)

28

array (2) =LOWERS$name$
SORT REC array ()
CLOSE"MYDATAB"
CLOSE"MYINDX"

PRINT array()

END

The old record key must be removed from the index by UNSORTing it.
The name in the array is changed to lower case because, by convention,
the index uses only lower case alphabet.

The modified record is written to the database in the same position. The
name field must be changed to lower case before SORTing can be carried
out. SORTing adds the name key back to the index file in the correct
position. Notice that we must USE the database VIA the index in order to
link the two but, because in addition we need to WRITE to the index
during the SORTing operation later, we must open the index for WRITE.

Any READ operation on the database, therefore, works by reading the
alphabetic listing of the index keys in MYINDX (each key includes a
record pointer number) then reading the record in MYDATAB specified
by the pointer. The SORT operation which is, by definition, a WRITE TO
INDEX operation will work only on the index file. WRITE operations on
the database have no affect on the index since they operate on the record
indicated by the file pointer which is set by the previous READ operation.

Confused? There are two files on disc: the database file contains only
records whereas the index file contains an ordered list comprising only a
KEY and a pointer for each record. The pointer is a number which
indicates the position of the first character of the record in the database
file. The key is (in the case of a string) the first few letters from the record
field on which the index is based; in the case of our examples, the key is
based upon the first eight letters of the name field.

Since the index KEY is an important concept it is recommended that you
review the Reference section notes for keywords CREATE INDEX, CREATE
USER INDEX, CRITERIA, FIND, KEY$, READ KEY and SORT before

continuing.

29

Displaying,
rinting and
Editing records

A major feature of any database is its ability to provide facilities for
allowing the user to see each record and to edit if necessary.

Before displaying the actual record, however, we usually need to know
what each line of data represents.

The following example shows how side headings can be displayed on the
screen and edited as necessary. Each user of the associated database
program can choose his own unique set of headings, even though the
database structure itself is unchanged.

Example: “"HEAD”
.START

LOCAL HS$,OHS$,boot$,bootl$, men$
1.|MCffice tel.|MAnniversary|MBirthday|MBirthday
|IMBirthday |MBirthday |MBRirthday|MBirthday|MNotes:"

REM Example "HEAD"

CLS

PROCsetupstrings

heading$="Home_te
h

PROCdisplayheads
RETURN

.displayheads

GS="E"

Cheadings

ESCAPE OFF
VDU23;8202;0;0;0;
REM cursor off

PROClines
Y$=CHR$131
*FX4,1
REM cursor keys off
*FX21
VDU23;29194;0;0;0;
REM cursor on
*FX4
REM cursor keys on
PROCeditheads
IF ASCGS$=27 THEN G$="E"

UNTIL GS$S="E"

ESCAPE ON

ENDPROC

.editheads

LOCAL alt$%

point%=1

alt%s=0

answers$="N"

PRINTTAB (0, 2)CHRS131"EDIT"CHRS$134"Press <ESCAPE> when finished "
PRINTTAB (0,16)CHRS134"Edit side headings";

PROClookupdata

IF alt%=1
PRINTTAB (0,2)CHRS$S131"Save alterations Y/N ",
*FX21
answer$=UPPERSGETS

ENDIF

PRINTTAB (0,2) STRINGS (39," ")
IF answer$="Y"
PRINTTAB (0,2)CHRS$134"Saving on disc....... "
SAVE heading$, "HEADING"
ENDIF
ENDPROC answer$

.headings
point%=
REPEAT
set$=LINES (dat$, point%)
scrline%=VALITEMS (set$, 1)
title$=ITEMS (set$, 3)
PRINTTAB (0,scrline%) title$+Y$;

31

point%=point%+1
UNTIL point%>10
ENDPROC

.lines
point%=1
£fil1$="."
REPEAT
set$=LINES (dat$,point%)
scrline%$=VALITEMS (set$, 1)
maxlen%=VALITEMS (set$, 4)
item%=VALITEMS (set$, 2)
title$=ITEMS (setc$, 3)
tab%=1+LENtitle$
PRINTTAB (tab%, scrline%) ITEMS (heading$, pocint%, CHRS$13) ;
PRINTCHRS$134;
PRINTSTRINGS (maxlen%-1- (LENITEMS (heading$,point%,
CHRS$13)),£1118);"<";
point$=point%+1
UNTIL point%>10
ENDPROC

.lookupdata

REPEAT
set$=LINES (dat$,point%)
scrline%=VALITEMS (set$, 1)
maxlen%$=VALITEMS (set$, 4)
item%=VALITEMS (set$, 2)
title$S=ITEMS (set$, 3)
tab%=1+LENtitle$
TAB tab%,scrline%
H$=ITEMS (heading$, point$%, CHRS13)
OH$=HS
cur$=EDIT LINE (HS$,maxlen$%,1,32,122)
ITEMS (heading$, point%, CHRS$13) =H$
IF %C=175

PROCcursup
ELSE PROCcursdown

ENDIF
IF OHS$<>HS$ THEN alt%=1

UNTIL %C=27

ENDPROC alt$%

32

.cursup
PRINTTAB (tab%, scrline%) ITEMS (heading$,point%, CHRS13) ;
PRINTCHRS$134STRINGS (maxlen%-1-

(LENITEMS (heading$,point%,CHR$13)),£fi11$) ;"<";
point%=point%-1

IF point%<l THEN point%=10

ENDPROC point$

.cursdown

PRINTTAB (tab%, scrline%) ITEMS (heading$, point%, CHRS$13) ;
PRINTCHRS$134;

PRINTSTRINGS (maxlen%-1-

(LENITEMS (heading$,point%,CHRS$13)),£i118);"<";
point%=point%+1

IF point%>10 THEN point%=1

ENDPROC point%

.setupstrings

Y$=CHRS$131

dats$="4,1, 1,13|M5,1, 2,13|M6,1, 3,13|M7,2, 4,13|M8,3, 5,13|M9, 4,
6,13|M10,5, 7,13|M11,6, 8,13|M12,7, 9,13|M13,1,10,13|M"

ENDPROC

33

The resulting display looks like this:-

EDIT Press <ESCAPE> when finished

1 Home_tel.

2 Office_tel.

3 Anniversary
4 Birthday
5 Birthday
6 Birthday
7 Birthday
8
9
1

AN A AN AN AN AN AN AN

Edit side headings

This example permits alteration of the headings by means of the normal
editing keys.

The actual work is done within the sub procedure .lookupdata in line
cur%=EDIT LINE (HS$,maxlen%,1,32,122)

The command EDIT LINE permits editing until a special key is pressed.

In this example, any key whose ASCII value lies outside the range 32-122
will exit from the line editor and return a value in the variable cur%. The
procedure is written so that <TAB>, <RETURN> or <cursor down> keys
will move the editor to the next line while <cursor up> will move the
editor back to the previous line. The IF statement with point% causes roll-
over between lines 1 and 10. Pressing <ESCAPE> causes an exit from the
program.

The variable maxlen% ensures that no heading can exceed 13 characters
in length.

Since a complete explanation of every line would be very tedious to read
(let alone write!) please load in the "HEAD" example from the disc into

34

HEADS$ then learn how it works by altering values. Type
HEAD<RETURN?> to run the program.

The example shows how side headings can be displayed and edited.
To display and edit database records is no more difficult.

The following example requires the previous one loaded into HEADS.

Example: CALLHED
. START
HEAD
REM calls heading program
PROCsetupstrings
REMOVE R ()
DIM R(), 14
USE DB"MYDATAB"VIA"NAMEINDX"
USE UNMARKED
REPEAT
READ REC R{()
PROCdisplayarray
PRINTTAB (0, 3) "Next record Y/N 2"
G$=UPPERSGETS
PRINTTAB (0, 3) SPC18
IF G$="Yy"
SKIP
ELSE
CLOSE"MYDATAB"
CLOSE"NAMEINDX"
ENDIF
UNTIL GS$<>"Y" OR END
RETURN

.displayarray
G$="E"
REPEAT
answer$=""
ESCAPE OFF
vDU23;8202;0;0;0;
REM cursor off
PROClines
Y$=CHR$131
*FX4,1

35

REM cursor keys off
*FX21
VvDU23;29194;0;0;0;
REM cursor on
*FX4
REM cursor keys on
PROCeditarray
IF ASCGS$=27 THEN G$="E"

UNTIL G$="E"

ESCAPE ON

ENDPROC

.editarray

LOCAL alt%

point%=1l:alt%=

answer$="N"

PRINTTAB(0,2)CHRS$131"EDIT"CHRS$134"Press <ESCAPE> when finished "
PRINTTAB (0,16) CHR$134"Edit record "CHR$131;R(2);SPCl2

PROClookupdata

IF alts=
PRINTTAB (0,2)CHR$131"Save alterations Y/N "y
*FX21
answer$=UPPERSGETS$

ENDIF

PRINTTAB (0, 2) STRINGS (39," ™)
IF answer$="Y"
PRINTTAB (0,2)CHR$134"Saving on disc....... "
WRITE REC R ()
ENDIF
ENDPROC answers$

.lines
point%=1
REPEAT

set$=LINES (dat$,point$%)
scrline%$=VALITEMS (set$, 1)
maxlen%$=VALITEMS (set$, 4)
item%=VALITEMS (set$, 2)
title$=ITEMS (set$, 3)
tab%=17
PRINTTAB (tab%, scrline%) ; SPC20
PRINTTAB (tab%,scrline%) ;R(point%+4)

36

point%=point%+1
UNTIL point%>10
ENDPROC

.lookupdata
REPEAT
set$=LINES (dat$, point%)
scrline%=VALITEMS (set$, 1)
maxlen%=VALITEMS (set$, 4)
item$=VALITEMS (set$, 2)
title$S=ITEMS (set$, 3)
tab%=17
TAB tab%,scrline$%
HS$=R(point%+4)
OH$=HS
cur%=EDIT LINE (H$,maxlen%,1,32,122)
R(point%+4)=HS$
IF %C=175
PROCcursup
ELSE PROCcursdown
ENDIF
IF OHS<>HS$ THEN alt%=
UNTIL %C=27
ENDPROC alt$%

.cursup
PRINTTAB (tab%, scrline%)R(point%+4) ;
point%=point%-1

IF point%<1l THEN point%=10

ENDPROC point%

.cursdown

PRINTTAB (tab%, scrline%)R(point%+4);
point%=point%+1

IF point%>10 THEN point%=1

ENDPROC point$%

.setupstrings

Y$=CHRS$131

dat$="4,1, 1,13|M5,1, 2,13|M6,1, 3,13|M7,2, 4,13|M8,3, 5,13|M9, 4,
6,13|M10,5, 7,13|M11,6, 8,13|M12,7, 9,13|M13,1,10,33|M"

ENDPROC

37

This program initially runs the previous example program (HEADS) to
allow editing of headings, then reads the first database record and
displays fields 5 to 14 for editing. The resulting display will look
something like this:-

EDIT Press <ESCAPE> when finished

1 Home_tel. ...<021-545-4389
2 Office_tel. .<021-455-6323
3 Anniversary .<05/06/51

4 Birthday<16/07/35

5 Birthday<23/02/32

6 Birthday<30/03/53

7 Birthday<

8 Birthday<

9 Birthday<
10 Notes: <Has Atari ST

Edit record Addison,J

The program has been kept as near as possible to the previous example
"HEAD" in style and headings. Indeed, some of the procedures share the
same name in each program. While this is not always good practice
(because it could be confusing) it has no detrimental effect on the running
of either program. Beware, however, of shared variable names which are
not declared as LOCAL.

It is possible to combine both programs in order to utilise common
subroutines, albeit with modification. This overall reduction in size could
be combined with the omission of the heading-edit facility to simplify the
program still further.

The programs could be extended to include record fields 1 to 4 (number,
name, address and category). At present, the example indicates the name
but does not allow it to be edited.

The examples are simplified for ease of understanding and it should be
noted that no error checking is used. For instance, it would be possible to
increase the size of the record beyond its maximum length. Consequently,
the record would not then fit back in the database file. However the

38

necessary MARK, APPEND and SORT routines to cope with this
possibility have not been included, here.

Making use of dates

Birthdays are recorded as strings but, provided certain recognisable
formats are used, could readily be converted to dates. For instance,
assuming R(6) contains "16/7/35"

bdayl@=QR(6)
PRINT bdayl@

results in:
16th July 1935

You can make this a little more foolproof by trapping possible errors.
Suppose that R(6) contains "17/667"

. START

ON ERROR bdayl@=@"31/12/99":0N ERROR OFF:GOTO hop
bdayl@=@R(6)

ON ERROR OFF

.hop

PRINT bdayl@

Results in:-
31st December 1999
To understand this chapter fully please read the Reference Section notes

about EDIT, EDITLINE, DISPLAY, ON ERROR, SHOW, POS, VPOS,
PRINT and TAB before continuing.

More program examples

The following two program examples may be found on the disc.
To print them out for studying please load them into INTER-WORD. To
run them, load them into INTER-BASE as described, below.

39

“CONVERT”

Since it is occasionally useful to transfer a program written in BBC BASIC
to INTER-BASE, the “CONVERT” program was developed. It will not
cope with assembly language, however! The original BASIC program in
memory must be spooled onto disc by typing:

*SPOOL prog <RETURN>

LIST <RETURN>

*SPOOL <RETURN>

Load the spooled text into INTER-BASE 0 by typing;:
*IB.PMENU <RETURN>
LOAD prog$, "prog” <RETURN>

Type:
LOAD CONVERTS, "CONVERT"

If the BASIC program is very long it is wise to TOKENISE the
CONVERTS$ and, if possible, to INSTALL it in ram (as described in the
next section).

To run the conversion type:
CONVERT <RETURN>

The conversion will take a few minutes.
Use INTER-BASE 0 menu option 5 to view prog$.

The program will not be converted fully but you can run it and find
where the remaining errors occur. Look especially for DIM, READ,
RESTORE and DATA where differences in syntax occur between BASIC
and IBPL. In the case of DIM, the array in BASIC is set up typically as
DIM array$(4,16) whereas the same array in IBPL might be:

REMOVE array ()
DIM array(),5
FOR X%=1 TO 5
FOR Y%=1 TO 16
DIM array (X%),Y%
NEXT
NEXT

40

This is more complex to set up than in BASIC and, whereas in BASIC
element zero exists, in INTER-BASE it does not. The lowest order array
element is number one.

In the case of READ and DATA, there are large differences between
BASIC and IBPL which you should look up in the Reference Section.

“RETRIEV”

The program was developed to retrieve a database which had become
corrupted in the middle. This will certainly work with simple corruption
such as incorrect overwriting of a record but will not necessarily cope
with a magnetically corrupted disc where whole sectors are missing. Nor
will it cope with a database whose "header" is corrupted. Always keep a
BACKUP copy!

The program will run faster if TOKENISEd.

ROM Programs

This section describes how to put programs into Sideways RAM or more
permanently into EPROM.

Important key words

CLEAR RAM, LOAD RAM, INSTALL, SAVE RAM,
RAM SPACE, RAM STATUS, REMOVE, TOKENISE

So far this book has considered only those programs which reside in user
memory in a form that can be edited. However, INTER-BASE provides a
facility which will increase the running speed of any IBPL program and,
if desired, allow one or more programs to be stored in Sideways RAM
(SRAM) or in EPROM.

TOKENISE

The command TOKENISE<prog string> will condense the specified
program into a format where every keyword is converted into a single-
byte code or "token". In fact numbers and other items are also "tokenised"
and, once this is done, the program can not be converted back to its
readable form. A copy should always be saved on disc before tokenising!
When a tokenised program is run an increase in speed of between 2 and 4
times can usually be achieved.

41

If, during tokenising, an error is found, then this will be announced.
However, not all errors will be noticed. Usually, a reference to a non-
existent procedure will be reported but the omission of, for instance,
ENDIF will not.

Labels are not tokenised, so error reporting will identify the last label
encountered. However, there can be no display of the actual faulty
program line. In order to locate the exact error line it is often helpful to
load the original program back from disc; add lots of labels between the
suspect lines; save another copy on disc; tokenise the program again then
run it and note which label is reported.

INSTALL

Once a program has been tokenised it can be transferred to Sideways
RAM. For instance, if your program is in prog$ then you would install it
in SRAM 4 as follows:-

TOK.prog$
CLEAR RAM 4
INST.4,prog$

There is no need to type each full command since INTER-BASE
recognises abbreviations. The commands could also be put into a
program string and run so that, if you are repeatedly altering a program
and installing it, you need type the command sequence only once.

Although the program has now been installed there remains a tokenised
copy in prog$. If you run the program, this copy will be active and the
version in SRAM will be ignored. The original must, therefore, be
removed.

REMOVE

A strange quirk of INTER-BASE is that if you REMOVE the default string
(i.e. the one whose name appears against menu option 5) then the string
contents will be removed but the string itself will remain as a null string.

Attempting to run it at this stage will produce the error message "No
START".

To overcome this problem use menu option 5 to select some unused
variable name as the default. Then remove the program string by typing
(in this instance) REMOVE prog$ <RETURN>.

42

Now prog$ will no longer exist in user memory but when you type:
prog <RETURN>
the program in SRAM will be run.

You may install as many tokenised programs in SRAM as there is room
for. Each bank of SRAM will hold programs up to a total of about 15k
bytes since roughly 1k byte is occupied by a machine code header.

More than one program can be installed in any SRAM bank. More than
one SRAM bank may contain programs but beware of installing
programs into any SRAM bank which you have, or will, SELECT as
workspace (see SELECT and RESERVE in the reference section).

CLEAR

Once a program has been installed it can not be removed alone. If the
SRAM is CLEARed then all the programs in that bank will be erased.
Note that the command CLEAR removes the header but does not fill the
SRAM with &FF bytes.

SAVE

Programs installed in SRAM can be saved on disc by the SAVE RAM
command. In fact you may type SAVE RAM or SAVE ROM - both are
equal in effect.

SAVE RAM 4, "progrom" <RETURN>

LOAD

Programs may be loaded in a similar fashion:

LOAD RAM 4, "progrom" <RETURN>

You can determine what programs are present in Sideways RAM and
ROM by typing the help command:

*H.IB. <RETURN>

which will list the contents of each bank.

43

SHOW

The example program “SHOW” is very long and much too complicated
to re-type from a listing. It is therefore only available if you have the
example disc.

Load the program "SHOW" into _SHOWS. (The preceding underline
character is important). It was developed to produce a menu which
displays all INTER-BASE programs currently installed in RAM or
EPROM, except for those whose names begin with the underline
character " "

Those programs which you will use merely as subroutines to a main
program can be made "invisible" in this way.

IMPORTANT: no program name should contain the underline character except
as the first character.

Load the program “SHOW” into INTER-WORD. Print it out to see how it
is written.

The program uses the variable, U$, to install machine code directly into
memory at &B00. This code is a "user printer" routine which transfers the
INTER-BASE program names to the screen. The actual operation of the
machine code is beyond the scope of this book but the program itself
serves as a good example of what is possible and also provides you with a
working utility!

Note that U$ is defined as a long string with .START and RETURN so
that, by putting U<RETURN> in the main program, we actually call U$ as
a program in its own right so it will install the machine code.

This program has been used in both a BBC B and a BBC Master.

When installed in RAM or EPROM “ SHOW” is invisible to itself.

That is to say it will list other IBASE programs which do not begin with
the underline character but will not list itself. (Naturally it will also not
list itself if it is run in user memory).

Other INTER-BASE programs can be installed in the same RAM bank as

“ SHOW” and may subsequently be SAVEd to disc and blown into
EPROM.

44

Booting from disc

It is possible to include a 'BOOT program on disc which will load the
program SHOW and run it to produce a menu of other programs.

'BOOT programs can be typed directly into INTER-BASE and saved onto
disc.

Example

*IB.PMENU

LOAD K$, "SHOW"

RUN K$

This can be saved directly as BOOT

Remember to type *OPT4,3 to allow the boot option to work from disc.

A more sophisticated system would be to program the RAM image
containing _SHOW into EPROM and to plug this into an appropriate
socket in the computer.

The 'BOOT program is then simplified to

*IB.PMENU
_ SHOW

The need for booting from disc can be avoided altogether by constructing
an additional EPROM which contains special codes. Unfortunately, these
codes must be in an EPROM alone since the format is incompatible with
INTER-BASE programs.

The ROM so constructed contains a machine code !BOOT routine which
responds when you hold <SHIFT><DELETE> and press <BREAK>.

This 'BOOT code programs key 9 with the command "*EXEC BRING".

"BRING" is the actual boot program which enters *IB.PMENU and runs
_SHOW.

A ROM image "BOOTrom" with these codes is on the example disc.

45

It may be loaded into SRAM or be programmed into an EPROM. The
IBPL program " SHOW" must also be present, either as SHOWS in
INTER-BASE, in RAM or in an INTER-BASE ROM.

Additional Commands

IBPL provides special labels which are recognised only in a program
which has been tokenised and installed in RAM (or EPROM).

.ENTRY is a label which designates the starting point of a program when
run by the special command ENTER<program name>.

Once a program has been ENTERed in this way it is impossible to exit
without again using the command ENTER to enter a different program.

The system is suitable only for serious programmers and will have little
interest for most people.

The built-in programs PMENU (INTER-BASE 0) and MENU (Database)
use the ENTER system. It is possible to use ENTER PMENU from your
own program, for instance, to return to INTER-BASE 0 menu.

There are three more special labels for use in ROM based programs:

.ERROR

If an error occurs and the error trapping system ON ERROR is not in
force then program execution will continue from this label.

.FATAL

If a fatal error occurs then the program will resume from this label.

RESTART

If an END statement is reached then the program will jump to this label.

Example
.START
REM this is myprog$ in RAM.or EPROM.

ENTER myprog

REM a program can enter itself.

46

.ENTRY

REM this is the entry point.

FATAL

REM if a fatal error occurs, memory could be corrupted, so the
setup must be done again.

PROCsetup

REM set up various strings and arrays for the program to use.
REM normally this needs to be done only once.

.ERROR

REM non-fatal errors such as pressing <ESCAPE> will return here.
.PROCmenu

RETURN

.menu

REM the menu procedure can be here.

ENDPROC

.otherprocs

REM other procedures can be here.

ENDPROC

47

Communicating
with
INTER-WORD

It is possible to communicate between the INTER- series packages and to
call upon INTER-BASE programs from within these packages. Because of
the limitations of the BBC Computer memory organisation, however, the
communication is not as friendly as we might wish. In fact some of the
possibilities are achieved only by downright "dirty" methods.

However, since a lot of users want the ability to import names and
addresses or similar information from a database into INTER-WORD, this
chapter gives details of the methods available.

It is important to understand that, while several packages can exist in
memory, only one INTER- package can be "active" at one time.
Communication, therefore, is strictly one-way with the "active" package
COPYING data from a "dormant" package whose text or data was
compacted into memory when the "active" package took control. The
"dormant” package can not change in size, consequently data can be
neither added to nor deleted from it, whereas the "active" package has
room to expand and contract.

The saving grace is that INTER-BASE programs can be run even when
INTER-BASE itself is dormant, provided that some memory is
ALLOCated as workspace.

Important Note:
Error trapping is not possible when an IBPL program is run from another
INTER- package. The command ON ERROR has no effect.

The following general procedure can be applied to programs running
from INTER-WORD.
48

Set up a !BOOT program on disc which will select IB.PMENU. Load the
desired program(s) if not already resident in sideways RAM/EPROM.
ALLOCate sufficient memory as workspace. Initialise any variables then
call INTER-WORD as the "active" package.

The following short program can be typed into INTER-BASE and saved
as !BOOT. Remember to type *OPT4,3 to enable the "EXEC" disc option.

*FX210,1 Turn off sound
*IB.PMENU Enter IBASE

LOAD P$,"IWcom" Load program

ALLOC 4000 Allocate workspace
D%=0 Initialise variable
*IW. Enter INTER-WORD
*FX210 Turn on sound

P Run program

Delete the 'BOOT program from INTER-BASE and load "IWcom". The
following example shows some of the possibilities. Note that you can run
it without first using the IBOOT program, provided that you carry out the
initialisation by ALLOCating workspace, setting D%=0 and then selecting
INTER-WORD. The ALLOCation needs to be done only once but D%
must be reset before each run.

Example: “IWcom”

. START

REM You must set D%=0 before running this program from INTER-
WORD.

REM Not more than 32 characters can be "Stuffed" at a time.
REM this program MUST be in P$

PROCdefkeys

EXPORT"Hi There"

CASE D%

WHEN O
VS="K"+ESS$S+Cf4S$+AUS+"67"+ESS+CE6S+"27G"+ADS+"27H"
V$=+ESS$+ESS$+" :P"+RES
EXPORT"Hello. This is a line of text”

WHEN 1
VS="K"+ESS+Cf5$+ADS+ARS+ADS+ADS+"3"+ESS+ESS+" :P"+RES
EXPORT"This is another"”

WHEN 2
VS="K"+ESS$S+CEf5$+AUS+AUS+AUS+ARS+ARS+DELS+"\"

49

EXPORT"And another"
ENDCASE
$=D%+1
PROCbuffstuff V$
RETURN

buffstuff "v$
LOCAL X%

FOR X%=1 TO LENVS
A$=STRSASCVS [X%]
OSCLI"FX138,0,"+AS$

NEXT

ENDPROC

.defkeys

Cfas="|1s"
CEf5s="11%"
Cfes="|!&"
ARS="|!|M":REM right
ADS="|!|N":REM down
AUS$="|!|0O":REM up

DELS$="|?":REM delete left
RES$="|M":REM return key
ES$="|[":REM escape key
ENDPROC

At first sight the program might look a little complicated but let's take it
step by step.

In order to set up various menu options in INTER-WORD it is necessary
to press several function keys and cursor keys. INTER-BASE has no
fingers, consequently we must simulate the key presses by putting
appropriate codes directly into the keyboard buffer. This method is
considered "dirty" and would not usually be recommended for serious
programming. However, it represents the only way in which INTER-
WORD options can be controlled. It is, however, effective and can give
reliable, consistent results, provided that you understand how it works.
Anyway, it's good fun!

"PROCdefkeys" defines the codes needed to simulate the keys we shall be
using. This action is not strictly necessary - we could use the codes
directly - however it makes the program more understandable to use, for

50

instance, ES$+Cf4$ to represent <ESCAPE> <CTRL>+<f4> than to use
[[1'$ which is the actual code! A complete list of codes is given at the end
of this chapter.

The command EXPORT transfers the text - Hi There - into the INTER-
WORD text editor at the cursor position.

Since D% at this point is zero the CASE statement goes to WHEN 0 and
constructs V$ from the required codes.

The command EXPORT transfers the text - Hello. This is a line of text -
into the INTER-WORD text editor at the cursor position.

Since D% is still zero the program passes to ENDCASE then increments
D%.

The memory location of V§$ is passed to the procedure PROCbuffstuff
which puts the string of codes into the keyboard buffer. When the
RETURN statement is reached the program returns control to INTER-
WORD which responds with "Press any key" and looks at the keyboard
buffer. The first character in V$, therefore, must simulate a key press and
the program uses "K", (although any letter would do). The next action
must be to press <ESCAPE> from the menu in order to enter the text
editor and this is achieved with the code |[(stored in ES$).

The next codes effectively press <CTRL><f4>, <cursor up>, type the
footer position as line 67 then <ESCAPE> back to the text editor. Press
<CTRL><f6>, type 27G (27,"G" to set emphasised text), <cursor down>,
type 27H, <ESCAPE> to text editor, <ESCAPE> to INTER-WORD menu
then run the program again by entering :P<RETURN>.

The command EXPORT transfers the text - Hi There - into the INTER-
WORD text editor at the cursor position.

This time the program is run with D%=1 so the second version of V$ is
constructed.

The command EXPORT transfers the text - This is another - into the
INTER-WORD text editor at the cursor position.

D% is incremented to 2 and V$ is put into the keyboard buffer.

51

Control is returned to INTER-WORD which accepts the simulated key
presses as follows:

Press any key "K", <ESCAPE> to text editor, <CTRL>+<f5>, <cursor
down>, <cursor right> to change Page range to "some", <cursor down>
twice and type "3" to select the last page to be printed. <ESCAPE> twice
to get back to INTER-WORD menu then run P$ again.

With D% = 2 the final string of codes is entered to change the pad
character to a backslash. This time the program is not RUN again so
control remains with INTER-WORD. Press <ESCAPE>.

The reason that we can not put the control codes into the buffer in one
long V§ is that the keyboard buffer can accept no more than 32 characters
at a time. The program is written, therefore, in a recursive pattern so that
this restriction is overcome. This recursion can create real headaches in a
larger program and is best avoided if at all possible by keeping the
number of codes to a minimum. (It is more sensible to load a "blank page"
from disc with the options already set up!)

Further notes

If an inverted comma represents a code it must be preceded by a double
bar character, thus |", otherwise INTER-BASE interprets it as the start of
a string.

You can set up a function key to run an INTER-BASE program by typing,
for instance, *FKEY0 :Prog|M <RETURN>. This definition could be
included in the !BOOT file.

Communicating
with
INTER-CHART

The 'BOOT program is similar to that used previously:

*KEYO :D%=0 P Define key £f0

*FX210,1 Turn off sound

*IB.PMENU Enter IBASE

LOAD P$,"ICcom"” Load program

ALLOC 4000 Allocate workspace

*IC. Enter INTER-CHART

*FX210 Turn on sound

*FX138,0,128 Run program (simulate key £0)

This time we have programmed f0 to reset D% and run the program.

Just as an example the last command *FX138 acts upon key f0 instead of
running the program by using :P directly. In key definitions the code |M
must be used directly. Don't try to use RE$ - it won't work!

The following program example will draw a labelled histogram in
INTER-CHART. There are some important differences between INTER-
WORD and INTER-CHART which should be recognised. After the initial
RETURN to INTER-CHART there is no need to "Press any key",
consequently the "K" is omitted from V$ on subsequent re-entries.

After any simulated function key or cursor key press the keyboard buffer
is cleared of further instructions. Such a key press must, therefore, be the
last one before control is returned to INTER-CHART. This fact greatly
restricts the use of both INTER-CHART and INTER-SHEET since cursor
operations and function keys effectively can not be used.

Example: “ICcom”

.START

REM You must set D%=0 before running
REM this program from INTER-CHART.
REM The program MUST be in P$
PROCdefkeys

REM Not more than 32 characters can
REM be "Stuffed" at a time.

REM Replace P with the program name.
CASE D%

WHEN 0
V$="K"+ES$+"GRAPH1"+RES+"L"+ES$+" :P"+RES
WHEN 1
V$=ES$+":P"+RES
FOR X%=1 TO 5

EXPORT " |"label"+STRS$XS
EXPORT X%
NEXT
FOR X%=4 TO 1 STEP -1
EXPORT " |"name"+STRS$X%
EXPORT X%
NEXT
WHEN 2
VS=ESS$+"7"+£f3$+"anything further is ignored”
ENDCASE
D%$=D%+1
PROCbuffstuff v$
RETURN

buffstuff "v$
LOCAL X%

FOR X%=1 TO LENVS
AS=STRS$SASCVS [X%]
OSCLI"FX138,0, "+AS

NEXT

ENDPROC

.defkeys

£3$="|t|C"

RES$="|M":REM return key
ES$="|[":REM escape key
ENDPROC

54

Load ICcom into P$ and type the following:
D%=0 <RETURN>

*IC. <RETURN>

P <RETURN>

You can reset INTER-WORD -SHEET or -CHART to the original options
by typing from the relevant menu:

: CANCEL<RETURN>
Type v in response to "Are you sure" and

IW.<RETURN>

or

IS.<RETURN>

or

IC.<RETURN>

as appropriate to return to the package which is now cleared and reset.
To edit the program type:

:EDIT P$<RETURN>.

The following list gives the control codes which simulate each key press

and can be sent only via the keyboard buffer. EXPORT can not be used
with these codes.

f0$="1!l@" 0 key
f1$="111A" f1
f2%="1!1B" 2
f3$="111C" 3
f4$="111D" 4
f56="111E" 5
f6$="1!1F" f6
7$="111G" 7
8%="111H" 8 (in IW = Delete Marked Section - CLEARS BUFFER !)
f9%="1111" 9
Cf1$="11" CTRL+{1
Cf2%="111"" CTRL+{2
C3$="11#" CTRL+{3
Cf4$="11%" CTRL+f4

55

Ct5%="11%" CTRL+{5

Cfe$="11&" CTRL+{6

Cf7$="11" CTRL+{7

Cf8s="11(" CTRL+{8

Cf9g="11)" CTRL+{9

Sf0$="1!1P" SHIFT+£0

Sf1$="111Q" SHIFT+f1

Sf2%="11IR" SHIFT+{2

SE3%="1115" SHIFT+{3

Sf4S="111T" SHIFT+{4

SE5$="111U" SHIFT+{5

Sfe$="111V" SHIFT+{6

Sf7$="111W" SHIFT+{7

Sf8g="111X" SHIFT+{8

Sf9$="111Y" SHIFT+{9

AL$="11IL" cursor left

AR$="11IM" cursor right

ADS$="I!IN" cursor down

AUS="1110" cursor up

SL$="111\" SHIFT cursor left

SR$="1"11}" SHIFT cursor right

SD$="1[1A" SHIFT cursor down -(use |!. 1! |!|L instead) *
SU$="1!1_" SHIFT cursor up -(use !/ 1!/ 1!, instead) *
CL$="11" CTRL cursor left

CR$="11-" CTRL cursor right

CD$="1"1" CTRL cursor down

Cus="11/" CTRL cursor up

DEL$="17?" DELETE left

TA$="1T" insert tab (also EXPORT" 1)
RE$="IM" RETURN key (also EXPORT" IM")
ES$="1[" ESCAPE key

* Note: All SHIFT commands clear the buffer, terminating the sequence,
SO a recursive return to the program is not then possible. The alternative
codes for SD$ and SU$ do not have this effect but can work only within a
single page (usually adequate).

EXPORT commands

The following codes do not need to be sent via the keyboard buffer and
can be EXPORTed directly to INTER-WORD.

56

Tab character
Carriage return

Bold start
Bold end

Underline start
Underline end

Dotted start
Dotted end

Centred start
Centred end

Right align start
Right align end

Justified start
Justified end

Left align
Embedded pause

The EXPORT command also sends a carriage return unless you terminate
the string to be exported with a semi-colon. For instance, the program

.START

EXPORT" |[K|P";
EXPORT"Hello ";
EXPORT"there.";
EXPORT" [W|S"
RETURN

"IT" or CHR$9
"IM" or CHR$13

"I K" or CHR$11
"1S" or CHR$19

"IL" or CHR$12
"I T" or CHR$20

"IN" or CHR$14
"1 U" or CHR$21

"IP" or CHR$16
"IW" or CHR$23

CHR$17 only
CHR$24 only

CHR$18 only
CHR$25 only

CHR$24+CHR$23 only

"1D" only

produces in bold, centred type -

Hello there.

Note that the Insert ruler (simulate f2) code can be sent ONLY via the

keyboard buffer.

Embedded Commands in INTER-WORD

To place an embedded code, other than pause: simulate f1, simulate
cursor movements, enter number if necessary then simulate ESCAPE,
(followed by ESCAPE again, program re-entry name and Carriage Return
if required).

Colon commands

:CANCEL

Cancels current INTER- package. The command prompts "Are you sure"

and removes the package if the letter Y is input, leaving the star prompt

s

Note :CANCEL leaves two items unchanged in the printer setup menu:-
Send line feeds:

and Printer type:

Example

. START

V$=":CAN. |[MYIW.O0|M"
PROCbuffstuff v$
RETURN

.buffstuff "~V$
LOCAL X%

FOR X%=1 TO LENVS$
AS=STRSASCVS [X%]
OSCLI"FX138,0,"+AS
NEXT

ENDPROC

This example cancels the current INTER- package, deleting its contents,
and enters IW.0. Note that can. is an acceptable abbreviation of cancer.

Assuming that this program resides in P$, therefore, typing : p<rETURN> in
INTER-WORD 0 menu has the effect of clearing all text and resetting all
options to their default status.

KILL

Similar to :canceL but removes ALL INTER- packages. Use with care!
(Very useful for restoring maximum memory for INTER-BASE use.)
58

Note Like the :CANCEL command, :KILL leaves two items unchanged in
the printer setup menu:-

Send line feeds:
and Printer type:

Transferring text

The following commands assist the transfer of text between packages:

:MOVETOP

Moves the invisible ROM-LINK pointer to the top of the text in the
specified package so that it exists at a position which is one step BEFORE
the first character.

Example
:IW.1:MOVET.

Note: the ROM-LINK pointer is NOT the visible text cursor. It is moved
automatically to the top when a package is entered.

:MOVEAFTER<"string">

Moves the invisible ROM-LINK pointer to the first character after the
specified string. Begins the search from the current ROM-LINK pointer
position, so it is usually necessary to use :MOVETOP first.

Example
:IW.2:MOVEA.
:MOVEFORWARD <number>

Moves the ROM-LINK pointer forward by the specified number of
characters which may be from 1 to 255. If this number is omitted then 1 is
assumed.

Example
:IW.0:MOVEF.200
:GETCHAR <number>

Copies a specified number of characters which may be from 1 to 255 from
the invisible ROM-LINK pointer onwards. If this number is omitted then
1is assumed.

Example
Type the next line into IW.0

59

Goodbye. For the next three days I shall be away.

Run the following program from any package other than IW.0

. START

:IW.0:MOVET.
:IW.0:MOVEA."For the next "
IMPORTAS, "IW.0:GETC.20"
PRINT AS$

RETURN

three days I shall b

:GETMARKED
Copies marked text from the specified package.

Example
IMPORT A$,”IW.0:GETM.”
EDIT A$

Note: The initial pointer position is unimportant but the invisible ROM-
LINK pointer is left immediately after the marked section.
:GETTEXT

Copies all text from the specified package and leaves the invisible ROM-
LINK pointer at the end of the text.

Example

IMPORT A$,"IW.0:GETT."
MODE3

EDIT A$

:GETTEXT(C)
Same as :GETTEXT but transfers all rulers and options as well as text.

:GETTO<string>

Copies all text from the current ROM-LINK pointer position up to (but
not including) the specified string. The invisible ROM-LINK pointer is left
after the specified string.

Example
IMPORT A$,”IW:0:GETTO|"||M|"”

60

Calling programs from INTER-WORD

Colon commands can be embedded within the word processor text in
order to make use of an IBPL program while a text preview or printout is
occurring.

To achieve this object simply press <f1> in INTER-WORD; move the
cursor down 3 steps; type in your program name next to the colon and
press <ESCAPE>. The embedded command will appear at the present
cursor position in the text and the program will be run each time the
printout or preview reaches this position.

The most obvious use for this facility is to utilise a mailshot program
which will print the same text repeatedly but, for each printout, will
insert a different name and address.

Note that before using a program in this way you must first ALLOCate
some workspace in INTER-BASE 0, otherwise it will have no room in
which to store variables since INTER-WORD will take it all!

Type your mailshot letter into INTER-WORD but omit the recipient's
address. Instead, place an embedded command there with the code

:mshot

The following program works with the example database format.
Since "mshot" is called repeatedly it does not know when to close the

database. You must, therefore, type
: CLOSEALL<RETURN>
when it has finished printing all the mailshots.

The program should be loaded or typed into mshot$ in INTER-BASE and
workspace allocated. aLLoc 1000 will do. The program mshot$ may be
tokenised and installed in RAM or EPROM, if desired, to leave memory
free.

The "category" of search (field number 4) must be specified in U$. For
instance, all those people to whom you send Christmas letters may have
"X" in the category field of the database so you type U$="X" before using
the program. Any record which does not have X in field 4 will be
SKIPped over.

61

Example: “mshot”
. START
REM This is mshot$.
REM search category must be in U$
IF TYPE US$=-1 THEN U$=""
REMOVE R ()
READ DB"MYDATAB"VIA"MYINDX"
USE UNMARKED
REPEAT
READ REC R ()
SKIP
PROCnameit
rt$=R (4)
rs$=R(3)
IF END THEN rt$=U$
UNTIL U$ IN rt$
EXPORT" | I"+L$
X%=0
REPEAT
XE=X%+1
adrS$=LINES (rs$, X%)
EXPORT" | I"+adr$
UNTIL X%=
EXPORT ' "Dear "+dears$+","
.end
IF END THEN CLOSEALL
RETURN
.nameit
L$=R(2)
R$=TRIMSLS
sur$=TRIM$ITEMS (R$, 1) :REM everything prior to comma
chri$=TRIMS$ITEMS (R$,2) :REM everything after comma
IF chris$<>""
LS=chri$+" "+surs$+","
IF chri$[1,2] IN "MrDrMsHr"
dear$=WORDS (chri$, 1) +" "+sur$
ELSE dear$=chris
ENDIF
ELSE L$=R$
dear$="Sirs"
ENDIF
ENDPROC

62

Notes:

Sub procedure .nameit looks at the name in field 2 and rearranges it so,
for instance, "Simpson,Mr]J" becomes "Dear Mr Simpson,” and
"Nelson,Patricia" becomes "Dear Patricia," in the letter.

Before you print, use <CTRL><f5> Printer setup menu to set the number
of copies (= the number of recipients). This number can be smaller than
the total and, for the purpose of testing, you can use INTER-WORD menu
option

7) Preview text
to see what would be printed.

Pressing the space bar during previewing will halt the display and pressing a
second time will allow it to continue. The keys <CTRL><SHIFT> held down
together will also halt the scrolling display while pressed.

Note that the program will continue to skip to the next address on each
printing or preview operation. To return to the first address in the
database it is necessary to type:

:GO START<RETURN>

or

:CLOSEALL<RETURN>.

You could program function key 9 to do this by typing:

*KEY9 :GO START|M <RETURN>

Always use :CLOSEALL after running the mailshot program, otherwise the
database files are left open and can cause problems later.

Final notes about colon commands

From INTER-WORD menu you can assign variables (e.g. :0%=0) and print
them (e.g. :PRINT D% Or :PRINT 3*5) but you can not print strings (e.g
:PRINTP$ OF :PRINT"hello" will result in an error message).
Commands such as :EDIT P$ and :EXPORT P$ may be used.

You can also use the ROM-LINK colon commands such as

:IW.1:GETMARKED.

63

Try typing
:HELP<RETURN>.

Before running an IBPL program from INTER-WORD menu, always enter
INTER-BASE 0 menu first and ALLOCate workspace.

64

Some examples in this section are to be found on the example disc.

ABS

absolute value

This function takes the absolute value of a negative number; i.e. it
removes the negative sign from a negative result but leaves a positive
result alone.

Examples
PRINT (6-9)

-3
PRINT ABS (6-9)

3
PRINT ABS -89

89

See SGN

65

ACS

arc-cosine

This function calculates an angle in radians from a cosine value.
Example

PRINT ACS 0.6
0.927295218

See ASN, ATN, COS, DEG, EXP, LN, LOG, RAD, SIN, SQR, TAN, PI

ADD@

add date

This function adds a specified number of days, months and years to the
given date variable and returns the resulting date.

Syntax
ADD@(<date>,<days%>,<months%>,<years%:>)

Example

datel$="20/6/51"
date2$=STRS$ADDQ (Rdatel$, 0,0, 38)
PRINT date2$

20th June 1989

66

ADD FIELD

add field to database

This function works on the currently selected database.
It may be used to define fields when a database is first created.
It may be used to add fields to an existing database if room is available.

Syntax
ADD FIELD {INT,STRING,DATE,REAL}

Example
ADD FIELD STRING, STRING, INT,DATE,REAL, INT

See CREATE DB for more details.

ADVAL

read analogue port

This function returns a digital value from the Analogue Input port.
However, it also has important secondary functions.

There are four analogue input ports which can be selected.

Each has an input voltage range of 0 to 1.8 volts and produces a digital
output between 0 and 65520. The digital output increases in steps of 16,
however, and is best divided by 16 right from the start.

Example
A%=ADVAL (1) /16
PRINT A%

3097

67

The analogue channels are numbered 1 to 4. It takes 10 milliseconds to
return a value from one channel. If all four are in use it will take 40
milliseconds.

ADVAL(0) can be used to give information about the "fire" button inputs
on the Analogue port.

Example

X%$=ADVAL (0) AND3

IF X%=0 THEN PRINT"No button pressed"”

IF X%=1 THEN PRINT"Left button pressed”

IF X%=2 THEN PRINT"Right button pressed”
IF X%=3 THEN PRINT"Both buttons pressed”

Example

X%$=ADVAL (0)DIV256

IF X%=0 THEN PRINT"No analogue channel conversion complete."
ELSE PRINT"Channel ";X%;" has just completed conversion."

ADVAL can also be used with a negative number to check the status of
several internal buffers.

Example

. START

X%=ADVAL (-1)

PRINT"There are ";X%;" characters in the key buffer.”
X%$=ADVAL (-2)

PRINT"There are ";X%;" characters in the RS423 buffer."

X%=ADVAL (-3)

PRINT"There are ";X%;" spaces in the RS423 buffer.”
%$=ADVAL (-4)

PRINT"There are ";X%;" spaces in the printer buffer."”

X%=ADVAL (-5)

PRINT"There are ";X%;" spaces in SOUND channel 0 buffer.”

X%=ADVAL (-6)

PRINT"There are ";X%;" spaces in SOUND channel 1 buffer.”

X%=ADVAL (-7)

PRINT"There are ";X%;" spaces in SOUND channel 2 buffer.”

X%=ADVAL (-8)

PRINT"There are ";X%;" spaces in SOUND channel 3 buffer."”
%$=ADVAL (-9)

PRINT"There are ";X%;" spaces in the SPEECH buffer."”

68

Note:

Sampling is faster if some channels are not enabled.
*FX16,0 disables all 4 ADC channels.

*FX16,1 enables channel 1.

*FX16,2 enables channels 1 and 2.

*FX16,3 enables channels 1,2 and 3.

*FX16,4 enables all 4 ADC channels.

ALLOC

allocate ROM-LINK space

This function ALLOCates working space for INTER-BASE programs to
use while operating from another INTER- package.

Syntax
ALLOC<bytes>

Example

*IB.PMENU

LOAD prog$, "myprog2"
ALLOC 4000

*IW.

:prog

The example could be used as a !'BOOT program to load "myprog2" into
prog$ and run it from INTER-WORD.

See the chapter "Communicating with INTER-WORD".

69

AND

Logical AND operation

AND performs a bit-wise operation on two numbers, producing a result
in which only those bits which are "1" in both numbers remain "1" in the
answer. Alternatively, AND can perform a logical operation on
statements.

Example
PRINT $1110 AND %0111
6
(because 6 in binary is 0110)

Example
PRINT 15 AND 1
1

AND can also be used in program statements.

Example
AS="y".BS="gn
IF A$="Y" AND B$="S" THEN PRINT "hello"

hello

Example
X%=1
REPEAT

X%=X%+1

A$=CHRS$X%
UNTIL A$="Y" AND X%>100
PRINT X%

345

See OR, EOR, NOT

APPEND REC

add a record to an existing file

This command adds a record to the end of the database file on disc.

Syntax
APPEND REC <record>

Partial example

IF REC LEN R() <= MAX REC LEN F()
WRITE REC R()
ELSE
READ REC F ()
UNSORT REC F ()
MARK REC
APPEND REC R()
R (2) =LOWERS$R (2)
SORT REC R()

ENDIF

71

ASC

convert to ASCIl code

This function returns the ASCII code for the FIRST character in the

specified string.

Syntax
=ASC<string>
Example
PRINT ASC"hello"
104 (104 is the code for h)
Example
yes$="A"
PRINT ASC yes$
65
(the code for A)
Example
ESCAPE OFF
REPEAT
*FX21,0
G$=GETS
UNTIL ASCGS$=27
ESCAPE ON

PRINT"Escape key pressed”

See CHR$

72

ASN

arc-sine
This function calculates an angle in radians from a sine value.

Syntax
=ASN<real>

Example

PRINT ASN 0.6
0.643501109

See ACN, ATN, COS, DEG, EXP, LN, LOG, RAD, SIN, SQR, TAN, PI

ATN

arc-tangent

Syntax
=ATN<real>
This function calculates an angle in radians from a tangent value.

Example
PRINT ATN 0.6

0.5404195

See ACN, ASN, COS, DEG, EXP, LN, LOG, RAD, SIN, SQR, TAN, PI

73

BGET

read byte from file

This function reads a byte from the specified file.

Syntax
BGET<handle>
BGET<filename>

Example

. START
OPENIN"MYFILE"
PTR"MYFILE"=2
FORY%=1TO8

x%$=BGET"MYFILE"
PRINT CHR$x%;

NEXT
CLOSE"MYFILE"
PRINT'"Press any key"

K$=GET$

END
CDEFGHIJ

Notes:

1 See example in BPUT where "MYFILE" is created.

2 Each byte in the file is "got" as an integer.

3 Pointer PTR is set to zero when the file is closed. If PTR were not
specified in this example it would print ABCDEFGH.

4 If reading from an unknown file, take precautions not to PRINT

bytes which may affect the screen or printer!

See BPUT, BGET$, CHAN, CLOSE, EXT, EOF, LGET$, OPENIN,
OPENOUT, OPENUP, PTR.

74

BGETS

read characters from file

This function reads the specified number of characters from a file. If the
length is not specified then only one character is read. Not more than 255
characters may be read at a time. If there are less than the specified
number of characters after the current pointer position then an "End of

file" error will occur.

Syntax

BGET$<handle> or
BGET$(<handle[,<length>]) or
Example

.START

OPENIN"MYFILE"
PTR"MYFILE"=2
name$=BGETS$ ("MYFILE", 4)
CLOSE "MYFILE"
PRINT name$
END

CDEF

Example
.START
file%$=0OPENIN"MYFILE"
PTR#file%=2
name$=BGETS$ (#file%, 4)
CLOSE #file%
PRINT name$
END

CDEF

BGET$<filename>
BGET$(<filename[,<length>])

Brackets must be used as shown if more than one character is to be read.

See BPUT, BGET, CHAN, CLOSE, EXT, EOF, LGET$, OPENIN,

OPENOUT, OPENUP, PTR

75

BITS

return file information byte

This function returns a byte which gives information regarding the
current use of an open file.

Syntax
BITS<handle>
BITS<filename>

Example
PRINT BITS"MYPROG"

File not open

Example
. START
ONERROR PRINT"File not open.":ONERROR OFF :RETURN
byte%=BITS"MYFILE"
ON ERROR OFF
1L%=256
types=""
FOR X%=7T0O0 STEP -1

L%=L%/2

IF (byte$ AND L%)>0 THEN type$=+STRS (X%)
NEXT
IF "0" IN type$ THEN PRINT"File open for read"
IF "1" IN type$ THEN PRINT"File open for write"
IF "2" IN type$ THEN PRINT"Write database file."
IF "3" IN type$ THEN PRINT"Read database file."
IF "4" IN type$ THEN PRINT"Write index file."
IF "5" IN type$ THEN PRINT"Read index file."
IF "6" IN type$ THEN PRINT"Current index via file."
IF "7" IN type$ THEN PRINT"Current index skip file/index via."
CLOSE"MYFILE"
RETURN

76

Run the program and you will see:
File not open.
Type the following, then run the program:
OPENUP"MYFILE"<RETURN>
You will see:
File open for read
File open for write
Notes:
1 The error trap is needed in case the specified file is not open.
2 The test loop is looking at each of the 8 bits in type% since each bit
has a special meaning which you can see in the program.

BPUT

puts a byte in the file

This function sends a single byte or a short string to the specified file.

Syntax

BPUT<handle>,<byte> or BPUT<filename>,<byte>
BPUT<handle>,<sstring> or BPUT<filename>,<sstring>
Example

.START

OPENOUT"MYFILE"

FOR Y%=ASC"A" TO ASC"B"
BPUT"MYFILE", Y%

NEXT

CLOSE"MYFILE"

PRINT"Finished"

RETURN

Example

. START

OPENOUT"MYFILE"
BPUT"MYFILE", "ABCDEFGHIJ"
CLOSE"MYFILE"

RETURN

77

Programs may run quicker if a file handle is defined, instead of using the
filename itself. This comment also applies to BGET and similar functions.

Example

.START
£11e%=OPENOUT"MYFILE"
BPUT#file%, "ABCDEFGHIJ"
CLOSE#file%

RETURN

NOTES:

1 See example in BGET where "MYFILE" is read.

2 Only integer numbers up to 255 and short strings up to 255
characters in length can be sent. Characters must be converted to
ASCII codes before being BPUT as integers.

See BGET, BGET$, CHAN, CLOSE, EXT, EOF, LGET$, OPENIN,
OPENOUT, OPENUP, PTR.

78

BUFLEN

determine free space in a record

This function determines the additional space left at the end of a record
when the record is first saved to the database. The record may later be
lengthened, if desired, into this space.

Syntax

BUFLEN=<integer>
BUFLEN=BUFLEN+<integer>
<integer>=BUFLEN

PRINT BUFLEN

Example
. START
WRITE DB"MYDATAB"
len%=BUFLEN
PRINT"Space = "+TRIM$STRS$len$%
RETURN
20
Note: The database must be open for writing. BUFLEN will not work on a
database which is open only for reading but returns the error message
"No write DB open".

See LONGREC, MAX REC LEN, REC LEN

79

CALL

Run machine code program

This function runs a machine code program which already exists in
memory. Since there is virtually no space allocated for user programs the
main use of the function is with existing Operating System routines such
as OSWRCH.

Syntax
CALL<integer>

Example
. START
CLs
PRINT''"Turn printer on and press any key"
K$=GETS$
*FX3,10
REM enable printer and disable screen.
V$=CHR$27+"G"+"Hello there"+CHRS$27+"H"
FOR D%=1TO LENVS$
C$=V$ [D%]
$A=ASCCS$
CALL&FFEE
NEXT
*FX3,0
REM enable screen.
RETURN

Notes:

1 In this example the routine at address &FFEE sends the character to
the selected stream (in this case, the printer).

2 %A holds the value to be entered into the accumulator. Do not
confuse with BASIC A% which performs the same task! Similarly, the
other 6502 registers are assigned %X, %Y. The lowest bit of %C holds
the carry flag.

80

Example "PRINTER"

. START

PROCsetup

CLS:P.'''"Turn printer on and press any key":GS$=GET$
PROCfirstpage

END

.setup

MC%=&B00 :REM put machine code at memory location &B0O

REM 6502 code which sends characters to printer buffer-
SMC%=CHRS$&A9+CHRS$&0C+CHRS&85+CHRS$& 71 +CHRS&A9+CHRS0+CHRS & 85+CHRS &7
0+CHR$&AO0+CHR$0+CHRS&B1+CHR$&70+CHRS$&20+CHRS&EE+CHRS & FF+CHRS&C8+C
HRS$&CC+CHRS&FF+CHRS&0B+CHRS&D0+CHRS&F5+CHRS& 60

A=&CO0 :REM select memory location &CO0 for $A string to use.
ENDPROC

.firstpage
AS$="1)...Double-density bit image <ESC+L>"+CHR$27+"L":PROCp AS
AS=CHRS$200+CHRS$0:PROCp AS
SN$=CHR$34+CHR$80+CHR$138+CHR$0+CHRS$143+CHRS0+CHRS138+CHRS80
AS$=SNS$+CHRS$34+CHRSO
FOR L%=1T020
PROCp AS
NEXT
ENDPROC
P AS
?&BFF=LENAS
SA=AS
*FX3,10
REM output to printer only
CALL&BOO
*FX3,0
REM output to screen only
ENDPROC

The machine code routine at address &B00 sends the characters at &C00
to the printer. BASIC was used to generate the code, which was then
typed as a series of CHR$ so that INTER-BASE could put it at the correct
memory location. $A determines the specific memory location of the
characters to be printed (&CO00 in this example). It should be noted that
NO memory location is truly safe and corruption could occur.

See USR

81

CASE ... ENDCASE

conditionally select action

This command allows the selection of different actions according to the
result of an expression.

Syntax
CASE<expression>
WHEN<expression>[,<expression>..]
<statements>
WHEN<expression>[,<expression>...]
<statements>
OTHERWISE
<statements>
ENDCASE
Example
.START
K$=UPPERS$GETS
CASE K$
WHEN "A"
PRINT"Choice 1"
WHEN "B"
PRINT"Choice 2"
OTHERWISE
PRINT"Wrong choice"
ENDCASE
Notes:

1 The indentation used is not necessary but improves the readability of
a long program.

2 OTHERWISE is optional.

3 WHEN may be used as many times as necessary but the first WHEN
must follow CASE with no statement between them.

CHAN

return file handle

This function returns the handle of an open file.

Syntax
<integer variable>=CHAN<handle>
<integer variable>=CHAN<filename>

Example

.START
open%=0PENIN"MYFILE"
file%$=CHAN"MYFILE"
CLOSE#open%

PRINT file%

RETURN

57

Example

.START
OPENIN"MYFILE"
£ile%=CHAN"MYFILE"
CLOSE"MYFILE"
PRINT file$

RETURN

57
Note: Returns 0 if file does not exist or has not been opened.

See BGET, BGET$, BPUT, CLOSE, EXT, EOF, LGET$, OPENIN,
OPENOUT, OPENUP, PTR

83

CHRS

Convert ASCII code to a character.

Syntax
<sstring>=CHR$<integer>

Example
PRINT CHR$65

A

See ASC, GET$, EVAL

CLEAR RAM

clear sideways ram

This function clears the specified Sideways Ram so that a program which
has been tokenised can be installed there. In addition it can de-select
sideways RAM which has previously been selected as workspace
(SELECT RAM).

Syntax
CLEAR RAM <integer>

Example

.START

CLEAR RAM 0

LOAD prog$, "myprog"
TOK.progs

INST.O0, prog$

RETURN

84

Notes:

CLEAR does not fill the Sideways RAM with &FF but removes the
header.

If you intend to download the RAM into an EPROM, therefore, you will
program the EPROM with a lot of junk after the actual program,
extending the programming time. Consequently, you might like to
clear the RAM by, for instance, loading into it a file of &FF from disc
before installing a program.

See INSTALL, LOAD RAM, SAVE RAM, SAVE ROM, SELECT RAM,
RAM STATUS, ROM STATUS

CLG

clear graphics screen

This function clears the graphics screen in those screen modes which
support graphics.

Syntax
CLG

Example

MODE2

.START

CLG

MOVE 200,200
PLOT 5,200,800
PLOT 5,800,800
PLOT 5,800,200
PLOT 5,200,200
RETURN

See CLS, COLOUR, DRAW, GCOL, MODE, MOVE, PLOT, VDU,
WINDOW

CLOSE

close files
This function closes files, databases and indexes.

Syntax

CLOSEALL closes all files.

CLOSE#0 closes all files.
CLOSE<filename> closes specified file only.
CLOSE<#handle> closes specified file only.

Example

.START

USE DB"MYDATAB"
READ REC R()
CLOSE"MYDATAB"
RETURN

Example

. START
open%=OPENIN"MYFILE"
name$=BGET$ ("MYFILE", 25)
CLOSE#open%

PRINT name$

RETURN

See BGET, BGET$, BPUT, LGET$, OPENIN, OPENOUT, OPENUP, READ

DB, READ INDEX, UPDATE, USE DB, USE INDEX, WRITE DB, WRITE
INDEX

86

CLS

clear text screen
This function clears the text screen.

Syntax
CLS

Example

. START

CLS

PRINT''"Press any key"

K$=GETS$

CLS

FOR
I$=1TO2:PRINTTAB(11,I%)CHRS$S131CHRS$141"DEMONSTRATION";CHRS$156:NEXT
PRINTTAB (5) CHR$134" (C) Computer Concepts 1989"
WINDOW 0,4,38,20

PRINT''"Here are some symbols."

PRINT'"Press any key"

CLS

PRINT STRINGS (255,"#")

RETURN

See CLG, COLOUR

87

CODES

produce a code
This function produces a special code based on a given string.

Syntax
=CODES<string>

Example

. START

P.CODES$ "BLOGGS"
P.CODES$ "BLIG"

produces the same code for both

The code will be the same if words sound similar, although spelt
differently. CODES$ can be used to search for close matches in a list of
words, which may be derived from a database or may exist as a string.

Example

mTADR™

1AR]L
AD DB"MYDATAB"VIA"MYINDX"
PEAT
READ REC R()
R$=ITEMS (R(2),1)
REM separate surname from initials.
IF CODER=CODES$"PUKERING"
PRINT R(2)+" matches "+"PUKERING"
ENDIF
SKIP
UNTIL END
CLOSEALL

R
R

0 m ow

Pickering,Mr M T matches PUKERING
Note that letters may be in either upper or lower case or a mixture.

See FIND, HUNT, MATCH

88

COLOUR , COLOR

select colour

This statement selects the text colour and the text background colour in
all modes.

Syntax
COLOUR <int>

Numbers up to and including 127 define the text foreground colour.
Numbers greater than 127 define the text background colour.

In a two colour mode MODE 0, 3, 4 and 6) the following apply:

foreground background colour
0 128 black
1 129 white

In a four colour mode (MODE 1 and 5) the following apply:

foreground background colour
0 128 black
1 129 red
2 130 yellow
3 131 white

89

In a 16 colour mode (MODE 2) the following apply:

foreground background colour
0 128 black
1 129 red
2 130 green
3 131 yellow
4 132 blue
5 133 magenta
6 134 cyan
7 135 white
8 136 flashing black/white
9 137 flashing red/cyan
10 138 flashing green/magenta
11 139 flashing yellow/blue
12 140 flashing blue/yellow
13 141 flashing magenta/green
14 142 flashing cyan/red
15 143 flashing white/black

The colours listed are the default colours or "logical" colours.
It is possible to obtain different colours by swapping the logical colour
with another. To achieve this goal we can use the VDU 19 statement:

Example

. START

MODE 5

COLOUR 2
vDUl19,2,5,0,0,0

COLOUR 128

vbU 19,128,131,0,0,0
PRINT"Here is some text"

The result will be magenta text on a yellow background.

See GCOL, VDU

90

CONDS / COND

set index sort condition / test condition

CONDS is used to define a condition which can later be tested for
matching records using COND. CONDS$ can also be used as a function to
read the current condition from the current index, as defined by the most
recent COND$ command.

Syntax

COND$=<string> : defines the condition
=COND$: returns the current condition
=COND : tests the current condition
Example

. START

USE DB"MYDATAB"
CREATE INDEX"MYINDX"ON 2;13
REM index key based on first 13 letters in field 2 of database.
USE INDEX"MYINDX"
COND$="ITEMS (LOWERS (R(2)),1)=""JONES"""
READ DB"MYDATAB"
WHILE NOT END

READ REC R{()

IF COND THEN SORT REC R()

SKIP
ENDWHILE
CLOSEALL

This example program will create a new index based upon all the records
beginning with "Jones" in the database.

See CREATE INDEX

91

COS

calculate cosine

This function calculates the cosine of an angle in radians.

Examples
PRINT COS 0.5
0.877582562

See ACN, ASN, ATN, DEG, EXP, LN, LOG, RAD, SIN, SQR, TAN, PI

COUNT

count items
This function counts the number of items within a string.

Syntax
COUNT(<string>[,<sstring>])
<sstring> is the separator. If omitted then a comma is assumed.

Example
mylist$="APPLE, ORANGE, BANANA, PASSION FRUIT, GRAPE"
PRINT COUNT (mylist$)
PRINT COUNT (mylist$,"A")
PRINT COUNT (mylist$, " |M”)
5
8
1

See ITEM$, WORDS$, LINE$

CREATE DB

create database

This command creates a database with a given filename.

Syntax
CREATE DB<filename>,<length>[,<info length>]

<length> is the initial length of the file (which may extend itself as data is
added, provided there is room on the disc).

<info length> is optional and represents the initial size of the information
block. It defaults to 1024 bytes if not specified.

Both values must be a multiple of 256.

The following example creates a database called "MYDATAB" with 14
fields to hold names, addresses and other details. Two indexes are
created; "MYINDX" and "INTINDX". The following points are worthy of
note:

1. Anattempt is made to OPENIN the file MYDATAB to see if it exists.
This is always worthwhile since it can avoid accidental loss of an
existing database!

2. *FX21,0is used to clear the keyboard buffer before asking for input.

3. It is necessary to write something in the first record of the database
and, in this example, you are asked for your name and address.

4. In the case of a multiple string field it is most important to add a
carriage return "I M" at the end of each line. If the address field is to
be left blank, for instance, you must still WRITE the appropriate
number of carriage returns to the field; in this example there are
seven lines so seven carriage returns must be included.

93

5. The WRITE INFO lines are needed ONLY if you wish your database
to be compatible with INTER-BASE database.

Field zero needs 0,"14,7 Neil" where 14 is the number of fields and 7 is the
number of lines in the multiple string field.

The remaining fields need information as follows:

<name>,<type><,Qty><commas>0,<line>,#

name is the name of the field.

type is a letter representing field type (i,s,m,r or d).

Qty is the number of lines in a multiple string.

commas is a string of commas.

In the case of a string, put 6 commas.

In the case of a multiple string put (Qty-1)*6 commas.

In the case of an integer put 3 commas.

In the case of a real put 4 commas.

In the case of a date put 2 commas.

6. An index created on a string field should use only lower case
characters for compatibility with the INTER-BASE database.

Example
R (2) =LOWERS$R (2) : SORT REC R() .

Read the next example carefully. It shows many features which can not
readily be explained out of context.

Example program "CREATE"

. START

CLS

PRINT'"Please insert ADFS formatted disc.”

PRINT'"Which Drive number 2 ";

d$=GETS$

PRINT d$

OSCLI"MOUNT"+d$

OSCLI"."

G$="y"

X%=0OPENIN"MYDATAB"

CLOSE#X%

IF X%<>0
PRINT''"Database already exists.|MContinue? Y/N"
G$=UPPERSGET$

ENDIF

IF G$<>"Y" THEN GOTO end

94

*FX21,0
INPUTLINE' '"Type your surname.."sur$
*FX21,0
INPUTLINE"Type your first name.."char$
CLS
PRINT''"Type your full address."'"Finish with <RETURN>."
addrs=""
X%=0
REM get each line of address + carriage return
REPEAT
X%=X%+1
INPUTLINE GS$;
addr$=+G$
addr$=+"|M"
UNTIL X%>6 OR LENGS$<3
REM then add carriage returns to make 7
WHILE X%<7
addrs$=+"|M"
X%=X%+1
ENDWHILE
REMOVE R()
DIM R(),14
R(2)=INITIALSTRIMSsurS$+","+INITIALSTRIMSchar$
R(3)=addr$
R(1)=0
REM assign nul string values to remaining fields
FOR X%=4 TO 14

R(X%)=""
NEXT
CLS
PRINT' 'R(2)
PRINT R(3)

PRINT'"Creating Database. Please wait"

CREATE DB"MYDATAB", 16000

USE DB"MYDATAB"

ADD FIELD INT, STRING, STRING, STRING, STRING, STRING, STRING, STRING, ST
RING, STRING, STRING, STRING, STRING, STRING

BUFLEN=20

REM the following information is needed only for compatibility
WRITE INFO O0,"14,7,Neil”

WRITE INFO 1,"Index,i,,,0,1,#"

WRITE INFO 2,"Name,s,,,,,,0,2,#"

95

WRITE INFO 3,"Addr,m, 7, s rsrrrrrvrrororororororrrrorrrrrrr 0,3, #"

WRITE INFO 4,"Category,S,,,,,,0,10,#"

REM the remaining fields are identical

FOR X%=5 TO 14
Y$=X%+6
Y$=STRSYS
info$="field,s,,,,,,0,"+YS$+", #"
WRITE INFO X%,info$

NEXT

APPEND REC R{()

PRINT'"Creating lst index"

CREATE INDEX"MYINDX", 8000 ON 2

REM the index is created on field 2

USE INDEX"MYINDX"

GO START

READ REC R{()

R (2) =LOWERSR (2)

REM the index should use only lower case characters for

compatibility

SORT REC R{()

ENABLE INDEX"MYINDX"

CLOSE"MYINDX"

PRINT'"Creating 2nd index"

CREATE INDEX"INTINDX",4000 ON 1

USE INDEX"INTINDX"

GO START

READ REC R{()

SORT REC R{()

ENABLE INDEX"INTINDX"

CLOSE ALL

.end

CLOSE ALL

PRINT'"Finished"

RETURN

See CREATE INDEX

96

CREATE INDEX

create an index

This function creates an index file using the specified database field.

Syntax
CREATE INDEX<filename>[,<len>]JON({<fieldnum>[;<fieldlength>],}

<len> is the initial length of the file but will be increased automatically,
when necessary, if there is room on the disc.

<fieldnum> is the number of the field to be referred to in creating the
index file.

<fieldlength> is the number of characters, in the field, which will be used
in the index file. Each type of field has a default value:

Integers first 4 characters Reals first 5 characters

Dates first 3 characters Strings first 8 characters

The fieldlength can be specified to be smaller than these values and, in
the case of strings, longer.

Example

READ DB"MYDATAB"

CREATE INDEX "nameindx", 8000 ON 2;10

USE INDEX"nameindx"

GO START

WHILE NOT END
READ REC R()
R(2) =LOWERS$R (2)
SORT REC R()
SKIP

ENDWHILE

ENABLE INDEX"nameindx"

CLOSE ALL

The index consists of the first 10 characters (the "KEY") of field 2 in lower
case for each record, plus a number which is the "pointer" or location of
the start of that record in the disc file. To find a particular record you
need to search for only the first ten characters (in lower case, not capitals).

97

CREATE USER INDEX

create a sorted file

This function creates an index which can stand alone as a sorted database
in its own right. No other database need be open.

Syntax
CREATE USER INDEX<filename>[,<len>] ON {<fieldtype>[;<fieldlen>],}

The list of field types can be specified directly in the form:
CREATE USER INDEX"mylist" ON STRING,REAL,DATE, INT

where the default values for fieldlength will be used.

For both CREATE INDEX and CREATE USER INDEX the default values
are as follows:

Integers 4, Reals 5, Dates 3 and Strings 8.

You can specify your own values so that, for instance, the sorted index is
based upon only the first 4 characters of a string and the first two
characters of an integer number. Each value must be preceded by a semi-
colon For example:

CREATE USER INDEX"mylist",&100 ON INT;2,STRING; 4
data$="45|MJohn|M242|Mary|M23|MSara|M34 |[MFred|M22 |MSimon"
USE INDEX"mylist"
READ data$, " |M"
WHILE NOT EOD
age%$=DATA
name$=DATAS$
SORT KEY [age%,names$]
ENDWHILE
UNREAD
CLOSE"mylist™"
END

This program will create a small database containing the first 4 characters
of each name (the "KEY"), sorted according to the descending order of age
(first two digits only).

The data could, of course be loaded or typed directly into data$ in the
form:

45
John
242
Mary
23

Sara etc.

See SORT

CRITERIA

return index structure
This function returns the KEY structure of an INDEX.

Syntax
=CRITERIA (<handle>[,<int1>[,<int2>]])

Example

. START

READ INDEX"ITEST"

N%$=CRITERIA ("ITEST",0,0)

PRINT"No. of fields = ";N%-1

IF CRITERIA("ITEST",N%,0)=&FFFF THEN PRINT"Database Index"ELSE
PRINT"User Index"

REMOVE R ()

DIM R(),6

FOR I%=1 TO N%-1
R(I%)=CRITERIA("ITEST",I%,0)

NEXT

PRINT" Field No. Type Length"
FOR X%=1 TO N%-1

99

I%=R (X%)
PRINTI%,CRITERIA("ITEST",X%,1),CRITERIA("ITEST", X%, 2)
NEXT

CLOSE "ITEST"

END

No. of fields = 3
Database Index
Field No. Type Length

1 4 8

2 1 4

3 2 5
Explanation

When I1% and 12% = 0 the function returns the quantity of fields upon
which the index is structured PLUS ONE (=N%).

When 11%=N% and 12%=0 the function returns a pointer to the database
record. If this is &FFFF then the index is a normal Database Index. If not
then it is a User Index which, by definition, has no Database.

When I1% is any number between 1 and the total quantity of fields used
and when 12% = 0, the function will return the number of the field where

1% represents its order of priority.

To make this clearer, imagine a database with 5 fields with an index
based upon a SORT of fields 1, 5 and 3 in that order:

When 11%=1, 12%=0, function returns 1 (field number 1)
When 11%=2, 12%=0, function returns 5 (field number 5)
When 11%=3, 12%=0, function returns 3 (field number 3)
When 12%=1 the function returns the field type number so:
When 11%=1, 12%=1, function returns 1 (Integer field)
When [1%=2, 12%=1, function returns 2 (Real field)

When I1%=3, 12%=1, function returns 4 (String field)

When 12%=2 the function returns the length of the KEY.

100

(The KEY is that part of the string or number upon which the sort is
based. For instance if field 3 contains "Mike Smith" and the KEY length is
8 then the KEY would be "mike smi").

When 11%=1, 12%=2, function returns 4 (Integer KEY length)
When 11%=2, 12%=2, function returns 5 (Real KEY length)
When 11%=3, 12%=2, function returns 8 (String KEY length)

See CREATE INDEX

DATA / DATAS

return data from string

This function returns the next item of data from the string specified by the
instruction READ.

Example
. START
list$="hello ,there, John"
READ list$
WHILE NOT (EOD)
wrd$=DATAS : PRINT wrd$;
ENDWHILE
UNREAD
END

hello there John

Example
.START
list$="12,23,34"
READ list$
WHILE NOT (EOD)
numb%=DATA : PRINT numb$%,
ENDWHILE
UNREAD
END

12 23 34
101

Notes:

1.

Unfortunately, if an error occurs while READ is in operation it
becomes impossible to UNREAD the data string. In fact the only
recourse, should this error occur, is to save the program, switch off,
on and reload!

In addition it is not possible to set the data pointer but only to reset it
to the beginning of the data string by using the command RESTORE
(which, however, does not work if the end of the data string has been
reached, so always add dummy data at the end!)

The following routine has proved to be a versatile substitute for
reading data. The data string must be defined BEFORE it can be read.
The data is read by means of a function which can return only a
string (not an integer or a real number). Where a number is required,
therefore, convert the string by means of VAL, as the following
example shows.

example of READ DATA substitute using FN.
. START

poin

ter%=0

PROCdefine

FOR

X%=1] TO 7

day$=FNread

P
NEXT
FOR

RINT day$

X%=1 TO 9

num%=VAL (FNread)

P

RINT num$%*6

NEXT
REMOVE R()

DIM
FOR

R(),8
X%=1 TO 8

R (X%) =FNread
NEXT
PRINT R()

END

.read

pointer%$=pointer%+1
rd$=ITEMS (data$, pointer%)

=rd$

.define

102

datag=""

data$=+"Monday, Tuesday, Wednesday, Thursday,Friday, Saturday, Sunday,
15,23,45,65,"
data$=+"47,78,32,54,23,Jane,Alice,Liz,Kate,Rob, Nev"

ENDPROC

Note:

The following lines could also be added to .read
IF TYPE pointer%<>1 THEN pointer%=0

(in case pointer% was not defined originally)

IF pointer%>COUNTdata$ THEN pointer%=0
(i.e. RESTORE data pointer)

The sub procedure .read may also end as
RETURN rd$ Or ENDPROC rd$.

Another example is given under SOUND.

See COUNT, EOD, EN, READ, RESTORE, UNREAD

DEG

degrees

This function converts angles expressed in radians into degrees.
Example
PRINT DEG 0.8

45.8366236

See ACN, ASN, ATN, COS, EXP, LN, LOG, RAD, SIN, SQR, TAN, PI

103

DIM

create array

This function creates in memory an array with a specific name and
number of elements. An element can be considered as a numbered
location where data can be stored.

Syntax
DIM<array name>,<int>

Example

. START

REMOVE blocks ()
DIM blocks(),4
date@=@"20/6/51"

blocks ()=[date@,8.95,"This is a string"”,45]
PRINT blocks ()
PRINT

PRINT blocks (3
PRINT blocks (2
PRINT blocks (4
PRINT blocks (1
END

)
)
)
)

20th June 1951 8.95This is a string 45

This is a string
8.95
45
20th June 1951

Notes:

1. The element numbers begin at 1, unlike BASIC where they begin at 0.

2. An array can not be redefined without first removing it, hence it is
safer to REMOVE it before using DIM in order to avoid errors.

3. An array element has a type associated with it. This type is set the
first time that data is stored in each element. Once set, the data type

104

for a particular element can not be changed. If you try, for instance,
to store an integer in an element which first held a string then an
error will occur. (The function TYPE can be used to determine the
type in order to avoid such an error).

4. Any element of an array can itself be an array.

Example
DIM blocks(),4
FOR X%=1 TO 4
DIM blocks (X%), 6
NEXT

See REMOVE, TYPE

DISABLE INDEX

remove index name

This function removes an index name from the header block of the
current WRITE database.

Syntax
DISABLE INDEX<filename>

Example

.START

USE DB"MYDATAB"
DISABLE INDEX"MYINDX"
CLOSE "MYDATAR"

END

See ENABLE INDEX, INDEX$

105

DISPLAY

display string

This function will display on screen a string variable without allowing
editing. The current text window is cleared before the string is displayed.
All cursor controls work as usual.

Syntax
DISPLAY<stringvar>[,<int>[,<int>]]

The first (optional) integer specifies the cursor position counting from the
first character of the string variable.

The second (optional) integer selects the key(s) which may be used to
cancel the display. If 1 then <RETURN> will exit. If 2 then <SHIFT> plus
cursor key will exit but only when the cursor is at its extreme position in
the cursor key direction. <ESCAPE> will allow exit in all cases.

On exit, the resident variable %C (not C%) will contain the ASCII code of
the key used to exit. This would be 27 for <escape>, 13 for <RETURN>, 142
for <SHIFT>+<cursor down>, 143 for <SHIFT>+<cursor up> 141 for
<SHIFT>+<cursor right> and 140 for <SHIFT>+<cursor left>.

Example

.START

P$S="This is a string which is here for the purpose of
demonstration.”

DISPLAY P$,45,2

PRINT %C

END

(you press <ESCAPE>)
27

Syntax
=DISPLAY (<stringvar>[,<int>[,<int>]])

106

If DISPLAY is used as a function it returns the cursor position on exit.
Example

. START

curs%$=DISPLAY (P$, 45,1) (note brackets !)

PRINT curs$%
END

(you move cursor then press <RETURN>)
56

See EDIT, EDITLINE, SHOW

DIV

return integer result of division

This function returns the whole number part of a division, ignoring any
remainder.

Example
.START

PRINT 14 DIV 5
END

(leaving a remainder of 4)
The result is always an integer.

See MOD

107

DRAW

draw lines

This statement draws lines on the screen (in graphics modes only).
The end of the line must be defined as coordinates X and Y.

Syntax
DRAW XY

Example
.START

MODE 4

DRAW 950,800
END

See CLG, COLOUR, GCOL, MODE, MOVE, PLOT, POINT, VDU

EDIT

display string for editing

This function will display on screen a string variable, allowing editing.
The current text window is cleared before the string is displayed. All
cursor controls and editing facilities work as usual.

Syntax
EDIT<stringvar>[,<int>[,<int>]]

The first (optional) integer specifies the cursor position counting from the
first character of the string variable.

The second (optional) integer selects the key(s) which may be used to
cancel the display. If 1 then <reTURN> will exit. If 2 then <szIFT> plus

108

cursor key will exit but only when the cursor is at its extreme position in
the cursor key direction. <escape> will always allow exit.

On exit, the resident variable %C (not C%) will contain the ASCII code of
the key used to exit. This would be 27 for <escape>, 13 for <RETURN>, 142
for <sHIFT>+<cursor down>, 143 for <SHIFT>+<cursor up>, 141 for

<SHIFT>+<cursor right>and 140 for <SHIFT>+<cursor left>

Example
EDIT P§$,45,2

(Press <ESCAPE>)
PRINT %C
27

Syntax
=EDIT(<stringvar>[,<int>[,<int>]])

If EDIT is used as a function it returns the cursor position on exit.

Example
curs%=EDIT (P$, 45,1) (note brackets !)

(Perform editing then press <RETURN>)
PRINT curs$%
56

This knowledge of the cursor position is useful if the string must later be
re-entered at the same place.

See DISPLAY, EDITLINE, SHOW

109

EDITLINE

edit line of text

This command may be used to edit a single line of text but is more
powerful than EDIT alone since it allows you to control the layout of text
on the screen.

Syntax
EDITLINE<stringvar>,<int1>,<int2>,<int3>,<int4>
No brackets!!!

<stringvar> is the string to be edited. It must not contain carriage returns
or each successive screen line will overprint the last, making editing
impossible.

<int1> is the maximum string length which MUST be specified. An error
will be announced if the string is longer than this value, so it is wise to
perform a test first if the length is undefined. Provided that the string
length is not more than this maximum it will be displayed for editing.
Characters may be added during editing but only up to the maximum
defined. Additional key presses beyond the maximum are ignored.

<int2> is the optional cursor position, counting from the first character of
the string, when editing begins.

<int3>,<int4> define the minimum and maximum ASCII codes of the
characters which may be input during editing. Any codes outside the
range so defined will exit from the line editor.

Regardless of the codes defined, the normal editing keys may be used.
Apart from left and right cursors, these editing keys will exit from the
editor if an attempt is made to go beyond the end of the string. The ASCII
code of the key used to exit will be held in the integer variable %C.

Normally the command is used in the form of a function which will also
return the cursor position on exit.

110

Syntax
<intvar>=EDITLINE(<stringvar>,<int1>,<int2>,<int3>,<int4>) Note
brackets!!!

The first program, below, works rather like the statement
INPUT"Filename: ";file$

but is more flexible in that it displays the previous filename (if any) and

permits editing. The length of the filename is limited to 7 characters but

can be extended to 10 for an ADFS system. Note the initial test to see if

file$ exists.

Example

. START

len%=7

IF NOT(TYPE file$=4) THEN file$="myfile2"
PRINTTAB (0,10) "Filename: ";
EDITLINEfile$, len%,1,ASC"'",ASC"z"

Now you could have:

SAVE prog$, file$

or similar, followed by:

PRINT''"Saving prog$ as ";file$

assuming that prog$ holds the program or string you want to save. The
function will normally be used within a loop so that more than one line
can be displayed at a time. This idea is better understood in the form of
another example.

Example “DISPL”

.START

head$="Home_tel.|MOffice tel.|MAnniversary|MBirthday|MBirthday|MB
irthday|MBirthday|MBirthday |MBirthday|MNotes:"

CLS

PROCsetupstrings

PROCdisplayarray

CLS

RETURN

.displayarray
G$="E"
PROCheadings
REPEAT

answer$=""
ESCAPE OFF

111

VvDU23;8202;0;0;0;
REM cursor off
PROClines
Y$=CHR$131
VDU23;29194;0;0;0;
REM cursor on
PROCeditarray
IF ASCGS$=27 THEN G$="E"

UNTIL G$="E"

ESCAPE ON

ENDPROC

.editarray
LOCAL alt$%
point%=
alt%s=
answer$="N"
PRINTTAB (0,2)CHR$131"EDIT"CHR$134"Press <ESCAPE> when finished "
PRINTTAB (0,16)CHR$S134"Edit side headings";
PROClookupdata
IF alt%=1
PRINTTAB (0, 2)CHRS$131"Save alterations Y/N "y
*FX21,0
answer$=UPPERSGETS
ENDIF
PRINTTAB (0, 2) STRINGS (39, " ")
IF answer$="Y"
PRINTTAB (0,2)CHR$134"Saving on disc....... "
SAVE head$, "HEADING"
ENDIF '
ENDPROC answers$

.headings
point%=1
REPEAT
set$=LINES (dat$, point%)
scrline%$=VALITEMS (set$, 1)
title$=ITEMS (set$, 3)
PRINTTAB (0, scrline%) title$+Y$;
point%=point%+1
UNTIL point%>10
ENDPROC

112

.lines
point%=
fillg="."
REPEAT
set$=LINES (dat$,point$%)
scrline%=VALITEMS (set$, 1)
maxlen%=VALITEMS (set$, 4)
item%=VALITEMS (set$, 2)
title$=ITEMS (set$, 3)
tab%$=1+LENtitle$
PRINTTAB (tab%, scrline%) ITEMS (head$,point%, CHRS13) ;
PRINT CHR$134STRINGS (maxlen%-1-
(LENITEMS (head$, point%,CHRS$13)),£i11$) ;"<";
point%=point%+1l
UNTIL point%>10
ENDPROC

.lookupdata

REPEAT
set$=LINES (dat$,point$%)
scrline%$=VALITEMS (set$,1)
maxlen%=VALITEMS (set$, 4)
item$=VALITEMS (set$, 2)
title$=ITEMS (set$, 3)
tab%=1+LENtitle$
TAB tab%,scrline%
H$=ITEMS (head$,point%, CHR$13)
OHS$=H$
cur%=EDIT LINE (H$,maxlen%,1,32,122)
ITEMS (head$,point%, CHR$13)=HS$
IF %C=175

PROCcursup
ELSE PROCcursdown

ENDIF
IF OHS$<>H$ THEN alt%=1

UNTIL %C=27

ENDPROC alt$%

.cursup

PRINTTAB (tab%, scrline%) ITEMS (head$,point%, CHRS13) ;
PRINTCHR$134STRINGS (maxlen%-1-

(LENITEMS (head$, point%,CHRS$13)),£i118);"<";

113

point%=point%-1
IF point%<l THEN point%=10
ENDPROC point$%

.cursdown

PRINTTAB (tab$%, scrline%) ITEMS (head$,point%, CHRS$13) ;
PRINTCHR$134STRINGS (maxlen%-1-

(LENITEMS (head$,point$,CHRS$13)),fi118);"<";
point%=point%+1

IF point%>10 THEN point%=

ENDPROC point$%

.setupstrings

Y$=CHR$131
dat$="4,1,1,13|M5,1,2,13|M6,1,3,13|M7,2,4,13|M8,3,5,13|M9,4,6,13|
m10,5,7,13|mM11,6,8,13|M12,7,9,13|M13,1,10,13|M"

ENDPROC

The resultant screen should look like the illustration, below, and you will
be able to move the cursor and edit the wording;:

EDIT Press <ESCAPE> when finished

Home_tel.
Office_tel.
Anniversary
Birthday
Birthday
Birthday
Birthday
Birthday
Birthday
Notes: <

AN AN A A A A A A

Edit side headings

See EDIT, DISPLAY, SHOW

114

ENABLE INDEX

allow database to use index

This command adds the filename of an index to the list of updatable
index names which is stored in the information block of the current
WRITE database. Your program should be written so that each index
listed is kept updated with new entries to your database.

Syntax
ENABLE INDEX<filename>

Example

.START

USE DB"MYDATAB"

ENABLE INDEX"NAMEINDX"
CLOSE "MYDATAB"

END

See CREATE INDEX, DISABLE INDEX, INDEX$

115

END

define end of main program

This command prevents the program from running further and will
normally return control to the main menu. Procedures are usually placed
after this END command. If a program is to be run from within another
program or INTER- package then use RETURN or ENDPROC instead of

END.
See RESTART, RETURN, ENDPROC
As a function, END has another use.

Example
.START
READ DB"MYDATAB" VIA "MYINDX"
USE UNMARKED
GO START
WHILE NOT END
READ REC F ()
IF "Mr" IN F(2)
PRINT F ()
ENDIF
SKIP
ENDWHILE
CLOSE"MYDATAB"
CLOSE"MYINDX"
RETURN

In this example the function END causes the WHILE ... ENDWHILE loop
to exit when the end of the database file is reached, having printed on
screen all those records where "Mr" is found in field 2.

See START

116

ENDCASE

See CASE ... ENDCASE

See IF ... ENDIF

ENDIF

END PTR

return record pointer

This function returns a number which is a pointer to the byte following
the last record (or key) of the current database (or index).

Syntax
=END PTR<handle>

Example

.START

READ DB"MYDATAB"
X%=END PTR"MYDATABR"
CLOSE "MYDATABR"
PRINT"End pointer is
RETURN

See EXT, PTR

XS

117

ENDPROC

See PROC ... ENDPROC

ENDWHILE

See WHILE ... ENDWHILE

ENTER

enter an installed program

This command will run a program which has been tokenised and
installed in RAM or ROM.

Syntax
ENTER<program name>

See The chapter "Rom Programs".

118

ENVELOPE

define sound envelope
Defines a sound envelope in terms of volume and pitch.

Syntax
ENVELOPE <int1>,<int2>,<int3>,<int4>,<int5>,<int6>,<int7>,
<int8>,<int9> <int10>,<int11>,<int12>,<int13>,<int14>

A sound envelope has three pitch stages; A, B and C and four amplitude
stages; attack, decay, sustain and release. The integer parameters
following the ENVELOPE statement have the following functions:

Parameter Range Function

intl 1to4 Envelope number

int2 bits 0-6 0to 127 Duration in centiseconds

int2 bit 7 Oorl O=auto repeat pitch envelope, 1=no repeat
int3 -128 to 127 | Pitch change per step in stage A

int4 -128 to 127 | Pitch change per step in stage B

int5 -128 to 127 | Pitch change per step in stage C

int6 0 to 255 Number of steps in stage A

int7 0 to 255 Number of steps in stage B

int8 0 to 255 Number of steps in stage C

int9 -127 to 127 | Amplitude change per step during attack
int10 -127to 127 | Amplitude change per step during decay
intll -127to 0 Amplitude change/step during sustain
int12 -127t0 0 Amplitude change/step during release
int13 0to 126 Target amplitude at end of attack

int14 0to 126 Target amplitude at end of decay

Usually only four envelopes may be defined. However, if the statement
BPUTH# is not used in the program then 16 envelopes may be defined.

Example

.START

ENVELOPE 1,129,4,-4,4,10,0,0,-127,-10,-10,-5,126,126
SOUND 1,1,100,200

See SOUND
119

EOD

determine end of data

This function determines when the end of a DATA string has been
reached.

Syntax
=EOD

Example
. START
mydata$="apple, pear,banana, grapefruit, orange,turnip”
READ mydata$
WHILE NOT (EOD)
AS$=DATAS
PRINT "Fruit is "+AS
ENDWHILE
UNREAD
END

See DATA, DATAS, READ, RESTORE, UNREAD

120

EOF

end of file

This function detects the end of a file (but not the end of a database).

it returns -1 if the end of a file is reached.

Syntax
=EOF<handle>
=EOF#<handle number>

Examples

. START

OPENIN"MYFILE"

WHILE NOT (EOF)
name$=BGET$ ("MYFILE", 10) +" |M"
PRINT name$

ENDWHILE

CLOSE "MYFILE"

RETURN

. START

N%=OPENIN"MYFILE"

WHILE NOT (EOF)
name$=BGETS (#N%,10) +" |M"
PRINT name$

ENDWHILE

CLOSE#N$%

RETURN

See END, START

121

EOR

Exclusive OR logic operator

Syntax
<int1>EOR<int2>

If you EOR two binary numbers then the resultant binary number will
have a 0 where two 1 digits coincided in the original and also where two
0 digits coincided. It will have a 1 only in those positions where a 1
existed in that position in one binary number alone.

Truth Table for EOR
1EOR1=0
0EORO0=0
1EORO0=1
0EOR1=1
Example

.START

numbl%=%00011111
numb2%=%00101111
res%$=numpbl% EOR numb2%
PRINT ~res%

30
(which is 00110000 in binary)

(The operator % defines the number following to be binary, just as the
operator & precedes a hexadecimal number.)

See AND, NOT, OR

122

ERLS

return label before error

This function returns the label after which the error occurred.

ERMS

return error message

This function returns a message to describe the error.

ERPS

return program name

This function returns the name of the program in which the error
occurred.

ERR

return error number

This function returns the error number.

123

ERRS

return error line string
This function returns the complete line in which the error occurred.

Example

. START

REPEAT
ON ERROR PROCreport
.flag
PRINT"Enter function:";
func$=INPUTS$
y=EVALfunc$
PRINTy
ON ERROR OFF

UNTIL y>100

END

.report

X%=ERR

IF X%=17 THEN END

REM <ESCAPE> will exit.

PRINT'"Invalid function"'"Nearest label = ";

PRINT ERLS$'"Error number ";ERR;'ERM$'"In program "; ERPS
ENDPROC

Enter function: 7/0 (youtypethm)
Invalid function

Nearest label = flag

Error number 70

Division by zero

In program P

Enter function:

124

ESCAPE OFF / ON

disable/enable Escape key

Disables and enables the <ESCAPE> key to prevent inadvertent exit from
a program. These commands should be added only after the program is

working correctly (or at least only after the program has safely been
saved on disc).

Example
.START
ESCAPE OFF
REPEAT
PRINT"Press a key";
G$S=GETS$
PRINT G$
IF ASCG$=27
CLS:PRINT''"Escape pressed”
ESCAPE ON
ENDIF
UNTIL ASCG$=27

EVAL

evaluate an expression

This evaluates an expression string and returns the result.
See example in ERR$

See VAL

125

EXEC

execute command

This command will execute program commands presented in a string
which may not be more than 255 characters long.

Example
. START
REPEAT
PRINT"Type a command"
com$=INPUTS
EXEC com$
UNTIL FALSE
In practice some fairly rugged error trapping would be needed since
ANY command would be accepted, including star commands!

EXP

exponent

This function calculates the value of 2.71828183 raised to any specified
power.

Example
PRINT EXP 5.6

270.426407

See ACN, ASN, ATN, COS, DEG, LN, LOG, RAD, SIN, SQR, TAN, PI

126

EXPORT

copy string to active package

This command copies a specified string from INTER-BASE to the active
INTER- package.

Example
In INTER-BASE PMENU string P$ type the following;:

This sentence comes from P$

Type some text in INTER-WORD and leave the cursor in the middle of
the text.

From INTER-WORD menu type the command:

:EXPORT P$ <RETURN>

You will find your sentence has been copied into INTER-WORD at the
cursor position.

You can use the command in a program. Alter the contents of P$ to read:
. START
EXPORT"This sentence comes from P"

RETURN

From INTER-WORD menu type:

:P <RETURN>

The program will export its text to the cursor position in INTER-WORD.
See the chapter "Communicating With INTER-WORD".

See ALLOC, IMPORT

127

EXT

file length

This function reads or sets the length of a file.

Syntax
EXT<handle>=
=EXT<handle>

Example

. START

READ DB"MYDATAB"
X%=EXT"MYDATAB"
PRINT"File length is ";X%
CLOSE"MYDATAB"

END

65536

Example

. START
OPENIN"ITEST"
PRINT EXT"ITEST"
CLOSE"ITEST"

END

1280

Example

.START
OPENOUT"ITEST"

EXT"ITEST"=1400
CLOSE"ITEST"

See END PTR, PTR

128

FIELDS

return number of fields

This function returns the number of fields per record in the current
database.

Syntax
=FIELDS

Example

. START

READ DB"MYDATAB"
X$=FIELDS
CLOSE"MYDATAB"
PRINT X%

RETURN

14

See ADD FIELD

129

FILES

return number of open files
This function returns the number of files which currently are open.

Syntax
=FILES

Example

. START

READ DB"MYDATAB"VIA"MYINDX"
X$=FILES
CLOSE"MYDATAB"
PRINT X%
X$=FILES

PRINT X%
CLOSE"MYINDX"
X$=FILES

PRINT X%
RETURN

The result would be:

2

1

0

Note that READ DB ... VIA ... opens 2 files!

See CLOSE, OPENIN, OPENOUT, OPENUP, READ, USE, WRITE

130

FIND

find a key

This command searches the current read index for the specified key.

Syntax

FIND<key string> (must not be longer than the key in the index).
FIND KEY<key array> (must contain keys in the correct order).

FIND REC<key array> (must contain keys in the corresponding fields).

Example

.START

READ DB"MYDATAB"VIA"MYINDX"
PTR"MYDATAR"=0
FIND"fothergi"”

REM not more than 8 letters
X%=PTR"MYDATAB"

READ REC R{()
Y$=PTR"MYDATAB"

REM CLOSE ALL

PRINT R(2) 'R(3)

PRINT "Pointer 1 = ";X$%
PRINT "Pointer 2 = ";Y%

Fothergill,Mr J
Snide & Company Ltd.,
12 Hertford Close,
Emsworth Field,
Luton,

Beds.

LU4 6HJ

Pointer 1 = 0
Pointer 2 = 2416

Notes:
The act of FINDing a key in the index does not alter the database file
pointer. In order to set the pointer to the record you must first READ the

131

record from the database. The example demonstrates this. Do not,
therefore, FIND a record then attempt to WRITE to it because you will
overwrite the first record in the file instead! You must READ first.

The search key may be shorter than the actual key in the index but not
longer, otherwise the search will be unsuccessful. (This fact is NOT true
in the case of an array). For a key string the default length is eight
characters. For an unknown database you can use the function CRITERIA
to determine the key length before using FIND.

A search key string must be of the same case as that of the index. It is
usual to construct an index with lower case letters only. If you use the
wrong case then FIND will be unsuccessful.

Since the search is performed on the index and not on the database itself,
the index must be opened for reading.

If the index is based upon more than one field you can use the FIND
command with an array containing the relevant keys. For instance, if the
index is based upon both the surname and the street number in the
example above you could use:

FIND KEY["fother",12]
If the array already exists as in:

z(2)="Fothergill,Mr J"
z(3)="12 Hertford Close, etc...."

you could modify it to suit the key structure defined above:

. START

REMOVE J ()

DIM J(),2

J(1)=LOWERS$z (2) [1, 8]

REM take the first 8 characters in lower case
J(2)=VALz (3)

REM take just the street number

FIND KEY J()

The third format is to use:
FIND REC J()

132

In this case you must note that the index was constructed from the first
and third fields of the database (Surname and street number).
Consequently, the array must contain the key information in its first and
third fields. Note that only those fields upon which the index was
originally constructed need be filled. The other fields may be undefined
or may hold any "garbage".

. START

REMOVE J ()

DIM J(),3

J(1)=LOWERSz (2)

REM take the surname in lower case
J(3)=VALz (3)

REM take just the street number
FIND REC J()

It was necessary to convert the surname to lower case and part of the
address string to a number. If the elements of the array already match
those of the index, you may be able to use the record array as it stands:

FIND REC z ()

=FIND may also be used as a function: a useful facility if you are not
certain that the key exists since an error would result from the use of the
command whereas the function will return a value of -1 if TRUE (found)
and 0 if FALSE (not found).

Example
. START
REMOVE R ()
DIM R(), 14
READ DB"MYDATAB"VIA"MYINDX"
X%=FIND"fothergi"”
IF X%=-1
READ REC R()
PRINT R(2) 'R(3)
ELSE PRINT"Not found"
ENDIF
CLOSE ALL
RETURN

See CRITERIA, HUNT

133

FN

return result
Returns the result of a programming action from a sub procedure.

Syntax
=FN«<label>[(<value>{[,<value>]})]

Example

. START
X%=FNworkitout (8,9)
PRINT X%

END

.workitout x%,y%

= X$*y%
72

Instead of the = sign the sub procedure could also end as:
RETURN x%*y% or ENDPROC x%$*y%

Example

. START

X$=FNworkitout ("Hello","there™)
PRINT X$

END

.workitout x$,y$

= x$+" you "+y$+" with the hat"

The result of this example would be:
Hello you there with the hat

It is possible to write a procedure in such a way that it can be called both

as a function and as a procedure by separate parts of the program.

Where speed is important, for instance where a function is called
repeatedly by separate parts of the program, parameters may be passed
as variables of differing variable names. The following example passes

134

the parameters as strings. The program actually copies these and presents
them to the function sub-procedure on each loop.

Example

. START

%=0

TIME=0

REPEAT
X$=FNworkitout ("Hello","there")
PRINT X$

UNTIL X%>100

PRINT TIME

END

.workitout x$,y$

Xs=X%+1

=x$+" you "+yS$+" with the hat"

254

The next example puts the strings into variables and passes only the
memory LOCATION of each string to the function sub-procedure. This
method is faster as indicated by the time print out.

Example

. START

[

TIME=0

x$="Hello"

y$="there"

REPEAT
X$=FNworkitout (x$,y$)
PRINT X$

UNTIL X%>100

PRINT TIME

END

.workitout"x$,y$

X%=X%+1

=x$+" you "+y$+" with the hat"

239

135

Notes

Parameters must be enclosed in brackets, as shown.

When parameters are passed as variables they should be preceded by a
circumflex /A symbol after the label. If this symbol is omitted, the program
time might be increased.

The examples, above, are trivial.

In fact it is unnecessary to pass parameters unless the procedure is called by
several sections of the program which use different variable names for the
parameter(s) passed.

See PROC, GOSUB (also the example in DATA)

FOR ... NEXT

repeat an action

This command defines a loop operation.

Syntax
FOR<numericvar>=<number>TO<number>[STEP<number>]

Example
.START
E$=""
FOR X%=65 TO 122 STEP 2
IF X%>90 AND X%<97 THEN ES$=+"*":NEXT
E$=+CHRS (X%)
NEXT
PRINT E$

ACEGIKMOQSUWY***acegikmogsuwy
Notes:

If STEP is omitted then a step of +1 is assumed.
Negative steps may be used.

136

FORMAT

set format

This function defines the displayed format of numbers and dates.

Syntax
FORMAT [<int1>],[<int2>],[<int3>],[<int4>]

<int1> sets the date format to one of six permutations.
0 - default. Full date printed in words and numbers.

For the other five possible date formats see the example on the
following page.

<int2> selects the type of format for numbers.

0 - General format (default)
1 - Exponential format
2 - Fixed decimal point position

<int3> sets the number of digits to be printed.

For General format: sets number of digits (range 1 to 10 but 0 is also
interpreted as 10. Default value is 9). If int3 is 1 then neither the decimal
point nor any digits following it are printed (and the value is rounded up
or down to the nearest integer). This "pointless" format is also used if
there would be only zeros after the decimal point.

For Exponential format: sets the number of digits. The last digit is
rounded up or down as necessary. Zeros after the decimal point are NOT
suppressed.

For fixed decimal point format; sets the number of digits after the
decimal point. The last digit is rounded up or down as necessary. Zeros
after the decimal point are NOT suppressed (indeed, in the case of an
integer, they will be added!).

137

Range is 0 - 9. A larger int3 will be interpreted as 9.
<int4> sets the length of the string to be printed.

Values are right justified within this string and, if the number of
digits is less than the string length, then spaces are inserted at the left.
(These spaces will be present if the value is converted to a string by
means of STR$, consequently use TRIM$STR$ to avoid this effect.

Default is 10 (including the decimal point). In the case of
exponentials the string length includes all characters (i.e. includes E-3 for
instance). If the string length specified is less than the number of digits set
by int2 and int3 then int4 is taken to be equal to the actual string length.
To reset the format to its original default values type
FORMAT 0,0,9,10
Unspecified parameters are not altered, so:

FORMAT, , ,
does nothing, and:
FORMAT, 0, 9,10

resets the number format but leaves the date format as it was last set.

The examples on the following page should clarify the effect of the
FORMAT command.

138

Program

Result
<left margin position

. START
date@=@"9.10.88"
FORMAT64,,, :PRINT
FORMAT65,,, :PRINT
FORMAT66,,, :PRINT
FORMAT67,,, :PRINT
FORMAT1,,, :PRINT
FORMATO,,, :PRINT
X=7 :PRINT

FORMAT, 0,9, 6
FORMAT, 0, 9, 2
FORMAT, 0,10,12
FORMAT, 0,0,12
FORMAT, 0, 9,15
FORMAT, 0,7,15
FORMAT, 0,5,13
FORMAT, 0, 9,12
FORMAT, 0, 9,10
Y%$=123456789
PRINT

FORMAT, 1,6,18
FORMAT,1,6,17
FORMAT, 1,5,17
FORMAT, 1,4,17
PRINT Y%
PRINT

FORMAT, 2,6, 9
FORMAT, 2,2, 9
FORMAT, 2,2, 6
FORMAT, 2, 2, 4
FORMAT, 2,2, 1
7%=543

RETURN

date@
date(@
date@
date@
date@
date@

:PRINT
:PRINT
:PRINT
:PRINT
:PRINT
:PRINT
:PRINT
:PRINT
:PRINT
:PRINT

:PRINT
:PRINT
:PRINT
:PRINT

:PRINT
:PRINT
:PRINT
:PRINT
:PRINT
:PRINT

X/3
X/3
X/3
X/3
X/3
X/3
X/3
Y%

X/1000
X/1000
X/1000
X/1000

$KoX X X X

09/10/1988
09/10/88
09/0CT/1988
09/0CT/88

9th October '88
9th October 1988

9
2.333333333
2.333333333

2.33333333
2.333333
2.3333

2.33333333

2.33333333

123456789

7.00000E-3
7.00000E-3
7.0000E-3
7.000E-3
1.235E8

7.000000
7.00
7.00
7.00
7.00
543.00

139

FREE

return free memory
This function returns the amount of unused memory available.

Syntax
=FREE

Example
PRINT FREE<RETURN>

13021

GCOL

set graphics colours

This statement sets the foreground and background colours to be used by
subsequent graphics commands and determines how they are affected by
existing colours.

Syntax
GCOL<intl>,<int2>

<int1> specifies the logical operation, as follows:

Plot the colour specified.

OR the specified colour with the existing one.
AND the specified colour with the existing one.
EOR the specified colour with the existing one.
Invert the existing colour.

= W N = O

<int2> specifies the logical colour to be used in future:

140

Numbers up to and including 127 define the graphics foreground colour.
Numbers greater than 127 define the graphics background colour.

In a two colour graphics mode (MODE 0 and 4) the following apply:

foreground background colour
0 128 black
1 129 white

In a four colour graphics mode (MODE 1 and 5) the following apply:

foreground background colour
0 128 black

1 129 red

2 130 yellow
3 131 white

In a 16 colour mode (MODE 2) the following apply:

foreground background colour

0 128 black

1 129 red

2 130 green

3 131 yellow

4 132 blue

5 133 magenta

6 134 cyan

7 135 white

8 136 flashing black/white

9 137 flashing red /cyan

10 138 flashing green/magenta
11 139 flashing yellow/blue

12 140 flashing blue/yellow

13 141 flashing magenta/green
14 142 flashing cyan/red

15 143 flashing white /black

The colours listed are the default or "logical" colours. Each may be
swapped with any other of the 16 possibilities by means of the GCOL
statement.

141

GET

get ASCII value of key

This function causes the program to wait until a key is pressed. The ASCII
character code is then returned (but not displayed on screen).

Syntax
=GET

Example

. START

REPEAT

G%=GET

IF G%>64 AND G%<91 THEN PRINT "upper case "+CHRS$ (G%)

IF G%>97 AND G%<123 THEN PRINT "lower case "+UPPER$CHRS$ (G%)
UNTIL G%=32 OR G%=13

PRINT"END"

Example
.START
Wg=nr
REPEAT
G%=GET
IF G%>64 AND G%<91 OR G%>96 AND G%<123
PRINT CHR$G%;
W$=+CHRS$G%
ENDIF
UNTIL G%=13

Notes:

Since all keys pressed are stored in a buffer, it is possible that GET will
find a character already in the buffer. For this reason it is usual to clear
the buffer with *FX21,0 before GET is used.

See ASC, CHR$, GET$, INKEY, INKEY$, INPUT, INPUT$, INPUTLINE

142

GETS

get character of key pressed

This function causes the program to wait until a key is pressed. The ASCII
character string is then returned (but not displayed on screen).

Syntax
=GET$

Example
. START
we=mr
REPEAT
G$=GETS$
IF G$ IN "ABCDEFGHIJKLMNOPQRSTabcdefghijklmnopgrst”
PRINT GS$;
W$=+G$
ENDIF
UNTIL G$="|M"

Notes:
Since all keys pressed are stored in a buffer, it is possible that GET$ will

find a character already in the buffer. For this reason it is usual to clear
the buffer with *FX21,0 before GET$ is used.

See ASC, CHRS, GET, INKEY, INKEY$, INPUT, INPUT$, INPUTLINE

GO END

move file pointer to end

This function moves the file pointer to the START of the LAST record.

143

GO START

move file pointer to start
This function moves the file pointer to the START of the FIRST record.

The actual record to which the pointer is moved depends upon whether
an index is in use and whether USE MARKED is implemented.

Note: When a database is opened the pointer is moved automatically to
the START. This is NOT the case if the database is re-opened without
having first been closed.

Example

. START

READ DB"MYDATAB"VIA"MYINDX"
FIND"picker"

READ REC R{()

PRINT"Found ";

PRINT R(2)

GO START

READ REC R{()

PRINT"First record is ";
PRINT R(2)

CLOSEALL

END

Found Pickering,Fred J
First record is Ashton, Jane

See END, START, PTR

144

GOSUB ... RETURN

use subroutine

This command calls a subroutine then returns to the point in the program
immediately after the GOSUB command.

Syntax
GOSUB<label>

Example
.START
ESCAPE OFF
REPEAT
CLS
PRINT'''"'
PRINT"MENU"
PRINT"A TEST 1"
PRINT"B TEST 2"
REPEAT
G$=GETS
UNTIL G$ IN "ABab" OR ASC(GS$)=27
IF G$ IN "Aa" TEEN GOSUB testl
IF G$ IN "Bb" TEEN GOSUB test2
UNTIL ASC(G$)=27
ESCAPE ON
CLS
PRINT"END"
END

.testl

CLS

PRINT'''"This is the first subroutine”
PRINT"Press a key"

G$=GETS$

RETURN

145

.test2

CLS

PRINT'''"This is the second subroutine"
PRINT"Press a key"

G$=GETS$

RETURN

Note: Subroutine labels must always be preceded by a full stop.
The word PROC may be used instead of GOSUB and the word
ENDPROC may be used instead of RETURN.

See PROC for more details.

GOTO

go to specified label

This statement causes the program to jump to a specific label.

Syntax
GOTO«<label>

Example

. START

ws="r

REPEAT
GS=GETS
IF G$="#"THEN L%=15:GOTO hash
PRINT GS$:
WS=+GS$
L$=LEN W$

.hash

UNTIL L%>14

See GOSUB, PROC

146

HUNT

search for key

This command searches for a key in the index currently open for reading.
If it does not find it then it stops at the next closest match. If it reaches the
end of file an error will occur. The error can be trapped by using HUNT
as a function when it will return FALSE if no close match is found. The
key will usually be in lower case.

Syntax

HUNT<string>

HUNT KEY<key array>
HUNT REC<key array>

Example

.START

REMOVE R ()

DIM R(),14

READ DB"MYDATAB"VIA"MYINDX"

PRINT"Hunt for: ";

AS$=LOWERSINPUTS

X%=HUNT AS

IF X%=FALSE
PRINT"Not found”
ELSE HUNT AS$
READ REC R()
PRINT R(2)

ENDIF

CLOSEALL

RETURN

HUNT is very similar to FIND and the examples and notes given for
FIND apply equally to HUNT. If error trapping is not used then ensure
that there is a dummy Record at the end of the database with an
appropriate KEY like zzzzzzzz or 9999999.

See FIND

IF ... THEN ... ELSE

perform conditional action
This statement sets a condition and one or more actions to be carried out.

Syntax
IF<condition>THEN<statement>
or

IF<condition>THEN<statement>ELSE<statement>
or

IF<condition>
<statements>

ENDIF

or

IF<condition
<statements>

ELSE
<statements>

ENDIF

Example
. START
G$=GETS$
IF G$ IN "Aa"

PRINT"A has been pressed"”
ELSE

PRINT"A has not been pressed"”
ENDIF

Note: If ENDIF is omitted from a lengthy program then the program

could continue to run for many lines before the error is noticed and the
error message could be very misleading!

148

IMPORT

copy data into string

This command allows. the copying of data from a dormant INTER-
package into a string variable.

Syntax
IMPORT<stringvar>,<command>

Example

. START

IMPORT AS$,"IW.0:GETMARKED"
RETURN

This program could be run from any INTER- package (except, in this
example, IW.0) to copy a section of marked text from IW.0 into A$.

It is NOT possible to IMPORT from the currently active package.

If, for instance, this short program was in P$ then from IW.1 menu; type
:P<RETURN> and the marked text from IW.0 will be copied into AS$.
Then typing EXPORT A$ would copy it to the cursor position in IW.1
text.

See the chapter "Communicating with INTER-WORD".
See EXPORT

149

test for string
This operator tests for the presence of a string in another string.

Syntax
<sstring>IN<string>

Example
. START
day$="MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY"
PRINT"Type the day”
G$=UPPERSINPUTS
IF G$ IN days$
PRINT"O.K."
ELSE
PRINT"Not a day"
ENDIF

In the above example, typing the letters "mon" would result in "O.K."
since UPPER$ converts then to upper case and "MON" does occur within

the string.

See INSTR, ITEM, ITEM$

150

INDEXS

return index filenames

This function returns a list of index filenames which are enabled for the
current WRITE database.

Syntax
=INDEX$

INDEX$ actually puts the list of index names into a string of the form
<filename,filename,filename....>. In practice, however, you will know the
index names you have used. Consequently this function will be needed
only if you develop a database in which the index names can be changed
by the user.

Example

. START

USE DB"MYDATAB"
A$=INDEXS
C%=COUNTINDEX$
CLOSE"MYDATAB"
PRINT A$

PRINT C%
RETURN

results in:

MYINDX, INTINDX
2

Note:

Strangely, this function will not work on a database which is opened for
READ only. It will, however work on a WRITE only database but, in case
this "feature" is altered in later versions of INTER-BASE, it is
recommended that you USE the database as in the example.

See DISABLE INDEX, ENABLE INDEX

151

INFO LEN

return info. block length

This function returns the current length of the information block.

Syntax
=INFO LEN

Example

. START

READ DB"MYDATAB"
D%=INFOLEN"MYDATAB"
M%=MAXINFO"MYDATAB"
CLOSE"MYDATAB"

PRINT "Current length ";D$%
PRINT "Original length ";M%
PRINT "Space left ";M%-D%
END

Current length 532
Original length 1024
Space left 492

Note that INFOLEN may be written as one word.

See MAX INFO

152

INITIALS

make initials upper case

This function converts the first character of each word to upper case and
the remainder to lower case.

Syntax
=INITIAL$<sstring>

Example

.START

N$="frED floGGiNs"
PRINT INITIALSNS

Fred Floggins

See LOWERS, UPPER$

INKEY

return ASCII code of key

This function returns the ASCII code of a key provided that the key is
pressed within a set time limit (specified in centiseconds). If this time
limit is exceeded before a key is pressed then the function returns -1.

Syntax
=INKEY<int>

Example
. START
REPEAT
*FX21, 0
PRINT "*";
UNTIL INKEY10<>-1

153

will print *** until a key is pressed.

INKEY allows a program to keep running while looking for a key press
whereas GET stops the program until a key is pressed.

INKEY can also be used with a negative parameter to look for a specific
key press:

Syntax
=INKEY<-int>

Example
.START
REPEAT
*FX21,0
PRINT "PRESS <TAB> TO STOP ME!"
UNTIL INKEY-97=TRUE

Notes:

Since all keys pressed are stored in a buffer, it is possible that INKEY will
find a character already in the buffer. For this reason it is usual to clear
the buffer with *FX21,0 before INKEY is used.

See GET, GET$, INKEYS$, INPUT, INPUT$, INPUTLINE

154

INKEYS

return character of key

This function returns the character string of a key provided that the key is
pressed within a set time limit (specified in centiseconds). If this time
limit is exceeded before a key is pressed then the function returns a null
string.

Syntax
=INKEY$(<int>)

Example

.START

*FX21,0

REPEAT
PRINT"*";
X$=INKEY$ (50)

UNTIL X$>""

PRINT X$

RETURN

Notes:

Since all keys pressed are stored in a buffer, it is possible that INKEY$
will find a character already in the buffer. For this reason it is usual to
clear the buffer with *FX21,0 before INKEY$ is used.

See GET, GET$, INKEY, INPUT, INPUTS, INPUTLINE

155

INPUT

return string/number
This command allows input of one or more strings or numbers.

Syntax
INPUT{[<prompt string>]<varname>}

Examples

INPUTnames$

INPUT 'names$

INPUT"Type your name "name$"and address "'addr$
INPUT"What is your name";name$

INPUT"Type your name underneath"'name$

INPUTN

INPUT"Please enter a number "N

INPUT"Please enter a number "'N"and your name '"names$

Notes:

Several prompt strings may be used and several variables input with just

one INPUT statement.

The prompt string is optional and may be omitted in which case a

question mark will appear.

If a semi-colon is placed after a prompt string a question mark will

appear.

If an apostrophe is used the cursor will appear on the next line, without a

question mark.
A carriage return terminates the string.

If the string includes a comma, this and any characters following will be

lost.
Leading spaces will be stripped.
Numbers will be evaluated on input.

See GET, GETS$, INKEY, INKEYS, INPUTS$, INPUTLINE

156

INPUTS

return string

This function returns a single string of keyboard input.

Syntax
=INPUT$

Example

.START

PRINT"What 1is your name ? ";
I$=INPUTS

PRINT IS

Notes:
The string is terminated by <RETURN> but does not include a carriage
return. Leading spaces are NOT stripped.

See GET, GET$, INKEY, INKEY$, INPUT, INPUTLINE

INPUTLINE

input string/number
This command allows input of strings or numbers.

Example

.START

INPUTLINEname$

INPUTLINE"Type your name "name$
INPUTLINE"Type your name";name$
INPUTLINE"Type your name"'name$
INPUTLINEN

INPUTLINE"Type a number "N
INPUTLINE"What is your number”;N
INPUTLINE"Type a number beneath"'N

Notes:

This command is very similar to INPUT but will accept commas.

The prompt string is optional and may be omitted in which case a
question mark will appear.

If a semi-colon is placed after the prompt string a question mark will
appear.

If an apostrophe is used the cursor will appear on the next line, without a
question mark.

The string is terminated by <RETURN> but does not include a carriage
return.

See GET, GETS, INKEY, INKEYS, INPUT, INPUT$

158

INPUT FROM

read values from file

This command reads values from special files generated by PRINT TO
and puts the values into the stated variable(s).

Syntax
INPUT FROM<handle>{,<variable>}

Example
.START
OPENOUT"filel"
PRINT TO"filel",65,66,67,68,69
CLOSE"filel"
OPENIN"filel"
REPEAT
INPUT FROM"filel", x%
PRINT CHRS$ (x%);
UNTIL EOF"filel"
CLOSE"filel"
END

results in:

ABCDE

See PRINT TO

159

INSTALL

install program
This command installs a tokenised program into sideways RAM.

Syntax
INSTALL<RAM No.><stringvar>

See the chapter "ROM Programs".

INSTR

return position of string
Returns the start position of a short string within a longer string.

Syntax
=INSTR(<string>,<sstring>[,<int>])

Example
. START
N$="The quick brown fox will fox everyone"
X%=0
REPEAT
X$=INSTR (NS, "fox",X%+1)
PRINT X%,
UNTIL X%=
END
17 26 0

Notes: <int> specifies the start position for the search. If not specified the
search begins at the first character. If the short string is not found the
function returns zero.

See IN, ITEM, ITEM$
160

INT

convert to integer

This function converts a decimal number to an integer. The result is never
greater than the original value.

Syntax
<num-var>=INT<numeric>

Example

. START
X$=INT13.4

PRINT X%
X$=INT-13.4
PRINT X%

X%=-INT (ABS-13.4)
PRINT X%

END

13
-14

13

See ABS

161

ITEM

return item number

This function returns the item number of a short string within a longer
string.

Syntax
<num-var>=ITEM(<string>,<sstring>[,<sstring>])

Example

. START

N$="One, Two, Three, Four,Five, Six,Seven"
X%$=ITEM (NS, "Five™)

PRINT X%

X%$=ITEM (NS, "Four,Five,"," ")

PRINT X%

END

Notes:

The final parameter is the separator which is assumed to be a comma
unless specified.

The example program used a comma as a separator (by default) then
used a space as the separator.

The short string must be the complete string which lies between the
separators (including spaces, except where the space is the separator).
ITEM will return zero if it does not find the short string.

See IN, INSTR, ITEM$

162

ITEMS

This function returns a short string from a longer string.

Syntax
<svar>=ITEM$(<string>,<int>[,<sstring>])

Example

.START

N$="One, Two, Three, Four,Five, Six,Seven"
I$=ITEMS (N$,2)

PRINT IS

I$=ITEMS (N$,2," ™)

PRINT I$

I$=ITEMS (N$,-1," ")

PRINT IS

END

Two

Four,Five,

Six, Seven

Notes:

<int> is the item number of the short string. When <int> is positive the
count is made from the start of the longer string and, when negative, from
the end.

The final parameter is the separator which is assumed to be a comma
unless specified.

ITEMS will return a null string if the short string does not exist in the
position specified.

See IN, INSTR, ITEM

163

KEYS

return key string

This function returns the entire key string of the current record, using
information from the current WRITE index and the current READ
database. The key string contains the key and the file pointer after it.

Syntax
<string>=KEY$<record>

Example

. START

REMOVE R()

DIM R(),14

READ DB"MYDATAB"VIA"MYINDX"

USE UNMARKED

READ REC R{()

WRITE INDEX"MYINDX"

A$=KEYS R()

CLOSEALL

FOR X%=1 TO LENAS
PRINTSTRSAS [X%],ASC (AS [X%])

NEXT

65
115
104
116
111
110

44

74
128

5 0 o o own o p

~

(a5}

28

164

Notes:

Since the key string contains file pointer information as non-ASCII codes
it is inadvisable to print them directly. In the example, for instance, the
code 7 causes the computer to beep (VDU7) when printed. Some codes
have more disastrous effects!

One way around this problem is to add to the program:
key$=AS$[1,-4]

ptr$=As$[-4,-1]

which will separate the key from the file pointer.

The example index was constructed on only one field. If it had used more
than one, then KEY$ would have returned the key for each field, plus the

pointer.

See notes about index KEYs under CREATE INDEX, CREATE USER
INDEX, CRITERIA, FIND, READ KEY and SORT.

See CREATE INDEX, CRITERIA, FIND, READ KEY, SORT, USE, WRITE

165

LEFTS

return left hand string

This function returns a specified number of characters from a string,
counting from the beginning (left) of the string. In addition it can be used
in reverse to define a sub string at the beginning of the string.

Syntax
<sstring>=LEFT$(<string>,<int>)
LEFT$(<string>,<int>)=<sstring>

Example

. START

K$="ABCDEF 123456 GHIJKL 789"
AS=LEFTS (K$, 5)

PRINT A$

LEFT$ (K$, 5)="MN"

PRINT K$

END

results in:
ABCDE
MNF 123456 GHIJKL 789

Another way to achieve this is with square brackets, as follows:

.START

K$="ABCDEF 123456 GHIJKL 789"
AS$=K$[1,5]

PRINT AS

K$[1,5]="MN"

PRINT K$

END

results in:
ABCDE
MNF 123456 GHIJKL 789

See MID$, RIGHT$S
166

LEN

return string length

This function returns the number of characters in a string.
It also returns the number of elements in an array.

Syntax
<num-var>=LEN<string>
<num-var>=LEN<array>

Example

. START

K$="ABCDEF 123456 GHIJKL 789"
PRINT LENK$

END

24

Example

.START

REMOVE R ()

DIM R(),14

FOR X%=1 TO 14
DIM R(X%),5

NEXT

PRINT LENR()

PRINT LEN R(2)

END

See TYPE

167

LGETS

return string from file

This function returns a string of characters from a file up to (but not
including) the terminating character. If this terminator is not specified the
function will expect a carriage return.

Example

. START
OPENOUT"testfile"
BPUT"testfile","12345678%abcdefghijklmnopgrstuvwxyz | MABCDEFGHIJKL
MNOPQRSTUVWXYZ"
CLOSE"testfile"
OPENIN"testfile"”
AS=LGETS ("testfile")
PRINT AS

PRINT

PTR"testfile"=0
AS$=LGETS ("testfile”,"z")
PRINT AS
CLOSE"testfile"

END

results in:
123456789%abcdefghijklmnopgrstuvwxryz
(because | M is terminator)

123456789%abcdefghijklmnopgrstuvwzyz
ABCDEFGHIJKLMNOPQRSTUVWXY

(because Z is terminator)

See BGET, BGETS$, BPUT, EOF, EXT, OPENIN, OPENOUT, OPENUP, PT

168

LINES

returns a string line

This function is similar to ITEM$ but the separator is always a carriage
return.

Syntax
<stringvar>=LINE$(<string>,<int>)
LINES$(<string>,<int>)=<stringvar>

Example

. START

AS$="This is line 1 |Mand this is line 2 |M so this is line 3 |M
but this is line 4"

L$=LINES (AS,2)

PRINT LS

PRINT

LINES (AS,2)="and this is new"

PRINT AS

END

results in:
and this is line 2
This is line 1
and this is new
so this is line 3

but this is line 4

See COUNT, ITEM$, WORD$

169

LOAD

load file

This command loads a specified file into a string variable.

Syntax
LOADx<stringvar>,<filename>

Example
LOAD"progl",P$

See SAVE

LOAD RAM

load rom image

This command will load a rom image of the specified filename into a
specified sideways RAM.

Syntax
LOAD RAMc<int> <filename>

Example
LOAD RAM 5, "ROMimage"

See the chapter "Rom Programs”

170

LOCAL

localise variable

This command allows you to specify any number of variables as local to a
procedure or a function. Variables so specified are then kept separate
from variables of the same name which are used elsewhere in the

program.

The advantage is that procedures and functions may be written without
knowledge of what variables are used in the main program and without
fear of corrupting these variables.

Syntax

LOCAL<varname>{,[<varname>]}

Example
. START

REM main program

z$="A"
PRINT z$
PROCone
PRINT z$
END

.one

LOCAL z$

REM procedure
z$="B"

PRINT z$
ENDPROC

results in:
A
B
A

Notes

The command can result in a loss of speed if a lot of variables are
declared local because at the end of the procedure the program will spend
some time removing the LOCAL variables.

The command should begin on the first line after the procedure label. It
may also be used again on successive lines if a lot of variables need to be
declared local.

The command can be used after .START in a program if the entire
program is called as a sub-program of another. Take care, however, not to
include the sub-program name in the LOCAL statement, otherwise it will
run once then remove itself!

Any type of variable may be declared local, including arrays.

See FN, GOSUB, LVAR, PROC

LN

natural logarithm

This function calculates logarithms to the base 2.71828183
Example
PRINT LN 0.6

-0.510825624

See ACN, ASN, ATN, COS, DEG, EXP, LOG, RAD, SIN, SQR, TAN, PI

172

LOCK

lock variable

This command prevents the variable from being changed or read in any
way. Any reference to a LOCKed variable will generate an error.
LOCKing a variable prevents accidental modification by another
program.

Syntax
LOCK<variable>

Example
.START
UNLOCK A$
A$="YES"
PRINT A$
LOCK A$

Notes

To avoid error messages do not LOCK variables unnecessarily.

You can LOCK a few variables which you need to retain, then use the
command RVAR to remove all remaining unlocked variables.

Some variables which begin with the underline character are used by the
card index and by the program menu. These may be unlocked and read
or altered from within a program but not by typing in immediate mode.
Examples of such variables are "M% (the screen mode) and _$ (the
current filename).

See MENU, RVAR, UNLOCK

173

LONG REC

return longest record length

This function returns the length of the longest record in the current
WRITE database. It can also be used as a command to set the value since
INTER-BASE cannot always keep track of the longest record. The value of
LONGREC will never, however, be too small.

The following program will print the value of LONGREC from the
database. It will then check the actual length of every record. If the value
of LONGREC is wrong it will correct it.

Example

.START

WRITE DB"MYDATAB"

LR$=LONGREC

PRINT LR%

CLOSE"MYDATAB"

REMOVE R ()

DIM R(), 14

USE DB"MYDATAB"VIA"MYINDX"

USE UNMARKED

R$=0

WHILE NOT END
READ REC R()
RL$=REC LEN R()
IF RL%>R% THEN R%=RL%
SKIP

ENDWHILE

IF R%<LR% THEN LONGREC=R%

CLOSE ALL

END

184
See MAX REC LEN, REC LEN

174

LOWER

convert string to lower case

This command converts all alphabet characters in the given string to
lower case. The string may be of any length.

Syntax
LOWER<stringvar>

Example

. START
A$=STRINGS (255, "M")
AS=+AS$

PRINT A$

LOWER A%

PRINT A$

END

MMMMMMMMMMMMMM 1 MM

MM

Mb MMM IMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMM

MM

MMMMMM] IMMMMMD AMMMMMMMD I\ 1 IMMMM
MMM IMMMMM

ittt iaiginaiuigiddiagoaaagininidinaggigiuigingiiaginigiuiiigiidnainienainiiniinig

ediatisdadistiadiadaiaditiadatistaigtigignigandgiaadgiaigindainigiiuinigintuiniagigigdnigaiuiaigiaigiaigiaignaaiaianninin it

pidhagistatigticdanedanadddatigtiigiianinitaiadigasgiiainiuiginniainiaiinandigaaigagingmgigiuigiiginainiiaia it g

bthagicdatisficianedanaidatigfgighidiid gt aiaiauigiuaigiodgiggigiuigiigiigngiaiangitaa g

bedieit e et e 00 IO (D EDITO NI ETIHGEIN00 010100010 IIN0I0 1000

O T T O T T T T T O T T T T T O T o i i MmN rmnrnrrm

hididiedidaindddinadidadaisdiiigigisdgiaiiiaidniaisidinig st

Note: This command cannot be used as a function.
It operates directly on the contents of the specified string.

See LOWERS, UPPER, UPPER$

175

LOWERS

copy string as lower case

This function produces a copy of the given string in lower case characters.
The string may not be more than 255 characters long.
The string may be copied into itself, as the example shows.

Syntax
<stringvar>=LOWERS$<sstring>

Example

. START

AS$="THIS string IS MOSTLY capITALs"
AS=LOWERS AS

PRINT AS

END

this string is mostly capitals

.START
AS$=STRINGS (255, "M")
BS=LOWERS AS

PRINT A$

PRINT B$

END

T T O T T T L T T L T T T T U T U T T T T T P AT o T T T A U M AT A AT arneum

frdtatiadadgiidgiduiindaiaditindigdiiggiaitiiaigigngniaia gttt

rotditidnidagduiinudaduiddiddigdduiniidaidaniaaianianiganioainainiinuigaigiaiuimuiiggiiiuiniata g il

TN AT

See LOWER, UPPER, UPPER$

176

LOG

logarithm

This function calculates logarithms to the base 10.
Example

PRINT LOG 1.5
0.176091259

See ACN, ASN, ATN, COS, DEG, EXP, LN, RAD, SIN, SQR, TAN, PI

LVAR

list variable names
This command lists the names of current variables which are not locked.

Syntax
LVAR[<option>{[,<option>]}]

The command will act upon the type(s) of variable specified according to
the option words: INT, REAL, DATE, STRING, ARRAY

If no options are given then the command will act upon ALL types of
variable which are not locked. In the first example below, B$ is LOCKed
while LVAR is used so B$ is not listed.

Example

.START

REMOVE R ()

DIM R(),8
AS$="":G%=0:datel=@"5/6/89":F=1.2
B$="yes"

LOCK B$

LVAR

UNLOCK B$

END

o

AS$ F G PS R() date@

Example

. START

LVAR STRING,ARRAY
END

AS BS$ R()

Note LVAR does not list variable names which begin with the underline
character.

See LOCK, REMOVE, PVAR, RVAR,

178

MARK COUNT

return marked record quantity

This function will return the number of MARKed records in a database.

Syntax
=MARK COUNT

Example

. START

READ DB"MYDATAB"
X%=MARKCOUNT"MYDATAB"
CLOSE"MYDATAB"

PRINT X%

END

Notes:

MARK COUNT may be used on a database which is open for READ,
WRITE or both (USE).

The space is unnecessary and the function may be written
MARKCOUNT.

See MARKED, MARK REC, REC COUNT, UNMARK REC

MARK REC

mark record
This command marks the current record in the WRITE database.

Syntax
MARK REC

Example

. START

WRITE DB"MYDATAB"
MARK REC
CLOSE"MYDATAB"
END

MARKIing is performed because there is no way to delete a record, other
than to OVERWRITE it. If a record is amended and found to be too large
to fit back in the same position in the file, it is possible to MARK the
original (so it can be ignored in future by USE UNMARKED) and to
APPEND the amended version to the end of the file. Relevant indexes
must then be updated (SORTed) to point to the new file position of the
record.

See APPEND, MARK COUNT, MARKED, SORT, UNMARK REC

MARKED

test for marker

This function returns TRUE (-1) if the current record is marked and
FALSE (0) if it is not.

Syntax
=MARKED

180

Example
.START
REMOVE R()
DIM R(),14
READ DB"MYDATAB"
USE ALL
WHILE NOT END
X%=MARKED
PRINT X%
IF X%=-1
READ REC R()
PRINT"This record is marked”
PRINT R(2)
ENDIF
SKIP
ENDWHILE
CLOSE"MYDATAB"
END

Notes:
The database must be open for READing.

See MARK COUNT, MARK REC, UNMARK REC

MATCH

compare strings

This function compares two strings and returns TRUE (-1) if they are
identical or FALSE (0) if they are not.

Syntax
=MATCH(<sstring>,<sstring>)

Example

.START

A$="WiLlIaMs"

B$="wIlLiAmS"

IF MATCH (UPPER$SAS, UPPER$BS) =TRUE

181

PRINT"O.K."

ELSE PRINT"Different”
ENDIF
END

0.K.

Example

.START

REMOVE R ()

DIM R(),8
R(1)="HELLO"
R(2)="HELLO"
X$=MATCH (R (1) ,R(2))
PRINT X%

END

-1

Example

. START

A$=" WILLIAMS"
B$="WI#LI*"

IF MATCH (TRIMAS,B) =TRUE
PRINT"O.K."

ELSE PRINT"Different"
ENDIF

END

0.K.

Notes:

The function is case sensitive so it might be necessary to convert all
characters to either upper or lower case before performing the match, as
shown in the first example. Wildcard characters # (one character) and *
(remaining characters) may be used in the SECOND string, as shown in
the third example. The function is sensitive to spaces. In the third
example the leading spaces are TRIMmed off.

See CODE$, LOWERS, TRIMS$, UPPER$

182

MAX INFO

return info. block space

This function returns the length of the space reserved for the information
block in the current READ or WRITE database file.

Syntax
=MAX INFO

Example

.START

READ DB"MYDATAB"
X%=MAXINFO"MYDATAB"
CLOSE "MYDATAB"
PRINT X%

END

1024

Notes:
The space in MAX INFO can be omitted.

See CREATE DB, INFO LEN

MAX REC LEN

return maximum record length

This function returns the maximum record length which can be saved
back to the same position. This is equal to the initial record length plus
the buffer length originally set by BUFLEN.

183

Syntax
=MAX REC LEN<record>

Example

. START

REMOVE R()

DIM R(), 14

USE DB"MYDATAB"VIA"MYINDX"

USE UNMARKED

R%=0

WHILE NOT END
READ REC R()
RL%$=REC LEN R()
MRL%=MAX REC LEN R()
PRINT RL%,MRL%

SKIP
ENDWHILE

CLOSE ALL
RETURN

173 193
166 174
148 168
179 199
184 204
Notes

MAX REC LEN will never be less than REC LEN and will generally be

equal to REC LEN + BUFLEN.

If the amended record you wish to save back to the database exceeds
MAX REC LEN you must mark the existing record and APPEND the new
one to the end of file. The relevant indexes must then be SORTed on the

new record.

See BUFLEN, SORT, REC LEN

184

MENU

call database program

This "command" is actually the name of the Database program string.
If it is typed or used in a program the computer will immediately leave
INTER-BASE 0 and enter the DATABASE menu.

Example

. START

CLS

PRINT'''"Press a key for database”
G$=GET$

ENTER MENU

Notes:

On entry to the DATABASE menu the keyboard buffer is cleared.
Consequently, it is not possible to send further commands.

Variables are NOT cleared when the DATABASE menu is entered in this
way, however the variables used by the DATABASE can be listed by

typing:
PVAR <RETURN>

In addition, once the database is used, there is no guarantee that program
variables will not be corrupted.

If you need to return to INTER-BASE 0 without deliberately removing all
variables then use *IB.PMENU <RETURN> (must be in upper case) from
the DATABASE. If you use the DATABASE menu option 9) this has the
effect of closing all open files and of removing all variables, as if you had

typed:

*IB.PMENU <RETURN>
CLOSE ALL <RETURN>
RVAR <RETURN>

185

MIDS

return middle of string

This function returns part of a string which starts from the first specified
character and is the length of the second. If the second is not specified it
will return the part of the string from the first specified character to the
end. As a command it will replace part of a string with another.

Syntax
<stringvar>=MIDS$(<string>,<int>[,<int>])
MID$(<string>,<int>[,<int>])=<sstring>

Example

. START
A$="ABCDEFGHIJKLM"
B$=MIDS$ (A$, 3, 4)
PRINT BS$

END

CDEF

Example

. START
A$="ABCDEFGHIJKLM"
B$=A$[3;4]

PRINT B$

END

CDEF

Example

.START
AS$="ABCDEFGHIJKLM"

MIDS$ (AS,3,4)="123456789"
PRINT A$

END

AB123456789GHIJKLM
186

Example

. START
A$="ABCDEFGHIJKLM"
A$[3;4]="123456789"
PRINT A$

END

AB123456789GHIJKLM

Notes:

As the examples show, MID$ can be replaced by the square brackets
method where the figure after the semi-colon indicates the length and the
figure before indicates the first character position.

See ITEM, ITEMS$, LEFT$, LINES$, RIGHT$, WORD$

MOD

return division remainder

This function returns the remainder after a division, ignoring any whole
number result of division. The result is always an integer.

Example
.START
X%$=14 MOD 5
PRINT X%
END

4

(14/5=2 leaving a remainder of 4)

See DIV

187

MODE

change screen mode

This command alters the display mode of the screen and permits a choice
of graphics, text or both combined with a selection of colours, text size
and pixel size as indicated in the list below.

Syntax
MODE<int>
Mode Graphics Colours Text

0 640x256 2 80x32
1 320x256 4 40x32
2 160x256 16 20x32
3 none 2 80x25
4 320x256 2 40x32
5 160x256 4 20x32
6 none 2 40x25
7 Teletext 40x25

Notes:

This command may be used within a procedure or function without

problems.

The current screen mode may be determined by means of the following
program:

.START

$A=135

$X=0

$Y=0

M%= (USR (&FFF4) AND&FF0000)DIV&10000
PRINT M%

END

See CLG, Colour, DRAW, GCOL, MOVE, PLOT, VDU

188

MOVE

move graphics cursor

This command moves the graphics cursor to a specified screen position
(without drawing a line).

Syntax
MOVE <Xint>,<Yint>

Example
.START
MODE2 : VDUS
MOVE 800,800
PRINT"START"
MOVE 800,800
DRAW 100,100
PRINT"FINISH"
END

See DRAW, GCOL, MODE, PLOT

NAMES

return filename

This function returns the name of the file whose number is specified.

Syntax
NAME$<number>

Example
.START
READ DB"MYDATAB"VIA"MYINDX"

189

X%=FILES

FOR N%=1 TO X%
PRINT NAMES$ N$%

NEXT

CLOSE ALL

This particular example would not be very useful since you know what
files are open! The specified number may be negative, in which case
different information is returned, as follows:

Ne Information returned
-1 Last database opened for READ or WRITE
-2 Last READ or VIA index opened. (SKIP will currently operate

with this index but if this number returns no index, SKIP
operates with database).

-3 Index via file.
-4 Read index.

-5 Write index.

-6 Read database.
-7 Write database.
Example

.START

READ DB"MYDATAB"VIA"MYINDX"

USE DB"LETLIST"VIA"LETINDX"

WRITE INDEX"LETINDX"

X%=FILES

FOR N%=-1 TO -7 STEP -1
PRINT N%;NAMES N%

NEXT

CLOSE ALL

END

-1LETLIST
-2LETINDX
-3LETINDX
-4LETINDX
-5LETINDX
-6LETLIST
-7LETLIST

See FILES

190

NOT

logic operator

This logic operator is normally used in a conditional statement to produce
a test result.

Syntax
<num-var>NOT(<numeric>)

Example

. START

INPUT X%

IF NOT (X%=5) THEN PRINT "NOT 5"
REM the brackets are necessary!
END

Example
. START
mydata$="apple, pear,banana,grapefruit, orange, turnip"
READ mydata$
WHILE NOT (EOD)
AS$=DATAS
PRINT "The fruit is "+A$
ENDWHILE
UNREAD
END

See AND, EOR, OR

191

ON ERROR

set error trap
This command allows error trapping during program running,.

Syntax
ON ERROR<statements>

Example
. START
mydata$="apple, pear,banana,grapefruit, orange, turnip"
X%=1
ON ERROR: ON ERROR OFF: PROCtrap
READ mydata$
REPEAT
Xs=X%+1
AS$=DATAS
PRINT ;X%,"The fruit is "+AS$
UNTIL X%>12
UNREAD
ON ERROR OFF
END
.trap
PRINT"Error trapped. Press a key." : GS=GETS
ENDPROC

Notes: An error will occur in the example because the terminating value
of X% is greater than the count of data in the string. The error is trapped

non-fatally, however, and the program will continue.

Errors will not be trapped if a program is run from outside INTER-BASE
The command will not trap fatal errors such as running out of memory!
ON ERROR and ON ERROR OFF must always be used in pairs in the

main body of the program and/or in sub procedures.

After an error the program always returns to the ON ERROR statement

line, not the line where the error happened.

See ERLS$, ERM$, ERP$, ERR, ERR$, REPORT, STOP
192

ON ... GOTO

conditionally jump to label
This statement provides a jump to one of a selection of labels.

Syntax
ON<int>GOTO«<label>,<label>, ... ,<label> [ELSE<statements>]

Example

. START

CLS

PRINT'''"Type 1 2 or 3"

G$=GETS$

X%$=VALGS$

CLS

ON X% GOTO first,second,third ELSE END
END

.first

PRINT"You typed 1"
.second

PRINT"1 and 1 is 2"
.third

PRINT"1 and 2 is 3"
END

Notes:

The ELSE statement is optional but, unless the program has safeguards,
an "Out of range" error will occur if it is omitted and the <int> result is
greater than the number of labels.

Syntax: There must be a space before ELSE and no comma.

193

ON ... GOSUB

conditionally call subroutine
This statement provides a subroutine call to one of a selection of labels.

Syntax
ON<int>GOSUB<label>,<label>, ... ,<label> [ELSE<statements>]

Example
. START
REPEAT
CLS: PRINT'''"Type 1 2 or 3"
G$=GETS$
X%=VALG$
CLS
ON X% GOSUB first,second,third ELSE toobig
PRINT'"Press a key"
G$=GETS$
UNTIL FALSE
END
.first
PRINT"You typed 1"
RETURN
.second
PRINT"You typed 2"
RETURN
.third
PRINT"You typed 3"
RETURN
.toobig
PRINT"Not 1 2 or 3"
RETURN

Notes:

The ELSE statement is optional but, unless the program has safeguards,
an "Out of range" error will occur if it is omitted and the <int> result is
greater than the number of labels.

194

OPENIN

open file
This function opens the specified file for READ.

Syntax
OPENIN<filename>
OPENIN<handle>
=OPENIN«<filename>
=OPENIN<handle>

Example

. START

OPENIN"MYFILE"

PTR"MYFILE"=2

FORY%=1TO8
X%=BGET"MYFILE"
PRINT CHRS$x%;

NEXT

CLOSE"MYFILE"

PRINT'"Press any key"

K$=GET$
RETURN
CDEFGHIJ
Notes:
1 See example in OPENOUT where "MYFILE" is created.

N

Each byte in the file is "got" as an integer.

3 Pointer PTR is set to zero when the file is closed. If PTR were not
specified in this example it would print ABCDEFGH.

4 If reading from an unknown file, take precautions not to PRINT

bytes which may affect the screen or printer!

See BPUT, BGET, BGET$, CHAN, CLOSE, EXT, EOF, LGET$, OPENOUT,
OPENUP, PTR.

195

OPENOUT

open file
This function opens the specified file for WRITE.

Syntax
OPENOUT<filename>
OPENOUT<handle>
=OPENOUT<filename>
=OPENOUT<handle>

Example

. START

OPENOUT"MYFILE"
BPUT"MYFILE", "ABCDEFGHIJ"
CLOSE"MYFILE"

RETURN

NOTES:

1 See example in OPENIN where "MYFILE" is read.

2 Each byte in the file is output as an integer.

3 File pointer PTR is set to zero when the file is closed.
See

BGET, BGET$, BPUT, CHAN, CLOSE, EXT, EOF, LGET$, OPENIN,
OPENUP, PTR.

196

OPENUP

open file
This function opens the specified file for READ and WRITE.

Syntax
OPENUP«<filename>
OPENUP<handle>
=OPENUP<filename>
=OPENUP<handle>

Example

. START

OPENUP"MYFILE"

BPUT"MYFILE", "ABCDEFGHIJ"

PTR"MYFILE"=2

FORY%=1TO8
x$=BGET"MYFILE"
PRINT CHRS$x%;

NEXT

CLOSE"MYFILE"

PRINT'"Press any key"

K$=GET$

RETURN

CDEFGHIJ
See

BGET, BGET$, BPUT, CHAN, CLOSE, EXT, EOF, LGET$, OPENIN,
OPENOUT, PTR.

197

OR

OR logical operator

OR performs a bit-wise logical OR where those bits which are "1" in either
number remain "1" in the answer.

Example
PRINT %1010 OR %0011

11
(because 11 in binary is 1011)

Example
PRINT 3 OR 8

11
OR can also be used in program statements

Example
A$=GET$
IF A$="Y" OR A$="S" THEN PRINT "hello"

hello

Example
.START
=1
REPEAT
X$=X%+1
AS$=CHR$X%
UNTIL A$="Y" OR X%>100
PRINT X%

89

See AND, EOR, NOT
198

OSCLI

call operating system

This command allows a star command to be issued, together with a
parameter in the form of a string.

Example

. START

file%=148

dir$=file% MOD 46

carry%$=file% DIV 46

IF carry%>0
dir$=STRS$dir%
OSCLI"CDIR"+dir$
OSCLI"DIR"+dir$

ENDIF

The above example assumes that a program keeps a count of the number
of files in a directory and, when the count reaches 47, creates a new
directory and enters it.

Notes:
Beware of issuing star commands which corrupt memory!

Example

.START
OSCLI"COMPACT 30 50"

199

OTHERWISE

See CASE ... ENDCASE

OVERWRITE REC

write record

This command allows you to write a record at a specified pointer
position.

Syntax
OVERWRITE RECORD<record>

Notes

This command is almost identical to WRITE REC but does not perform
any automatic checks. It is readily possible to write a record which is too
long, thereby corrupting any record(s) which follow! Before writing a
record, the database pointer REC PTR must be set. This command is used
if you have modified a record and made it too long to fit in its original
position but do not wish to APPEND it to the end of the file. Provided
there is another marked record which is longer you may OVERWRITE
this one and avoid wasting space on the disc. You must mark the existing
record and, after performing the OVERWRITE, re-SORT any relevant
index.

See APPEND, MARK REC, REC LEN, REC PTR

200

Pl

constant

PI has the value 3.14159265

Example

To calculate the circumference of a circle whose radius is 6 mm.
PRINT "Circumference is ";2*PI*6;" mm"

Circumference is 37.6991118 mm

See ACN, ASN, ATN, COS, DEG, EXP, LN, LOG, RAD, SIN, SQR, TAN

201

PLOT

perform graphics plot

This command allows the drawing of points, lines and triangles.

Syntax

PLOT <intl>,<int2>,<int3>

<int1> defines the drawing action according to the list, below.
<int2>,<int3> are the respective X and Y coordinates which define the
finishing point for the plotting.

intl
0
1

N

I

(o)}

8-15

16-23
24-31

64-71
80-87

Action

Move relative to last point.

Draw line relative to last point in the current graphics
foreground colour.

Draw line relative to last point in the logical inverse colour.
Draw line relative to last point in the current graphics
background colour.

Move to a point relative to absolute zero. (See MOVE)

Draw a line relative to absolute zero in the current graphics
foreground colour. (See DRAW)

Draw a line relative to absolute zero in logical inverse colour.
Draw a line relative to absolute zero in the current graphics
background colour.

As with 0-7 but with the last point in the line omitted in
"inverting actions" such as that produced by GCOLA4.

As with 0-7 but produces a dotted line.

As with 0-7 but produces a dotted line and the last point is
omitted.

As with 0-7 but only a single point is plotted.

As with 0-7 but plot and fill the triangle defined by this point
and the last two visited.

See COLOUR, DRAW, MOVE, GCOL.

202

POS

return cursor position

This function returns the horizontal screen character position of the
Cursor.

Syntax
<int-var>=POS

Example

. START

line$="Here 1is some text to edit"”
CLS

PRINT''"HERE I AM:";
X%=POS

Y%$=VPOS

PRINT'''"NOW I'M HERE"
TAB X%,Y%

PRINT "AND HERE"

END

HERE I AM:AND HERE

NOW I'M HERE

See VPOS

203

PRINT

print on screen
This command prints the given expression on the screen.

Syntax
PRINT<expression>

Example
. START
Y%=34
2%=78
REMOVE R()
DIM R(),
R(1)=@"23/6/89"
()="Hello"
3)=
)=

(26
FOR X%=1 TO 4
PRINT R (X%)
NEXT
PRINTY%, 2%
PRINT"DECIMAL 67 IN HEX IS ";~67
PRINT"BINARY 10000001 in decimal is ";%10000001
PRINT'"FINISHED ";
PRINT"NOW"
END

23rd June 1989
Hello
1.65

26

34 78
DECIMAL 67 IN HEX IS 43
BINARY 10000001 in decimal is 129
FINISHED NOW

204

The screen character position of the printing may be defined by TAB.

Syntax
PRINTTAB(<int1>[,<int2>])

where <int1> is the X coordinate and <int2> is the optional line number.

Example

. START

PRINTTAB (8) "This is indented by 8 spaces"”

PRINTTAB (5, 6) "and this is indented by 5 on the 6th line down."

Notes

The apostrophe () causes a blank line to be printed.

The semi-colon (;) suppresses the normal numeric justification (see
FORMAT).

The comma (,) causes tabulation to the next column.

The tilde (~) causes printing of numeric values in hexadecimal.

The percent symbol (%) causes printing of binary values in decimal.

See FORMAT, TAB, VDU

205

PRINT TO

send value to file

This command sends a specified value to file in a tokenised format, as
follows:

Short strings 00+Length+data

Long strings Hi Length+Lo length+data
Integer 40+4 bytes

Dates 80+3 bytes

Real numbers FF+5 bytes

Syntax
PRINT TO<handle>{,<value>}

Example
.START
OPENOUT"filel™"
PRINT TO "filel",65,@(14,6,89), "FRED"
CLOSE"filel"
OPENIN"filel™
X%=1
REMOVE R ()
DIM R(),9
REPEAT
INPUT FROM"filel",R(X%)
PRINT R (X%)
X$=X%+1
UNTIL EOF ("filel")
CLOSE"filel"
END

results in:

65
14th June 89
FRED

See INPUT FROM

206

PROC

call subroutine

This command calls a subroutine.

Example

.START
y$="Mister"”
G$="JAMES MASON"
PROCsub GS$,y$
PRINT d$
H$="JOHN GAUNT"
PROCsub H$,y$
PRINT d$

END

.sub”"x$, "y$
LOCAL z$
z$=INITIALS$xS
d$=yS$+" "+z$
ENDPROC

results in:
Mister James Mason
Mister John Gaunt

The somewhat trivial example, above, shows how variables can be passed
to a procedure under one variable name and received under a different
name. In this way a common procedure can serve more than one section
of a program. In the example both G$ and H$ are received as x$ which
(because it is a parameter following the label) is LOCAL to the procedure
and can, therefore, be used elsewhere with impunity. z$ is also declared
LOCAL and may be used elsewhere. The result of the action of the
procedure is returned to the main program in d$ which is not local. The
circumflex (*) tells the procedure to look for the pointer to the location of
the variable parameter in memory. If the circumflex is omitted (replaced
by a space) then the entire contents of the variable are copied to the

207

procedure. The latter method is slower and uses more memory. In the
extreme case (for instance where a long string variable parameter is used)
the program could run out of memory.

If the value to be passed is not a long string and uses the same variable
name in the procedure as in the calling program, then there is no need to
pass the value as a parameter: indeed it would be slower to do so.
Parameters are usually employed, therefore, only where a procedure is
called by more than one section of the main program and deals with
variables of differing names.

Example
.START
Z$=STRINGS (255, "W")
REPEAT

2$=+2$
UNTIL LENZ$>7000
PROCsub Z$
END

.sub”"x$
LOWERx$
PRINTxS
RETURN

Without the circumflex the example above will produce an "Out of room"
error message on a BBC B.

Notes:

The key words PROC and GOSUB are mutually interchangeable, as are
ENDPROC and RETURN. According to your previous experience you
will probably prefer one more than the other and you may even mix
them!

Procedures should be situated AFTER the END statement, otherwise the
main program could run on into the procedure and chaos would result.

A variable may be placed after RETURN or ENDPROC so that the
procedure may also return the result of a function FN without affecting
the operation of the procedure when called by GOSUB or PROC (when
such a variable would be ignored).

See FN, GOSUB

208

PTR

read file pointer

This function reads the current position of the file pointer in the specified
file.
As a command it can also be used to set the pointer position.

Syntax
<intvar>=PTR<handle>
PTR<handle>=<intvar>

Example

. START
OPENIN"MYFILE"
PTR"MYFILE"=5
X$=BGET$"MYFILE"
CLOSE"MYFILE"
PRINT X$

Notes:

PTR does not write to the file nor alter it in any way.

PTR may be used with a file open for READ or for WRITE.

PTR is set to zero when the file is closed but opening a file for a second
time without first closing it does not alter the value of PTR.

See BGET, BGET$, BPUT, CLOSE, EXT, LGET$, OPENIN, OPENOUT,
OPENUP

209

PVAR

list variables

This command lists the size and the contents of each of the current
variables which are not locked.

Syntax
PVAR[<option>{[,<option>]}]

The command will act upon the type(s) of variable specified according to
the option words:

INT,REAL,DATE,STRING,ARRAY

If no options are given then the command will act upon ALL types of
variable which are not locked.

Example

. START

REMOVE R ()

DIM R(),8

R(1)=654

R(2)="today"
A$="HELLO":G%=67:date@=@"5/6/89" :F=1.2

PVAR

END

AS 5 "HELLO"
F 1.2

G% 67

P$ 150

R() 8

date@ 5th June 1989
. START

PVAR STRING, ARRAY
END

210

AS$ 5 "HELLO"
R() 8

Notes:

The command lists each variable in roughly alphabetical order.
(Actually in order of the ASCII value of the variable name. Lower case
variables will, therefore, be listed last.)

The command lists the value of each real number and each integer.

The contents of strings less than 20 characters in length are listed.

The length of each string is listed.

The number of elements in each array is listed.

The contents of arrays are not listed.

LOCKed variables are not listed.

Variable names which begin with the underline character are not listed.

See LOCK, LVAR, REMOVE, RVAR

RAD

radian

This function converts an angle in degrees to radians.

Example
PRINT RAD 90

1.57079633

See ACN, ASN, ATN, COS, DEG, EXP, LN, LOG, SIN, SQR, TAN, PI

211

RAM SPACE

return selected ram space

This function will return the number of bytes of sideways RAM which
has been selected as workspace by the command SELECT RAM.

Syntax
<intvar>=RAM SPACE

Example 1

. START

SELECT RAM 6
X%=RAMSPACE

PRINT X%

CLEAR RAM 6

REM deselects RAM
PRINT RAMSPACE
END

16128
0

Note SELECT RAM ALL does not select RAM which has already been
selected or which contains a recognisable ROM image, such as IB
programs. However, nor does it create an error message if it fails to select.
Consequently, if you want to select the RAM regardless of whether or not
it is already occupied, it should first be cleared. To do this, use the
CLEAR RAM ALL command, followed by SELECT RAM ALL. Finally, to
check that some RAM space has been selected, check the value of
RAMSPACE and act accordingly. These actions are demonstrated in the
second example program below.

Example 2

. START

CLEAR RAMALL
SELECT RAMALL
X%=RAMSPACE

212

IF X%>0
READ INDEX”MYINDX”
RESERVE”MYINDX”, 13*X%/63
READ DB”MYDATAB”
RESERVE”MYDATAB”, 50*X%/63
CLOSEALL

ENDIF

The example reserves RAM workspace, if available, and shares it
between the index and the database. Since each 16K RAM provides
63*256 bytes, it is convenient to apportion the available RAM in 63rds.

See CLEAR RAM, RAM STATUS, RESERVE, SELECT RAM

213

RAM STATUS
ROM STATUS

return status information

This function returns an integer value which gives information about the
current use of a bank of sideways RAM or ROM.

Syntax
<intvar>=RAM STATUS<bank number>
<intvar>=ROM STATUS<bank number>

The integer byte thus returned contains the information in the first four
bits, as follows:

Bit 0 - If set then the bank contains INTER-BASE program(s).

Bit 1 - If set then the bank is in use as RFS workspace.

Bit 2 - If set then the bank is Read Only (ROM or write-protected RAM).
Bit 3 - If set then the Operating System is using this bank.

(In binary, bit 0 set=1, bit 1 set=2, bit 2 set=4 and bit 3 set=8).

214

Example

. START

FOR R%=0 TO 15
rom%$=RAM STATUS R%
IF (rom% AND 4) =4

F$="ROM "

ELSE

F$="RAM "
ENDIF

IF (rom% AND 1)=1
H$=" contains INTER-BASE programs."
ELSE
IF (rom% AND 2) =2
H$=" 1s SELECTed as RFS workspace."
ELSE
IF (rom% AND 8) =8
H$=" 1s in use by Operating System."
ELSE H$=" is not in use."
ENDIF
ENDIF
ENDIF
PRINT F$;R%;HS
NEXT
END

See the chapter "ROM Programs"

215

READ

specify string to be read

This function designates a string for reading. A full explanation is given
under DATA.

An example is given under SOUND.

See DATA, RESTORE, UNREAD

READ DB

open database for reading
This function Opens the specified database for read only.

Syntax
READ DB <filename>

Example

. START

REMOVE R ()

DIM R(),14

READ DB"MYDATAB"

USE UNMARKED

READ REC R()
PRINT"First record is:"
PRINT R(2)

SKIP

READ REC R{()
PRINT"Second record is:"

PRINT R (2)
CLOSE "MYDATAB"
END

216

Notes:

When a database is first opened for READ the record pointer is set to the
first record. If it is subsequently reopened without being CLOSEd then
the pointer will remain where it was. It would, therefore, be necessary to

use GO START to reset the pointer.

In this example, since no index is in use, the order of the records may
seem arbitrary. In fact the records are read in the order in which they
were first appended (although a record subsequently extended may have

been marked and re-appended at the end).

See CLOSE, GO START, GO END, READ DB VIA, USE DB, USE

UNMARKED, WRITE DB

READ DB .. VIA ..

open database for reading via index

This function Opens the specified database for read only using the

specified index which is also opened for read only.

Syntax
READ DB«filename>VIA<filename>

Example

. START

REMOVE R ()

DIM R(),14

READ DB"MYDATAB"VIA"MYINDX"
USE UNMARKED

READ REC R()

PRINT"First record is:"
PRINT R(2)

SKIP

READ REC R{()
PRINT"Second record is:"
PRINT R(2)
CLOSE"MYDATAB"
CLOSE"MYINDX"

END

217

Notes:

READ DB ... VIA ... opens 2 files which must subsequently be closed.

In this example the records are read in the order dictated by the index
which is used.

See CLOSE, FILES, READ DB, READ INDEX, USE UNMARKED

READ FIELD

read record field
This command will read a single field of the current record.

Syntax
READ FIELD«<field number>,<variable>

Example
. START
READ DB"MYDATAB"VIA"MYINDX"
USE UNMARKED
WHILE NOT END
READ FIELD 2,name$
PRINT name$
SKIP
ENDWHILE
CLOSE ALL
END

Notes:
The variable must be appropriate to the field type.
This command is useful in not requiring an array.

See TYPE, WRITE FIELD

READ INDEX

open index for reading
This command opens an index for read only.

Syntax
READ INDEX<filename>

Example

. START

REMOVE R()

DIM R(), 14

READ DB"MYDATAB"

USE UNMARKED

READ INDEX"MYINDX"

GO START

READ REC R{()

PRINT"First alphabetical record is:"
PRINT R(2)

USE INDEX"INTINDX"

GO START

READ REC R{()

PRINT"First numeric record is:"
PRINT R(2)

CLOSE "MYDATAB"

CLOSE "MYINDX"

CLOSE "INTINDX"

END

Notes:
Where only one index is in use the command READ DB VIA is

appropriate.

Where more than one index is to be used it is more sensible to open each
index as needed.

The last index to be opened will be the one used.

219

READ INFO

read information block
This command reads information from the database information block.

Syntax
READ INFO<number>,<stringvar>

Notes:

In every database there is an information block. The block reserves fields
which may be used to hold information about the structure of the
database. The resident card index makes use of these fields by storing
information about a database structure when it is created. You can also
read this information and use it to replicate the database.

There is an information field for each database field plus an additional
field zero which the card index uses as a recognition code, without which
the database cannot be read by the card index program. The code is
typically 0,"14,7,Neil" where 0 is the information field number; 14 is the
number of fields (1 to 14); 7 is the number of lines in the multiple string
field; Neil is essential.

To replicate a card index database you must read each information field
and write it to the information block in your own database.

See CREATE DB

220

READ KEY

read record key
This command reads a record key from an index plus the record pointer.

Syntax
READ KEY<array>
READ KEY<stringvar>

Example
.START
READ INDEX "MYINDX"
READ KEY key$
FOR X%=1 TO LENkey$
IF ASCkey$[X%$]<33 OR ASCkey$[X%]>122 THEN key$ [X%]="."
NEXT
PRINT key$
CLOSE"MYINDX"
END

ashton, j....

Notes:

The actual database field on which this index is based is the name field. In
this example the name is Adams,Paul. Since, however, the key is
constructed from only the first 8 characters of the database field and
converted to lower case, the actual key in the index is adams,pa plus the
pointer. The pointer is a four digit number which gives the location of the
record in the database. In this example the FOR ... NEXT loop has been
introduced to prevent the pointer number from being printed, since this
could produce disastrous effects with some numbers. For instance, if the
number 7 was present the computer would respond with a beep (VDU?7).

Having determined the actual structure of the key plus pointer we can do
a better example:

221

. START

REMOVE k()

DIM k(),2

READ INDEX "MYINDX"
READ KEY k()
PRINT"Key is: ";
PRINT k(1)
PRINT"HEX pointer is:"
PRINT k(2)

CLOSEALL

RETURN

Key 1is: ashton,j
HEX pointer is:
1820

Notes:

A typical index will consist of a key (for example the first 8 letters of a
name in lower case) plus the record pointer. The structure of an INDEX
file on disc can be visualised as something like the following:

adams,pal543 benson, 31603 collins, 1671 davidsonl733 good, johl790
...etc.

You might construct another index upon postcodes and it would appear:

dll 8da 1671 lul5 6rfl543 tsl8 9sw2363 ...etc.

All of the pointer numbers will be there but in a different order. Each
pointer specifies the first character of the record in the DATABASE file.
Taking Mr Adams as our example, his record in the DATABASE file on
disc begins at byte 1543 and looks like:

Adams,Paul®15 Whincroft Drive, ®Luton, ®Bedfordshire.®LU1l5 6RF
(where ® represents carriage return).

The INDEX file on disc, "MYINDX" holds the key "adams,pal543" and an
INDEX file "pcodeINDX" might hold the key "lu15 6rf1543". Since both of
these keys refer to the same record in the same database, the pointer
number must be the same.

See KEY$, READ INDEX

222

READ REC

read record into array

This command reads a record from the database which currently is open
for READ or for USE. If more than one is open the command will refer to
the database which was opened last.

Syntax
READ REC<array>

Example

. START

USE DB"MYDATAB"VIA"MYINDX"
USE UNMARKED

READ REC jkh ()
CLOSE"MYDATAB"
CLOSE"MYINDX"

PRINT"The fourth record is:"
PRINT Skh ()

PRINT"The first field is:"
PRINT jkh (1)

PRINT"The second field is:"
PRINT 3kh (2)

PRINT"The third field is:"
PRINT jkh(3)

RETURN

The fourth record is:
1Ashton, Jane34 Fellows Lane,
Utterwell,
Brampton,
Barnsley.
BA3 4RY

E037-537-7542037-258-942313/4/79 Jane & Davel2/6/59 Davel7/10/60
Jane
The first field is:

223

1
The second field is:
Ashton, Jane
The third field is:
34 Fellows Lane,
Utterwell,
Brampton,
Barnsley.
BA3 4RY

Notes:

The record must always be read into an array variable.

It is not strictly necessary to DIM the array beforehand since this will be
done automatically according to the types and number of fields in the
record.

See READ DB, READ INDEX, READ KEY

224

REC COUNT

return quantity of records

This function returns the total number of records in the specified database
file (or keys in the specified index file), regardless of whether the record is
marked.

Syntax
<intvar>=REC COUNT<filename>

Example

. START

READ DB"MYDATAB"
PRINT"Total record gty is ";
PRINT REC COUNT"MYDATAB"
CLOSE"MYDATAB"

RETURN

Total record gty is 9

Example

. START

READ INDEX"MYINDX"

X%=REC COUNT"MYINDX"
PRINT"Total gty of keys is ";X%
CLOSE"MYINDX"

RETURN

Total gty of keys is 5

Notes:

Since the index in this example is based upon UNMARKED records, there
must be 266-253 MARKED records in the database file.

The relevant database (or index) must be open for READ or WRITE
before REC COUNT will work.

See MARK COUNT, READ DB, READ INDEX

225

REC LEN

return record length
This function returns the length of the current record.

Syntax
<intvar>=REC LEN<record>

Example

. START

REMOVE Q ()

READ DB"MYDATAB"

READ REC Q)

X%=REC LEN Q ()

PRINT"Current record is ";X%;" bytes long"”
CLOSE"MYDATAB"

RETURN

Current record is 166 bytes long

The function also works with an index, however this ability is of little use!

Notes:

The function is most useful in determining whether a modified record
will still fit in its original position in the disc file. If REC LEN is greater
than MAX REC LEN (the available space) then it will not fit. In this case it
would be necessary to MARK the existing record in the file and to
APPEND the modified record to the end of the disc file. Alternatively, the
record could OVERWRITE another existing MARKed record which is
longer. In addition any index or indices must be re-sorted to reflect the
new position of the record on file (i.e. its file pointer which forms part of

its index key will be different).

See APPEND REC, MARK REC, READ REC, REC PTR, SORT REC

226

REC PTR

return record pointer

This function returns the position in the database file from which the
record was read.

Syntax
<intvar>=REC PTR<record>

Example

. START

REMOVE Q ()

READ DB"MYDATAB"

READ REC Q()

X%$=REC PTR Q()

PRINT"Current pointer is ";X%
CLOSE"MYDATAB"

RETURN

Current pointer is 1646

Example
. START
REMOVE Q ()
REMOVE F ()
READ DB"MYDATAB"
READ REC Q()
L%=REC LENQ()
PRINT "Record length is ";L%
REPEAT
USE MARKED
SKIP
READ REC F ()
X%=REC PTR F ()
F%$=REC LEN F ()
UNTIL END OR F%>L%
CLOSE"MYDATAB"

227

IF F%>L%
PRINT"Record length is ";F%
PRINT"Pointer is ";X%
PTR"MYDATABR"=X%
PRINT"OK to overwrite this record?"
G$=UPPERSGETS$
IF G$="Y" THEN OVERWRITE REC Q()
ENDIF
RETURN

Record length is 101

Record length is 162
Pointer is 1147

OK to overwrite this record?

Notes:

The second example assumes that the first record in the database is to be
copied to a new position so that it overwrites an existing MARKED
record. The purpose of the program is to determine the length of the first
record then to find a marked record which is longer than this.

Normally this operation would be carried out if a record is edited and
will not fit back in its original position in the database file on disc.

The only options would then be either to APPEND the record to the end
of file or to OVERWRITE an existing MARKED record which is no longer

needed.

In either case, any associated index or indices must be re-sorted to reflect
the new position of the record in the database file.

Note that the file pointer MUST be set before OVERWRITE is used.

228

REM

remark

This statement allows remarks to be included in a program.

Syntax
REMc<text>

Example

. START

REM version 2.10 297/6/89
PRINT”Hello”:REM a trivial example
RETURN

Notes:

Everything following REM up to the next carriage return is ignored.

The presence of a large number of remarks can reduce the running speed
of a program (although subsequent tokenising will remove remarks).

It is not recommended to put REM before START, since it can have
disastrous effects when the program is tokenised!

See TOKENISE

REMOVE

remove variable

This command will remove the specified variable.

Syntax
REMOVE<variable>
Example

.START

REMOVE Q ()

DIM Q(),12

229

Example
.START

PRINT TYPE G$
G$="HELLO"
PRINT TYPE G$
Gs=""

PRINT TYPE GS$
REMOVE G$
PRINT TYPE GS$
RETURN

-1

Example
.START
REMOVEGS, fred$, X%, Y%,R() ,date@, 33%,D,Q (), X$

Notes:

REMOVE should be used before an array is declared with DIM.

Using REMOVE before redefining long strings will increase program
speed.

Using REMOVE to get rid of unwanted variables after use will free extra
memory.

The statement LOCAL also has the effect of removing variables when an
exit is made from the sub-procedure.

Attempting to REMOVE a variable which does not exist does NOT create
an error.

Beware of attempting to REMOVE the current program string!

See DIM, LOCAL, RVAR

230

REPEAT .. UNTIL

conditionally repeat operation

This conditional statement allows the repetition of statements within a
loop until a specified condition is met.

Syntax

REPEAT
<statements>

UNTIL<condition>

Example

. START

READ DB"MYDATAB"VIA"MYINDX"
USE UNMARKED

REPEAT
READ REC R({()
SKIP
UNTIL "Simpson" IN R(2) OR END
SKIP-1
X%=REC PTR R{()
CLOSE ALL

IF "Simpson” IN R(2)
PRINT"Found Simpson at ";X%
ELSE PRINT"Not there”

ENDIF

RETURN

Not there

231

RESERVE

reserve ram workspace

This command acts upon the sideways RAM which has been chosen by
SELECT RAM. It can be used to allocate parts of or all of the RAM for use
as workspace by one or more specified files. Each file may be a Database
file or an Index file. When workspace is reserved in this manner the
program will automatically use it as a "RAM disc" by loading part of the
file into the RAM. The access time to this part of the file is thereby
reduced and alterations to the file can be carried out quickly in RAM then
saved back to disc later on. The number of disc read and write operations
is reduced and the effect is especially noticeable when it is necessary to
scroll through a small number of database "cards". When the end of the
information held in RAM is reached, however, this information must be
saved back on disc (if it has been altered) and the next RAM full loaded
in. At this point there will be a noticeable delay but, overall, the file access
time will be reduced.

Syntax
RESERVE<handle>,<size>[,<offset>[,<length>]]

Example

.START

SELECT RAM 0

READ INDEX"MYINDX"
RESERVE"MYINDX", 16128

will reserve one RAM bank for the index "MYINDX"

.START

SELECT RAM 5

SELECT RAM 6

READ INDEX"MYINDX"
RESERVE"MYINDX",256*63*2,20000

will reserve two RAM banks for the part of the index which begins 20000
bytes from the start of "MYINDX" file on disc.

232

This method saves time if you know you seldom use the beginning of the
index but you would normally omit the ,20000.

. START

SELECT RAM ALL

READ INDEX"MYINDX"
RESERVE"MYINDX", 4*63*256,0,0

The parameter <length> normally defaults to <size> but setting it to zero
will load parts of "MYINDX" into RAM only as they are needed.

.START

SELECT RAM 0

READ INDEX"MYINDX"

RESERVE"MYINDX", 31%256,0,0

READ INDEX"ADDRINDX"

RESERVE"ADDRINDX", 32%256,0, 0

The previous example will reserve roughly half of RAM bank 0 for each
index.

Example
.START
REMOVE array ()
DIM array (), 14
READ DB"MYDATAB"VIA"MYINDX"
SELECT RAM ALL
RESERVE "MYDATAB", 13000
RESERVE "MYINDX",2000
WHILE NOT END
READ REC array ()
PRINT array ()
SKIP
ENDWHILE
CLOSE"MYDATAB"
CLOSE"MYINDX"
END

Notes:

Each file to which "RESERVE" applies must be opened beforehand.

RAM must be reserved in multiples of 256 bytes. Since the RAM header
uses 256 bytes there are 63 lots of 256 available in each bank. If you

233

specify a number which is not a multiple of 256 the program will round it
down to the nearest multiple.

The BBC Master has 4 banks of Sideways RAM fitted as standard. In
order to use these it is necessary to ensure that certain links inside the
machine are set in the correct positions.

The BBC B has no Sideways RAM as standard. However, it is available as
an accessory from some suppliers.

Since Sideways RAM can also be used for building and storing Inter-Base
program ROMs by using the command INSTALL it is important to avoid
clearing such programs unintentionally by CLEAR, SELECT RAM and,
especially, SELECT RAM ALL!

See CLEAR RAM, RAM SPACE, RESERVE, SELECT RAM

234

RESTORE

reset data pointer

This command resets the data pointer to the start of the data string
provided that the End Of Data has not been reached.

Syntax
RESTORE

Example

.START

list$="hello ,there, John"

READ list$

RESTORE

FOR X%=1 TO 3
wrd$=DATAS
PRINT wrd$;

NEXT

RESTORE

READ list$

REPEAT
wrd$=DATAS
PRINT wrd$;

UNTIL EOD

UNREAD

RETURN

hello there Johnhello there John

Notes:

It is wise to add dummy data at the end of the string because,
unfortunately, RESTORE will not work once the end of data has been
reached. It can not, for instance, be used after "UNTIL EOD" otherwise
the error message "Out of data" will appear.

Interestingly, the keyword READ acts as RESTORE by itself, so the
following example using WHILE NOT(EOD) works!

235

Example

.START

A$="hello,there, John"

FOR X=1 TO 2

READ AS$

PRINT

WHILE NOT (EOD)
PRINT DATAS+" ";

ENDWHILE

NEXT

RETURN

hello there John
hello there John

See DATA, READ, EOD, NOT, WHILE ... ENDWHILE

RETURN

return from sub program

This keyword is used to return from a subroutine or from a program.

Syntax

<label>

<subroutine statements>
RETURN

Syntax

START

<program statements>
RETURN

This arrangement permits the program to be called as a subroutine from
within another program.

Note: The keyword ENDPROC is interchangeable with RETURN.

See END, FN, GOSUB, PROC
236

RIGHTS

return right hand string

This function returns the specified number of characters from the right
hand side of a given string. As a command it can also re-define the right
hand side of a string.

Syntax
<stringvar>=RIGHT$(<string>,<int>)
RIGHT$(<string>,<int>)=<string>

Example

.START

FREDS$="ABCDEFGhi jk1m"

RIGHTS (FRED$, 6) =UPPERS (RIGHT$ (FRED$, 6))
PRINT FREDS

RETURN

ABCDEFGHIJKLM

The square bracket string handling system of IBPL will perform the same
task, however:

Example

.START

FRED$="ABCDEFGhijklm"
FREDS$[-6,-1]=UPPERSFREDS[-6,-1]
PRINT FREDS

RETURN

ABCDEFGHIJKLM

See LEFT$, MID$

237

RND

This function returns a random value from 0 to 1

Syntax
RND=<var>
<var>=RND

Example
. START
RND=TIME
X=RND
P.X
RETURN

0.298214438

Notes:

RND does not accept any parameters (unlike BASIC).

RND can be seeded, as shown in the example, to produce a pseudo

random result dependent upon the value of TIME.

See INT, SGN

ROM STATUS

See RAM STATUS

238

RUN

execute program

This command will execute the specified program string.

Syntax
RUN<stringvar>

Example
RUN prog$ <RETURN>

Notes:
There is actually no need to use RUN at all. The example above could be
executed simply by typing:

prog <RETURN>.

See END, ENDPROC, GOSUB, PROC, RETURN

RVAR

remove all variables

This command removes current variables which are not locked.

Syntax
RVAR[<option>{[,<option>]}]

The command will act upon the type(s) of variable specified according to

the option words:
INT REAL,DATE,STRING,ARRAY

239

If no options are given then the command will act upon ALL types of

variable.

Note that RVAR will not remove variables which begin with an underline
character. Consequently, if there is a program or a subroutine which you
need to retain in memory, you can store it an a variable which begins
with an underline character.

Example

LOCK P$

RVAR STRING, INT

UNLOCK P$

Notes:

RVAR will not remove program strings installed in RAM.

RVAR will empty the default program string (displayed next to menu
option 5) but will not remove it.

See LVAR, PVAR, REMOVE

SAVE

save program string

This command saves a string variable as the specified file.

Syntax
SAVE<stringvar>,<filename>

Example
SAVE"progl",P$

See LOAD

240

SAVE RAM
SAVE ROM

save rom image

This command will save a rom image of the given sideways RAM or
ROM as the specified filename.

Syntax
SAVE RAMc<int>,<filename>
SAVE ROMc<int>,<filename>

Example
SAVE RAM 5, "ROMimage"

See the chapter "Rom Programs"

SELECT RAM

select ram workspace

This command selects one or more banks of sideways RAM as workspace
for programs. Up to four banks can be selected. In each bank 256 bytes are
occupied by a RAM Filing System (RFS) header code but the remainder is
free for use by the program.

Syntax
SELECT RAM<bank number>

241

SELECT RAM ALL
Up to four banks will be selected if available.

Note:

The error message "RAM already selected” will appear if you have
already selected this particular bank. The command

CLEAR RAM<bank number> may be used to deselect it.

See CLEAR RAM, RAM SPACE, RESERVE for more information.

SGN

return sign
This function determines whether a number is positive or negative/zero.

Syntax
<intvar>=SGN<real>

The function returns +1 for a positive number and zero if the number is
zero or negative.

Example

.START

ddd%=-9

X%=SGNddd$%

PRINT X%

RETURN

0

Notes:

This function is slightly different from the BASIC equivalent which will
return zero only if the number itself is zero and -1 if the number is
negative.

See ABS

242

SHOW

display string

This command displays the specified string but exits immediately
without returning a parameter.

Syntax
SHOW<stringvar>,[<int>]

Example

.START

AS$="THIS IS A LINE OF TEXT FOR THE PURPOSE OF DEMONSTRATING THE
COMMAND SHOW."

SHOW AS

VDU30,10 :REM move cursor to top left +down one line.
PRINT"Press a key"

G$=GETS$

PRINT"HELLO"

RETURN

Note:

The command is more often used to allow searching for a particular part
of a string without allowing editing. Editing can be carried out
subsequently, however, as the next example shows:

Example
. START
next%=
AS$="THIS IS A LINE OF TEXT FOR THE PURPOSE OF DEMONSTRATING THE
COMMAND SHOW. |M"
AS$=+AS$:AS=+AS:AS=+AS
find$="TEX"
ESCAPE OFF
REPEAT
pos%=INSTR (AS$, find$, next%)
IF pos%>0
SHOW AS$,pos%

243

x%$=P0S:y%=VPOS
VDU30,10 :REM move cursor to top left +down one line.
PRINT"Edit Y/N2"
VDU31, x%,y% :REM cursor to x%,y%
Y$=UPPERSGETS$
IF Y$="Y" THEN EDITAS, (pos$)
next%$=pos%+1
ENDIF

UNTIL pos%=0 OR ASCY$=27

ESCAPE ON

CLS

vDU30,10

PRINT AS

RETURN

See DISPLAY, EDIT, EDITLINE

SIN

sine
This function calculates the sine of an angle in radians.

Examples
PRINT SIN 1.5

0.997494987

PRINT SIN RAD 90

See ACN, ASN, ATN, COS, DEG, EXP, LN, LOG, RAD, SQR, TAN, PI

244

SIZE

return quantity of array fields
This function returns the number of fields within an array.

Syntax
<intvar>=SIZE<array>

Example

. START

REMOVE R ()
DIM R(),10
PRINT LEN R ()
PRINT SIZE R()
RETURN

10

Example

. START

REMOVE R ()

DIM R(), 10
R(1l)="Welcome"
R(2)=34.5
R(3)=9

PRINT LEN R{()
PRINT SIZE R()
RETURN

10
Note: If the array elements are not used consecutively, an incorrect result

will occur

See LEN, TYPE
245

SKIP

move to next record

This command skips the specified number of records in a file. If no
number is specified it defaults to one. The number may be negative.

Syntax
SKIP[<int>]
SKIP[<intvar>]

Example

. START

REMOVE R ()

DIM R(), 14

READ DB"MYDATAB"VIA"MYINDX"

USE UNMARKED

GO START

WHILE NOT END
READ REC R()
PRINT R(2) 'R(3)
SKIP

ENDWHILE

CLOSE ALL

RETURN

Example 2

. START

X%=-1

REMOVE R ()

DIM R(),14

READ DB"MYDATAB"VIA"MYINDX"

USE UNMARKED

GO END

WHILE NOT START
READ REC R()
PRINT R(2) 'R(3)"
SKIP X%

246

ENDWHILE
CLOSE ALL
RETURN

Notes:

A single skip past the start or end of the file will cause both START and
END to return TRUE (=-1). Attempting to skip still further will cause an
error "Skipped past end".

Note that START and END are interchangeable.

Skip takes account of marked or unmarked records if so instructed.

SKIP may also be used with an index file but, in this case, the instructions
USE MARKED etc. have no meaning and will cause an error if used
without an open database:

Example

.START

REMOVE R ()

READ INDEX"MYINDX"
SKIP 4

READ KEY R()
CLOSE"MY INDX"
PRINT R()

RETURN

pickerin 2212

See GO END, GO START, USE ALL, USE MARKED, USE UNMARKED

247

SORT

sort index file order

This command adds a key to the current index file. The key comprises the
first few characters or numbers from the field which is relevant to that
index, plus a pointer which is a number defining the position of the actual
record in the database file.

Syntax
SORT<sstring>
SORT KEY<array>
SORT REC<array>

As a function it returns FALSE (=-1) if the key is already sorted.
This provides a useful test to avoid errors if you can not be sure that the
key has not been sorted.

Syntax
<intvar>=SORT<sstring>
<intvar>=SORT KEY<array>
<intvar>=SORT REC<array>

Notes:

If the first syntax is used (i.e. as a string) then the string must be no longer
than the actual key string in the index. By default this is 8 characters long.
Also, by convention, the key string should be in lower case unless the
index has been constructed otherwise.

Example
mystring$="almond"

If the second syntax is used (i.e. as a key array) then the key string(s) or
number(s) must exist in the array in the same consecutive order that they
exist in the index key. With only one index to sort this would require the
key to be in the first field of the array.

Example
248

R(1l)="almond"

If the third syntax is used (i.e. as a record array) then the key string(s) or
number(s) must exist in the field(s) in which they normally reside. In this
case the number of characters is unimportant as are the contents of the
other fields of the array which are not used by the index. In fact these
other fields can be left empty.

Example
R(2)="almond, kevin"
R(3)="Rubbish"

A more comprehensive example can be found under APPEND

Further notes:

SORTing an existing record does not actually move anything in the
database disc file or in the index file. It merely alters the file pointer value
to reflect the new position of the record in the database file. The file
pointer value is part of the record key in the index.

SORTing a new record, however, requires all the keys which are
numerically higher in value to be shifted up one position in the index file
on disc. (Numerically higher refers to the actual numerical value of a
number or to the ASCII values of a string. An index based upon strings
should always convert to lower case strings only, otherwise the sort will
differentiate between upper and lower case ASCII values, with resultant
confusion.)

See APPEND REC, MARK REC, REC LEN

249

SOUND

produce a sound
This command makes the computer generate sounds.

Syntax
SOUNDxintl>,<int2>,<int3>,<int4>

int1 specifies the sound channel, 0,1,2 or 3.
Channel 0 produces only white noise.

int2 specifies the loudness between -15 and 0.
However, the values 1,2,3 or 4 may be used for special effects defined by
the relevant envelope which you must define.

int3 specifies the pitch of the note between 0 and 255.

Middle C is 89. A change of 28 will cause the pitch to alter by a perfect
fifth. A change of 48 will cause the pitch to alter by an octave.

int4 specifies the duration between 0 and 254 in steps of twentieths of a
second. The value of -1 will cause the note to continue until another note
is sent to the same channel with flush control set to 1.

intl is actually more complex than described above and can be
programmed as follows:

SOUND <&HSFC>,<int2>,<int3>,<int4>

Each hexadecimal byte has a meaning;:
H 0 or 1 Continuation

S 0to 3 Synchronization

F 0or 1 Enable Flushing

C 0 to 3 Channel number

Normally H,S and F are zero

If H is 1 then the amplitude and pitch parameters have no effect.

It allows the release segment of a sound to be completed before the next
note takes effect.

If S is not zero it permits sound requests on other channels to be queued
separately then played simultaneously.

250

If F is 1 the note will be played immediately, instead of having to join the
queue.

Example
.START
notes$="&0001,-10,-100,20,&0001,-10,-128,20,&0001,-10, -
156,20,&0201,-10,-100,10,&0202,-10,-128,10,&0203,-10, -
156,10,0,0,0,0,0,0,0,0,"
READ note$
FOR X%=1 TO 8
A%=DATA
B$=DATA
C%=DATA
D$=DATA
SOUNDA$%, B%, C%, D%
NEXT
UNREAD
RETURN

See ADVAL, ENVELOPE

SPC

produce spaces

This function provides the specified number of spaces either for printing
directly or as a string. The number may be an integer variable.

Syntax
<string>=5PC<int>
<string>=SPC<intvar>

Example

. START

F%$=9

PRINT SPCEF%; "WOW"
PRINT SPC5; "HELLO"
RETURN

251

WOW
HELLO

Example
AS="xkk kML GDPCL 24" kAKX KN
PRINT A$

RETURN

* Kk K K * Kk ok k

See STRING$

SOR

square root

This function calculates the square root of a number.

Example
PRINT SQR 225

15

See ACN, ASN, ATN, COS, DEG, EXP, LN, LOG, RAD, SIN, TAN, PI

START

define program start point
.START labels the beginning of the program.

See END

252

STOP

generate error

This command generates a fatal error condition which can not be trapped
by an error handling routine.

It is provided to allow exit from a program during development when
ESCAPE is disabled. Your program must, however, have some means of
allowing entry of the STOP command and of executing it!

See ESCAPE OFF, EXEC, ON ERROR

STRS

convert to string

This function converts a number or a date to a string.

Syntax
<stringvar>=STR$<date>
<stringvar>=STR$<num>

Example

. START
date@=@"5/6/89"
date$=STRS$datel
D%$=VALdate$[-4,-1]
PRINT date$

PRINT STR$D%
RETURN

5th June 1989
1989

253

Example
.START
D=3
PRINT D
D$=STRS$D
PRINT D$
RETURN

See ASC, CHR$

STRINGS

create string

This function creates a string using the specified short string.

Syntax
<stringvar>=STRING$(<int>,<sstring>)

Example

.START
D$=STRINGS (22, "****x*"
PRINT D$

RETURN

Kk K ok Kk Kk kK Kk ok ok ok Kk sk kK ok sk kR ok ok ok ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok ok kR ok kR ok Kk kR Kk Kk k kR kR ok ok ok ok ok ok ok

Kk ok ok ok k ok ok k ok k k Kk Kk ok Kk k ko k ok ok ok ke k k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke

Note: The string so produced must not exceed 255 characters.

See SPC

254

SUB@

add value to date

This function adds a specified number of days, months and years to the
given date variable and returns the resulting date.

Syntax
SUB@(<date>,<days%>,<months%>,<years%>)

Example

. START

datel$="20/6h/89"
date2$=STR$SUBE (@datel$, 0,0, 38)
PRINT date2$

RETURN

20th June 1951

SWAP

swap variable contents

This command swaps the contents of two variables which must be of the
same type. It can work on arrays and on single elements of arrays.

Syntax
SWAP<variable>,<variable>

Example

. START
A$="HELLO"
B$="GOODBYE"
SWAPAS, BS

PRINT AS$,BS
RETURN

GOODBYE HELLO

Example
START
REMOVE R ()
REMOVE G ()
DIM R(), 6
DIM G(),6
FOR X%=1 TO 6
R (X%) =CHR$ (64+X%) : G (X%)=CHRS (96+X%)
NEXT
PRINT R(): PRINT G()
SWAP R(),G()
PRINT R(): PRINT G()
SWAP R(1),G(6)
PRINT R(): PRINT G()
RETURN

ABCDEF
abcdef
abcdef
ABCDEF
Fbcdef
ABCDEa

TAB

move text cursor

This command moves the text cursor to the specified screen position.

Syntax
TABx,y

Example
.START

256

CLS
TAB15,12

PRINT"HELLO"

RETURN

Note:

TAB may also be used as part of a PRINT statement. In this case the x,y
coordinates must be within brackets.

Example

.START

CLS

PRINTTAB (15, 12) "HELLO"

RETURN

See PRINT, POS, VPOS

TAN

tangent
This function calculates the tangent of an angle in radians.

Example
PRINT TAN 0.5

0.54630249

PRINT TAN RAD 45

See ACN, ASN, ATN, COS, DEG, EXP, LN, LOG, RAD, SIN, SQR, PI

257

THEN

part of IF...THEN construct

See IF for a full description.

TIME

read /write timer

This function reads the interval timer, returning a value in units of
centiseconds.

Syntax
<intvar>=TIME

As a command it can set the interval timer to a specific value.

Syntax
TIME=<int>

Example

. START

CLS

PRINTTAB (0, 2) "Here is a delay of 5 seconds"”
PROCdelay 500

PRINTTAB (0, 3) "Here is a delay of 10 seconds"
PROCdelay 1000

PRINT"Finished at time= ";TIME
TIME=0

PROCdelay 1

PRINT'''"Now time = ";TIME
RETURN

258

.delay D%

T%=TIME

REPEAT
PRINTTAB(15,10) TIME
UNTIL TIME>T%+D%
ENDPROC

Notes:

A delay loop such as this is not very accurate; especially when, as in this
example, it is required to perform an additional function (printing TIME
on the screen). Consequently, ensure that your conditional loop ends with
UNTIL TIME greater than and not equal to!

See TIME$

TIMES

return time and date
This function returns the time and date (BBC Master only).

Syntax
<strvar>=TIME$

As a command it will set the time and date (BBC Master only).

Syntax
TIME$="<day>,<date>.<hours>:<minutes>:<seconds>"
or, separately

TIMES$="<day>,<date>"
TIME$="<hours>:<minutes>:<seconds>"

On the BBC B, TIMES$ is treated by IBPL as a string of 24 zero characters
as if TIME$=STRING$(24,CHR$(0)) and does NOT return an error if used.
This fact is useful since a program can be made compatible with both BBC
B and Master computers as the following example shows:

259

Example
.START
IF TIMES$S=STRINGS (24,CHRS (0))
PROCdate
times$=""
ELSE
date$=ITEMS (TIMES,1,".")
date$=ITEMS (date$, 2)
time$=ITEMS (TIMES,2,".")
ENDIF
date@=Qdate$
date$=STRS$date@
PRINT date$,time$
RETURN

.date
INPUT"Please enter date ";date$
ENDPROC

17th May 1989 01:12:46
Example

.START

PRINT TIMES

RETURN

Wed,17 May 1989.01:12:46
Notes:
You can not differentiate between BBC B and Master by using

IF TYPE TIME$= since the BBC B will return a "Bad name" error.

See ITEM$, TIME

260

TITLES

return title

This function returns the title of a database or index file which must first be
opened for READ.

Syntax
<sstring>=TITLE$<filename>

As a command it defines a title of up to 128 characters in a database or
index file which must be open for WRITE.

Syntax
TITLE$<filename>=<sstring>

Example

. START

WRITE DB"MYDATAB"
TITLES"MYDATAB"="My Database"
CLOSE"MYDATAB"

READ DB"MYDATAB"

PRINT TITLES$"MYDATAB"
CLOSE"MYDATAB"

RETURN

My Database

Example

. START

WRITE INDEX"MYINDX"
TITLE$"MYINDX"="Index of names"
CLOSE"MYINDX"

READ INDEX"MYINDX"

PRINT TITLE$"MYINDX"
CLOSE"MYINDX"

RETURN

Index of names

See READ DB, READ INDEX
261

TOKENISE

tokenise keywords

This command reduces each keyword in a program to a single byte
"token".

Syntax
TOKENISE<program string>

EXAMPLE
>TOKENISEmyprog$ <RETURN>

Notes:

Tokenising a program string will reduce the amount of memory taken up
by the program string and will increase the speed at which it runs.
Tokenising is irrevocable. Once done, the program can not be retrieved or
modified. Always save a copy of the program on disc before tokenising!
Tokenising removes all REM statements.

Whilst earlier versions of INTER-BASE allowed REM statements to exist
before .START, version 2.0A can not tokenise such a program. Indeed,
fatal memory corruption may occur. Ensure that .START is the first line of
the program before attempting to tokenise.

The act of tokenising may show up hitherto unnoticed errors.

Example

. START
PRINT"HELLO"
RETURN

.demo

PROCtoilet

ENDPROC

Tokenising this program results in the error message:

Can't find toilet

262

PROCdemo is not actually used, so the fact that PROCtoilet does not exist
is irrelevant. The example program will run perfectly well even after
tokenising.

However, tokenising may ignore the most obvious errors so ensure that
the program is fully debugged before tokenising.

Once a program has been tokenised the lines can not be displayed,
consequently error messages are not very meaningful. If a program has
an error which you can't find after tokenising, introduce some extra labels
around the suspect section then tokenise again. Eventually, by running
the program and watching for consecutive labels, you should be able to
trace the actual line which is causing the problem. Turning TRACE ON
can also be useful.

See the chapter "Rom Programs"

See CLEAR RAM, INSTALL, REMOVE, TRACE

TRACE

print labels/string names

This command causes all labels and string names to be printed, as a
program is running, in order to facilitate error finding.

Syntax

TRACE ON
TRACE OFF

263

TRIMS

trim spaces from string

This function strips spaces from both ends of the given string.

Syntax
<sstring>=TRIM$<sstring>

Example

.START

AS=" HELLO "
PRINT TRIMSAS
RETURN

HELLO

TYPE

return variable type

This function returns a number code which represents the type of the
given variable.

Syntax
<intvar>=TYPE<variable>

Example

. START

PRINT TYPE G$
Gs=""

PRINT TYPE G$
REMOVE G$
PRINT TYPE G$
RETURN

264

Code Variable type

-1 Does not exist
0 Has no value (has been REMOVEd)
1 Integer

2 Real number
3 Date

4 String

6 Array

8 Field
Example

. START

REMOVE G ()

DIM G(),8

G (1) =STRINGS (255, "*")
G(1)=+G (1)

PRINT TYPE G (1)
PRINT TYPE G()
RETURN

See LEN

UNLOCK

unlock variable

This command unlocks a variable, allowing it to be used.

See LOCK

265

UNMARK REC

remove record marker

See MARK REC

UNREAD

move DATA pointer backward

See DATA, DATAS, READ

UNSORT

remove record key

This command removes a key from the current index.
Syntax

UNSORT<sstring>

UNSORT KEY<array>

UNSORT REC<array>

See APPEND, MARK, SORT

266

UNTIL

part of REPEAT...UNTIL loop construct

See REPEAT ... UNTIL

UPDATE

update disc files

When handling database files INTER-BASE works in memory and waits
until it has a reasonable number of tasks to perform on disc before
updating modifications to the records.

Syntax
UPDATE<filename>
UPDATE ALL

Notes:

You can force an update by using CLOSE but this will also reset pointers.
UPDATE permits you to force an update while leaving the files open and
the pointers in the same positions.

UPDATE is especially useful if you are using sideways RAM as a disc
buffer by means of the command SELECT RAM because, although the
RAM file is updated frequently, the disc file is not.

Sensible use of UPDATE can prevent loss of data if the computer is
switched off before encountering a CLOSE command.

See CLOSE, SELECT RAM

267

UPPER

convert string to upper case

This command converts all alphabet characters in the given string to
upper case. The string may be of any length.

Syntax
UPPER<stringvar>

Example

. START

A$=STRINGS (255, "n")
AS=+A$

PRINT A$

UPPER A$

PRINT A$

END

Jriidigitd gt g ngidiginididiauagggigigigigigiguaaiigigigiia i aigigiiaagiginigiaaiigininin g
prttitti it it i g i gt eiggig g gigiaigiagigigiaiioginia gt i
puittidait ittt g dd g aig g aiguigiaigigggagaggiag g ggaig g i g

et G g g i g gt g i i

ittt ittt g g giddigd g g gt i i ddaigiio i i g i i

eI EUGIIGIT G I T gt g ddidagigdg digitigigaingugigigigiiaiidaig i i

M)
uuuuuuu Ui\ MD 1 IMMMD MMM MMM
MMMMMMMMMMMMMMMMMMMM) AMMMMMMMMMMMMMMM

Note:
This command cannot be used as a function.
It operates directly on the contents of the specified string.

See LOWER, LOWERS, UPPER$

268

UPPERS

make upper case copy of string

This function produces a copy of the given string in upper case
characters. The string may not be more than 255 characters long.

Syntax
<stringvar>=UPPER$<sstring>

Example

.START

A$="THIS string IS MOSTLY capITALs"
A$=UPPERS AS

PRINT AS

END

THIS STRING IS MOSTLY CAPITALS

.START
AS$=STRINGS (255, "m")
B$=UPPERS AS$

PRINT A$

PRINT B$

END

IO T T T T T T T T T T T T T T T T D T T T T T T T T T A (T (U T O A T AT AT e

T T O T T T T T T T L T T T T T T T T T T T T T T N I A i A A N N

B0 (00 IO IGO0 O IO R0 L0188

MMM MM IMMMD IMMMD AMMMD MM

See LOWER, LOWERS, UPPER

269

USE ALL

use all records

This command allows both marked and unmarked records in the current
database to be accessed and is the default state.

USE MARKED

use marked records

This command allows only MARKED records in the current database to
be accessed.

USE UNMARKED

use unmarked records

This command allows only UNMARKED records in the current database
to be accessed.

Examples can be found under END, KEY$, READ DB, READ FIELD,
READ INDEX, REC PTR, REPEAT, SKIP

270

USE DB

open database
This command opens the specified database for both READ and WRITE.

Syntax
USE DB«<filename>

USE DB ...VIA ...

open database and index

This command opens the specified database for both READ and WRITE
and opens the specified index for READ only.

Syntax
USE DB«filename>VIA<index filename>

Example

. START

USE DB"MYDATAB"VIA"MYINDX"

WHILE NOT END
READ REC R()
R(4)=+"K"
WRITE REC R()
SKIP

ENDWHILE

CLOSEALL

RETURN

Examples can be found under APPEND, COND, CREATE DB, CREATE
INDEX, DISABLE INDEX, ENABLE INDEX, FILES, GO END, INDEX$,
LONGREC, MAX REC LEN, NAME$, READ REC, WRITE DB, READ DB

271

USE INDEX

open index
This command opens the specified index for both READ and WRITE.

Syntax
USE INDEX<index filename>

Example

.START

USE DB"MYDATAB"

CREATE INDEX"NEWINDX"ON 2;13

REM index key based on first 13 letters in field 2 of database.
USE INDEX"NEWINDX"

COND$="ITEMS (LOWERS (R(2)),1)=""JONES"""

READ DB"MYDATAB"

WHILE NOT END

READ REC R ()
IF COND THEN SORT REC R ()
SKIP
ENDWHILE
CLOSEALL
RETURN

This example program will create an index based upon all the records
beginning with "Jones" in the database.

See APPEND, SORT, USE DB

272

USR

return register contents
This function returns the contents of the 6502 registers.

The four byte value returned contains the contents of registers P, Y, X and
A respectively, with A as the least significant byte.

Example

. START

MODE 5

$A=135

M%=USR (&§FFF4)

PRINT (M% AND &00FF0000) DIV &10000

RETURN

This example will print the current screen mode.

See CALL

VAL

return numeric valve

This function returns a numeric value corresponding to the specified
string.

Syntax
<num>=VAL<sstring>

273

Example

.START
A$="23.4HELLO"
P.VALA$
RETURN

23.4

Note:

If the first character in the string is not numeric the result will be zero:

Example
.START
B$="H23.4"
P.VALBS$
RETURN

See CHR$, STR$

VDU

send screen command

This statement sends codes to the Visual Display Unit driver.

Syntax

VDU<int>[,<int>,<int>,<int>]

A full description of the VDU statement is beyond the scope of this book.

However the following list may prove useful:

VDU1, x Sends the character x to the printer only.

VDU2 Enables the printer.

VDU3 Disables the printer.

VDU4 Causes subsequent text to be written at text
cursor.

VDUS Causes subsequent text to be written at graphics

274

cursor.

VDU6 Disables output to screen.
VDU21 Enables output to screen.
vDU7 Makes a beep sound.

VvDU8 Cursor back one character.
VDU9 Cursor forward one character.
VvDU10 Cursor down one line.

VDU11 Cursor up one line.

VvDU12 Clear text screen.

VDU13 Cursor to left of line.
VvDU14 Paged mode on. (Press SHIFT to scroll).
VDU15 Paged mode off.

VDU16 Clear graphics screen.

VvDU26 Cancel window

VvDU28 Define window (see WINDOW)

VDU30 Cursor home (top left).
VDU31lx,y Cursor to position x,y.

vDU1l27 Backspace and delete.

VvDU23;8202;0;0;0;

VDU23;29194;0;0;0;
VDU23;26378;0;0;0;
VvDU23;26890;0;0;0;

Example

. START

MODE 7
vDU23;8202;0;0;0;
REM Cursor off

Cursor
Cursor
Cursor

Cursor

off
on
on
on

PRINT"There is no flashing cursor”

PRINT"Press a key"
G=GET
VDU23;29194;0;0;0;

REMCursor on (mode 7 only)

PRINT"Now there is"
RETURN

(mode 7 only)
(modes 3 and 6 only)
(modes 0,1,2,4 and 5 only)

275

VPOS

return cursor position
This function returns the vertical screen character position of the cursor.

Syntax
<int-var>=VPOS

Example

. START

line$="Here 1is some text to edit"

PRINT"EDIT THIS:";

X%=P0OS

Y$=VPOS

cur%=

width%=39

REPEAT
TABXS, Y%
cur%=EDITLINE (line$, width%-X%, cur%,ASC"A",ASC"2Z")

UNTIL %C=13

PRINT'"Finished"

See EDITLINE, POS, TAB

276

WHILE ... ENDWHILE

conditionally perform action

This statement provides a conditional loop which, unlike REPEAT ...
UNTIL need not execute even once if the condition is not met.

Syntax

WHILE<condition>
<statements>

ENDWHILE

Example

. START

READ DB"MYDATAB"VIA"MYINDX"

USE UNMARKED

WHILE NOT END
READ REC R()
PRINT R(2)
PRINT R(3)'
SKIP

ENDWHILE

CLOSEALL

RETURN

WINDOW

define text window
This command defines a text window.

Syntax
WINDOWK<intl>,<int2>,<int3>,<int4>

int1 is the X coordinate of the top left corner
int2 is the Y coordinate of the top left corner

277

int3 is the width
int4 is the depth

Use VDU26 to cancel the window.

Example

.START

AS$=STRINGS (255,"2")

AS$=+STRINGS (255, "A")

AS$[82]="Edit-this-lot"

MODE7

PRINT' STRINGS (40,"*"

FOR X%=39 TO 0 STEP -39

FOR Y%=2 TO 23
PRINTTAB (X%, Y%) ;"*";

NEXT

NEXT

PRINTSTRINGS (38,"*")

WINDOW6, 6,26,13

EDIT AS

CLS

WINDOW3,10,30,2

EDIT AS, 80

VDU26

RETURN

See EDIT, EDITLINE, VDU

WORDS

return word from string

This function returns the specified item from the given string.

Syntax
<sstring>=WORD$(<string>,<int>)

As a command it replaces the specified item in the given string with
another item.

278

Syntax
WORDS$(<string>,<int>)=<sstring>

The separator between items is always a space.

Example

. START

A$="first second third fourth fifth sixth Monday Tuesday"
B$=WORD$ (AS, 8)+" is the "+WORDS (A$,2)+" day."

PRINT B$

RETURN

Tuesday 1s the second day.

See COUNT, ITEM, ITEMS, LINES

WRITE DB

open database for writing

This command opens the specified database for WRITE only.

Syntax
WRITE DB«<filename>

Examples can be found under BUFLEN, LONG REC, MARK REC

See USE DB, READ DB

279

WRITE FIELD

write to record field
This command writes to a single field of the current record.

Syntax
WRITE FIELD<field number>,<variable>

Example
. START
USE DB"MYDATAB"VIA"MYINDX"
WHILE NOT END
READ FIELDI, X%
X%=X%+1
WRITE FIELD1, X%
SKIP
ENDWHILE
CLOSE"MYDATAB"
CLOSE"MYINDX"

In this example field 1 (the record number in MYDATAB) is incremented
by one in each record.

Note:

The new field MUST be exactly the same length as the existing one.
Whilst this will be so for numeric and date fields, string lengths should be
checked.

WRITE FIELD is useful in not requiring an array.

See LEN, READ FIELD, USE DB

280

WRITE INDEX

open index for writing
This command opens the specified index for WRITE only.

Syntax
WRITE INDEX<index filename>

Examples can be found under KEY$, NAMES$, TITLE$
See READ INDEX, USE INDEX

WRITE INFO

write information

This command writes information into the information fields which are in
the information block associated with every database file.

Syntax
WRITE INFO<field number>,<sstring>

Notes:

Each database file has an information block. Part of this block is reserved
for information fields. Normally each information field will be used by
the creator of the database to store information about the nature of the
corresponding record field (type, size etc.). In addition, there is an
information field number zero which may contain special information.
For instance, you may record a code which can be recognised by your
own database program.

More details and a comprehensive example can be found under CREATE

DB.
See INFO LEN, MAX INFO, READ INFO, TITLE$

281

WRITE REC

write record

This command writes the contents of an array (the "record") to an existing
database file at the current file pointer position.

Syntax
WRITE REC<array>

Example

. START

USE DB"MYDATAB"VIA"MYINDX"

WHILE NOT END
READ REC R()
R(2)=+",Mr"
WRITE REC R()
SKIP

ENDWHILE

CLOSEALL

RETURN

Note:

WRITE REC will produce an error if an attempt is made to save a record
which is larger than the existing record at that position in the database
file.

Examples can be found under APPEND, USE DB

See APPEND, MAX REC LEN, READ REC, REC LEN, REC PTR, USE DB,
WRITE DB

282

About INTER-MAIL

INTER-MAIL is supplied as a ROM image “IMrom” on the example disc.
It is a utility program which runs from the INTER-WORD menu.

IMPORTANT

It will work only in a BBC Master (or in a BBC B which has been fitted
with an Advanced Disc Filing System conversion and with Screen
Shadow Ram). It should work in a BBC B+ with ADFS but has not been
tested.

INTER-WORD and INTER-BASE must be fitted.

INTER-MAIL gives you access to a database which can hold names,
addresses, telephone numbers and other information.

The database is linked to INTER-WORD so you can type correspondence
which automatically contains the date and consecutive reference number.
Type the first few letters of the surname and the recipient’s name and
address is put into the letter for you. When you save the letter on disc, the
reference number, name, date and an optional comment are also saved so
you can find previous correspondence quickly and simply.

There is also a mailshot facility.

Another ROM image “IUrom” on the disc gives you access to a variety of
INTER-MAIL utilities including:

Print individual labels; print labels in columns; list birthdays or
anniversaries; create new database; undelete records.

To find out more about this free software please load each of the files
“IWmail” into INTER-WORD and read or print out the information.

283

A
ABS.oicn 65
ACS............. 66
ADD FIELD ... 67
ADD@......... 66
ADVAL....ooiiiiiiniciiinniinieeee 67
ALLOC....... .48, 61,69
alphabetical.......cccccoooiiiiriieiinn 28
analogue POrtcccoeeveiieiirinieineenins 67
................ ..70, 140, 273
ANGLE. et 73
apostrophe ..o, 156, 158, 205
APPEND 28, 180, 184, 200, 226
APPEND REC ..
arc-sine
arc-tangentc.coceveieieeeinnieeiians

array23, 28, 178, 210, 223, 245, 255, 265,
282

ASC i 72

ASCII34,.72,84,.109,.142, 143, 153, 165,
211, 249

ASN i, 73
ATN i 73
B

BASIC 7,40, 81,104, 238, 242

C

calculation.. ... 10
calendar-...... ... 19
CALL vt80
CALLHEAD program.........ccceoeeuune. 35
CANCEL ..ot 55, 58

carriage returnl6, 24, 57, 93, 156, 157,
158

284

CASE .o 51,82
CHAN ..ot 83
CHRS...... ... 84,87
circleoovennne ..15,201
circumflex.....207
CLEAR.......... 41,43
CLEARRAM....oooiiiieieeeie e 84
CLG.oeveveeee 85
CLOCK .ttt 19
CLOSE ... 86,217,267
CLOSEALL....coooieiieeeieeevieeaenen 61,63
CLS .o17,87
CODESD ..o 88
Colon commands...58,61,63
COLOR. ..ottt 89
COLOURooveveeeevennee 89, 140
“CONVERT” program..........cocoeeeueunne 40
COIMIMIA 1 ennvieeeneieeeeniereeeeuarneeeeaieneennreeeeans 156
Commandseceveveeeenieeeereerieneeeeennes 21

CONDS$ / COND.....oooerrrrriiereeeeereens 91
CONtrol COdeS ..ocvinriaiirreiieienieieeeveeien 55

COS..vvevrne 92
cosine......... 92
COUNT.. .92
CREATE ...ttt e 94
create array 104
CREATE DBooceiviieiiiciciicnicnne 93, 95
CREATE INDEX......ccccuenvnnee. 91,96, 97
create String....ooooeeveeiiciiis 254
CREATE USER INDEX......ccoceevevcunnnn 98
CRITERIAccoevee 99
CUTSOT ccntieieiie et ettt eeeee e eaae e 59
cursor off... 30, 112
CUTSOT OI ..t 31
CUrSOT POSIHON oo 203, 276
D

DATA oo 120, 216
DATA / DATAS. ..o 101
data pointer ..., 235
Database......cccoceieeveieecinienn. 22,93,185
date 66, 139, 178, 210, 253, 255, 259, 265
Dates....cooeveneeiinniiceeicn, 19, 39,97
decimal.......... 137,204, 205
decimal pointcccoeeeiiieiiniincinn, 137
DEG...cccecvene . 103

ELSE

Embedded Commands 58
ENABLE INDEX......cccoouueenn 96,97,115

error findingoooeeeeniinninceiene

error handlingccceevriieieiinennnnns 253
error messages ... 263
EITOT tTaP . ciiiviiiieeieieie e 77

error trapping. 147,192
ESCAPE ..ot 253
Escape key 125
ESCAPE OFF ..o 35
ESCAPE OFF / ON 125
ESCAPEON.......... .36
EVAL oo 125
EXEC ot 126
execute Programoccueriereiersesenennnns 239
EXP oo ... 126
EXPONENL ..cvviieiieiiiiiciees 126
Exponential........cocoeveininiiiiincinicnenn. 137
EXPORT....... 5,51, 55,56, 127
EXT oo 128

FATAL ..o, 46
field 22, 67,265
fieldlengthcccooviniiiiii 97
fields............ .94, 129
e i 22
file handle... ..78,83
filelength......cccocooviinie 128
file pointer —see pointer

FILES ... 130
FIND.

FN.....

FOR ..o

FOR ... NEXT

FORMAT
FREE.....oiiiecccccae
free memory... .. 140
free Space ... 79
function keycccccovvicivicinccnnnnne 52,63
Functions....
FX2T i i
G

GCOL ..ottt 140
GET....... 142,154
GETS....ooiiiiiiiie e 143
GETCHAR......ooiieecccnicn 59
GETMARKED................. 60, 149
GETTEXT ... 60
GETTO.....60
GO END ... 143
GO START .63, 144,217,219
GOSUB........145,194, 208
GOTO..viiciicccces 11, 146, 193
graphicsc.cocoviiiinns 85,108, 140, 202

Index22, 25, 28, 29, 100, 115, 131, 147,
151, 164, 190, 218, 219, 221, 222, 225,
226,232,248, 261, 266, 271, 272, 281

INdeX KeY ..o 27
index structure .99
INDEX$ 151

mformanon blocl@S 115, 152, 183, 220,
281
information bytec.ccooeviveieeiininnns 76

INITIALS.............153
INKEY153
INKEYS$. .. 155
INPUT.....cco... 13, 156
INPUT FROM 159
INPUTS...ceeeeeeeeeeeeeeeeeie et eienrees 157
INPUTLINE.......cooieieeeienne. 16,158
INSTALL...... .42,160, 234
INSTR .ot 160
INT oo 161,178, 210
integer. ...12,97,107,161, 195, 265
INTER-CHARToooveeeeieeieeecenreenens 53
INTER-MAIL......coeieirieceieeerenene. 283
INTER-WORD 48, 61,127,149
INTINDX....ocoveiiereieeerireneeieennns 93, 96
ITEM .ot 162
ITEMS$. 32,88,163
ITEST oot 128
IUrom ..283
IWcom .49
K

KEY29, 97, 99, 131, 147, 221, 222, 225,
226,248, 266

keyboard buffer..........c.ccoorinrnaee. 50, 52
keywords......ccvvvvninininiiiicnnes 21
KILL oottt 58
L

LOAD.... 40,41,43,170
load file...cooveeeveieeeeieeeeeeeee, 170
LOAD RAM....oooieiiieieieeeeieceeren 170
LOCAL......... 171,230
LOCK............ 173,211
lock variable........ccceeveeeeienieeeeiennnnes 173
LOG. . e 177
logarithm.....c.ccooeeiii 172,177

286

loop....cceunne

LOWER....

lower case ...

LOWERS.....

LVAR ..ot

M

machine codeccoeueeveeveeveeneecenne 80, 81
Mailshot ..o 61,283
MARKccocevee. .28, 179, 226
MARK COUNTootrririeieiiinnnns 179
MARKREC ... 180
MARKED......coooiiiniriiiniinns 180, 225
Master.......... .19,27,234, 259, 283
MAXINFO ..o 183
MEeMmOry COTTUPHONcvviiiieiiieees 262
MENU ... 185
MIDS..... . 186
MOD...oiiiiieie 187
mode............ 9,89,141, 188
move cursor 244
MOVEAFTER........ .59
MOVEFORWARD... .59
MOVETORP............. .. 59
mshot programcceeveveiveieiniennns 61
multiple Stringocoooeiiiiiiiene 24
multiple string fieldccccooevenen. 93

MYDATAB22,29,.93,.95,.128, 189, 219,
231

MYFILE ... 195
MYINDX..... 23, 29, 93, 96, 189, 219, 231
N

NAMES ..o

No START...
NOT...covvvvivinne

numeric value

o

ON ... GOSUB.....coeevreiririnciciininnn 194
ON ... GOTO...courriiciiicicccicicieaes 193
ON ERROR..... .14, 48,192
open databaseccccoooeueene. 271,279
open file.......... 195, 196, 197
open index.. 272,281
OPENIN....... 74,75,195

OPENOUT.....coovviviiiiiieren

P

JoL-1 821 0 T=17=) SRRSO 243
parameters... 135, 208
Pl s 201
PLOT oo 15,202

pointer29, 59, 60, 97, 102, 117, 131, 143,
144, 164, 195, 209, 217, 221, 226, 227,
228,267,282

POS ..o 203, 276
positive number...........ccccovrieieiinnnns 242
PRINT.......ccevene 10,204
PRINT aITay «.coceveeieeeeiesieeecesenne 24
PRINT TO....ooovivvievirniienrincnnienns 159, 206
PRINTER......ccoooveirmmniinminniniennaes 16, 81
Printingcccoceeeeeeeeiicsisceeeie 30

03, 211, 244, 257
RAM26, .41,.44,.84,.118, 160, 170, 212,
232,241, 267

RAM SPACE ...
RAM STATUS. ..o
random value........ceeeveveceeeienecnnennne.
READ...............

read byte ..o
read characters...

READ DB............

READ DB .. VIA ...ccoooiveeeree
READ FIELD...... ... 218
READ INDEX.. ... 219
READ INFO ..o 220
READ KEY .ovoioieeviieeeeciieeeeeseeine 221
READ REC.......... . 88,223
read record Keyccoovieiiiiiinnnn. 221
real ..o 12,178, 210, 265
ReEAlS ..ot 97
REC COUNTooviieiieeeieeeeeee e 225
REC LEN...... 184, 226
REC PTR ..o 227
record fieldooooeeieeiieeieeeeeeee. 280
Record Length......cocovvnvniiincinn. 27,226
REM ..ot 229, 262
REMOVE 23,41,42,104, 182,229
remove all variables

REPEAT ...cooovvveinn.

REPEAT .. UNTIL..

RESERVEoovoiiieeiiieeeeee e

ROM Programs..........ccceuueueienierensenennnns 41
ROM STATUS.....cooovveeeerriieeeeeveeeenns 214
ROM-LINK..... 59, 60, 63, 69
RUN ..ot 9,239
RVAR. ..o, 173,239
S
SAVE. ... 41,43, 240
SAVERAM / ROM......ccocveveerrernnan
screen flicker
search....
SELECT...........
SELECTRAM...........
SELECT RAM ALL...coovvereerereirnnnne 242
semi-colon e 156, 158, 205
SEPATALOT ...viiiiiiiii e 20
SGN .t 242
SHOW.............. 44,243
sideways ram.........cccoeeviverinrinnnns 26, 84
SIN..... . ..244
SIZE ..o 245
SKIP.....covvieerrnnne 24,25, 61,246
Skipped past end.........cccccourvrireiinnnns 247
SORT ...coovveeeereiierenens 29, 180, 184, 200
SOIt INAEX.eevveevierieeeieeieieeieereane ..248
SORT REC96
sorted file....coooveieveieniicieceeeee, 98
sound 119, 250
PACES .ottt 251
SPC .ottt 251
speed 134, 229, 230, 262
(@) ST 252
square bracket ..237
SQUATE TOOL cvevieniciiiiicie e 252
START.......... 9,18,247,252,262
STEP ..ot 136
STOP253
STRS .ot 253
STRING........co...... ...178, 210, 265
string variable..........c.ccccooen 106, 108
STRINGS......... ...87,254
SEHNGS oo 15
SEIIP SPACES ...vvvieicieieiieie 264
Sub procedures...........cccoceviiiiiriininnn. 18
SUB@......ccccovnee .

subroutine ...

tangent.......ooeini

teXE CUISOT v 256
text WINAOWcoeviiieieieieienienns 277
THEN ..ot 148
TIME..... 238, 258
TIMES ..o 19, 259
TITLES ..o 261
TOKENISE .. 41,229,262
TRACE.....ieee e 263
Transferring text .. 59
trim spaces......... .. 264
TRIMS ..o 138, 264
TYPE. ... 103, 105, 264
U

underline. ... 44
UNLOCK ...t 173,265
UNMARKREC ... 266
UNREAD............ 98, 101, 120, 266
UNSORT ..o 29, 266
UNTIL ..o 267
UNTIL EOD....ooririiiieie. 235
unused MemOIYccovueververervrreeisnnnns 140
UPDATE......oiiiiiiiicnccciieeeene 267
update disc filescoovrrriririrnnnee 267
UPPER ..ot 268
upper case... 268, 269
UPPERS....... ..35,269
USE...ooiiiiieiiieeiieeiine 29,35
USE ALL ..270
USE DB.....oooviiiicieeiiceeeeiiiensenee 271
USEDB..VIA ..o, 271
USE INDEX........ 91,97,272
USE MARKED.........ccoovurrrnnn. 247,270
USE UNMARKED.........coovrrririne 270

User Index

WHILE NOT END116, 181, 184, 218
WHILE NOT(EOD) oo 235
WHILE NOT(EOF) oo 121

WINDOW.14, 87,277
WORDS ...t 278
WRITE........ 27,29
WRITE DB ...cooveiiieieieeerieeeieieeeee 279
WRITE FIELD280
WRITE INDEX.....281
WRITE INFO.....cooieiieiiieeereeeerennen 281
WRITE REC.. .. 200, 282
WIite reCOTd ..cvevieruirieniieniieieie e 200

