NBEEBUG|
Educatio i .,

RITEMS
REGULA 4

ES _
FE A b 5 Edtors Jottings/News 0
BEEBA N US:T\pS T
ints an
M-Base (2 Hints @ -
BEEBUG Education personal AdS .
orkshop: Posibeg - A
BEEBUGW 5 8 psorpions b BaOKISSUES |
Sorting Revisited u . ;
To Work 20 \agazine DisC
' tories
putting Direc . . . PS
1stCourse: File Hand\ing . H\NTS 2
m Recov
5\2 FO\'UW\ S\\'\g\e Ke\l Bad ng‘a 3 Ve\opes
it n
Machine Code cormner Eunction Key Listing of
; i in i Quick Screen Fil ‘
puplic Doma 42 ConfemporaYy \mprovisations
gl 4“ Persona\'\sed Header on Break
P i To Linefeed or N0 Linefeed

PROGRAM INFORMATION

All listings published in BEEBUG magazine are
produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space

following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checkeéd carefully. When
entering a listing, pay special attention to the

difference between the digit one and a lower case 1
(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the
article on page 44 of BEEBUG Vol.7 No.2 (reprints

ghatus

Bptians 4

o 04t
all
15

inter
plex search
1ist

Ay P
2y Com
43 closenes®

By GR. T on

67 Media
ain meny

Sidewags rAan
23N

press i

\\-Base

BEEBUG Education

Haste PYRAMID
pATLIENCE

Y Contents
ARTICLES
7 pavent directory »

pirector
pirectory nane i

WATCURRIC W U9 FFFFFFEE FFFFFFFF 0800674 400166
available

Facilities

goter choice w-e

Putting Directories t0 Work

Ldrors Jottings

FUN AND GAMES FOR CHRETMAS

Not only does this issue of BEEBUG contain a
highly playable patience game to while away those
quiet moments during the holiday, but we have
included an updated version of the very popular
Robol game on the magazine disc, and an updated
calendar program ready for the new year. The
magazine (and disc) also contains a major new
item in the form of a very comprehensive painting
program. With all that and much more in this
month's magazine it is clear that there is still
much interest in the BBC micro.

NEW PHONE LINES

We have recently installed a new telephone
system. While the original number (0727
840303) remains unchanged, there is now a
separate number for RISC Developments (0727
843600), and Beebug's sales staff can be
contacted directly on 0727 840305 when you
want to place an order. The number of lines is
being increased as well to provide a better
service.

Mike Williams

News

ALL FORMATS COMPUTER FAIRS

Details of All Formats Computer Fairs for the new
year are given below:

Jan 15 Haydock Park Racecourse (J23 M6).

Jan 16 Brunel Centre, Temple Meads, Bristol.

Jan 22 Northumbria Centre, Washington
Dist.12.

Jan 23 National Motorcycle Museum, NEC,
Birmingham (J6 M42).

Jan 29 Brentwood Centre off A12, J28 M25.

Feb 12 Haydock Park Racecourse (J23 M6).

Feb 13 National Motorcycle Museum, NEC,
Birmingham (J6 M42).

Admission costs £4 for adults (£2 after 2pm), £2
for children, wheelchair users free. For 50 £1 off
vouchers send a stamped addressed envelope to
Bruce Everiss, Maple Leaf, Stretton-on-Fosse,
Moreton-in-Marsh, Gloucestershire GL56 9QX,
or telephone 0608 662212.

4

BETT ‘M4

The 1994 British Education for Training and
Technology exhibition will be held at the National
Hall, Olympia, London from 12th to 15th January
1994. This show is a must for anyone with an
interest in computers and education, and there is
sure to be a strong presence from the Acorn world.
RISC Developments Ltd, publishers of RISC User,
will be there on stand 402.

THE BEEB SURAPBOOK

BEEBUG reader Ruben Hadekel has released The
Beeb Scraphook, a collection of articles and programs
for users of the BBC micro. The articles include
material on programming techniques, and
instructions for the programs, including items
previously published in BEEBUG under agreement
with RISC Developments. The disc, in ADFS format for
the Master 128, costs £14.50 inclusive direct from
Ruben Hadekel, 4 Lalor Street, London SW6 5SR,

tel. 071 736 5429.

Beebug December 1993

B

Bu

This program was originally written to
replace Timpaint, as supplied on the
original Master welcome disc. For
maximum flexibility I wrote two
versions, one to run in screen mode one,
and one to run in mode two. The mode
two version is listed below, both versions
are on the magazine disc, loaded via
Bload. Note that these programs will only
run on a Master 128 and Master
Compact.

The pictures illustrate the stages in
drawing a bicycle

USING THE PROGRAMS

I originally designed Beebart to be
easier to use than Timpaint; I'm not
sure it turned out that way.
However, it is definitely quicker, at
least when it comes to selecting tools
and colours. Rather than have a
visual toolbox which reduced the
useful drawing area, I decided to
have two lines at the top of the
screen used for status display, and to
have all the tools selectable by
logical keystrokes.

When the program is first run the
pointer, a white triangle, is in the centre
of the screen, and its position is shown
at the top. The pointer can be moved
around with the Cursor keys. By

Beebug December 1993

CEBATrt

g Van Goghs, lend an ear to Mark Brading.

default it moves in steps of 9 OS units,
but this can be changed using Shift
with the Up and Down Cursor keys.
You start off in freehand draw mode,
with no colour selected. You can select
a colour by pressing a number key in
the range 1 to 8 (1 to 4 in the mode 1
version). These represent the logical
colour numbers apart from 8 (or 4)
which selects black. Pressing key 0
selects no colour. When you select a
colour by pressing a number, the text at
the top of the screen will turn the
colour you have selected (for no colour
and black the text will remain white)
and the pointer will leave a trail behind
it when you move it around. If no
colour is selected then the pointer
leaves no trail.

If you wish to use one of the Master’s
patterns instead of a block colour, then
this can be done by pressing Shift in
combination with one of the function
keys. When you begin drawing, you
will find that the selected colour no
longer has any effect, and the selected
pattern is used instead. Pressing Shift
in combination with ‘@ returns you to
normal use of colour. Patterns may not
be easy to spot when used with single
lines, but they can be easily seen in
filled shapes and flood fills.

5

BEEBArt

For the technical amongst you, the
pattern selection works by multiplying
the number you press in combination
with Shift by 16, and using the result as
the value before the comma in all future
GCOL statements.

In the mode one version of the program,
there is a additional feature which
allows you to change the standard
black, red, yellow, white palette with
any of the 8 colours in the mode 2
palette. To do this, select the colour that
you want to change (press 1, 2, 3, or 4)
and then press ‘C’. You will then be
prompted for the colour number of the
colour you want to change it to. Press
the colour number of the colour you
want and it will immediately replace the
previously selected colour, taking over
that colour’s number.

THE TOOLS
To use the tools press ‘T” while in the
freehand drawing mode. You will be
prompted to enter one of the following
letters: A, C,E,F L, P, Q,R,S, T. Their
effect is as follows:

A - Arcs,

C - Circles, filled or outline.

E - Ellipses, filled or outline.

F - Flood fill.

L - Lines at any angle.

P - Parallelograms, filled only.

Q - Quit, return to freehand drawing.

R - Rectangles, filled only.

S - Segments of circles.

T - Text anywhere on the screen.

Only the text tool will return you to
freehand drawing immediately. All the
others will prompt you to press ‘Q’ to
quit after they have been used once.
Pressing Q at this stage returns you to
freehand drawing. In most cases pressing
any other keys, including the Cursor
keys, allows you to use the same tool
again.

The tools fall into two main groups.
Those that require two points to make
them work, and those that require three.
Those that need two are circles,
rectangles, and lines. When you select
any of these you will be prompted to
press Return to set point one - circles will
first prompt you to select filed or outline
- move the pointer around as usual and
press Return where you want the first
point to be. With circles this is the middle
of the circle, with lines it is one end of the
line, and with rectangles it one of the
corners of the rectangle.

Now move the cursor around and you
will see the shape change size as you
do so. When the shape is the size and in
the position you want, press Return
and it will be drawn in the current
colour or pattern. Colours or patterns
can be selected at any time during the
use of any tool. If you decide, while
using a tool, that you do not want to
use it after all, or that the first point is
in the wrong place, simply press 0 to
select no colour and finish the tool’s

Beebug December 1993

BEEBArt

sequence without moving the pointer.
This will prevent the tool from having
any effect and your picture will remain
unchanged. This is not available in
flood fill or text.

The use of tools that require three
points is very similar, just requiring one
more step. The tools that require three
points to be set are ellipses,
parallelograms, arcs, and segments.
When any of these tools are selected
you will, as before, be prompted to
press Return to set the first point
(except in ellipses, where you will first
need to select filled or outline). Pressing
Return will lock the first point of your
shape. In ellipses this is the middle of
the ellipse, in parallelograms it is the
first corner of the parallelogram, in arcs
and sectors it is the centre of the circle
that the arc or segment is going to form
part of. When the first point is fixed,
you will be prompted to press Return to
lock the second point.

Moving the pointer around you will see
the shape grow. In ellipses you will only
see an effect if you move horizontally
away from your centre point. During this
a line will be drawn in both directions
away from your centre point. This line
will form one of the axes for your ellipse.
At this stage you cannot rotate the axes.
In parallelograms you are now fixing the
second axis of your parallelogram, this
can be at any angle you like from the first
one.

In arcs and segments you are fixing a
point on the radius of the circle. Unlike
whole circles, where the position of the
point on the radius did not matter so
long as it was on the radius, the point
must be positioned not only on the
radius of the circle, but also where you
want the arc/segment to start. The best
way for you to find out how to do it is to
try it for yourself. When the second point
is fixed you will see that you are now
moving the final point of the shape; it

Beebug December 1993

only remains to fix the third point with
Return and lock the shape.

With ellipses the third point is the
vertical axes and can be put at any angle.
With parallelograms it is the third corner
of the parallelogram, and in arcs and
sectors it is the other end of the
arc/sector. Once again, experimentation
is really the only way to get this clear in
your mind.

The flood fill tool is very simple; select it
by pressing ‘F’ in the tool menu and then
press Return in an empty space to flood
it with the currently selected colour of
pattern. You can press ‘Q’ to quit at any
time.

Text is equally simple; when the text
option is selected from the tool menu
you will be prompted for a text string,
and for the X and Y co-ordinates at
which the text will be plotted. Note that
these are not graphics co-ordinates, but
are equivalent to the TAB(X,)Y)
statement. Text can be printed in any
colour (though patterns cannot be used)
and the colour must be selected before
the text facility is entered - colours can
not be selected from within the
procedure.

SAVING AND LOADING

To save or load a picture type S or L
respectively when in freehand draw
mode. You will be prompted for a

¥ §

BEEBArt

filename, and the picture will be saved to
or loaded from that filename on the
current drive. Pathnames can be entered,
and quotation marks are not required.
Now, get drawing.

10 REM Program Beebart
20 REM Version B 1.0
30 REM Author Mark Brading
40 REM BEEBUG December 1993
50 REM Program subject to copyright
bl
100 MODE 2
110 PROCinit
120 PROCdraw
130 END
140
1000 DEFPROCdraw
1010 REPEAT
1020 PROCsetpointvar
1030 PROCprintpos ("Press 'T' for tools.
i
1040 PROCpointer
1050 PROCcurkey
1060 *Fx21,0
1070 GCOLpattern%,col%
1080 IF tools% THEN PROCtools
1090 IF load% THEN PROCloader
1100 IF save% THEN PROCsaver
1110 IF draw$% THEN DRAW x%,y% ELSE MOVE
x%,V%
1120 UNTIL end%
1130 ENDPROC
1140 -
1150 DEFPROCcurkey
1160 REM
1170 keypress% = GET
1180 PROCpointer
1190 IF INKEY(-1) THEN GOTO 1260
1200 IF keypress% = 48 THEN draw% = FAL
SE
1210 IF keypress% >48 AND keypress% <57
THEN col% = keypress%-48:draw% = TRUE
1220 IF keypress% = 136 THEN x%=x%-step
%:IF x%<10 THEN x% = 10
1230 IF keypress% = 137 THEN x%=x%+step
%:IF x%>1269 THEN x% = 1269
1240 IF keypress% = 138 THEN y%=y%-step
%:IF y%<4 THEN y%=4

1250 IF keypress% = 139 THEN y%=y%+step
%:IF y%>943 THEN y% = 943

1260 IF keypress% = 139 AND INKEY(-1) T
HEN step% = step% + 4:IF step%>200 THEN
step% = 200

1270 IF keypress% = 138 AND INKEY(-1) T
HEN step% = step% - 4:IF step%<l THEN st
ep%=1

1280 IF keypress% >32 AND keypress$ < 3
7 AND INKEY(-1) THEN pattern% = (keypres
s%-32) *16

1290 IF keypress% = 64 AND INKEY(-1) TH
EN pattern% = 0

1300 IF keypress% = 84 OR keypress% = 1
16 THEN tools% = TRUE

1310 IF keypress% = 13 THEN return% = T
RUE

1320 IF keypress% = 9 THEN undo% = TRUE

1330 IF keypress% = 81 OR keypress% = 1
13 THEN end% = TRUE

1340 IF keypress% = 83 OR keypress®%
15 THEN save% = TRUE

1350 IF keypress% = 76 OR keypress% = 1
08 THEN load% = TRUE

1360 ENDPROC

e

1380 DEFPROCinit

1390 *Fx4,1 :

1400 col%=0:x%=640:y%=512:draw%=FALSE:e
nd%=FALSE: tools%=FALSE: step%=9:VDU19, 8, 0
,0,0,0

1410 pattern%=FALSE:return%=FALSE:undo%
=FALSE: load%=FALSE : save%=FALSE: PROCborde
i

1420 *rxibl 110

1430 *rxi151 0.1

1440 ENDPROC

1450 -

1460 DEFPROCtools

1470 tools% = FALSE

1480 PROCprintpos(‘a,C,E,F,L,P,Q,R,S,T.
i

1490 PRINTTAB(0,0)"Select tool.

":REM 8 spaces

1500 keypress% = GET

1510 IF keypress% = 67 OR keypress$ = 9
9 THEN PROCcircle

1520 IF keypress% = 69 OR keypress$%
01 THEN PROCellipse

1530 IF keypress% = 76 OR keypress% = 1

1

1"

1"
=

8

Beebug December 1993

BEEBArt

08 THEN PROCline

1540 IF keypress% = 82 OR keypress$ = 1
14 THEN PROCrectangle

1550 IF keypress% = 70 OR keypress% = 1
02 THEN PROCflood

1560 IF keypress% = 65 OR keypress% = 9
7 THEN PROCarc

1570 IF keypress% = 80 OR keypress% = 1
12 THEN PROCpar

1580 IF keypress% = 83 OR keypress$ = 1
05 THEN PROCsegment

1590 IF keypress% = 84 OR keypress% = 1
16 THEN PROCtext

1600 ENDPROC

1610 -

1620 DEFPROCflood

1630 PRINTTAB(0,0) SPC 40

1640 PRINTTAB(0,0)"Flood Fill.

":REM 9 Spaces

1650 PROCwait (5000)

1660 REPEAT

1670 PROCsetpointvar

1680 PROCprintpes(fPress ‘0’ to quit.
"):REM 2 spaces after the full stop

1690 PROCpointer:PROCcurkey:*Fx21,0
1700 GCOLpattern$%, col%

1710 IF return% THEN PLOT133,x%,v%:retu
rn%=FALSE

1720 IF undo% THEN PROCundo

1730 UNTIL end%

1740 end%=FALSE

1750 ENDPROC

Heh

1770 DEF PROCundo

1780 vDu19,128,c0l%,0,0,0

1790 GCOLO,8:PLOT133,x%,y%:VDU19,128,12
&,0,0,0

1800 undo%=FALSE:GCOLpattern%,col%

1810 ENDPROC

1500 -

1830 DEF PROCcircle

1840 PRINTTAB(0,0) SPC 40

1850 REPEAT

1860 PROCprintpos("Press 'Q' to quit.
") :REM Two spaces

1870 PRINTTAB(0,0) "(F)ill or (O)utline
on

1880 PROCsetpointvar :PROCpointer :PROCcu
rkey

1890 IF keypress%® = 70 OR keypress% = 1

02 THEN PROCshape("Filled Circles. -
,157,5000) :REM 5 Spaces

1900 IF keypress% = 79 OR keypress% = 1
11 THEN PROCshape("Outline Circles. i
,149,5000) :REM 4 Spaces

1910 UNTIL end%

1920 end%=FALSE

1930 ENDPROC

1941

1950 DEF PROCshape (name$, code%, dely%)
1960 PRINTTAB (0, 0)name$:PROCwait (dely%)
1970 REPEAT

1980 PROCsetpointvar:PROCprintpos ("RETU
RN to set P one.")

1990 PROCpointer:PROCcurkey:*Fx21,0
2000 IF return% THEN x1%=x%:y1%=y%

2010 UNTIL return$

2020 return$%=FALSE

2030 REPEAT

2040 x2%-x%:y2%=y%:PROCsetpointvar
2050 PROCprintpos("RETURN to lock shape
o

2060 MOVE x1%,y1%:PLOT (code%+1),x2%,y2%
2070 PROCpointer:PROCcurkey:*Fx21,0
2080 MOVE x1%,y1%:PLOT (code%+1) ,x2%,y2%
2090 UNTIL return%

2100 return%=FALSE:keypress%=0

2110 GCOLpattern%,col%:MOVE x1%,y1%
2120 IF draw% PLOTcode%,x2%,y2%

2130 ENDPROC

2140

2150 DEF PROCline

2160 PRINTTAB(0,0) SPC 40

2170 PROCshape("Line. s
,5000) :REM 15 Spaces

2180 REPEAT

2190 PROCsetpointvar:PROCpointer

2200 PROCprintpos("Press 'Q' to quit.
") :REM 2 Spaces

2210 PROCcurkey:*Fx21,0

2220 IF NOT end% THEN PROCshape("Line.

*,5,0) :REM 15 Spaces

2230 UNTIL end%

2240 end%=FALSE

2250 ENDPROC

2260 s

2270 DEF PROCrectangle

2280 PRINTTAB(0,0) SBC 40

2290 PROCshape("Filled Rectangles. *,1

continued on page 34

Beebug December 1993

9

M-Base (Part 2)

Ian Palmer continues the development of his comprehensive database.

This is the second part of the M-Base
program. First you need to type the lines
of the program which accompany this
text. These lines should be added to part
1 given in the previous issue. This will
give you a fully working program, apart
from the search routines which will be
given in part 3. You can now use the
program as follows.

Status

Options :
1> Printer Off
2) Complex search : All
o¥eness list : 15
- on
) Media : Sidewaus RAM
? Main menu

ess 1-7

The Status Menu

DELETING RECORDS
Before deleting a record you need to find
out its number as stored in the database.
This is shown each time that record is
displayed, either in the viewing of
records or during a search.

Once you have found the number, select
option 3 of the main menu. You will
then be asked to enter that number and
the record corresponding to that
number will be displayed for you to
confirm that it is the correct one. If it is
just press “Y’, otherwise press ‘N or
Escape.

Every time you delete a record the
numbers of other records may change, so
you need to check the numbers of any
other records you wish to delete. This is
due to the automatic housekeeping of

10

the program. In general only one record
will change place for each record
deleted.

SAVING A DATABASE

To save the database that is in memory,
select option 7 of the main menu. You will
then be asked to enter the filename you
wish to use. In fact, if you wish to use the
name entered when you created the
database just press Return, otherwise you
need to press Ctrl-U to clear that name
and enter the name you wish to use.

LOADING A DATABASE

To load a database into memory select
option 6 of the main menu, and enter the
filename of the database at the prompt.

VIEWING INFORMATION
ABOUT A DATABASE

Select option 5 of the main menu and
you will be shown the current database’s
name, the number of fields it has, the
number of records stored and the name
of each field. Press Space to return to the
main menu.

THE STATUS MENU

This menu allows you to change certain
characteristics of M-Base. To get to this
menu select option 9 of the main menu.
The status menu has seven options as
described below.

1. Printer on/off - this option toggles the
state of the printer flag. If the flag is On
any records displayed on the screen will
also be sent to the printer. The default is

Off

2. Complex search all/any - this option
toggles the state of this flag between all
and any. The meaning of this flag is
described later with the complex search.

Beebug December 1993

M-Base

3. Print options - this allows you to
specify which fields are sent to the
printer when the printer flag is set On.
When you select this option you will be
taken to a screen similar to an empty
record, only in this one you should
enter the words On or Off in each field.
In fact, the old states will be placed in
the fields when you reach them so, to
keep the old states, just move onto the
next.

4. Closeness list - this option allows
you to enter the length of the list
produced by the closeness search. To
change the value select this option and
enter the new value. Default 15.

5. CR On/Off - this is another On Off
flag, again related to the printer. When
this flag is on each field printed is
printed on a line of it’s own. If the flag
is off, more than one field may be
printed on each line.

6. Storage media Disc/Sideways
RAM - this option allows you to
specify which storage media you
wish to use. This option needs
confirmation, by pressing ‘Y’. If you
were using Sideways RAM and have
a file in memory you will be asked if
you wish to save it before changing
to disc. If you were using disc and
have a file open it will automatically
be closed.

7. Return to main menu.

USING DISC STORAGE

When using disc rather than sideways
RAM the only difference in usage, other
than speed, is that options 6 & 7 are
renamed, and perform slightly different
functions. Option 6 becomes ‘Open file’
and opens a file for use. Option 7
becomes “Close file” and closes the
current file; it does not ask you for a file
name.

Beebug December 1993

STATUS SETUP FILE AND
MANUAL SETTING

The above status flags can be set
automatically, except the storage media,
via a setup file called MSetUp. The file
should made up of commands of the
following format.
[name] command : state

where name is the name of the database
which the command is to refer to, or "’
for all databases.

Infornation
File name : DEMO1
No.Fields : 4
No. Items : 1%

Name :

Pages :

command should be one of the following,
with state being one of those given for
each command.

CR - sets the state of the CR flag. For off
state is 0, off or OFF, for on state is 1, on
or ON.

PRINTER - sets the state of the printer
flag. States are the same as for CR.

COMP - sets the state of the complex search
flag, states are any of : ANY any ALL all.

LENGTH - sets the length of the closeness
list, state is any number from 3 to 50.

PRINT - sets the print states of the fields,
state is a list of 1’s and 0’s, one for each
field, 1 for On, 0 for Off.

141

M-Base

All commands should be in capital
letters, any spaces in the command line
are ignored. The MSetUp file is executed
by typing *MX’ on the main menu.

The above commands can also be typed
direct from the keyboard by pressing ‘+
on the main menu. In this case you
should not type the [name] part as this is
added automatically.

An MSetUp file might look like this:
Assume you have four databases given
below, the number in the brackets after
each name is the number of fields that
database has.

Address(7), Tapes(3), Videos(4), CDs(3)
MSetUp file :

[Address] PRINT : 1111110
[tapes] PRINT : 100

[CDS] PRINT : 101
[videos] PRINT :
BRGSOkt

*] PRINTER : off
*] LENGTH : 25
videos] LENGTH : 20

*] COMP : any

As can be seen, the case of the name part
is not important. As commands are
executed in the order given, the two
LENGTH commands are valid in that
order, if they were in the other order the
[*] command would overwrite the
[videos] command.

1100

(
(
(
(
[

Any errors will be reported on execution.
The set up is immediate and thus if you
change database you will need to re-run
the MSetUp.

EXIT FROM THE PROGRAM

You should exit from the program using
option 0 of the main menu rather than
pressing Break or typing *BASIC. This is
to ensure that the database is closed if
using M-Base in the disc option, and that

12

the ‘Grab old database’ option works
properly. This option can be found on the
‘New / alter database’ menu (option 4).
This allows you to exit M-Base and re-
enter it after running another program
without needing to re-load the database
you were using, as long as any other
programs used do not interfere with
sideways RAM.

That concludes part 2 of M-Base. Part 3
will supply you with three search
routines, including the unique
‘Closeness’ search.

10 REM Program M-BASE-2
40 REM BEEBUG December 1993

3170 REM ***** Delete Records *****

3180 :

3190 DEFPROCdelete:LOCAL £%,b%, 3%

3200 PROCclear:PROCtitle("Delete Item",
1)

3210 I%=VAL(FNinput("Item number : ",""
,0,4,4,48,57)) :1%=1%

3220 IF I%=0 OR I%>N% PROCclear:ENDPROC

3230 PROCsee(I%):PROCcentre("Are you su
re @ (y/N)' 0 :-vDUR3 11, 0:0:0:08.0.0;

3240 REPEAT:K$=GETS:UNTIL INSTR("YyNn",
KS) :IF KS="n" OR K$="N* PROCclear : ENDPRO
@

3250 f%=n%:b%=1%:PROCread(b%) :n%=£%:PRO
Cwrite(b%) :PROCread(f%) : 1%=b%: PROCwrite (
£%) :IF S%=7j% S%=f%

3260 IF j%<>N% PROCread(N%):£%=n%:b%=1%
:PROCwrite(j%) : PROCread(b%) :n%=3%: PROCWr
ite(b%) : PROCread (£%) :1%=3%:PROCwrite (%)
:IF S%=N% S$%=3%

3270 N%=N%-1:PROCclear :ENDPROC

3280 :

3290 REM ***** Saye, Load & OSCLI *****

230

3310 DEFPROCsave

3320 IF DC% AND ch%=0 PRINT'"No file op
en" :TIME=0 :REPEAT: UNTIL TIME>400:ENDPROC

3330 IF NOT(DC%) PROCclear:PROCtitle("S
ave File",1) :PROCtitle("M-Base : "+N$,22
) :N$=FNinput ("Save file as :"+CHR$131,N$
L0.4,1048 197)

3340 PROCstinfo

3350 IF NOT(DC%) PROCcentre("Saving "+N
$,6) :0SCLI("SRSAVE "+N$+" 0 "+STRS~ (E%)) J

Beebug December 1993

M-Base

:ELSE EXT#ch%=E%:CLOSE#ch%:ch%=0

3360 PROCclear :ENDPROC

300

3380 DEFPROCstinfo

3390 E%=0:FOR A%=da% TO da%+&3FF STEP4:
1A%=0:NEXT

3400 $da%=N$:! (da%+&C)=N%: ! (da%+&10)=F%
11 (da%+&14)=L%: ! (da%+&18)=5%:0%=da%+&20

3410 FOR A%=1 TO F%:S50%=FS$(A%) :! (0%+&10
)=L% (A%) : | (Q%+&14) =X% (A%) : ! (0%+&18)=Y% (A
%) :0%=0%+&1C: NEXT

3420 E%=&405+L%*N%:PROCio(FALSE, da%,da%
+&3FF, 0)

3430 ENDPROC

3440 -

3450 DEFPROCload

3460 IF DC% o$="Open":ELSE o$="Load"

3470 PROCclear:PROCtitle(o$+" File",1):
PROCtitle("M-Base",22) :N$=FNinput ("File
name :"+CHR$131,N$,0,4,10,33,122)

3480 PROCcentre(o$+"ing "+N$,6) :IF NOT(
DC%) OSCLI("SRLOAD "+N$+" 0"):ELSE ch%=0
PENUP N$

3490 PROCassert : ENDPROC

3500

3510 DEFPROCassert

3520 PROCio(TRUE, da%,da%+&3FF,0)

3530 N$=$da%:N%=!(da%+&C) :F%=! (da%+&10)
:L%=!(da%+&14) :S%=! (da%+&18) :0%=da%+&20

3540 FOR A%=1 TO F%:F$(A%)=50%:L%(A%)=!
(0%+&10) : X% (A%) =! (Q%+&14) : Y3 (A%)=! (Q%+&1
8) :0%=0%+&1C: NEXT

3550 PROCclear :ENDPROC

2hel -

3570 DEFPROCoscli:VDU23;11,255;0;0;0;0;

3580 TNPUT' ' “**05

3590 IF 0$="MX" OR 0%="mx" PROCmset :END
PROC

3600 ON ERROR GOTO3640

3610 PROCclear:VDU23;11,0;0;0;0; :PROCt1
tle("*"+08,1) :PROCtitle("MOS", 22) :VDU28,
0,20, 39,4

3620 OSCLI(0$):PRINT''"Press SPACE":VDU
26:0N ERROR VDU3:IF ERR=17 OSCLI("FX4"):
GOTO0120:ELSE CLS:REPORT:PRINT" at line *
;ERL:END

3630 REPEAT:UNTIL32=GET:ENDPROC

3640 VDU26:PROCclear:PROCtitle("MOS err
or', 1] :PROCtIt]el0s, 7]

3650 PRINTTAB(0,4);"MOS command error :

' :REPORT

3660 PRINT''"Press SPACE":ON ERROR VDU3

;IF ERR=17 OBCLI("FX4*):GOT0120 ELSE (1S
:REPORT: PRINT" at line ";ERL:END

3670 REPEAT:UNTIL 32=GET

3680 GOT0120

3690 -

3700 REM ***** yiey Information ****x

3710 -

3720 DEFPROCinfo:PROCclear:VDU23;11,0;0
;0:0:0;

3730 PROCtitle("Information",1):PROCtit
le("M-Base", 22)

3740 PRINTTAB(0,4);"File name :";CHR$13
1;N$

3750 PRINTTAB(0,6);"No.Fields :";CHR$13
0;F%

3760 PRINTTAB(0,8);"No. Items :";CHR$12
9;N%

3770 IF F%=0 PROCcentre("Press SPACE",2
0) :REPEAT:UNTIL INKEY-99:PROCclear:ENDPR
oC

3780 PRINTTAB(0,10);:FOR A%=1 TO F% STE
P2:PRINTFS (A%) ; TAB(20) ; : IF A%<F% PRINTFS
(A%+1) : IF F%<13 PRINT

3790 NEXT:REPEAT:UNTIL INKEY-99:PROCcle
ar : ENDPROC

3800 -

3810 REM ***** giatus & Setup Xr*i*

2820 ¢

3830 DEFPROCstatus:REPEAT

3840 PROCclear:PROCtitle("Status",1):PR
OCtitle("M-Base",22)

3880 PRINTTARI0, 4} "Options shie 1) Dy
inter : ";:IE PR% PRINT'On*:ELSE
PRINT"Off"

3860 PRINT'" 2) Complex search : ";:IF
CS% PRINT"Any":ELSE PRINT"All"
3870 IF F%>0 PRINT'" 3) Print options"

3880 PRINT'" 4) Closeness list : ";Mc%:
PRINT'* 5V CR - *::IF CR$ PRINT"on":ELSE
PRINT"of £*

3890 PRINT'" 6) Media : ";:IF DC% PRINT

"Disc":ELSE PRINT"Sideways RAM"

3900 PRINT'" 7) Main menu"

3910 PRINT!"Press 1-7 : ";:0$="1234567"
(IF ES=0 os=41045674

3920 REPEAT:0$=GETS:UNTIL INSTR(0$,0S)
3930 IF 0$="1" PR%=NOT(PR%)

3940 IF 0$="2" CS%=NOT(CS%)

3950 IF 0s="3! EROCDODL

3960 IF 0$="4" INPUT'"New number "MG%:I
F MG%<1 OR MG%>50 MG%=15

3970 IF 0$="5" CR%=NOT(CR%)

Beebug December 1993

13

M-Base

3980 IF 0$="6" PROCswitch

3990 UNTIL 0$="7":ENDPROC

4000 :

4010 DEFPROCswitch

4020 PRINT'CHRS(11);"Are you sure (Y/N)

: "; :REPEAT:0$=GETS :UNTIL INSTR("YyNn",
0$) :PRINTOS: IF 0$="N" OR 0$="n" ENDPROC

4030 IF DC% AND ch%=0 DC%=FALSE:ENDPROC

4040 PRINTCHRS(11);:IF DC% PRINT"Auto C
lose File " :PROCsave : DC%=FALSE: PR
0Ccleardb:ENDPROC

4050 IF N$="" DC%=TRUE:ENDPROC

4060 PRINT"Save file (/N o ECHRS
(8) ; :VDUT : REPEAT: 0$=GETS : UNTIL INSTR("Yy
Nn",0$) : PRINToS

4070 IF 0$="Y" OR oS="y" PROCsave

4080 DC%=TRUE:PROCcleardb: ENDPROC

4090 -

4100 DEFPROCpopt

4110 FOR A%=1 TO F%:IF P%(A%) S$(A%)="0
n' G EICE G5 (A%) 1O fN

4120 NEXT:PROCsee(0) :PROCtitle("Printou
t Options",1):PROCtitle("Options",22)

4130 v%=1:REPEAT

4140 S$(v%)=FNinput (F$(v%),SS(v%),X%(v%
), Y%(v%),L%(v%),32,126)

4150 IF INKEY-58 AND v%>1 v%=v%-1:ELSE
v%=v%+1

4160 UNTIL v%>F%

4170 FOR A%=1 TO F%:IF INSTR("OFFOffoff
",8$(A%)) P%(A%)=FALSE:ELSE P%(A%)=TRUE

4180 NEXT:ENDPROC

4190

4200 DEFPROCmset

4210 LOCAL c%,A%,AS$

4220 PROCclear:PROCtitle("M-Base SetUp"
,1) :PROCtitle("File : MSetUp",22) :PRINTT
AR(0, 5 -

4230 c%=OPENIN"MSetUp":IF c%=0 PRINT"F1 |
le not found":TIME=0:REPEAT:UNTIL TIME>=
700 : PROCclear : ENDPROC

4240 REPEAT:AS="":REPEAT:A%=BGET#c%:IF
A%>32 AND A%<127 AS=AS+CHRS (A%)

4250 UNTIL A%=13 OR EOF#c%

4260 IF FNbad(A$) PRINT"Bad line : ";A$

4270 UNTIL EOF#c%:CLOSE#c%:TIME=0:REPEA
T:UNTIL TIME>200:PROCclear: ENDPROC

4280

4290 DEFFNbad (A$)

4300 LOCBEL £5 0%, p%, 15, o8

4310 IE TERTS(AS 1) ex! [=TRUE

4320 0%=INSTR(AS,"]") :IF 0%=0 =TRUE

4330 £$=MIDS(AS,2,0%-2)
4340 IF f$<>"*" AND FNlow(f$)<>FNlow (NS
) =FALSE

4350 p%=INSTR(AS,":"):IF p%=0 =TRUE
4360 c$=MIDS (AS,0%+1,p%-0%-1) :r$=RIGHTS
(AS,LEN(AS) -p%)

4370 IF cS="PRINT" =FNsp(r$)

43801 IF e¢s-'CR! -FNoy(r5)

4390 IF c$="LENGTH" =FNlength(r$)

4400 IF c$="COMP" =FNcomp(r$)

4410 IF c$="PRINTER" =FNprinter(r$)
4420 =TRUE

4430 -

4440 DEFPROCcomm

4450 INPUT' LM la] ac e fia]iCs

4460 IF FNbad(C$) PRINT'"Bad command :
Press SPACE"; :REPEAT:UNTIL 32=GET

4470 PROCclear :ENDPROC

4480 :

4490 DEFFNsp(r$)

4500 IF LEN(r$)<F% =TRUE

4510 FORA%=1 TO F%:P%(A%)=TRUE:IF MIDS
r$,A%,1)="0" P%(A%)=FALSE

4520 NEXT:=FALSE

453y ¢

4540 DEFFNcr(r$)

4bh{ TR RSctON! OR po-lon* QR psctld (R
%=TRUE : =FALSE

4560 TR PS-FORR! OR rS-foff* Ok S t0E
CR%=FALSE:=FALSE

4570 =TRUE

4580 :

4590 DEFFNlength(r$)

4600 LOCAL 1%:1%=VAL(rS)

4610 IF 1%<3 OR 1%>50 =TRUE

4620 MG%=1%:=FALSE

4630

| 4640 bEFFNcomp(rs)

4650 IF rs-"all® OR rS="ALL" CS%=FALSE:
=FALSE

4660 IF rS="any" OR r35="ANY" CS3=TRUE:=
FALSE

4670 =TRUE

4680 :

4690 DEFFNprinter (r$)

A700 TF £5- 0N 0B e liont OR g W% PR
%$=TRUE : =FALSE

A7l0 17 ys- ot OR v OEF" OR ps=t0¢
PR%=TRUE: =FALSE

4720 =TRUE

4980

4740 BEM **** More to follow *#*** B

1

14

Beebug December 1993

BEEBUG Education

An unusual event: in this month’s BEEBUG Education Mark Sealey
looks at a new release for the 8-bit BBC micro.

Product
Supplier

Teddy Bear's Rainy Day
Sherston Software

Swan Barton, Sherston,
Mariborough, Wilts SN16 OLH.
Tel. 0666 840433,

fax 0666 840048

Price £26.95 ex. VAT

TEDDY BEAR’S RAINY DAY

Good old Sherston! As the flow of new
products for the BBC micro has all but
dried up, one of the firms that has been
on the scene since the beginning has
brought out its last title for the BBC
micro - and a good one, too.

Aimed at children in key stage 1
classes, Teddy Bear’s Rainy Day is a
topic-based package around the themes
of bears, stories and the environment.
Officially it is the sequel to the highly
successful Teddy Bear’s Picnic. But this
farewell offering from Sherston can be
used even if you are not familiar with
the earlier product. At the start it
should be said that everything you get
if you decide to buy this pack (40 track
DEFS disc, teacher’s and pupil’s book,
workcards and A3/A4 overlays) will
delight you.

WHAT HAPPENS?

The package comes on two sides of the
disc (a 3.5” ADEFS version is available on
request) and is booted in the usual way.
An initial menu screen presents you with
nine options. These are: read the
instructions, teacher control, running
side 2 and the five parts of the
adventure.

Beebug December 1993

Helpfully, the instruction screen takes
the children through the various keys
that are used in response to prompts
throughout the program; these are
subsequently used consistently in the
software and make its use by even
those most unused to the computer
straightforward and easy.

I can see Bear Town.

&

Approaching town

Teacher Control allows you to adjust
the way the program operates... the
number of players (one or two, only),
the level of difficulty (of which there
are three), sound control (again three
levels), and enabling/disabling the
concept keyboard. It is also possible to
make, edit and select sequences of up
to eight lists of children’s names; these
can be subsequently selected on this
page so that groups can be called to
the computer to tackle specific
exercises in a predetermined order
without any immediate intervention
from the teacher or adult.

It is also possible to control some of these
options by key presses. Shift-3, for

15

BEEBUG Education

example, perhaps rather confusingly
unless you can always remember it,
toggles the player numbers. In all cases
the options set are displayed where
appropriate.

Crossing the road

Other keys control what is happening in
the five games themselves. Again, these
are by and large logical: at bath time, for
example, ‘P” toggles the plug being put in
or out.

By the time that you have reached the
end of the main menu and started the
adventure you will have discovered how
much thought has gone into this
program: for example, children are not
required to press the Shift key when
entering their names. It capitalises
whatever initial letter is entered
automatically. During conversations,
colours and screen location indicate the
participating ‘speaker’.

THE ADVENTURES THEMSELVES
There are five of these, which can either
be tackled separately in any order or
from the first (The Phone Call) to the last
(Hot or Cold?).

The way that you actually approach these
components will depend on how you
intend to use the software as a whole. The

16

fact that you have this choice is indicative
of how far things have come in the design
of this sort of pack. Flexibility of use has
been emphasised at the expense of slick
graphics and over-prescriptive and
narrow “teaching points”.

To decide on which parts of the
adventure to use, how and in which
order it is useful to read the introductory
pages of the manual. In it, each
adventure has a page to itself; what
happens is briefly described, there is a
graphic of what you can expect to see on
screen, and details of the route through
the scene. But, importantly, there is the
author’s assessment of the learning
points that are covered.

Waiting for the bus

It is useful to know, for instance, that in
The Phone Call, numbers entered by the
children that are not valid in the UK are
not allowed, or that the combinations of
coins possible in the bus ride section,
Fares Please, vary according to level: they
are restricted to pennies in level one but
allow any grouping at level three. This is
the sort of information that makes
planning any use of the program so easy.

The material covered in the five
adventures centres around: letters and

Beebug December 1993

BEEBUG Education

numbers used in sequence (The Phone
Call), geometry and safety awareness (A
Walk in the Town), money and number
facts (Fares Please), patterns and turtle
geometry (Slide & Squelch), and
opposites, temperature, timing and
sequencing (Hot or Cold?).

There is a realistic progression through
the events of the rainy day through
which the teddy lives: he is invited out
by Grandpa, travels to his house, gets
mucky and has to clean himself up. It
would thus be advisable for the children
to experience the logic of this as a whole
at least once before being expected to
concentrate on particular aspects
(geometry, number work or safety, for
example) by use of the pre-set sequence
facility that has been described earlier.

DOCUMENTATION

As has been said more than once before
now, the booklet that comes with Teddy’s
Rainy Day is excellent - in common with
all Sherston’s material.

The book is crammed with sight
vocabulary (the words that the children
can both learn from the package and
which they will need to help them with
it). There are umpteen suggestions for
use and brief background information,
for example, on the invention of the
telephone and the classic ways of making
one with cups and string. There is an
exhaustive booklist and some guidance
on difficulties which you may meet. The
workcards and overlays are colourful
and the pack comes in a plastic wallet -
all in all an addition to the software
library to be proud of!

CONCLUSION
This review has gone into detail in
describing and evaluating Teddy Bear’s

Beebug December 1993

Rainy Day. This is because the product
epitomises the state of the art after eleven
years of educational software for the BBC
micro. It is easy to use, still original,
albeit simple in idea and execution, well
supported by the documentation and
ancillary resources supplied as part of
the pack, amenable of use in a variety of
teaching styles and attractively

presented.
"F B .

B

Teddg Bers
Rolng Dctd

Teddy Bears Rainy Day

Above all, Teddy Bear’s Rainy Day
actually can almost be guaranteed to
sponsor real learning: the language that
will be used whilst children are
‘playing” with Teddy, the opportunities
for problem solving, the promotion of
logical thinking. There are
mathematical skills to be exercised,
especially in number work and turtle
geometry. And, perhaps most
importantly, the chance for an
imaginative teacher to draw on the
product to engage the almost inevitably
enthusiastic children in both art and
discussions on personal health and
safety issues.

Even now, you could do a lot worse than
buy Teddy Bear’s Rainy Day; it is
sensibly priced and could still - thanks to
its emphasis on child safety and well
being - fill a gap in the curriculum. B

17

o

FLEEELEES
EREEERE!

P LE]
EEEE

|
|

T
|

EEERSRRas s B

BESEESs s Ea

EEELLE]
e

EEEEE
| 15 28)

88
1

11

EEESERREEEESRROEE

EENCDEEE DS ENEREEE

o
=

ESESTEREDEREEER

ESEERCERSRTERDE

18

Sorting Revisited

by David Peckett

Regular readers may
remember that BEEBUG
Vol.11 No.10 & Vol.12
No.1 looked at various
ways of sorting data into
order. Those articles
prompted quite a lot of
correspondence and so,
this month’s Workshop
follows up some of the
points raised by readers.

One result of the limited
length allowed for
BEEBUG Workshops is
that sometimes, less
information is included
than one might wish.
One such area in those
articles was how to add
an item into the right
place in an already-
sorted list. For instance,
if you are keeping a list
of club members, you
will probably want to
add new ones in
alphabetical order.

One way is to re-sort the
list as each item is

added. To do' this,
though, you must
choose the sorting

algorithm very carefully
so that the sort after
each item is entered is
very fast.

Here’s where it comes in
useful to know how the
different sorts react to
different data arrange-
ments. Some are very

much affected by the way that the data is
already ordered, while others have
pretty consistent run times. For example,
the Shell sort is a good general-purpose
sort, and normally much faster than the
Bubble sort. In one particular case,
however, the Bubble is noticeably faster.
If the list is already in order, apart from
only one item, then the correction can be
made very quickly. This is because the
sort only needs to make one pass
through the list.

This is exactly the case we have when we
add an item to a list. However, we do
need a slightly more specialised
program. The original Bubble sort
started at the bottom (i.e. the low index
numbers) of the array of dataa n d
bubbled items up to the top. If, however,
we are adding data to the list, it is easier
to add it at the top (e.g. by adding 1 to an
array index); we therefore need to adapt
the system to bubble (or should it be
sink?) an item DOWN to the correct
place. ‘

Here is a revised version of the original
PROCbubble to do the job. You will see
that I have also changed it to access the
data in array() via the pointers in ptr%() -
this is the most likely need in database
programs, etc.

SINKSORT

10000 DEF PROCsink(st%,fin%)

10010 IF st%>=fin% THEN ENDPROC

10020 LOCAL F%,I%

10030 FOR I%=st% TO fin%

10040 ptr¥(I%)=I%

10050 NEXT

10060 REPEAT

10070 F$=FALSE

10080 FOR I%=fin% TO st%+1 STEP -1

Beebug December 1993

BEEBUG Workshop - Virtual Arrays

10090 IF array(ptr%(I%-1))>
array (ptr%(I%))
THEN PROCswap
10100 NEXT
10110 st®=st%+1
10120 UNTIL NOT F%

10130 ENDPROC

10500
10510
10520
10530
10540
10550
10560

DEF PROCswap

LOCAL temp$
temp%=ptr%(I1%-1)
ptr%(I%-1)=ptr%(I1%)
ptr%(I%)=temp%
F%=TRUE

ENDPROC

QUICKSORT

Several BEEBUG members referred to the
‘Quicksort’. This is a very fast way of
sorting long lists, although it’s not so
good for short ones. Unfortunately, it is a
little tricky to explain.

Briefly, the sort finds the value in the
middle of the array and then works in
from each end to the middle. As it works
in, the sort moves the individual
elements around so that all in one half
are greater than or equal to the middle
value, while those in the other half are
less than it. At that stage, it has done a
very rough ordering.

Having done that, it splits the whole array
into 2 halves, re-sorting each half into a
high side and a low side. Each of the 2
halves is then split into 2 more halves and
the procedure repeated. Then the quarters
are halved... At the end of repeated
halving, which goes as far as adjacent
elements, the whole thing is found to be
sorted. The technique is sometimes called
‘Sorting from Both Ends’. What I hope that
description shows is that the sort uses the
same basic split and divide process on
successively smaller parts of the array until
it is finished. Such an approach is a perfect
application for a recursive procedure.

Beebug December 1993

All that recursion means is that a
function is called by itself, which is called
by itself..., doing a bit each time until a
call creates an exit condition and the
whole chain unravels. Here’s some
pseudo-code for an important recursive
procedure:

1 DEF PROCDrink_Beer

2 Take a Swig

3 IF Glass NOT Empty PROCDrink_Beer

4 ENDPROC

Most versions of Basic make it almost
impossible to use recursion, since all the
variables used at each recursion level
must be preserved while deeper calls are
active. BBC Basic, though, supports
recursion very well, with its FNs, PROCs
and LOCAL variables. Here is a recursive
Quicksort.

Line 11040 finds the middle value of
array(), or the part of it sent to the
procedure, and then the two REPEAT-
UNTIL loops at lines 11060-11090 and
11100-11130 find misplaced elements
either side of the centre point. Assuming
that the 2 pointers have not crossed
(why?) the elements are swapped.

QUICKSORT

11000 DEF PROCquicksort (st%, fin%)

11010 1IF st%>fin% THEN ENDPROC

11020 LOCAL hiptr$, loptr%,midval

11030 loptr%=st%:hiptr$=fin%

11040 midval=array((st%+fin%)DIV 2)

11050 REPEAT

11060 loptr%=loptr%-1

11070 REPEAT

11080 loptr%=loptr¥+1l

11090 UNTIL array (loptr$)>=midval

11100 hiptr%=hiptr%+1

11110 REPEAT

11120 hiptr$=hiptr%-1

1130 UNTIL array (hiptr$%)<=midval

11140 IF loptr%<=hiptr% THEN
PROCgswap (loptr$, hiptr$)

11150 UNTIL loptr%>hiptr%

continued on page 24

19

Putting Directories To Work (Part 1)

Michael Shepherd makes ADFS easy.

Users of the ADFS welcome the
advantages it has over the earlier DFS
systems. To many, the main benefits are
the longer filenames, making possible the
use of more descriptive names for files,
and the directory tree structure, enabling
a greater degree of classification of files
and a better use of disc storage space.
However, there is an accompanying
disadvantage, at least for the impatient, in
that the longer filenames, and even longer
pathnames, can mean a greatly increased
amount of keyboard input before any
particular file can be loaded.

One possible means of reducing this
additional work is to convert the current
directory into a menu format so that the
choice of file or next directory can be
made by means of a two-number input
instead of the full LOAD/*DIR <name>
command. As ADFS keeps a copy of the
current directory in memory, it is
possible to read this copy directly in
order to form a suitable menu. On the
Master 128, with the ADFS Version 1.50,
this copy is stored on the five pages
&C400 - &C8FF and from the
information on directory structure given
in the Reference Manual it is possible to
extract all required information.

It is also of interest to note that the Free
Space Map is copied to the two pages
&C000 - &C1FF, the two intervening
pages &C200 - &C3FF being used as a
workspace and to store temporary
information such as the pathname
defined by a *LIB command. The
structure of the ADFS directory is
described in more detail in the technical
notes below.

20

However, it is possible that in
environments other than the M128, and
even in other versions of the ADFS, the
copy of the current directory will be
stored elsewhere, so that a more
generally applicable means of access to
the current directory should be sought.
This can be achieved by the use of
OSWORD. OSWORD may be considered
as an expansion of OSBYTE; it handles
data in a similar manner, but is used to
handle two or more bytes in the same
operation - typically pages or sectors in a
single call. In all, there are seven
OSWORD calls, of which four are ADFS-
only and three DFS-only. Parameters are
passed to the call in a block of memory,
to which X and Y act as pointers, rather
than directly, as in OSBYTE calls.

Type in and save the Contents listing. It is
assumed that, when in regular use, the
program will be chained from the 'BOOT
file so that the starting point is to be the
root directory ($). In addition, a function
key (f9 in this case) is set to return the
system to Basic, to the root directory and
to re-run the program as and when
required.

The ADFS-based program Contents
copies the current directory from disc
into user memory and from this
composes a menu showing all possible
choices in numbered sequence starting
with ‘0’ to end the program, ‘1’ to
return to the root directory and "2’ to
return to the parent directory, followed
by a full listing of the directory
contents accompanied by a ‘D’ or ‘F’ to
indicate whether the entry is a
directory or a file.

Beebug December 1993

Putting Directories to Work

The program will only accept a numerical
input in the valid range. When a valid
choice is made, the program will identify
it as a directory or a file. If a directory is
selected, this is made the current directory
and the process repeated. Otherwise, the
choice is a file, and the user is invited to
Directory Contents

Directory name : ARTICLES

1 Root directory $ 2 Parent directory 4

3
17
1
3
9
3

1
1
L
2
2
3

7
1

NATCURRIC MR (15) FFFFFFFF FFFFFFFF 00000674 800166
Facilities available

L
7
‘
4
6

'Contents’ in action

the directory entries. All ADFS
directories occupy five sectors of disc
space, corresponding to five pages of
memory, i.e. 1280 bytes, and the structure
of a directory is as shown in Table 1. The
first byte contains the Directory Master
Sequence Number, which is the number
appearing in brackets above the word
‘Option” in the *CAT display and is the
running total of all entries in the
directory. The next four bytes are the
string “Hugo’. This is followed by the 47
blocks of 26 bytes giving the data for all
the entries in the directory. The
remainder of the directory holds its own
name and access status, the start sector of
the parent directory and the directory
title. The directory ends with a &00,
immediately preceded by a repetition of
the string “Hugo”.

choose a ‘language’ from those

available, i.e. ROM based software like | Byte(s) Content
Basic, View etc. Line 1520 details the)
: 000 Directory Master Sequence Number (BCD)
ROM calls, here based on fairly | /0., “Hugo”
standard choices, you should change | 005-01E Details of first directory entry
these to suit your own system. Note || 01F-038 Details of second directory entry

that the entries in this data line must
be five characters long and contain the
exact ‘star’ command that calls the 4BidCA
ROM. The chosen file is included in a 4CB

(and in steps of 26 or 01A)

Details of forty-seventh directory entry
0 (zero) i

load command, stored on another 4CC-4D5 Directory name and access string
function key, the language selected || 4D6-4D8 Start sector of parent directory
and the file loaded. 4D9-4EB Directory title

- 4EC-4F9 Reserved
This part of the program could be :ESAFE E_:Legc;?ry A L e o0 Narmhor (GH)
developed further so that it takes you || 4e¢ 0 (zero)

directly into an application with the
file ready. Currently the loading of
the file only works correctly with
Basic, though any ROM can be called and
files then loaded in the normal way.
Some experimenting with PROClang
should bring useful results.

TECHNICAL NOTES
Readers who do not have the Reference
Manuals may wish to know more about

Table 1. ADFS Directory structure.

An ADFS directory can contain up to 47
entries and the information relating to an
entry is contained in 26 bytes as shown in
Table 2. The first ten bytes, 0 - 9, contain
the name of the entry, the first four bytes
also containing the access status of the
entry. If the entry name is less than 10

Beebug December 1993 21

Putting Directories to Work

characters long, the name ends with a
&0D (a carriage return). An entry starting
with &00 indicates the end of the
directory has been reached. The access
attributes R,W,L,D are stored (in that
order) by setting the 7th (most
significant) bit of the appropriate byte. In
this utility, only the D attribute is of
interest and the value of the fourth byte
MOD 128 is used to set the D or F label
against the entry name.

Byte(s) Content

00-09 Entry name and access string
0A-0D Entry load address

OE-11 Entry execution address
12-15 Entry length in bytes

16-18 Entry start sector (on disc)

19 Entry sequence number

Table 2. Details of ADFS Directory entry

The next three sets of four bytes give
respectively the load and execution
addresses and length of the entry and are
not used here. The next three bytes give
the absolute start sector of the entry on the
disc which is used by this program only if
the entry is a directory. The final byte of
the block contains the sequence number of
the entry, which appears in both the *CAT
and *INFO displays as the number in
brackets against the entry name.

The technique used to record the access
status explains the need to read the entry
name byte-by-byte and to take the result
MOD 128. Reading an entry name ceases
after 10 bytes have been read, or a value
of &0D is encountered. As stated
previously, an entry name starting with
&00 marks the end of the directory.

Setting the length of the pathname to its
maximum permitted value of 255

22

characters means that a minimum of 24
levels of directory can be handled; the
array element pathlength%(x) contains the
total length of the pathname down to
level x. Changes of directory are made by
means of DIR <pathname> commands;
*BACK and *DIR” are avoided.

When the selected entry is not a directory
but a file, the program places a LOAD
command under a convenient function
key (f5 in this case, but can be varied to
suit the individual user) and then
facilitates the choice of the required
‘language’. A choice of six languages is
given here, but the means for providing a
wider or different choice is self-evident.

The call *FX138,0,133 places the value 133
in the keyboard buffer, where it remains
until input is required - in this case after
the program has ended. The value 133 is
the input from function key 5 and
implements any string stored there. In
this case it is the LOAD command for the
selected file. This call must be amended
in line with any change to the function
key used for the LOAD command.

In the next article I shall present a
program which allows you to search a
disc for a file name in any directory.

10 REM Program Contents

20 REM Version B1.0

30 REM Author J.M.Shepherd

40 REM BEEBUG December 1993

50 REM Program subject to copyright

50 ¢

100 MODE 0:0N ERROR GOTO 1860

110 DIM pathlength%(24) :pathlength%(0)
=1:level%=0:H%=2

120 pathname$=STRINGS (255," ") :pathnam
p3=tS - OSITI"DIR &

130 OSCLI"KEY9 *KEYS|M*BASIC|M*DIRS|MC

Beebug December 1993

Putting Directories to Work

H."+CHRS$34+"CONTENTS" +CHR$34+" [M"
140 .
150 REPEAT
160 PROChugo (H%) : PROCdisplay:PROCselec

=

170 UNTIL ref%=-2
180 CLS
190 END
200
1000 DEF PROCdisplay
1010 CLS:PRINTTAB(25);"Directory Conten
ts" :M=&24CC:PROCstandardise (M)
1020 PRINTTAB(25,2);"Directory name : "
;modifiedsS
1030 PRINTTAB(1,4);"1 Root directory $"
;TAB(41) ;"2 Parent directory ""
1040 FOR I=0 TO 44 STEP 4
1050 FOR J-0 10 3
1060 M=&2005+(I+J)*&1A
1070 IF ?M=0 I=44:0=3 ELSE PROCstandard
ise (M) : PROCshow
1080 NEXT
1090 PRINT
1100 NEXT
1110 PRINTTAB(20,19);"Enter zero to exi
t program"
1120 ENDPROC
1120
1140 DEF PROCselect
1150 REPEAT
1160 REPEAT
1170 INPUTTAB(30,30);"Give number
";TAB(42,30) :refs
1180 UNTIL LENref$<3 AND.LENref$>0 AND
ASCref$<58 AND ASCref$>47 AND ASCRIGHTS (
ref$,1)<58 AND ASCRIGHTS (ref$, 1)>47
1190 ref%=VALref$-2
1200 UNTIL ref%<(M-&1FEB)/&1A
1210 IF ref%>0 AND ref%<48 M=ref%*&l1A+&
1FEB: PROCstandardise (M)
1220 IF ref%>0 ON (M?3 DIV 128)+1 PROC1
ang, PROCmove ELSE PROCmove
1230 ENDPROC

1240 :

1250 DEF PROChugo (H%)

1260 A%=&72:X%=570:Y%=0:2%=0

1270 ?X%=0:X%!1=62000:X%?5=8

1280 X%?6=(H% AND &FF0000)/&10000

1290 X%?7=(H% AND &FF00)/&100

1300 X%?8=(H% AND &FF)

1310 X%29=5

1320 x%?10=0

1330 x2111-0

1340 CALL &FFF1

1350 ENDPROC

1360 -

1370 DEF PROCshow

1380 P=20*J:Q=6+1/4:C=70-2*(M?3 DIV 128
)

1390 NS=RIGHTS (" "+STRS (I+J+3),2)

1400 PRINTTAB(P,Q) ;NS;TAB(P+4,Q) ;CHRSC;
TAB(P+6,Q) ;modifieds$;

1410 ENDPROC

1420 .

1430 DEF PROCstandardise (M)

1440 modified$="":char%=0

1450 REPEAT

1460 A=?(M+char$%) MOD &80

1470 IF A<>13 modified$=modified$+CHRSA
:char%=char%+1 :

1480 UNTIL A=13 OR char%=10

1490 ENDPROC

1500 ;

1510 DEF PROClang

1520 N=0:data$="BASICSHEETSTOREWORD EDI
I PERM %

1530 PRINTTAB(10,19);:0SCLI"INFO "+modi
fieds$

1540 PRINTTAB(20,21);"Facilities availa
ble";SPC(30)

1550 FOR line%=1 TO 6

1560 PRINTTAB(25,22+1line%);STRS (1ine%);
*. "4MIDS (data$, line%*5-4,5)

1570 NEXT

1580 PRINTTAB(30,30);"Enter choice (1 -
6l

Beebug December 1993

23

Putting Directories to Work

1590 REPEAT

1600 lang%=GET-49:IF lang%<0 OR lang%>5
VDU7

1610 UNTIL lang%<6

1620 lang$=MIDS (data$, lang%*5+1, 5)

1630 IF lang%=2 OSCLI"BACK"

1640 OSCLI"KEY5 LO."+CHR$34+modified$+C
HR$34+" [M*, [M|M*INFO "+modified$+" |M"
1650 OSCLI"FX138,0,133":08CLI lang$
1660 ENDPROC

1670 -

1680 DEF PROCmove

1690 IF ref%>0 PROCforwards ELSE PROCba
ckwards

1700 OSCLI"DIR "+pathname$

1710 ENDPROC

1720 .

1730 DEF PROCforwards

1740 H%=(M!22 AND &FFFFFF) :level%=level

%+1

1750 pathlength%(level%)=pathlength%(le
vel%-1)+1+LENmodified$

1760 pathname$=pathname$+" . "+modified$

1770 ENDPROC

1780 .

1790 DEF PROCbackwards

1800 IF ref%=-1 level%=0:H%=2

1810 IF ref%=0 H%=1&24D6 AND &FFFFFF:le
vel%=level%-1

1820 pathname$=LEFTS (pathname$, pathleng
th%(level%))

1830 ENDPROC

1840 -

1850 REM error handling

1860 IF ERR=200 OSCLI"MOU.Q":RUN

1870 IF ERR DIV 16=10 CLS:PRINTTAB(20,1
5) "Hard break required"

1880 REPORT:PRINT" at line ";ERL

BEEBUG Workshop (continued from page19) ;

11160 IF st%<hiptr% THEN
PROCquicksort (st%,hiptr%)
IF loptr%<fin% THEN
PROCquicksort (loptr%, £in%)
11180 ENDPROC

11170

12000 DEF PROCgswap (sptrl%,sptr2%)
12010 LOCAL temp

12020 temp=array (sptrl%)

12030 array(sptrl%)=array (sptr2%)
12040 array(sptr2%)=temp

12050 loptr%=loptr¥+l

12060 hiptr%=hiptr$-1

12070 ENDPROC

This continues until the pointers HAVE
crossed when, and only if there are
elements to sort, the recursive calls to
further sort the high and low halves are
made. These, of coutse, repeat the
process until only one element in array()
has to be “sorted’, when that recursive
chain unravels. Note that the procedure’s

24

parameters are LOCAL, as are the
variables it uses. This means, for
example, that loptr% in one level of the
chain is different from the loptr% in the
next level up or down - the system saves
them all for us.

On the magazine disc, you will find a
Quicksort demo program which shows
very clearly how the method sorts in
from each end. It also sorts the same
items via a Shell sort, so you can see the
speed difference of the two approaches.

Readers who would like to find out more
about both searching and sorting are
recommended to consult the book File
Handling for All published by RISC
Developments at £9.95 ex. VAT (zero rated at
time of writing), p&p £2. An accompanying
disc (specify 5.25” DFS or 3.5” ADFS) is
also available for a further £2 to BEEBUG
readers.

Beebug December 1993

| EE :
| course j

Even the firstest of
First Coursers will

have used their disc drive for loading
programs. However, you can get much
more from your disc drive than that. If
you use a word processor or database
you will be familiar with the idea that
data can be stored on disc. This is
important for two reasons: first, it means
that data dealt with by a program, be it a
novel or just the high scores of a game,
can be stored while the computer is
switched off and then reloaded, into the
original or another machine, at any time.
Second, it allows the computer to deal
with a lot more data within a program;
the maximum RAM available in an
Master 128 largely depends on the wit of
the programmer, but you’ll be lucky to
get access to more than 32K at any one
time. With a disc as part of the machine’s
memory, albeit a rather slow part, you
might have access to nearly 700K. The
question is - how is it done?

BBC Basic gives you a fairly straight
forward set of commands to help you
access the disc directly from inside your
program, but first...

AN OVERVIEW

Data is stored on the disc sequentially in
single bytes, each of which can be set to
any number from 0 to 255. Text is stored
in ASCII form, so a byte set to 65 would
represent a capital ‘A" and so on. The
‘non-ASCII” bytes are used by Basic to
tokenise key words; when you write files
to the disc you can use any value for
anything you want. A group of bytes
saved together is called a file. Where
exactly it goes on the disc is not our
problem; DFS or ADFS sorts this out for

Beebug December 1993

us and keeps track of where everything
is. If we want to do something with a file
we first open it, then write and/or read
our data, then we close it. Each file that
we open has a handle by which we can
identify it; by using handles we can
access several files at once - up to five to
be exact - though this is not
recommended for your first foray into
disc filing.

The rest of this article assumes you are
using BBC Basic II or later - if you still
have Basic I you should use OPENIN for
both OPENIN and OPENUP.

So, the first thing we need to do is open a
new file, for this we use OPENOUT, like
this:

10 x=OPENOUT ("file")

Don’t run this yet. The argument in
brackets must be a string or a variable
containing a string. In this case a file will
be created on the disc called file, and the
file handle will be stored in X. Let’s put
something in the file; the most
straightforward way to do this is with
PRINT#:

20 PRINT#X, "Hello"
100 CLOSE#X

In line 20 the ‘# tells Basic we want to
print to a file and the X tells it which file
to print to. Anything after the comma is
then sent to the file. Finally we close the
file with CLOSE#X.

AN IMPORTANT BIT
You must always keep track of the files
you have opened and make sure they are

25

First Course

closed correctly, there are two reasons for
this. The main one is that the output to
the files is held in a buffer and the
contents of the buffer are sent to the disc
when the buffer is full. Each buffer is
about 256 bytes long and, as your data is
unlikely to divide exactly into this, there
will be a bit left over. When you close a
file the contents of the buffer are sent to
the disc, whether the buffer is full is not.
If you don’t close it this final bit of data
will be lost. The second reason is that
Basic will not open the same file twice. If
you try to open a file that is already open
you will get the unsurprising error
message ‘Open’.

THE DREADED CLOSE#0

There is a quick and rather clumsy way
of making sure that files are closed, and
that is to use CLOSE#0. This will close all
files that are open but it is not
recommended as it seems to attach all
sorts of rubbish to the end of the file. The
extra is not necessarily a problem for
your data, it is safe, it’s just that it fills up
a disc very quickly. Another reason for
avoiding it is that, on all machines apart
from the Compact, there is a bug which
sometimes claims files are still open after
you've closed them.

Let’s get back to our program. OPENUP
lets us read from the file as well as write
to it, add the following lines to try this
out:

30 CLOSE#X

40 X=OPENUP "file"
50 INPUTH#X, A$

60 PRINT AS

INPUT#X reads back the information in
the file and line 60 prints it on the screen.

This all seems very straightforward, but,
it’s important to remember that

26

OPENOUT is for creating new files. If a
file of that name already exists it will be

* deleted - there is no warning. If we want

to read information in we must use
OPENUP. This opens a file without
deleting the information in it, but the file
must exist on the disc so that it can be
opened. Let’s explore this, and some
other ideas, in the more complex
example shown at the end of this article.
Type this program in and save it. It's a
fairly straightforward task: get
information on five employees and save
them.

PROCgetinfo gets the employee data from
the keyboard. Note the file types; age and
wage must be numbers, name$ and id$
can be anything you like. PROCprintinfo
prints the information, rather untidily, to
the screen.

PROCcreatefile simply gets the name of
the new file and opens, then closes it - it
now exists on the disc. PROCreadfromfile
is used if the file already exists. Here we
use OPENUP. The file must exist or you
will get an error. Note the order in which
the variables are input from the file. This
must be the same as the order in which
they were printed to it. If you get this
wrong you’ll probably get a ‘Type
mismatch” error; you certainly won't get
what you expect.

PROCuwritetofile also uses OPENUP to
write to an existing file. You must have
entered a file name at options 1 or 2 for
this to work. While you’re using the
PRINT# command this still effectively
overwrites an old data in the file - you
can’t just change one entry - but in more
sophisticated file handling this is
possible, so using OPENUP is a good
habit to get into. You’'ll also note that
every procedure closes the file when it
has finished.

Beebug December 1993

First Course

Some of the errors you could come across
while developing a file handling
program are as follows. ‘Open’ means
you have tried to open a file that is
already open. ‘Channel” means you have
tried to access a file that does not exist.
"EOF” means end of file: you have tried to
read beyond the end of the file. You also
need to look out for things like ‘Cat full’
and ‘Disc full’, the normal limits of the
disc still apply.

This article should have given you some
ideas on how you can use the disc for
saving data, it opens up all sorts of uses
for your machine.

Next month I'll look at saving single bytes to
disc - it's more useful than it sounds.

10 REM Program Files

20 REM Version Bl.0

30 REM Author Marshal Anderson

40 REM BEEBUG December 1993

REM Peogram subject to copyright

100 MODE 3

110 PROCsetup

REPEAT

A=FNmenu

IF A=l PROCcreatefile

IF A=2 PROCgetfilename:PROCreadfro

=

S D S

F A=3 PROCgetinfo

IF A=4 PROCprintinfo

F A=5 PROCwritetofile
UNTIL A>5

Ao ooli=d oy

0

it
i
2
2

o e S

2 DEF FNmenu

1010 PRINT "1) Create new file"'"2) Use
existing file"'"3) Enter info"'"4) See

=

~090 DEF PROCcreatefile

1100 INPUT"Name of file to create";FILE
$

1110 X=OPENOUT FILES$

1120 CLOSE#X

1130 PRINT FILES;" created"

1140 ENDPROC

o500,

1160 DEF PROCgetfilename

1170 INPUT"What is the name of your fil
e";FILES

1180 ENDPROC

dion .

1200 DEF PROCwritetofile

1210 X=0OPENUP FILES

1220 FOR Y=0 TO 4

1230 PRINT#X, NAMES(Y),AGE(Y),WAGE(Y),I
DS (Y)

1240 NEXT Y

1250 CLOSE#X

1260 ENDPROC

120 .

1280 DEF PROCreadfromfile

1290 X=0OPENUP FILES

1300 FOR Y=0 TO 4

1310 INPUT#X, NAMES(Y),AGE(Y),WAGE(Y),I
DS (¥)

1320 NEXT ¥

1330 CLOSE#X

1340 ENDPROC

1350

1360 DEF PROCgetinfo

1370 CLs

1380 PRINT"You are going to enter detai
ls for 5 employees. You need name, age,
wage and ID code."

1380 EOR Y=0 70 ¢

1400 PRINT “Number *;Y

1410 INPUT "Name ";NAMES(Y)

1420 INPUT "Age ";AGE(Y)

1430 INPUT "Wage FALSE";WAGE(Y)

1440 INPUT "ID code";ID$(Y)

1450 NEXT Y

1460 PRINT "Finished"

1470 ENDPROC

1480 :

1490 DEF PROCprintinfo

1500 CLS

1610 Bop val T 4

1520 PRINT NAMES(Y), AGE(Y)," FALS
E*;WAGE(Y), IDS (Y)

530 NEXTLY

1540 ENDEROC

Beebug December 1993

27

Breed a Bug

BUSINEss GRAPHICS - for producing graphs, charts and diagrams

1 2 3 Generation 20 VIDEO CATALOGUER - catalogue and print labels for your video
cassettes
+ | fraeg crom.e PHONE BOOK - an on-screen telephone book which can be easily
edited and updated
s 3 € PERSONALISED LETTER-HEADINGS - design a stylish logo for your
letter heads
APPOINTMENTS DIARY - a computerised appointments diary
= 7 3 MAPPING THE BRITISH ISLES - draw a map of the British Isles at
any size
g | g SELECTIVE BREEDING - a superb graphical display of selective

breeding of insects

THE EARTH FROM SPACE - draw a picture of the Earth as seen
from any point in space

PERSONALISED ADDRESS BOOK - on-screen address and phone book

PAGE DESIGNER - a page-making package for Epson compatible printers

‘WORLD BY NIGHT AND DAY - a display of the world showing night and day for any time and date of the year

File Handling for All
pefeton

e A i nd s

Computers are often used for file handling applications yet this is a subject
which computer users find difficult when it comes to developing their own
programs. File Handling for All aims to change that by providing an extensive
and comprehensive introduction to the writing of file handling programs with
particular reference to Basic.

File Handling for All, written by highly experienced authors and programmers David
Spencer and Mike Willlams, offers 144 pages of text supported by many useful program
listings. It is aimed at Basic programmers, beginners and advanced users, and anybody interested in File Handling
and Databases on the Beeb and the Arc. However, all the file handling concepts discussed are relevant to most
computer systems, making this a suitable introduction to file handling for all.

The book starts with an introduction to the basic principles of file handling, and in the following chapters develops
an in-depth look at the handling of different types of files e.g. serial files, indexed files, direct access files, and
searching and sorting. A separate chapter is devoted to hierarchical and relational database design, and the book
concludes with a chapter of practical advice on how best to develop file handling programs.

The topics covered by the book include:
Card Index Files, Serial Files, File Headers, Disc and Record Buffering, Using Pointers,
Indexing Files, Searching Techniques, Hashing Functions, Sorting Methods,
Testing and Debugging, Networking Conflicts, File System Calls

The associated disc contains complete working programs based on the routines described in the book and a copy of
Filer, a full-feature Database program originally published in BEEBUG magazine.

Fftnam et oove Line Edoe butL 6 Forg T Mighes ™ wintor” 1"
Enhanced ASTAAD CAD program for the
Master, offering the following features:
% full mouse and joystick control
% built-in printer dump
% speed improvement
% STEAMS image manipulator
% Keystrips for ASTAAD and STEAMS
% Comprehensive user guide
¥ Sample picture files
ASTAAD (80 track DFS) 1407a £5.95 ASTAAD (3.5" ADFS) 1408a £5.95
Applications II (80 track DFS) 1411a £4.00 Applications II (3.5" ADFS) 1412a £4.00
Applications I Disc (40/80T DFS) 1404a £4.00 Applications I Disc (3.5" ADFS) 1409a £4.00
General Utilities Disc (40/80T DFS) 1405a £4.00 General Utilities Disc (3.5" ADFS) 1413a £4.00
Arcade Games (40/80 track DFS) PAGla £5.95 Arcade Games (3.5" ADFS) PAG2a £5.95
Board Games (40/80 track DFS) PBGla £5.95 Board Games (3.5" ADFS) PBG2a £5.95

All prices include VAT where appropriate. For p&p see Membership page.

: (. ROLL OF HONOUR
SOLITAIRE - an elegant implementation of this ancient and fascinating i T T o i T MR RSP L0, 00, PR O B

one-player game, and a complete solution for those who are unable to i L W 5 , e =
find it for themselves. o

RoLL oF HONOUR - Score as many points as possible by throwing the
five dice in this on-screen version of 'Yahtze'.

PATIENCE - a very addictive version of one of the oldest and most & AR
popular games of Patience.

ELEVENSES - another popular version of Patience - lay down cards on

the table in three by three grid and start turning them over until they
add up to eleven.

CRIBBAGE - an authentic implementation of this very traditional card
game for two, where the object is to score points for various combinations and sequences of cards.

TWIDDLE - a close relative of Sam Lloyd's sliding block puzzle and Rubik’s cube, where you have to move numbers round a
grid to match a pattern.

CHINESE CHEQUERS - a traditional board game for two players, where the object is to move your counters, following a
pattern, and occupy the opponent's field.

Aces HIGH - another addictive game of Patience, where the object is to remove the cards from the table and finish with the
aces at the head of each column.

14:39:34
fopsil (009 Quner
Oetion 00 (off>
oir. dppsi1 v o CROSSWORD EDITOR - for designing, editing and solving
3l 4 WR~ C: g
iy 4 B crosswords
MoNTHLY DESK DIARY - a month-to-view calendar which can also,
FS it gwf:e" 00 <0f¢) be pnnted
§ 00 <0

Div: Al Cib. Cisrargl 3D LANDSCAPES - generates three dimensional landscapes
LAND FFFF3000 FFFF3000 00 REAL TIME CLOCK - a real time digital alarm clock displayed on
5 3; 3 00003747 o00scs the screen

HEieo0s PhEree0 002000 RUNNING FOUR TEMPERATURES - calibrates and plots up to four

6192 o

Frrzvcou FFEF7C00 000400 temperatures

AL L e R RS JULIA SETS - fascinating extensions of the Mandelbrot set
$56AvE CLOCK 000 8066, PEEF7C00 FFFF7CO0 FOREIGN LANGUAGE TESTER - foreign character definer and

language tester
SHARE INVESTOR - assists decision making when buying and selling shares
LABEL PROCESSOR - for designing and printing labels on Epson compatible printers

GEORGE AND THE DRAGON - Rescue 'Hideous Hilda' from the flames
of the dragon, but beware the flying arrows and the moving holes on
the floor.

EBONY CASTLE - You, the leader of a secret band, have been
captured and thrown in the dungeons of the infamous Ebony Castle.
Can you escape back to the countryside, fighting off the deadly
spiders on the way and collecting the keys necessary to unlock the
coloured doors?

KNIGHT QUEST - You are a Knight on a quest to find the lost crown,
hidden deep in the ruins of a weird castle inhabited by dangerous
monsters and protected by a greedy guardian.

PITFALL PETE - Collect all the diamonds on the screen, but try not to
trap yourself when you dislodge the many boulders on your way.

BUILDER BOB - Bob is trapped on the bottom of a building that's being demolished. Can you help him build his way out?

MINEFIELD - Find your way through this grid and try to defuse the mines before they explode, but beware the monsters
which increasingly hinder your progress.

MANIC MECHANIC - Try to collect all the spanners and reach the broken-down generator, before the factory freezes up.
QUAD - You will have hours of entertainment trying to get all these different shapes to fit.

File Handling for All Book BKO2b £9.95

File Handling for All Disc (40/80T DFS) BKO5a £4.75 File Handling for All Disc (3.5" ADFS) BK07a £4.75
Joint Offer book and disc (40/80T DFS) BKO4b £ 11.95 Joint Offer book and disc (3.5" ADFS) BKO6b £ 11.95
Magscan (40 DFS) 0005a £9.95 Magscan Upgrade (40 DFS) 001la £4.75
Magscan (80T DFS) 0006a £9.95 Magscan Upgrade (80T DFS) 0010a £4.75
Magscan (3.5" ADFS) 1457a £9.95 Magscan Upgrade (3.5" ADFS) 1458a £4.75

All prices include VAT where appropriate. For p8&p see Membership page.

This month we
conclude our
look at PKZIP
back-ups and
see how
PKUNZIP reverses the archiving process
when disaster strikes.

Dos+

Unfortunately space won’t allow us to
investigate all the PKZIP options, but we
should be able to cover enough of them
to allow you to build a reasonable back-
up system to cater for most needs.

RECURSING DIRECTORIES

So far we've talked only about securing
single directories, even though the batch
job to do it may be one of a number
doing different back-ups but which are
related. One reason for that approach is
that it makes PKZIP basics easier to
explain, but equally very often when you
update files they’re all in one directory,
so that’s frequently how you’d use it
anyway.

However, there’s a trade-off between
keeping each back-up job separate for
simplicity and ending up with lots of
jobs that are each too small to be
practical. Obviously on a winchester the
directory structure can be more complex
than on floppies, though for efficient
performance it’s a good idea not to get
too carried away with this idea. But in
general, even on a hard drive, the more
directories you have the smaller they
tend to be. Conversely, on floppies
despite the smaller capacity there’s often
a need for a directory structure, whether
it’s demanded by an application or your
own convenience.

There comes a point therefore, where
single directory back-ups, whether from
a floppy or from a hard disc, would
require several batch jobs but the amount
of data just doesn’t justify the
complexity. The answer in these cases is
directory recursion.

30

512 Forum

by Robin Burton

As the name implies, this option tells
PKZIP to base the start of its activities on
the specified or current directory as
before, but also to include sub-directories
in the operation. Like many PKZIP
options the letter used for the switch is
logical, ‘r’ (recurse) but this option must
be used carefully or the results may not
be quite what you expect.

POINTS TO WATCH
Judging by my mail, difficulty arises in
recursion for back-ups more than for
most other PKZIP operations. To be
blunt this is a case ot not reading the
documentation thoroughly, but even so
it’s quite common. Although a command
in the general form:

PKZIP -r <archive-name>
will certainly recurse all subdirectories in
the current path and compress all the
files found too, as it stands the original
directory structure is lost by this
command. This means that if you
subsequently recover files from an
archive created by the above command,
although the back-up will have been
completed OK, all the files will be
extracted into a single directory.

That’s not to say that recursion used this
way isn’t useful, it just isn’t suitable for
back-ups. An illustration will make this
clearer, so let’s take a look.

Suppose you have a directory which
contains two or three subdirectories,
the contents of each of which is similar
but they each include several different
file-types. Further, if some of the files
are temporary working files which
needn’t be secured (say with the
extension .WRK) whi?le all the
permanent files have varying
extensions, then the job of extracting
the permanent files from several
subdirectories by normal DOS methods,
assuming you want to keep the
temporary files, would be awkward to
say the least.

Beebug December 1993

512 Forum

However, recursion (with exclusion)
offers a very easy way to archive all these
permanent files in one simple operation.
Refer to last month’s article for the
exclusion option if you need a refresh.

Assuming the PKZIP command were
issued from the top-level directory of this
structure, to compress all the permanent
files into a single archive file the
command would be:

PKZIP -r <archive-name> -x *.wrk

This would recurse all subdirectories in
the current directory, compressing all
files into the specified archive file except
those excluded by the "-x’, in other words
those with a .WRK extension. As in my
root directory back-up, the exclusion
directive can also be in the form ‘-X@’
followed by a filename containing a list
of excluded files. In this case any number
of files could be excluded by the list,
using wildcarded names, by explicitly
naming each file in turn or by any
mixture of the two.

Likewise, to back-up all the files of one
particular type from a directory structure
is just as easy if not easier. Suppose that
we wanted just files with a .TXT
extension, then the command:
PKZIP -r <archive-name> *.txt

is all that’s needed. Nothing else but files
with a .TXT extension will be archived by
this command. Obviously you can also
specify other options to refine this
operation, including those described last
month, or a number of others which
could specify files older (or newer) than a
given date, those not already archived
and so on.

Used like this, PKZIP recursion offers
powerful facilities which can make some
jobs much easier, but of course our main
interest here is security back-ups, so let’s
get back to that.

RETAINING STRUCTURE

What's usually needed for back-ups is an
archive file which safeguards not only
the files it contains, but also retains full
information on how the files were

Beebug December 1993

originally stored. If this is done, when the
day of disaster arrives such as a FAT
corruption or the kids using your disc as
a frisbee you can easily re-create a new
master dyisc which will be an exact
duplicate of the original.

The ‘p” option (path) is used to preserve
the full path structure of subdirectories,
but note that this is another PKZIP
directive which is case sensitive, the
lower case version is what we need here
(upper case ‘P’ recurses only specified
directories.) When the command is
intended to not only recurse sub-
directories but also to preserve the entire
directory structure, the command
therefore is:

PKZIP -rp <archive-name>
This tells PKZIP to recurse subdirectories
(from the current or specified directory)
but also to record the original path of
each of the files being archived.

Archives created like this can then be
recovered in their entirety, which we’ll
examine next, to totally re-create a lost
disc or path, but despite that they lose no
flexibility over simpler archives. These
can also be searched to recover a single
file like a simple archive, and they can
also be updated selectively by any of the
methods we’ve previously looked at.

When you have several small directories
sharing the same path and want to
secure not only the data but the
structure too, this is how it’s done. I
tend not to use recursion very much
because on a hard disc most paths
contain too much data for a single back-
up floppy even when the data is
compressed, but for floppy users, or if
directories are small, recursion can
simplify (and shorten) the job
considerably.

RECOVERING

So far we’ve looked at several of the most
useful basic PKZIP options for backing
up files and directories, but having given
you the essentials I'll leave you to
explore the less commonly used
archiving options yourself.

31

512 Forum

It’s now time to examine the reverse
process. Files in a .ZIP archive can’t be
accessed directly, though there are tools
such as SHEZ which can help you to
view the contents of a .ZIP file ‘in situ’.
However, 1 tend not to use such
programs; again I choose what I think is
the the simplest route, PKUNZIP.

We saw the simplest PKUNZIP
command last month:
PKUNZIP -t <archive-name>

This tells PKUNZIP to test the integrity
of every file in the specified archive.
Each filename is displayed in turn,
including its original pathname if
appropriate, and PKUNZIP then checks
the file against its 32-bit CRC. If all is
well it says ‘OK’ for each file, while any
discrepancy causes a report that the file
is damaged. If you have the complete
ZIP package you’ll have a program
called PKZIPFIX, which can in some
circumstances recover individual files
within an archive, but which will in any
case fix the .ZIP file so that its other
undamaged contents can still be
recovered. Of course, most of the time
there’s no problem, so mainly I treat this
option as an easy way of checking what
a particular archive contains.

In my own experience the only reason for
problems is the back-up floppy itself, so
the best insurance against that sort of
trouble is duElicated back-ups, preferably
not kept in the same place. I can tell you
that only once have I ever had two faulty
back-ups of the same data, but in that case
both discs had developed a bad sector, so
PKZIP wasn’t responsible.

A second potential cause of trouble is
your version of the PKZIP software. To
extract files from a .ZIP file obviously
requires PKUNZIP, which is of course
supplied as part of the PKZIP package.
However, PKUNZIP is often supplied on
its own on shareware discs to allow you
to unpack the shareware disc’s contents.
The point to watch is that the version of
PKUNZIP used is at least as recent as the
version of PKZIP that produced the
archive file.

32

The copy of PKUNZIP on a shareware
disc will certainly handle everything on
that particular disc, but do make sure
your master copy of ZIP and UNZIP is
the latest in your possession and that
they’re both the same version.

If you try to use a version of UNZIP to
extract from a .ZIP file produced by a
later version of PKZIP you’ll probably
get the message “Sorry, I don’t know
how to handle this file”. This isn’t
inevitable, all later PKZIP versions do
support all previous compression
standards, and an old form of
compression could have been specified
during compression (this is another
option) but if you do see this message
there’s no alternative, you need a later
version on PKUNZIP.

PKUNZIP is at least as easy to use as
PKZIP and the general format of
commands is similar too, as you’d
expect. For example, the command to
extract all the files from an archive
called ‘SECURITY’ on drive A: to the
current directory on the current drive
would be:
PKUNZIP a:security

As before the option is defaulted, so it
becomes ‘-e’ for ‘extract’, the .ZIP
extension on the archive file is defaulted
too, and the destination for the output
data is the current directory and drive
since no output path is supplied. Of
course an output path can be specified
too, so for example:

PKUNZIP a:security c:\recoveries*.*
will unzip all the files in the archive to a
directory called \RECOVERIES on drive
C:, but note that in this case the target
directory must pre-exist. Naturally files
are most often restored to their original
location, so in practice this option isn’t
needed very often.

Remember that if the archive contains
only files and no directory structure data,
PKUNZIP won’t know anything about
where they came from, so recovery is
always to the current directory unless
you specify otherwise. Of course, if the

Beebug December 1993

512 Forum

archive included recursed directories
with paths preserved (PKZIP options -
rp), PKUNZIP will still allow you to
recover any file to any directory, but life
will be much easier for full recoveries.

For example, if a master disc is a total
write-off or when you’ve had to re-
partition a hard disc, the original
directories won't exist, so you have two
options.

One is to create the required directories
yourself before the recovery, perhaps in
your recovery batch files, but the other
and easier option is to let PKUNZIP do it
for you completely automatically. If the
data was secured with both the ‘r’ and
‘p’ directives the original path is
preserved along with the files, so:
PKUNZIP -d <archive-name>

can be used to tell PKUNZIP to recover
all the archived files to their original
directories. If the target directories don’t
exist at the time, PKUNZIP will create
them for you as it goes along; if they do
already exist they’re used.

At this point I have a small confession to
make. I deliberately omitted mention of
the (specified) path and recursion
options from my Iliack-up examples for
clarity, but in my live system I always use
them, even if I know there’s only one
directory to secure. This is so that, if I
have to perform full recovery, PKUNZIP
will rebuild the complete subdirectory
structure of my hard disc for me, while if
I need to recover only one or two files I
can still do that into any directory I want,
including the original location if
necessary.

To make sure this point is clear, consider
the ES archive routines again and
mentally add this extra information. All
the \ES subdirectory back-ups take place
from within \ES itself, so for
\ES\SOURCES for example, the
command to back-up to drive A: is:

PKZIP -rP a:es_srces \es\sources*.*
This retains the full path of
\ES\SOURCES in the archive and
secures all its files too. When I recover, if

Beebug December 1993

either \ES or \ES\SOURCES doesn’t
exist they will be created for me; if they
do exist it doesn’t affect the recovery.

Note that I use the upper case path option,
otherwise all the other \ES subdirectories
would be included too and the job would
fail because the back-up disc would
become full. Also note a couple of other
important items. Because I've used the
specified path option I have to add the full
path (from the root) of the directory to be
archived, and I have to specify at the end
of the path that all files (*.*) are to be
included. Without the wildcarded
filename only the directory structure of
\ES\SOURCES would be saved and if
SOURCES did contain any subdirectories
these too would be ignored.

Although PKZIP operations can be
extremely simple, when you use some of
the more sophisticated options be aware
that things do get complicated and your
file and directory specifications must be
absolutely precise. If you do need such
options I'd advise that you test
commands very thoroughly manually
and ensure that the secured data can be
accessed in exactly the way you expect
too. Only when you're absolutely sure
everything works should you build these
commands into batch routines on which
the safety of your data will depend.
Remember, if eventually you need to
recover data these routines MUST work;
it will be too late by then if you find they
don’t.

AND FINALLY

That rounds off our look at PKZIP, but
watch this space for other (I hope)
interesting disc offers.

At the moment next month’s topic is as
much of a mystery to me as it is to you
but in the meantime if anyone has
specific queries on the points covered in
the last three articles drop me a line and
I'll try to help. If you do write, on this or
any other topic, please note that I have

recently changed jobs and in
consequence replies to your letters may
take a little longer in future. B

33

BEEBATrt (continued from page 9)

01,5000) :REM 2 Spaces

2300 REPEAT

2310 PROCsetpointvar:PROCpointer

2320 PROCprintpos("Press 'Q' to quit.
") :REM 2 Spaces

2330 PROCcurkey:*FX21,0

2340 IF NOT end$ THEN PROCshape("Filled
Rectangles. *,101,0)

2350 UNTIL end%

2360 end%=FALSE

2370 ENDPROC

23801

2390 DEF PROCcomplexshape (name$, code%,d
ely%)
2400
2410
2420
2430
)
2440
| 2450
2460
2470
2480
2490
2500
2510
')
2520
y2%
2530
2540
2550
2560
2570
2580
2590
2600

PRINTTAB(0, 0) name$: PROCwait (dely%)
REPEAT

PROCsetpointvar

PROCprintpos ("RETURN to set P. one

PROCpointer:PROCcurkey: *FX21, 0

IF return% THEN x1%=x%:y1%=y%
UNTIL return$

return$=FALSE

REPEAT

X2%=x%:y2%=y%

PROCsetpointvar

PROCprintpos ("RETURN to fix P. two
PROCpointer :MOVE x1%,y1%:MOVE x2%,
PLOT (code%+1) ,x1%,y1%

PROCcurkey: *FX21, 0

MOVE x1%,y1%:MOVEx2%,y2%
PLOT(code%+1),x1%,y1%

UNTIL return%

return$=FALSE

REPEAT

x3%=x%:y3%=y%

2610 PROCsetpointvar

2620 PROCprintpos ("RETURN to fix P. 3
"):REM 2 spaces

2%

FX21,0

2650 MOVE x1%,y1%:MOVEx2%,y2%
2660 PLOT(code%+1),x3%,v3%
2670 UNTIL return$

2680 GCOLpattern$, col%

2690 MOVE x1%,y1%:MOVE x2%,y2%

34

[

2630 PROCpointer:MOVE x1%,y1%:MOVEX2%,y

2640 PLOT(code$+1),x3%,y3%:PROCcurkey : * |

IF draw$% PLOTcode$,x3%,vy3%
return%=FALSE
ENDPROC

2700
2710
2720
2730
2740
2750

DEF PROCellipse
PRINTTAB(0,0) SPC 40

2760 REPEAT

2770 PROCprintpos("Press 'Q' to quit.
") :REM 2 Spaces

2780 PRINTTAB(0,0)" (F)ill or (O)utline?

2790 PROCsetpointvar:PROCpointer:PROCCu
rkey: *Fx21,0

2800 IF keypress% = 70 OR keypress% = 1
02 THEN PROCcomplexshape("Filled Ellipse
S . *,205,5000)

2810 IF keypress$% = 79 OR keypress$ = 1
11 THEN PROCcomplexshape("Outline Ellips
Ella e Lo sna L

2820 UNTIL end%

2830 end%=FALSE

2840 ENDPROC

2850 :

2860 DEF PROCpar

2870 PRINTTAB(0,0) SPC 40

2880 PROCcomplexshape ("Parallelograms.
| ",117,5000) :REM 5 spaces

2890 REPEAT

2900 PROCsetpointvar:PROCpointer

2910 PROCprintpos("Press 'Q' to quit.

") :REM 2 spaces

2920 PROCcurkey:*Fx21,0

2930 IF NOT end% THEN PROCcomplexshape (
"Parallelograms. v, 117,0) :BEM 5 Cpae
es

2940 UNTIL end%

2950 end%$=FALSE
| 2960 ENDPROC
| 2970 :

2980 DEF PROCarc

2990 PRINTTAB(0,0) SBC 40

3000 PROCcomplexshape("Arcs.
*,165,5000) :REM 15 Spaces

3010 REPEAT

| 3020 PROCsetpointvar:PROCpointer

| 3030 PROCprintpos("Press 'Q' to quit.

)

3040 PROCcurkey:*Fx21,0

3050 IF NOT end$% THEN PROCcomplexshape (
|"Arcs., "al65 U1 REM 15 dba

Beebug December 1993

BEEBArt

ces

3060 UNTIL end%

3070 end%=FALSE

3080 ENDPROC

3080 ¢

3100 DEF PROCsegment

3110 PRINTTAB(0,0) SPC 40

3120 PROCcomplexshape ("Segments.

*,173,5000) :REM 11 Spaces

3130 REPEAT

3140 PROCsetpointvar:PROCpointer
3150 PROCprintpos ("Press 'Q' to quit.
2

3160 PROCcurkey:*FX21,0

3170 IF NOT end% THEN PROCcomplexshape (
"Segments . 172)RR 1| Spa
ces

3180 UNTIL end%

3190 end%=FALSE

3200 ENDPROC

3210 :

3220 DEF PROCtext

3230 PRINTTAB(0,0) SPC 40

3240 INPUTTAB(0,0)"Text?
"text$:REM 15 Spaces

3250 INPUTTAB(0,0)"X pos?
"xpos%:REM 14 Spaces

3260 IF xpos% < 1 THEN xpos% = 1
3270 REPEAT

3280 IF xpos$% + LEN text$ > 19 THEN xpo
S% - ypooh - |

3290 UNTIL xpos% + LEN text$ <= 19
3300 INPUTTAB(0,0)"Y pos?
"ypos%:REM 14 Spaces

3310 IF ypos% < 3 THEN ypos$ = 3
3320 IF ypos% > 30 THEN ypos% = 30
3330 PRINTTAB(0,0) SPC 40

3340 PRINTTAB(xpos$,ypos$)text$s
3350 PROChorder:MOVE x%,y%

3360 ENDPROC

3370

3380 DEF PROCsetpointvar

3390 xcone% = x%-50:ycone% = y%-50
3400 xctwo% = x%-25:yctwo% = y%-75
3410 ENDPROC

20 -

3430 DEF PROCprintpos(slstring$)

0l% ELSE COLOUR 7

3450 PRINTTAB(0,0)"Step";step%;" ":RE
M 3 Spaces

3460 PRINTTAB(8,0)"X=";x%;"
Spaces :

3470 PRINPTAB(15, 0) 1Y="spdr & K:REM D/ S
paces

3480 PRINTTAB(0,1)slstring$

3490 ENDPROC

3500 &

3510 DEF PROCpointer

3520 MOVExcone%,ycone%

3530 MOVExXctwo%,yctwo%

3540 PLOT86,x%,y%:MOVEX%, V%

3550 ENDPROC

2560

3570 DEF PROCwait (waittime%)

3580 FOR wait% = 1 TO waittime$%

3590 NEXT wait$%

3600 ENDPROC

3610 =

3620 DEF PROCloader

3630 load% = FALSE

3640 REM *MOUNT ADFS ONLY

3650 PRINTTAB(0,0) SPC 40

3660 INPUTTAB(0,0)"Filename?"file$
3670 OSCLI ("LOAD ")+file$+(" 3000")
3680 PRINTTAB(0,0) SEC 20

3690 PROCinit

3700 ENDPROC

37100

3720 DEFPROCsaver

3730 save% = FALSE

3740 REM *MOUNT ADFS ONLY

3750 PRINTTAB(0,0) SPC 40

3760 INPUTTAB(0,0)"Filename?"file$
3770 OSCLI ("SAVE")+file$+(" 3000 8000"

":REM 4

3780 PRINTTAB(0,0) SPC 20

3790 ENDPROC

3800 -

3810 DEFPROCborder

3820 GCOLO,1

3830 MOVE 0,0:DRAW 0,944:DRAW 1279,944:
DRAW 1279,0:DRAW 0,0

3840 GCOL 0,2

3850 MOVE 0,954:DRAW 1279,954:DRAW 1279
,1024:MOVE 0,1024:DRAW 0,954

3440 IF draw% AND col%<>8 THEN COLOUR c 3860 ENDPROC B
Beebug December 1993 35

)

Machine Code Corner

Mr Toad shows you how to call a Basic program with a festive star.

Happy Wossname, Toad-fans, and the
Condiments of the Seasoning to you.
Right, that’s the humbug over - now for
some real jollities.

Bill Woodall of Yeovil asked for me for
help with the Watford Shadow RAM
board fitted to his steam-powered model
B; he wants some routines to shift blocks
of data in and out of the shadow RAM,
in connection with a database. Alas, I
can’t help him - I don’t have either piece
of hardware available and can’t see
what’s wrong with the listing he sent me.
The beastie seems to use addresses in
main RAM as “ports’, not the SHEILA
addresses I'm used to. So if you have one
of these boards, please let me know and
I'll put you in touch with Bill.

Arthur Adams wanted to know if it is
possible to tack a Basic program onto a
Sideways ROM header and call it with a
star command. I knew it was, because
the software with my EPROM blower
does just that, but the programming is
totally primitive. So, I thought I'd have a
go for myself because I still have lots of
space on the Toad ROM 90. I could tack
on my Basic program that sets the
Master’s clock, calling it with a short star
command instead of having to hunt for
the disc. Readers without EPROM
blowers might not have so much use for
such a hybrid, but you never know, and
the programming turned out to be quite
interesting.

The method is obvious. It is simply
impossible to get Basic to run in
Sideways RAM, but what you can do is
write a routine which copies a Basic

36

program from sideways memory back
into its normal habitat at PAGE, and
then gets it going by some equivalent of
RUN. You’d *SRWRITE the Basic
program into the SRAM slot after the
machine code, and *SRSAVE the whole
lot to disc. A cheap ‘n’ cheerful way of
creating a new star command - but,
unlike a ‘proper’ star command, this
will overwrite anything in the lower
part of main memory, such as a
program or document you may be
working on.

I took my small Sideways ROM header
(Beebug Vol.11 No.7), altered
.starCommand in line 1430 from ABC to
CK for ‘CLOCK’ - you can use any
command you like. I tidied up by altering
the *HELP text, title and copyright
strings, getting rid of the test line 1460
and the unwanted definitions of
OSWRCH, OSNEWL and OSWORD. All
this takes longer to explain than to do.

Now we need two pairs of page zero
addresses to act as indexes for the
copying. Normally, 0 and 1 point to TOP,
the top of the Basic program, so they are
the ideal candidates for the destination
pointer. We know that 2 and 3 will be
free - they normally point to VAR-TOP -
so we'll use those to point to the byte to
be copied. In case you don’t have a
Master, we’ll use the (zp),Y indexing
mode.

The very last thing in the assembly text
must be a label - it seems at this stage to
refer to nothing, but in fact it labels
what will eventually be the first byte of
the Basic program which we’re going to

Beebug December 1993

Machine Code Corner

store after our code. Our copying
routine needs this address at the start, of
course. Since I love witty labels, I wrote
“.basProg” immediately before the final
‘I". Right...

.go LDY #0:STY O \ prepare Y and
destination index lo-byte.

LCA &18:STA 1 \ copy hi-byte of PAGE to
dest. index hi-byte.

LDA #basProg MOD &100:STA 2 \ set up
source index lo-byte.

LDA #basProg DIV &100:STA 3 \ ditto
hi-byte.

~loop LEA (2], ¥:STA (0),Y \ shift a
oyte from SRAM to normal area.

Whoopee, we're away! Oh... I forgot.
Before we thoughtlessly write an
INY:BNE loop, how are we going to
know when we’ve copied the last byte?
Well, Basic uses a ‘negative hi-byte of
line-number’ end-marker, which in
practice amounts to &0D followed by
&FFE So...

CMP #&0D:BNE inc \ if not &0D, go to
increment pointers.

JSR upOne \ if it was &0D, go up one to
see 1f next is &FF.

LDA (0),Y:STA (2),Y \ &FF or not, it
must be copied.

CMP #&FF
jump out of loop,

le. \ If it was &FF,

p\ round again.

.upOne \ subroutine to update Y and

Beebug December 1993

That’s the program copied across - how
are we going to get it to run? We could
(a) find the address to call in the Basic
ROM; (b) insert the command RUN +
Return into the keyboard buffer via the
vector INSV at &022A or (c) insert same
into the buffer using OSBYTE &8A. The
OSBYTE is easiest, so now we need to
include the string “RUN” in the program,
to be copied into the buffer. We can’t put
it after .copyDone, of course; let’s stick it
before the .helpText:

.runString EQUS "RUN":EQUB &0D:BRK \
BRK (= zero) is our end-marker.

Now back to the label .copyDone: next we
write a loop to copy .runString into the
buffer. With OSBYTE &8A all three
registers are in use: A=&8A, of course, X=0
to specify which buffer (0 is the keyboard
buffer number) and Y holds the character
to be inserted. This means pushing the
index register before each call:

LDX #0 \ set up index register.

.loop

LDA #&8A \ OSBYTE number.

LDY runString,X \ next character for
buffer goes into Y.

BEQ hicCaestusArtemqueRepono \ if zero
it was the end marker.

PHX:LDX #0 \ save old X and point to
buffer number 0.

JSR osbyte \ the dastardly deed is done
- we've poked it in.

PLX:INX:JMP loop \ restore old X,
increment it & go round loop.

.hicCaestusArtengueRe

PLY:PLX:PLA:IDA #0:
exit ROM

.basProg

] :NEXT : ENDPROC

BBC B owners will have to put
PLA:PLA:PLA. They should have altered

37

Machine Code Corner

all the earlier pushes and pulls in the
header text, too - see Beebug Vol.11 No.7
p.52.

Type all the above in, bung it in an
assembly loop, save it, stick the Basic
program on the end, and... it won’t work.
We haven’t updated Basic’s page zero
pointers. Happily, the command OLD
does this from scratch by whizzing
through the program looking for the end-
marker. We can add OLD to the RUN
string. While we’re at it, why not do
*BASIC first, so the program can be
called from, say, View. It’s a bit primitive
to select Basic after the program goes in,
but it works from most other languages.
So, let’s alter .runString to:

EQUS"*B." :EQUB &0D:EQUS"OLD" : EQUB
&0D: EQUS"RUN" : EQUB &0D:BRK

You can now save this listing and run it.
The complete listing, for lazy old toads,
is shown below and has the added bonus
of showing another way to create the
runString string.

P% now holds the address of the byte
after the final RTS, so now do
PRINT~P%, or use .basProg - same thing.
It should be somewhere around &80C0.
(All these numbers must be in Hex.)
Now load your Basic program in the
usual way and get the next numbers
you’'ll need by PRINT~PAGE and
PRINT~TOP. I get &1A48 for TOP with
my Clock program; PAGE on a Master is
almost always &E00. So, I now do:

*SRWRITE E00 1248 80C0 7

assuming it’s in SRAM slot 7 - the end
routine in my header will have told you
this. Now the Basic is in place; to save it
you need the address of the end of the

38

whole thing. Do PRINT~P%+TOP-PAGE.
I get &8D08, and the start will always be
&8000, so I now do:

*SRSAVE KLOCK 8000 8D08 7

and the whole thing is on disc under the
name KLOCK (to avoid using the same
filename as the original Basic.) Load and
call it just like any other Sideways ROM.
For a fun project, you could use my
biggest ROM header and put several
programs in, each called with a different
star command. Modifying the code
would be trivial, but getting all the
addresses right could cause a few grey
hairs.

This month’s competition: (a) the four
bytes CMP #&FF:BEQ copyDone can be
reduced to two. How? (b) How does Mr
T always get away with labelling every
loop with the same label, .loop? Now
come on, those are dead easy. There are
still plenty of badges left.

Next month, a routine which tells you the
number of shopping days to Christmas 1994.
They're coming to take me away, ha ha....

10 REM Basic program in SRROM format
20 REM Version B 1.0

30 REM Author David Holton

40 REM BEEBUG December 1993

50 REM Program subject to copyright
60 :
100 PROCassem
110 FOR N%=7 TO 4 STEP-1
| 120 IF N$?&2Al1 NEXT:PRINT''"No free SR
|AM slot."':END

130 OSCLI "SRWRITE "+STRS$~Z%+" "+STRS~
(0%+1)+" 8000 "+STRS N%

140 PRINT' ' 'READY IN SLOT ";N%'"P% - &
| ";~P%

Beebug December 1993

Machine Code Corner

|

150

160 ¢

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

N$?62A1-882:N%=4 :NEXT:END

DEF PROCassem
0sasci=&FFE3
osbyte=&FFF4

FOR Ne=4 T0 6 STREP .
7%=72+&100%?3-8200* (N%=4)
P%=&8000:0%=2%

i
i
;
{
|
r

[OPT N%

BRK :BRK: BRK

JMP checkCalls

EQUB &82

EQUB copyright MOD &100
EQUB &93

EQUS "BASIC SRROM"
.copyright

BRK:EQUS" (C) BEEBUG 1993

.checkCalls
PHA : PHX : PHY
CMP #4:BEQ isItOurs
CMP #9:BNE noClaim

1210

1220
1230
1240
1250

LDX #&FF

.helpLoop

INX:LDA helpText,X:PHP:JSR osasci
PLP:BNE helpLoop

1260 :

1270
1280

.noClaim
PLY : PLX:PLA:RTS

1290 .

1300
1310
1320
1330

| 1340

|
|
\
|
[
|
|
|

1350
1360

.1sItOurs

LDX #0

.checkLoop

LDA starCommand, X:BEQ go

LDA (&F2),Y:AND #&DF

CMP starCommand, X:BNE noClaim
INX:INY:JMP checkLoop

1370

1380
1390

.helpText
EQUW &0DOD: EQUS "BASIC SRROM"+CHR

Beebug December 1993

S a0
| 1400 .starCommand

| 1410 EQUS*BAS®:EQUB &0D:BRK
| 1420 .runString

| 1430 EQUS" *B. "+CHRS &0D+"OLD"+CHRS &0D+

Q"RUN"+CHR$ &0D:BRK
f LA ebviee mee st mia st
| 1450 .go
| 1460 LDY #0:STY 0
| 1470 LDA &18:STA 1

1480 LDA #basProg MOD &100:STA 2
| 1490 LDA #basProg DIV &100:STA 3
| 1500 :
[1510
[1500
| 1530
| 1540
| 1550
| 1560

.loop
LDA (2),¥:STA (0}, Y
CMP #&0D:BNE inc
JSR upOne
EDA (2] ,Y:STA (0), Y
BMI allDone
1570 .ine
1580 JSR upOne:JMP loop
| 1590 :
1600
1610
1620
| 16301 ret
1640 RTS
| 1650z
| 1660 .allDone
| 1670 LDX #0
| 1680 :
| 1690 .loop
| 1700 LDA #&8A
‘ 1710 LDY runString,X
1720 BEQ hicCaestusArtemqueRepono
| 1730 PHX:LDX #0:JSR osbyte
| 1740 PLX:INX:JMP loop
1750 .
1760 .hicCaestusArtemqueRepono
1770 PLY:PLX:PLA:LDA #0:RTS
1780 .basProg
| 1790] :NEXT:ENDPROC

.upOne
INY:BNE ret
TG INe 3

39

Public Domain

Alan Blundell looks at Master 512 software and a professionally-
produced shareware product which upgrades the BBC micro to the
level of a Z88.

An interesting item of shareware has
come to my attention this month. It is
VP-Support version 2.20 by David Lucas
of Hailsham, Sussex. VP-Support is
designed to emulate ‘PipeDream’, the
integrated package from Colton Software
on the Sinclair Z88 portable computer. It
does this by enhancing the facilities of
View Professional, which is a similar
package (by the same authors) for the
BBC Micro. The package is, therefore,
only of use if you already own a copy of
View Professional (View Professional is
not the same as the View word processor,
fitted as standard to the Master 128 and
available for other 8-bit Acorn
computers, in case there are any newer
users who are unsure).

If you own both a BBC Micro with View
Professional and a Z88 (with
PipeDream), then VP-Support will no
doubt be even more attractive, although
if you aren’t familiar with PipeDream,
three help screens detail all of the
available Z88 ‘star’ commands (as
distinct from Acorn’s operating system
in-built commands, also referred to as
‘star’ commands by way of shorthand).

VP-Support allows Z88 ‘star’ commands
to be entered using the Ctrl key and
translates them into their View
Professional equivalents. For example,
the PipeDream command, <>PU is
translated to \H1. VP-Support also
provides windows for some commands,
just as on the Z88. As a by-product, VP-
Support also makes View Professional
more compatible with the Archimedes
version of PipeDream, since the latter
uses the same commands. The program
also provides full Z88 file transfer
facilities, allows Z88 files to be archived
on a BBC disc, and allows Z88 printer

40

output to be channelled direct to a
printer connected to the BBC micro.

The program is supplied as a 16K ROM
image for a BBC micro, with an
alternative version included for the
Master 128. It should work with View
Professional version 2.0 on a BBC Model
‘B’, (OS 1.2), with a Master 128, or with a
6502 Second Processor on either, and
with DFS, ADFS and ANFS filing
systems. According to David’s
comprehensive (on-disc) documentation,
the program is compatible with Aries B-
32 shadow RAM but may not work with
other shadow RAM boards for the BBC
‘B’ if they wuse different access
mechanisms. VP-Support uses sideways
RAM as workspace to implement its
windows interface, which has the
advantage that it needs only minimal
main memory workspace, and does not
encroach at all on memory available for
text storage. Sideways RAM used on a
BBC ‘B” must not be write-protected. On
a Master, sideways RAM can’t be write-
protected anyway. Finally, VP-Support is
designed only to work in modes 0 and 3,
together with the equivalent shadow
modes (128 and 131 on a Master). Other
screen modes will result in a “Bad
mode” error.

VP-Utilities is a variation on VP-Support
which is also provided as a 16K ROM
image, suitable for blowing into an
EPROM if you have the facilities (or
know someone who has). It contains VP-
Support together with a number of
additional utilities. VP-Support still needs
to run in a sideways RAM bank; this
option simply allows it to be loaded into
sideways RAM from EPROM into any
available vacant sideways RAM bank.
The additional utilities are implemented

Beebug December 1993

PD Software

as Acorn style star commands this time,
rather than the Z88 ‘star” key commands.

The new commands include, for
example, *FMOVE, which transfers files
between DFS, ADFS and ANFS,
*RREMOVE and *RINSERT, equivalents
to the Master’s *UNPLUG/*INSERT
commands (which are used to disable
and re-enable particular sideways ROMs)
but which also work on the Model ‘B’,
and *RCLEAR to erase the contents of a
sideways RAM bank. VP-Support itself
may also be unhooked from View
Professional by the *VPREMOVE
command.

Altogether, this is a very professional and
useful package, well worth the £5.00
shareware registration fee requested.
Registration of shareware programs
which you intend to make use of after a
period of evaluation is a moral
obligation, but in this case, it entitles you
to any future improvements in the
package as well as recompensing David
for all the work which has obviously
gone into it.

MASTER 512 SOFTWARE

I promised last issue that I would
mention the latest Master 512 co-
processor related software this issue (I
also promised to begin a look at other
sources of material for BBC users, but
that will have to wait until next time).
BBC PD disc GA3 is an 800K DOS format
disc which contains hints on, and
solutions to, a large number of
commercial adventure games for DOS
computers. Games covered include many
Scott Adams adventures (some of which
were made available in BBC Micro
format many years ago), and the text
based Infocom adventure game series -
highly recommended if you are
struggling with any of these games. Also
on the disc are a couple of arcade type
games, a text mode ‘graphical” adventure
game and an ESP experiment to while
away your spare time on.

Beebug December 1993

David Harper, whose name should by
now be familiar as a source of expertly
provided material for the 512, has
recently come up with a 4 disc collection
of PD and shareware which he has
found to be compatible with the 512.
There are no overlaps between the
software on these discs and others
which are currently available, although
some of the software was previously in
the Dabs Press collections which some
of you may be aware of. David compiled
the discs to complement the existing 21
discs in the BBC PD library, which
already contained some but not all of
the software which had appeared in
those collections.

The collection of 4 discs contains over 5
megabytes of software, all of which is
archived using PKZIP. David has
actually used PKZIP version 2.04g,
which needs a little setting up to work
on the 512, but this is explained clearly
in text files on the discs. I won't go into
the relative merits of various versions of
PKZIP as Robin Burton’s 512 Forum
column has covered all of the relevant
considerations. The contents of the discs
are fully detailed in a large text file on
the first of the four discs, but briefly
they include lots of games, versions of
Prolog and Basic programming
languages, utilities, word processor,
spelling and readability aids, world map
program, cassette tape labeller utility,
printing aids and more.

I won’t go into more detail of the
contents here, but I do think that David
deserves recognition and thanks on
behalf of those of us who still actively
use the 512 co-pro for his efforts in
compiling this collection, as well as for
his previous contributions to its
usefulness.

Next issue, with luck, I will begin the look at
sources of software and support for the BBC
which I had intended to find room for this
issue. B!

41

Relocator

Miroslaw Bobrowski presents a utility to get things moving.

Relocator is a Basic program which allows
you to change the start and execute
addresses of any machine code file and
to adjust appropriately all its internal
addresses, i.e. addresses within the code.
The only restriction is that the machine
code processed must be relocatable
within the parameters of the program
and the target memory area should not
include page &D. The listing below is for
Master computers. Type it in and save it.
When run it will give you step by step
instructions.

Large machine code programs, like
games and text editors, are unlikely be
relocatable. This utility is helpful when
dealing with short bits of code that do
simple tasks. Perhaps you have several
machine code utilities that you want
resident in the machine at once; Relocate
would allow you to load them in
wherever you wanted them.

BUT WHAT IS RELOCATABLE?
Normally, the trick with relocatable code
is that it contains no absolute references
to itself. This means that no actual
addresses are saved with the code. The
only form of addressing you can use is
relative addressing and that is only used
by the branch instructions. When dealing
with the accumulator you must use
immediate mode but you can still call OS
routines and use zero page as these have
a fixed location.

This program extends that relocatability
by reorganizing the program’s internal
addresses for you so internal JMPs, JSRs,
LDAs etc. all now work, while OS calls
are left alone. Obviously the program

42

can’t predict all the clever tricks you
might try, so go slowly, but most
eventualities are covered.

ON A BEEB

To use Relocator on a BBC B you will
need to make the following changes to
the code. Note that the file Relocat on the
magazine disc is the Master version and
so you will need to make these
alterations to that.

100 MODE 7

1580 EQUD &81810F81:EQUD &81178314
1600 EQUD &AAA999BI:EQUD &55655555
1610 EQUD &66AA5565:EQUD &EEEDEEEE
1620 EQUD &77F77775:EQUD &FFF7FFFF

10 REM Program Relocator
20 REM Version B 1.5
30 REM Author Miroslaw Bobrowski
40 REM BEEBUG December 1993
50 REM Program subject to copyright
B0
100 MODE 135:T%=TOP+&300
110 DIM code% &D0,name% 20,block$ 20
120 PROCassemble
130 FORI$=1TO2:PRINT TAB(6,I%)CHR$141C
HR$130CHRS$157CHRS129"M/C file Relocator
“CHR$156 : NEXT
140 PRINT'’CHRS$131”Enter name of file
to be relocated” :REPEAT:PRINT TAB(5,6)SP
C120;TAB(5, 6)CHRS130; : INPUT” : “f$:F%=0OPE
NIN(f$) : IF F%=0 VDU7:PRINT'CHR$129”No su
ch file”:XX=INKEY (200)
150 UNTILF%<>0:CLOSE #0:$name%=£$:PROC
osfileb
160 IF T%+L%>&8000 PRINT'CHR$129”File
too long to be processed”:VDU7:END
170 PRINT’CHR$131”Enter name for reloc
ated file”’TAB(5)CHRS130; :INPUT”: “r$
180 PRINT'CHRS$131“Enter start address
for relocated”’CHRS131”file :"CHRS135;:I
NPUT”&"D$: D%=EVAL (“&"+DS)

Beebug December 1993

Relocator

190 IF D%<&D00 AND D$+L$>&D00 PRINT'CH | 1290 ROL A:ROL A

| R$129"WARNING! "CHR$134"The resulting cod | 1300 AND #3:TAY:LDA rdata2,X

|e will”’'CHR$134"overwrite page &D.” | | 1310 .loop5

| 200 IF D$+L%>&8000 PRINT'CHR$129”Desti | | 1320 DEY:BMI update

[nation start address too high.”:VDU7:END ‘ 1330 LSR A:LSR A:BNE loop5

1 210 1&70=5%:!&72=D%: !&74=L%: |&80=T%:E% | | 1340 .update

| =D¥+ (E$-S%) | | 1350 AND #3:CMP #3:BNE update2

| <220 1360 PHA

| 230 OSCLI"LOAD “+f$+” “+STR$~T% | 1370 LDY #1:LDA (addr),Y

| 240 CALL code%:IF r$="" PRINT'CHR$130”" | 1380 CLC:ADC diff:STA temp

|Relocated code”CHR$129"not”CHR$130"saved | | 1390 TAX:INY:LDA (addr),Y

|."':END 1400 ADC diff+1:STA temp+l

| 250 PRINT'CHR$130"To save relocated £i | | 1419 cpx start:SBC start+1:BCC updatel

| le press COPY “;:REPEAT UNTIL INKEY-106 | | 1420 LDA endaddr:CMP temp
260 OSCLL"SAVE "+r5+* *3STRS~T+" +*+5 | | 1430 LDA endaddrs1:SBC temp+l:BCC updat

| TR$~L$+" “+STR$~E%+" “+STR$~D% | le1 ;

| 270 PRINT STRINGS(34,CHR$127)"Relocate | | 1440 1A temp+1:STA (addr),Y ‘

§d code saved as “;CHRS34;r$;CHRS34’ w 1450 DEY:TXA:STA (addr),Y

|t || 1460 .updatel

| 290 : | | 1470 pra

| 1000 DEF PROCassemble | | 1480 .update2

\ 1010 s?ce:&70:dest:&72:len:&74 | 1490 CLC:ADC addr:STA addr

‘ 1020 diff=&76:temp=&78:ptr=&7A ‘ 1500 506 addust. pointer

[1030 start=&7C:endaddr=&7E |

| [1510 INC addr+l

| 2040 sl | 1520 adjust_pointer

| 1050 FOR pass=0 TO 2 STEP 2 ; :

‘ - { 1530 INC ptr:BNE reloc

| 1060 P¥=code% 3

| 1540 INC ptr+l:BNE reloc

| 100 [OFT pass | 1550 RTS
1080 LDA srce:STA temp ey
1090 LDA srce+1:STA temp+l [|

| [e

‘ 1110 CLC:ADC len:STA endaddr || :

| 1120 LDA dest+1:STA start+l || 1590 .rdata2

| 1130 ADC len+1:STA endaddrs+l || 1222 Eggg &36*12“9239=588D &991*99939

| 1140 SEC:LDA #0:SBC len:STA ptr ‘ Sec el e g

| 1150 LDA #0:SBC len+1:STA ptr+l B R vy

| 1160 SEC:LDA start:SBC temp:STA diff | 1630 :

| 1170 LDA start+1:SBC temp+1:STA diff+1 | | 1640 1:NEXT

| 1180 .reloc | 1650 ENDPROC

| 1190 LDY #0:LDA (addr),Y | 1660 : ‘
1200 TAY:AND #&0F | 1670 DEF PROCosfile5
1210 TAX:LDA rdata,X | 1680 !blocks=name% ‘
1220 BMI update 1690 X%=block% MOD 256 3
1230 TYA:ASL A | 1700 Y%=block% DIV 256 |
1240 PHP 1710 A%=5:CALL &FFDD |

| 1250 SEC:SBC rdata,X 1720 S%=block%!2 1

| 1260 PLP:ROL A:ROL A | 1730 E%=blocks!6 1

| 1270 TAY:AND #&1F | 1740 L$=blocks!10 §

| 1280 TAX:TvA 1750 ENDPROC B |

Beebug December 1993 43

Pyramid Patience

Leslie Fowl tries to keep us up all night.

This is a particularly difficult version of
the old card game which should keep
you busy over the long winter evenings
ahead. Type in the programs Pyramid
shown below and save it. Subscribers to
the magazine disc will find the program
in two parts, Pyramid and Pyr to include
on-screen instructions.

Running Pyramid presents a playing
screen as shown in figure 1.

PYRAMID
PA N

Figure 1. The starting point

THE GAME PLAN

The object of the game is to remove all
the cards from the pyramid, one pair at a
time, in pairs that total thirteen,
including all the Stock and Waste cards,
but with the exception of the apex King.
Cards have their expected values with
Jack, Queen and King being 11, 12 and 13
respectively. Before you play you can
select the type of shuffling the program
will do, this will give you different levels
of difficulty.

PLAY THE GAME

At the bottom of the screen is the input
and error message line. The first card co-
ordinates are entered at the prompt in
the form of 1A or 2C etc. followed by

44

Return. Next you are prompted for card
number two (assuming that the first card
was not a King, as King’s on their own
are valued at thirteen). Again enter the
card co-ordinates or in either case you
may enter ‘S” or ‘W’ followed by Return
if you want to include the card from
either the Stock or Waste Piles. Initially
the only cards available for play are
those in the bottom row and the first
stock card. At any time during play press
‘T’ to reveal the number of cards left in
both Waste & Stock piles. Pressing ‘Q’
ends the game. To deal the Stock card
press ‘@’; this transfers the stock card to
the waste pile (still face up and still
available for play) and reveals the next
stock card. The other cards in the the
Pyramid become available only when the
two adjacent cards below are removed.
All the above key presses must be
followed by Return.

A B . C D E B 68 H T 5k EEreN

Figure 2. The game in progress

The only hint or tip I can give is not to
allow the Waste Pile to become too big if
at all possible.

When the game is eventually completed
the player is rewarded with a pleasant
little tune, I hope you hear it often - good
luck.

Beebug December 1993

Pyramid Patience

10 REM Program Pyramid

20 REM Version B 1.0

30 REM Author Leslie Fowl

40 REM BEEBUG December 1993

50 REM Program subject to copyright

e

100 ON ERROR MODET7:VDU7:REPORT:PRINT; "
at line ";ERL:END

110 DIM cx%(30),cy%(30),p%(30),cvs(30)
120 DIMip$(2),cval%(2),pi%(22),du%(22
130 DIM rl$(6) :game%=0

140 PROCpeter
150 CLS:FOR Y%=12 TO 13:PRINTTAB(11,Y$%
) ;CHR$141+CHR$134+"Shuffling. ." :NEXT
160 PROCinit:PROCshuffle
170 IF SH% PROCshuffle
180 tempS=apex$+f$
190 vDU22,129:PROCtable
200 PROCtableu:temp$="":PROCdeal
210 PROCplay:CLS
220 IF kflag GOTO 250
230 PROCremovecard(c%,d%)
240 IF st AND wa temp$=""
250 PROCremovecard(A%,B%)
260 IF st tflag=TRUE:PROCdeal
270 IF wa PROCupdatewaste:VDU4
280 PROCcheckwin
290 IF win=FALSE GOT0210
300 END
Ll
1000 DEF PROCtableu:r=0
1010 REPEAT X%=X%-88:Y%=Y%-96:x=X%:y=Y%
1020 FORx=x TO X%+step%*r STEP step%:c%
=c%+1
1030 cx%(c%)=x:cy%(c%)=y:p%(c%)=c%
1040 PROCbrdr(x,y) :GCOLO, 3
1050 VDUS:MOVEx,y:PLOT97,120, step%
1060 PROCdisplay(x,y,temp$,c%)
1070 temp$=RIGHTS (temp$, LEN(temp$)-2)
1080 NERT:x-ri1:UNTIL r=7:cards=""
1090 ENDPROC
1400 -
1110 DEF PROCbrdr(x,y) :GCOLO, 0
1120 MOVEx-2,y-2:PLOT29,x-2,y+180
1130 PLOT29,x+124,y+180:PLOT29,x+124,y-
2

1140 PLOT29,x-2,y-2:ENDPROC

1150 :

1160 DEF PROCtable:VDU5

1170 vpu2s, 0, 31,2929 24 0:100:1279;102
2
1180 vDUl19,2,2,0,0,0:GCOL0, 130:C16

1190 CLS:GCOLO, 0:N=64

1200 MOVES524, 1008 : PRINT"PYRAMID"

1210 MOVES508, 968 : PRINT" PATIENCE"

1220 FOR x=104 TO 1228 STEP 88:N=N+1

1230 MOVE x,140:PRINT;CHRS (N) :NEXT

1240 N=0:FOR y=756 TO 276 STEP-96

1250 N=N+1:MOVES,y:PRINT;N:MOVE1244,y:P
RINT; N:NEXT

1260 MOVES, 1016:DRAW184,1016:DRAW184,76
8:DRAWS, 768 :DRAWS, 1016 :MOVEL6, 1008:VDUS:
PRINT"Waste"

1270 MOVE894,1016:DRAW1270,1016:DRAW127
0,768 :DRAW894, 768 : DRAWS94, 1016 :MOVEJ86, 1
008:PRINT"Stock"

1280 MOVE216,1008:PRINT"Game ";game$

1290 ENDPROC

1300 -

1310 DEF PROCsuits(card$)

1320 IF RIGHTS(cards,1)="H"THEN suit$=H
S:8u1t28=H25:CCOL0, 1

1330 IF RIGHTS(card$,1)="D"THEN suit$=D
sienl B

1340 IF RIGHTS(card$,1)="C"THEN suit$=C
S1suit25-025 60010, 0

1350 IF RIGHTS (card$,1)="S"THEN suit$=S
$:8u1t2$=52%:GCOLO, 0

1360 ENDPROC

13270

1380 DEF PROCdisplay (x,y,c$,c%)

1390 cards="":cardS=1EFTS(cS, 2)

1400 cv$(c%)=card$

1410 pip$=LEFTS(cv$(c%),1)

1420 DEF PROCdisplayl (card$)

14:0 IF cards="" EWDPROC

1440 PROCsuits(card$)

1450 MOVEx+2,y+172:PRINTpip$

1460 MOVEx+2,y+140:PRINTsuit$

1470 MOVEx+32,y+132:PRINTsuit2$

1480 MOVEx+88,y+64:PRINTpip$

1490 MOVEx+88,y+32:PRINTsuit$

Beebug December 1993

45

Pyramid Patience

[1500
1520
1530
1540
1550
1560
| 1570
1580
1590
1600
‘ 1610
1620
1630
; 1640
1650
2)
1660
1670
1680
1690
1700
1710
$+2,1)
i+2,2):
tcks, 1%
{1720
| 1730
| 1740
| 1750
[1760
+1
| 1770
| 1780
| 1790
1800

1810

1820
76
1830
1840
1850
| 1860
1870

46

15107 :

SOUNDO, -10, 4, 1: ENDPROC _ ' i
DEF PROCstock(x,y) :GCOLO, 3 ‘
IF S%=0 tflag=FALSE:ENDPROC
MOVEX, y :MOVEX, y-172

PLOT85,x+120,y
MOVEx+120,y-172: PLOT85, x, y-172

VDUS :MOVE1124, 958:GCOLO, 1: PRINTSBS
PROCbrdr (x,y-176) : ENDPROC ‘

DEF PROCshuffle
£$="":D%=51:FORI%=1T051

A%=INT (RND(RND(1)) *D%+1)
£$=f$+MIDS (temp$, 2*A%-1, 2)
L$=LEFTS$ (temp$, (A%-1) *2)
R$=RIGHTS (temp$, (LEN(temp$) /2-A%) *

temp$=L$+RS$:D%=D%-1

NEXT I%:temp$=f$

Stock$=RIGHTS (temps, 48)

IF PP%=FALSE ENDPROC

FOR I%=1 TO LEN(stock$)-1 STEP 2

IF MID$(stock$, I%,1)=MIDS$(stocks,I |
THEN stock$=stock$+MID$ (stock$, I%
Stock$=LEFTS (stock$, I%+1)+MIDS (sto |
+4, LEN (stock$) - (I%+2)

NEXT ELSE NEXT

ENDPROC

DEF PROCinit
S%=25:W%=0:tflag=FALSE:game%=game$

cx%(0)=1112:cy%(0)=790
cx%(29)=32:cy%(29)=790
€x%(30)=920:cy%(30)=790
pack$="A23456789TJQK" :waste$="":W$

key$:"ABCDEFGHIJKLMWS@TQ":StoCk$:"
suit$="HCDS" :X%$=668:Y%=832:step%=1

C$="":apex$="":temp$="":waste2$=""
rl5 (L) =tFan]S (2) = EGT™
r1$(3)="DFHJ" :r1$ (4)="CEGIK"
r1$(5)="BDFHJIL" :x1$(6) =" ACEGIKM"
count$=28:1%=0:c%=0:SH$=TRUE: PP%=T

|RUE
| 1880

FOR I%=1 TO 13:FOR J%=1 TO 4

| 1890 temp$=temp$+MIDS (packs, I%, 1)+MIDS (
| suits, %, 1)

| 1900

j 1910

| 1920

NEXT J%:NEXT I%

apex$=RIGHTS (pack$, 1) + (MIDS (suit$, |
| INT(RND(4)),1))

FOR k%=1 TO LEN(temp$) STEP2

[l 1930 IF MIDS (temp$, k%, 2) =apex$ THEN NEX |
|T ELSE C$=CS$+MIDS (temp$,k%,2) :NEXT
C$=apex$+CS: temp$="": temp$=RIGHTS (
|C$, LEN(CS) -2)

| 1940
| 1950
| 1960
1970
| 1980
1990

| 2000

D$=CHR$ (231) :HS=CHR$ (232)
C$=CHR$ (233) :S$S=CHR$ (234)
nl$=CHRS$ (8) +CHRS (8) +CHRS (10)

D2$=CHR$ (235) +CHRS (236) +n1$+CHRS (2
137) +CHRS (238)
H2$=CHRS (239) +CHRS (240) +n1$+CHRS (2

| 41) +CHRS (242)

C2$=CHRS (243) +CHRS (244) +n1$+CHRS (2

| 45) +CHRS (246)
S2$=CHRS (247) +CHRS (248) +n1$+CHRS (2 |
49) +CHRS (250)

SBS="":sb$=CHR$230+CHR$230+CHR$230 |
+CHR$8+CHR$8+CHRS8+CHRS10 ‘

| 2010
2020

2030
2040
2050
2060
2070

| 2080

[2090

5
[2100

FOR I%=1TO05:SB$=SBS+sb$:NEXT
RESTORE

FOR I%=1T022:READN,T
Pi%(I%)=N:du%(I%)=T:NEXT

DATALL7, 5,129,585 129 10,117,5,109,5

DATAL0L, 10,109, 8,117,5,129,5,117,.5
DATALG9, 20,117 5,129 5129 10 117 |

DATALGY, 5,101,100, 109),5 117,5,109 5

~101,5,101,20

2110

ENDPROC

| 21200

2130
2140
{12150
2160
2170

DEF PROCplay

CLS:C%=0:1%=-0.*F%15,1

wa=FALSE: st=FALSE: kflag=FALSE

FOR I1%=1TO2

PRINT*Enter card #";I%;.IE (8%<) A

ND I%<2) PRINT;" or Q to quit";

2180
2190
2200

INPUT" "ip$(I%)
C%=INSTR (key$, RIGHTS (ip$ (I%),1))
IF C%=0 PROCerr (2) :I%=2:NEXT:GOTO2

Beebug December 1993

Pyramid Patience

140

2210 IF C%=16 PROCdeal:I%=2:NEXT:GOT021
40

2220 IF C%=17 PROCerr(7) :1%=2:NEXT:GOTO
2140

2230 IF C%=18 I%=2:NEXT:PROCquit :ENDPRO
@

2240 IF C%=14 B%=29:A%=0:wa=TRUE:GOT023
40

2250 IF C%=15 B%=30:A%=0:st=TRUE:GOT023
40

2260 A%=VAL(LEFTS(ip$(I%),1))

2270 row%=FNconvert (A%)

2280 IF row%=0 PROCerr(1):GOT02140

2290 IF NOT FNrl(ip$(I%)) THEN PROCerr (

8) : I%=2:NEXT:GOT02140

2300 B%=ASC (RIGHTS (ip$(1%)
2310 IF (p%(B%)=0 AND cv$
r(3):CLS:GOTO 2140

2320 IF A%<6:IF (p%(B%+(2+A%))<>0 OR p%
(B%+(A%+1))<>0) PROCerr (4) :G0T02140

2330 IF C%>13 AND C%<16 cvS$(B%)=temp$
2340 cval%(I%)=FNval (LEFTS(cvS$(B%),1)
2350 IF cval%(I%)=13 THEN kflag=TRUE:I%
=2 :NEXT: ENDPROC

2360 IF I%=1 c%=A%:d%=B%

2370 NEXT 1%

2380 IF cval%(1)+cval%(2)<>13
) :GOT02140

2390 ENDPROC

2400
2410
2420

1)) /2-rows
%) ="")PROCer

DEF FNconvert (A%)
IF (A%<l OR A%>6):=FALSE

2430 IF A= o33 ELSRI TR A%=0 =3
2440 TF A%-3 =07 EISE IF A%=d:=22
2450 IF A%=hH:-1' FISE [F A%=6:=10
2460

2470 DEF FNval (V$)

2430 TRVS="A! . 1L o] SR TEys=tpiei(
J400 TEWS) 1 RLER TR VS=N0r =10
2800 TP VS=tK! =18 Kl 8B VAL (VS)

2510 .

2520 DEF FNrl(ip$(I%))

2530 r=VAL(LEFTS (ip$ (1%

2540 c$=RIGHTS (ip$(I%)
2550 IF INSTR(rlS(r),c

DL
L)
$) THEN =TRUE ELS

Beebug December 1993

PROCerr (5 |

E =FALSE

2560 ¢

2570 DEF PROCremovecard(a%,b%)

2580 GCOLO, 2

2590 MOVEcx$%(b%)-2,cy%(b%)-2

2600 PLOT97,126,182

2610 ovS(bd)="":p%(b%)=0

2620 IF C%>13 AND S%>0 tflag=TRUE
2630 IF a%=0 THEN ENDPROC

2640 SOUNDO,-10,4,1

2650 PROCcheck (a%,b%)

2660 PROCrepair (a%,b%)

2670 ENDPROC

2680 :

2690 DEF PROCrepair(A%,B%)

2700 I%=(B%-(A%+1))

2710 IF NOT p%(I%) GOT02790

2720 GCOLO, 3 :MOVEcx% (I%)+86,cy%(I%)
2730 PLOT97,34,84

2740 MOVECx%(I%)+86,cy%(I%)-2:GCOLO,0
2750 PLOT29,cx%(I%)+124,cy%(I%)-2
2760 PLOT29,cx%(I%)+124,cy%(1%)+88
2770 IF p%(I%)<>0 THEN p%(I%)=I%

2780 PROCdisplay2(I%)

2790 I%=(B%-A%):GCOLO,3

2800 IF NOT p%(I%) ENDPROC

2810 MOVECx%(I%),cy%(I%):PLOT97,38,86
2820 GCOLO, 0:MOVECcx%(I1%)-2,cy%(1%)+88
2830 PLOT29,cx%(1%)-2,cy%(I%)-2

2840 PLOT29,cx%(I%)+40,cy%(I1%)-2

2850 IF p%(I%)<>0 THEN p%(I%)=I%

2860 ENDPROC

D8

2880 DEF PROCcheck(A%,B%)

2890 IF (B%=2 OR B%=4 CR B%=7 OR B%=11

OR B%=16 OR B%=22) THEN p%(B%-A%)=TRUE:E

NDPROC

2900 IF (B%=3 OR B%=6 OR B%=10 OR B%¥=15

OR B%=21 OR B%=28) THEN p%(B%-(A%+1))=T
RUE : ENDPROC

2910 IFp%(B%-A%)<>0 THEN p%(B%- A%):TRUE
2920 IF p%(B%-(A%+1))<>0 THEN p%(B%- (A%
+1)) =TRUE
2930 ENDPROC
2940
2950 DEF PROCdisplay?2(I%)
47

Pyramid Patience

2960 pip$=LEFT$(cv$(I%),1)
2970 card$=cv$(I%):PROCsuits (card$)
2980 MOVECx%(I%)+88,cy%(1%)+64
2990 VDUS:PRINTpip$
3000 MOVECx%(I%)+88,cy%(1%)+32

3010 PRINTsuit$:VDU4 :ENDPROC

3000

3030 DEF PROCerr(e%) :COLOURL:*FX15, 1
3040 SOUNDI,-15,20,5:CLS: PRINT
3050 IF e%=1 PRINT"row number incorrect
3060 IF e%=2 PRINT;"Invalid entry.";
3070 IF e%=3 PRINT;ip$(I%);" Has alread
y been removed.";

3080 IF e%=4 PRINT;ip$(I%);" Not vet av
ailable.";

3090 IF e%=5 BRINTIIpS(1) M+":1pS(D)
Do MOT total 13 "

3100 IF e%=6 PRINT;"Stock exhausted.";
3110 IF e%=7 PRINT;"Cards remaining :"'
| MWapbe=" Wes' Stooksl o531 .

3120 IF e%=8 PRINT"Col to Row input mis
-match";

3130 COLOUR2:PRINT" HIT SPACE"

3140 REPEAT UNTIL GET=32:CLS

3150 COLOUR3:CLS:e%=0:ENDPROC

3160

3170 DEF PROCdeal

3180 IF (S%=1 AND C%=16) THEN S%=1:PROC
err (6) :ENDPROC

3190 S%=5%-1

3200 IF S%<=0 S%=0:PROCerr (6) :ENDPROC
3210 IF S%=1 PROCremovecard(0,0) :GOT032
30

3220 PROCstock(1112,966)

3230 IF (S%>=0 AND S%<=23 AND W%>=0 AND
C%=16) tflag=FALSE

3240 IF tflag temp$=""

3250 IF W%<=0 W%=0

3260 WS=WS+temp$

3270 IF S%>0 AND S%<24 AND NOT tflag W%
=W%+1

3280 temp$=LEFTS (stock$,2) :cv$(30)=temp
.
3290 x=920:y=790:GCOL0, 3
3300 MOVEX,y:MOVEx+120,y

3310 PLOT8S,x,y+176:MOVEx+120,y+176
3320 PLOT85,x+120,y:PROCbrdr(x,y)

3330 pip$=LEFTS (temp$, 1) :VDUS

3340 PROCdisplayl(temp$):SOUNDO,-10,4,1
3350 stock$=RIGHTS (stock$,LEN(stocks) -2

3360 PROCdispwaste(W$)

3370 tflag=FALSE:VDU4:ENDPROC

2330 -

3390 DEF PROCdispwaste (WS$)

3400 wasteS$=RIGHTS (WS, 2)

3410 IF waste$="" OR waste$=waste2$ END
PROC

3420 cv$(29)=waste$

3430 x=32:y=790:6C0L0,3

3440 MOVEX,y:MOVEx+120,y:PLOT85,x,y+176
3450 MOVEx+120,y+176:PLOT85,x+120,y
3460 PROCbrdr (x,vy)

3470 pip$S=LEFTS (waste$, 1) :VDUS

3480 PROCdisplayl(waste$) :tflag=FALSE
3490 waste2$=waste$

3500 ENDPROC

3510 .

3520 DEF PROCupdatewaste

3530 W%=W%-1:IF W%<0 W%=0

3540 WS=LEFTS (WS, LEN(WS)-2)

3550 PROCdispwaste(W$) : ENDPROC

4560

3570 DEF PROCcheckwin

3580 LOCAL I%:win=TRUE:count%=28

3590 FOR I%=28 TO 2 STEP-1

3600 IF p%(I%)>0 win=FALSE:I%=2:NEXT:EN
DPROC ELSE NEXT

3610 IF W%>0 OR S%>0 win=FALSE:I%=2:END
PROC

3620 GCOLO, 0:VDUS

3630 MOVEL86,200:PLOT97,914,400

3640 GCOLO, 3 :MOVE400, 564 : PRINT" CONGRATU
LATIONS"

3650 MOVE 352,460:PRINT"You have achiev
ed"

3660 MOVE 316,424 :PRINT"The almost impo
sible"

3670 FOR I%=1 TO 22

3680 SOUND1,-15,pi%(I%),du%(1%)

3690 sounpl,0,0,1:NEXT

48

Beebug December 1993

Pyramid Patience

3700 MOVE 196,324 :PRINT"Would you like
to play again"

3710 MOVE 512,264 :PRINT" (Y/N)";

3720 PROCyn :ENDPROC

3730

3740 DEF PROCquit:LOCAL I%

3750 FOR 1%=28 TOl1 STEP-1

3760 IF p%(I%)=0 count%$=count$-1

3770 NEXT:VDU22,7,7

3780 PRINT'''"Bad Luck...."'"You have b
een unable to complete"'"Game ";game%:PR
INT' ' "There are ";W%;" cards left in the
waste.”’

3790 PRINTTAB(10);S%;" cards left in st
ook, ¢

3800 PRINTTAB(6)"and ";count%;" cards 1
eft in the pyramid."

3810 PRINT''"Better luck next time."''"
Play again ? (Y/N)";

3820 PROCyn :ENDPROC

3830 -

3840 DEF PROCyn

3850 REPEAT G=INSTR("YyNn",GETS) :UNTILG
>0 AND G<5

3860 IF G<3 VDU22,7:G0T0140 ELSEVDU22,7
3870 FOR Y%=3 TO 4:X%=0

3880 PRINTTAB(X%,Y$%);CHRS$131CHRS$141"Tha
nk you for playing" :NEXT

3890 FOR Y%=6 TO 7

3900 PRINTTAB(X%,Y$%);CHR$133CHR$141"Pyr
amid Patience." :NEXT:END

3910 :

3920 DEF PROCpeter

3930 PROCvdus:CLS:X%=7:FOR Y%=1TO2

3940 PRINTTAB(X%,Y%)CHR$134CHRS141"Pyra
mid Patience" :NEXT

3950 FOR Y%=4T05:X%=8

3960 PRINTTAB(X%,Y%)CHRS131CHRS$141"Shuf
fle Options":NEXT

3970 PRINT' 'CHRS131"1) Straight Shuffl

pairs seperation."

4010 PRINT'"Pairs seperation applies to
stock only."

4020 PRINT'''CHR$130"Enter option numbe
%

4030 REPEAT:G%=GET-48:UNTIL G%>0 AND G%
<5

4040 IF G%=1 SH%=FALSE:PP%=FALSE

4050 IF G%=2 SH%=FALSE:PP%=TRUE

4060 IF G%=3 SH%=TRUE:PP$%=FALSE

4070 IF G%=4 SH%=TRUE:PP%=TRUE

4080 CLS:ENDPROC

4090 DEF PROCvdus

4100 vDU23,230,204,204,51,51,204,204,51
,B1

4110 VDU23,231,8,28,62,127,62,28,8,0
4120 VDU23,232,54,127,127,127,62,28,8,0
4130 vDu23,233,8,28,28,107,127,107,8, 28
4140 VvDU23,234,8,28,62,127,127,127,28,6
2

4150 VRU2s 235 0 8 3 T 15 58]

4160 vDU23,236,0,128,128,192,192,224, 22
4,240

4100 VU2 2373 15 180 70 3 i

4180 VDU23,238,240,224,224,192,192,128,
128,0

4190 VDU23,239,24,124, 126,255,255, 255, 2
he 2b

4200 VDU23,240,48,124,252,254,254,254,2
54,254

4210 VDU23,241,255,127 127 63.31,15,7,3
4220 VDU23,242,254,252,252,248, 240,224,
192,128

4030 WnuRsad3 2 1505 151789 125
4240 VDU23,244,128,192,224,224,224,192,
184,124

4250 VDugs, 245 288 265 255,125,571 3,7
4260 VDU23,246,254,254,254,124,56,0,128
4192

4270 D23, 2471, 3,7, 15,15 31,31, 63

e only." 4280 VDU23,248,0,128,192,224,224,240, 24
3980 PRINT'CHR$131"2) Shuffle + pairs 0,248
seperation. " 4290 VDU23,249,63,63,31,31,13,1,3,7
3990 PRINT'CHR$131"3) Double Shuffle o 4300 VDU23, 250,248, 248,240,240, 96,0,128
nly. * /192
4000 PRINT'CHR$131*4) Double Shuffle + 4310 ENDPROC B
Beebug December 1993 49

[Edit I
 Zoon D
Save D
Grid >

Colour meny
Select colour

Insert coluans b
Delete columns D
Insert rows
Delete rows

[hear

[\]
g Horizontal flip l

J Vertical flip

Alter size [Convert sprite

The number one
subscription
magazine for the
Archimedes

RISC User, probably the most popular subscription magazine for the
Archimedes, offers all the information you need as an Archimedes
user. In every issue of RISC User you will find a wealth of articles
and programs with professionally written reviews, lively news, help
and aduvice for beginmers and experienced users, and items of home
entertainment.

The BS size of RISC User allows a sophisticated design, big colour
illustrations and pages full of information, and yet ss still a convensent
size to assemble into an easy-to-use reference library. Altogether, in
its six years of existence, RISC User has established a reputation for a
professional magazine with accurate, objective and informed articles
of real practical use to all users of Acorn's range of RISC computers.

Contents of the latest Vol.7 Issue 2 of RISC User:
GROUP SURVEY: IMAGE PROCESSORS

A comprehensive round up of image processing software
from public domain to Revelation imagePro.

INTRODUCING PHOTO-CD

An introductory article explaining all about the new
Kodak Photo-CD standard now being implemented on
Acorn computers.

CRYSTAL MAZE REVIEW

This is the game, based on the popular TV series, that’s
beeridartracting all the attention recently in the Acorn
world.

CLARES’' RHAPSODY 3

A review of the latest and most comprehensive music
package yet providing a high quality music editing and
printing application.

THE RISC USER MORPHER

A description of morphing, the latest craze in visual

manipulation on the Archimedes, with a complete
morphing application and demo on the magazine disc.

WIMP TOPICS

A major series aimed at readers interested in Wimp
programs and Wimp programming. Each article looks at
aspects of a particular topic.

WRITE-BACK
The readers’ section of RISC User for comment, help,
information - a magazine version of a bulletin board.

INTO THE ARC

A regular series for beginners.

TECHNICAL QUERIES

A column which answers your technical queries.

THE DOS SURVIVAL GUIDE

A series ofiarticles on how to use the PC Emulator.

Hli\ln;l'tSW le% H'Ww le% legﬁd

SINGLE KEY BAD PROGRAM
RECOVERER

M.C.Behrend

The following function key definition may be
able to help you recover your latest
masterpiece after it has crashed with a “Bad
Program” error message.

*KEY0 M%=PA.:?M%=13:M3?1=0:REP.REP.N%=M3+
3:REP.N®=N%+1:U. ?N¥<320RN%-M%>250: ?N%=13:
M¥?3=N%-M%:P.M3?1*256+M3?2, ~M% :M3=N%:
U.M%?1>1270RINKEY 0<>-1:M3?1=M%?10R128:
P."Further ?”: G3=GET:IFG%=890RG%=121
M%?1=M%?1A.127:U.FA. [M

FUNCTION KEY LISTING OF
ENVELOPES

T.].Young

Here is a useful function key definition that
will display the parameters of any desired
sound envelope. These are listed in the same
order as in the ENVELOPE instruction, but
you must supply the envelope number in
response to the prompt:

*KEYQ MO.7:INP. "Number of envelope ";N%:

€%=0: P.”Envelope “;N%;:F.t%=0 TO

12:p.","; :E%=2(&8C0 +(N¥-1)*16+t%) :IF (t%>0

AND t3<4) OR (t%>6 AND t%<1l) THEN IF E%>127
E%=E%-1:T%=E3EOR&FF:
P.T%;:N.:P.:@%=10:EL.T%=E%:P.T%; :N. :@3=10|M

QUICK SCREEN FILL

If you want to quickly define the contents of
the text screen, try poking to location &358,
which is used to hold the character for
blanking it out after a CLS instruction. For
example:

2&358=A80 (" **)+CLS
in mode 7 will produce a display full of
asterisks. This is true for any text window
that has been defined.

CONTEMPORARY IMPROVISATIONS
R.Tobin

Type G.0:G.0:G.0:G.0:.....etc., until you have
filled the keyboard buffer - about 6 lines in
mode 7. Then hit Return. You will of course

Beebug December 1993

get the No such line error, but it also has
other effects.

PERSONALISED HEADER ON BREAK
J.Martins
There are of course more useful ways to use
the Break vector, but the short piece of code
below will personalise your title banner on
Break.

10 osasci=&FFE3:0sbyte=&FFF4:PROCassemble

20 CALL init:END

30 DEF PROCassemble

40 FOR pass%=0 TO 3 STEP 3:P%=&C00

50 [OPT pass$%:.start BCC exit:LDX#11

60 LDY#0:.print LDAmess,Y:JSRosasci: INY

70 DEX:BNEprint:.exit RTS

80 .init LDY#0:LDA#&F7:LDX#&A4C:JSRosbyte

90 LDA#&F8:LDX#start MOD 256:JSRosbyte

100 LDA#&F9:LDX#start DIV 256:JSRosbyte

110 RTS: .mess:]

120 $P%="Your name":P%=P%+9

130 ?P%=13:P%?1=13:P%=P%+2

140 NEXT:ENDPROC
Simply replace the text “Your name”, at line
120, with a suitable string no longer than nine
characters. If you use this routine on an
Econet system, then you should modify the
address &C00 at line 40 to &A00, as Econet
uses Page &C00 as its workspace.

TO LINEFEED OR NOT TO LINEFEED

Tim Dawe
If you find that, when using the View Printer
Driver, BEEBUG Vol.12 No.4, your text is
printed with double line spacing, here is a
simple solution that does not involve setting
DIP switches on your printer. The problem is
caused by the printer driver sending both a
carriage return and a linefeed at the end of
each line, and the printer adding an extra
linefeed itself. Make the following changes to
the driver program:

105 oswrch=&FFEE

1140 JSR oswrch

1150 PLA:JMP oswrch
The printer driver will now only send a
carriage return after each line, with the
printer adding the linefeed. B

5

51

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads
(including 'wants') in BEEBUG. These are completely free of charge but please keep your ad as short as
possible. Although we will try to include all ads received, we reserve the right to edit or reject any if
necessary. Any ads which cannot be accommodated in one issue will be held over to the next, so please
advise us if you do not wish us to do this. We will accept adverts for software, but prospective purchasers
should ensure that they always receive original copies including documentation to avoid any abuse of
this facility.

We also accept members' Business Ads at the rate of 40p per word (inclusive of VAT) and these will be
featured separately. Please send all ads (personal and business) to MEMBERS' ADS, BEEBUG,
117 Hatfield Road, St. Albans, Herts AL1 4.J8S.

Spectrum emulator, data transfer on
232/432i/0 port, screen module,
load and save in Spectrum Basic but
executed on Acorn DFS and vice
versa, a printer option is built in,
also sound facility. Write to; Carsten
Witt, Rostockerstr. 5, D 45739 Oer-
Erkenschwick, Germany.

BBC software (Master 128) PMS
Publisher ROM with manual and
Font discs £20, Cambridge Micro
Software Image with manual £15,
ESM/Tedimen Advanced Folio
(ADFS) with manual £15, GSN/ITV
Key database (ADFS) with manual
£8, Mid-Sussex Software Music
Processor £15, Forth Dimension
Holed Out £4, Acorn User discs
April 91 to April '92 5.25" £3, May
'92 to March '93 3.5" £3, Dabs Press
Shareware Collection Vol.1 £10,
Vol.2 £10, Profit Systems Tascmaster
£10. Tel. Somerset 0458 43906.

Quantity of new 2764, 2732, 6264LP,
please ring for details with sensible
offers. Tel. Lancashire 0254 701573.

BBC model B with Acorn DFS,
speech ROMs and Watford
sideways ROM board, twin Cumana
s/s disc drives, Prism modem and
philips amber monitor, disc/tape
educational /games software, disc
box, blank discs and various books,
all for £125 + p&p. Tel. Chester 0244
344695.

Computer Concepts RAM/ROM
board fitted with 32k battery backed
RAM chip, Interword, Intersheet
and Spellmaster chips, complete
with manuals and keystrips £80
0.n.0. Acorn original Maths co-
processor podule £150 o.n.0. Tel.
Cheshire 0925 811420.

BEEBUG magazines; March '84 -
Aug '87 inclusive 35 back copies.
Micro User Nov ‘84 - Dec '89
inclusive 61 back copies. Acorn User
mags various April ‘84 - Feb '88 29
back copies. Telelink mags first
issues Vol. 1-7 Nov ‘84 - Dec ‘85 and

52

Vol. 2 1-2 Nov '86 - June '87. Tel.
Perthshire 0764 670674.

BBC Master, Welcome and
Reference Guides 1&2, 40/80T
welcome discs, Viewspell ROM and
manual, View manual, Cumana
40/80T disc drive and manual,
Microvitec Cub 1451/DS2 colour
monitor, Marconi tracker ball RB2
£300. Tel. Stirlingshire 0324 715586.

BBC B issue 7 with DFS, Cumana
disc drive, Wordwise ROM and
Epson MX100/3 printer, full
working order £130. o.n.o. for the lot
or might separate. Tel. Kent 0634
685492,

Fast Access volume 1 £15, Fast
Access Volume 2 £20, Fast Access
Volume 3 £12, Disc User disc set £14,
Superior Software Spycat £2, Opus
disc interface £10, Fontstyle printing
package plus fonts £10, Viglen ROM
cartridge system £10, Vu-Type £3.
Tel. Lancashire 0253 712395.

M128, Cumana single 40/80T drive,
Panasonic KX-P1081 printer, all in
excellent condition, manuals &
books inc. reference manuals,
complete 5 yrs BEEBUG magazines,
many 5.25" discs £300, also IBM XT
PC + software & Epson FX100
printer £100 or £350 the lot. Tel.
Bucks 0628 521231

Binder for BEEBUG, spare brand
new £1 to cover p&p. Tel. Hereford
0981 550 344.

Collectors item ?? complete set of
BEEBUG magazines Vol.1 Issue 1 to
Vol.6 Issue 6, excellent condition,
offers? Tel. Southampton 0703
262476.

M128, 15" RGB colour monitor,
twin 40/80 Cumana disc drives,
Amstrad DMP1 9 dot matrix
(tractor), Plug-in ROMs, Viewsheet,
Viewstore Database, View Printer
Driver, MiniOffice I, Wapping
Editor DTP, Advanced Disc

Toolkit, NLQ Font Designer,
Penpal 2 (lightpen), Quest-paint,
Quest mouse, Pace Nightingale
Modem, teletext adaptor, user port
splitter (all manuals for above), 30
Micro User discs £250. Tel. Surrey
081-337 4247.

A3000, 4Mb RAM, Acorn colour
monitor, 80Mb external IDE disc,
lots of software including:
PipeDream 4, Ovation, Wordz,
Squirrel DBM, Base 5, PC
Emulator, Hard Disc Companion,
Lemmings, dozens of RU discs and
magazines, £750, must collect. Tel.
Beckenham Kent 081-650 9960

eves.

Local primary school and I are both
upgrading - help us pay for it. The
following have all been serviced
recently: Master 128 £120, BBC B
with DFS, ROM/RAM board, ROMs
£65, BBC B with DFS £50, 40/80T DS
drive, 40T DS drive with PSU £20
each, Cub colour monitor £30, collect
or p&p extra. Tel. Suffolk 0394
385799.

Switchbox and cables, BBC to 2
printers £10, Mini Office II, 40T £5,
50x5.25" discs 10p each, Advanced
User Guide £5, 30Hr Basic £5, Twin
5.25" disc drives £15, all plus
postage. Tel. Barnsley 0226 762450.

Archimedes 8Mb RAM, 103Mb
Hard Disc (16 bit SCSI), Aleph 1
30MHz ARMS3, RISC OS 3, Laser
Direct LBP-8, Spectra Colour Flatbed
Scanner, Watford hand held
scanner, Impression 2.17 (inc.
business supplement), Poster, PC
Emulator, OCR, Schema,
Autosketch2, Logistix, FontFX,
Artisan, loads of utilities, games and
over 70 Font Foundary fonts, cost
well over £5000 new, bargain at
£1,000 (no offers -but may split). Tel.
Kent 0892 503786 (work) or 0892
533686 (eves) for further details.

WANTED: Phantom Combat for the
BBC (disc preferred), also Colossus 4
Chess (BBC disc only). FOR SALE:
Morley teletext adaptor +ROM and
disc, no reasonable offer refused.
Tel. 061-678 2032.

If you own a BBC-B or Master

and are a dedicated User
Then you should join:-

BEEB DEVELOPMENTS USER GROUP

Nort

FOR BBC-B, B+, ELECTRON & MASTER
USERS ONLY!!

For more information send a sae to:-

BEEB Developments
73 Spital Crescent
Newbiggin-by-the-Sea

%wmberland
NE64 65Q

Beebug December 1993

BACK TO BASICS

If it is not too late, I would like to make a
suggestion for an article about Basic before
BEEBUG ceases. Ideally I should like
something that includes a history of its
development, but more realistically what I
have in mind is a survey and comparison of
what is now available. We have often been
told how good BBC Basic is compared with
other versions, and I do not doubt it but I do
not know where the superiority lies. My own
concerns are chiefly with calculation and
tabulation of results, so I have been familiar
with the ###.## convention of other Basics,
and think I have mastered the BBC's @%=&
efe.

Two points underlie this suggestion. Only
recently have I learnt that there are some
Basics that do not use line numbers, and,
more relevantly to RISC Developments and
Acorn, that Archimedes Basic has an ENDIF.
Although I have no intention of changing
from my Master, improvement in Basic is
more persuasive to me to change than any
other feature that the Archimedes offers
(apart from increased memory). My academic
associates use IBM-compatibles, and I know
that on these, though I would have to learn a
different Basic, I can get double-precision
Fortran that is adequate for any problem I
have tackled on a mainframe. Can the
Archimedes offer the same? I should be
happy to be persuaded to stay with Acorn.
D.Ambrose

The history of Basic is no doubt fascinating, but
sadly I do not feel we shall have time to cover it in
BEEBUG. To my knowledge it was first defined in

Beebug December 1993

the USA by Kemmeny and Kurtz in 1965, and the
name is actually an acronym for “Beginners All-
purpose Symbolic Instruction Code”. BBC Basic
has always been a very rich dialect of the language
reflecting the open design of the BBC micro.
Where other Basics were limited to GOTO and

RETURN, BBC Basic allowed procedures and

functions to be called by name, a REPEAT-

UNTIL statement, and a more comprehensive IF-
THEN-ELSE construction than most.

BBC Basic on the Archimedes has removed most
of the remaining constraints, with full multi-line
IF-THEN-ELSE-ENDIF constructions, a
WHILE-ENDWHILE, a CASE statement and
more. In addition, the latest version of BBC Basic
(Basic VI) now implements IEEE standard 754
using 8-byte representation for real numbers
instead of the previous 5-byte representation. A
Fortran compiler was available for the Archimedes

from Acorn (now no longer available direct), and

there is an Archimedes Fortran support group.
What more could anyone ask?

PRINTER DRIVER UPDATED

On my early version of View(2.1), one
problem is that the printer is initialised at the
start of each page when using the SHEETS
command for individual sheets of paper, thus
losing all the embedded print comments
already entered. This problem can be avoided
by amending David Holton’s excellent
printer driver program, published in
BEEBUG Vol.12 No.4, as follows:
370 LDA #ASC"<": JMP osprint
This just gives a carriage return, and therefore
preserves the codes.
Alistair Scott
B

53

below.

Send apphcatlons for membe
hfpI fees,

nludg

ubscribe t0 o RISC

hip renewaf
rseas, s
C Use!

rship querie and or
be in po u nds § terlmgd
rata a special reduced rate-

TES
AGAZINE DI
See May 1993 Editorial for turther exp!ana\\on
The table below shows the al rate appying afterthe June issue 1993 according 10 o0 the he renewal period
For jof \SC User subscriptions d haf the appropriate renewal rate to the 1u\\ R\SC renewal rate;
(UKE1® 40, Europe & Eire £27.50, Middle East £3 Americas & Africa £36. 50, ElseW re £39.50).
Renewal \ssues M Mag N!agE Mag Mag Disc p\sc
0 go V) Europe Mid- Am+Af Else Uik Oseas
2475 0.15 32.85 3555 45.00 50.40
! | 29.20 31.60 40.00 44.80
| 27.65 35.00 39.20

ders for back issué

s t0 the address

wn (for che ques) ona

ES (per issue) volume M 5"DisC
o w28 HR
All oversea items ot aimail. We will accept official 78 %‘1'230 £4.00 ¢4.00
UK orders for subscriptions and back issues: but pleaseé £1.60 £4.00 £4.00
note that there willbe a £1 handling charge fo rs) £4.75 £475
under £10 W which require a invoice. Th VAT on 90 5 ;
magazines.
pOST AND PACK\NG v e AR
Magazines and discs aré po Mid East
please add me cosl of p en ordenng £2.40 2260
When ordenng ms use rhe highest £5.00 :
price code, plus han the price of each
subsequen nt code. U UK maximum £
BEEBUG
117 Hatfield Road, st.Albans, Herts AL1 &S
Tel. St Albans (840303 FAX: (0727) 8602
Office hour s 9am-5p! Al Monday o saturday
werphone for subscnpuons)

(24hr Ans'

BEEBUG MAGAZINE is produced by
RISC Developments Ld.
Editor: Mike Williams
Assistant Editor: Kristina Lu
Ednona\ Assistance: ars \A derson
Producuon ssistant ShenaStoneman
Advertising: Saral S hrive
Subscnpuo elen O'Sullivan
Managing Edito 1 Sheridan Williams
art of this pubhca
n of th

on may be
¢ Publisher.

atupto
substamlal that you
Contnbutors js ava
Please submit you
form using pial ain
gnsure an adeg

your submiss

Inall commumcatlon,

l ble o
our comnbut:o
if pos

uate written
ion and the €0

on receip

ondiscin
s:bl for text, but please

description is also includ
contents o/format of your disc.

please quote your membership

All rights reserv d. No
rm|551
esponsibi lity whatsoever for number.

vertisements publis shed. The
those of the

al are
se of the e Publisher,

85!
not necess sarily repr
Printed by

on
ments Limited.

RISC Developme

Arlon Printers (0928)

nts Ltd () 1993
|SSN - 0263 - 7561

268328

DECEMBER 1993

BEEBART The maga
nsive at packa
ha (romend menu.

this comprenens!
selecteble throug!

M-BASE - Par\\wooﬁ\h\s comprenen
s \a\\menno pvowde\he

now been added 10

complete applicalic

the program ¥

o the contents of any N
PYRAMID PATIENCE - ToW
{ime @t Christmes andthe Yearwe have
marvellous palience me to keep you entertained.
e disc ¢0 contains @ file with

BEEBUG W

the routines 1S st

working dem

FIRST CO
lustrates the U < of the file h
month's e icle In \h\s series.
MR TOAD'S MACHINE CODECO ORNER-This gemonsiration
program ShOWS geupd Basic program sothattcan
be caled wit ith a star co command from sideways
RELOCATOR sisa useful utiity wh\c\'\ W\ modty the
addresses of suitable e machine ¢ prod o that they can be
relocated in memory-
MAGSCAN DATA- . Biblography for this 1sU€ o BEEBUG
(Vol12 No.7).
BONUS| {TEMS
ROBOL-We have inc! Juded on this discan n updated yerson of the
opular Robol game which lows you 10 retractany
unsatistactory move, rather than sta tart all over again.
PERPETUAL CALENDAR Just gt for the new yed ar, \h
upda\ed program is |way of O displaying Or P printing mon\ hy
on \he anasonic KX p1124and similar

ALL TH

pack iss

separate versions of

contains WO &
5) both

zine disc
&i [dferent mode

database prog™ has

1o last mont

n {o date.
.The disc contains

TORIES T 10 WORK -
jo-use indew Jmenu

lles @ an easy-

e away @l | those hou's of spare
e roV\ded\h\s

ORKSHOP - The tagazin
inthe magazine 08¢ qgether witha complete

ted |
o0 of the Quick Sort.
fped inthe magazme,

URSE - This prog! m, descrb
nd\\ng ingtructions described in this

5" &35 5" DISC) +

|S FOR £4.75 (5.2
ues (5- 25" and 3 5" disCS from Vol

FOR D\SC (5
EO

JEEBUG

Special
Offer

A5000 Computers for only £850

(Prior to Sept'93 the same system was £1285)

Once again we have managed to obtain a
number of A5000 Learning Curve systems at
a ridiculously low price. On the previous
occasion we sold all 100 in only ten days!
So hurry if you are not to miss out this time.

The A5000 on offer is the top of the range
computer from Acorn, and features the
25MHz ARM3 processor (the latest models
are equipped with a 33MHz ARM3 making
them marginally faster).

We are offering a range of specially priced
upgrades provided they are all supplied or
fitted at the same time of your order for the
A5000. All are fully guaranteed for 12
months along with the computer. So whether
you can only afford the computer now at
£850, or a full blown system we can supply
exactly what you need.

Monitor options: RAM Upgrades:
Standard (AKF40) £149 | |2-4Mb £85
MultiScan (AKF18)£179 | |2-8Mb £379

A5000 Specification
RISC OS 3.1

2Mb RAM

80Mb Hard drive
25MHz ARM3

Learning Curve pack
PC Emulator v1.8

DOS S

First Word Plus

Acorn DTP

Audio Training Tape
Pacmania

Genesis Plus

Additional Hard Drives:
160Mb £199
260Mb £279
450Mb £449
These drives are fitted in_
addition to the standard 80Mb
and do not replace them.

117 Hatfield Road, St Albans, Hertfordshire AL1 4JS.
B E E B U G Ltd Tel: 0727 840303 Telesales Direct: 0727 840305 Fax: 0727 860263
Prices shown are exclusive of £8.00 for carriage and VAT.

