

REGULAR ITEMS

5 Edtors Jottings/News

4

8
Robol - The Game 5 " il g

inting Fractions | @

gl W Hints and Tips
League Tables s >
Public Domain Software p personal AdS)
Gravity and OrolS (23 - '
Workshop: Sorting (1) 24 g pscriptions & Back 158UES
Word Square Upgrade - = "
Trouble Shooting Guide (4) Magazine Disc
; t(2)
The Sideways P0e i
Eirst Course: Input (4 o HINTS & TIP
2 .
G 3;;:;1:(1() 41 it Fields in Basi
t .
e & \nstant ltalics
Spriter (2) e
Machine Code Corner i
512 Forum

PROGRAM INFORMATION

All listings published in BEEBUG magazine are
produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space

following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When

difference between the digit one and a lower case |
(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic | are referred to the

© entering a listing, pay special attention to the

article on page 44 of BEEBUG Vol.7 No.2 (reprints

Ph
@ha+iesburg

DISTRHLE: 134,000 W

GELOLTTY: 8,280 B
\nitial order

1st comparison

after
after 2nd companson
after 3rd comparison

after 1st pass
after 2nd pass

TR, |
£ 4 1 | - Save Sheet
L P Load Sheet
3 - Print yhole gheet
4 - Print yindow
s gpool Windos
g - End program
ESC - Edit sheet

Your choice T

available on reced
advi ptof an A5
e e Ao n:‘ and are strongly
pro computer should be t second processor
grams are run. turmed off before th

e

:\‘ Program needs

Wherea
1hi Iy Indlcaid by symbols st thebegd
article (as shown symbols at the-hesiﬂsm
opposite). Any other 'Illlllg.ofﬂ,e
r requirements

are referred
i ed to explici
tly in the text of the articl
only. r Master 128 and Compact

Ldivors Jorvings/News

Volume 1 Index,

With this particular issue we come to the end of
yet another volume of BEEBUG. The next issue
will see the start of our twelfth year of publication.
As is our custom we shall be preparing a complete
printed index to the whole of volume 11, and this
will be distributed to all subscribers with Vol.12
No. 1. In addition, indexes to previous volumes of
BEEBUG can normally be supplied on request
provided that you send us a stamped addressed
envelope for this purpose. Please send any such
requests to BEEBUG Magazine, at our usual
St.Albans address.

Beeb Bargains

Essential Software has reduced the price of its last
few 512 memory expansions from £99.00 to
£75.00 inclusive. It's unlikely any more will be
produced and less than ten remain, so if you'd like
to expand the memory of your 512 don't put it off
any longer. Enquiries to: Essential Software, PO
Box 5, Groby, Leicester LE6 0ZB.

Dabs Press has given permission for Robin Burton
to supply a revised, 24-pin version of HyperDriver,
his Epson compatible printer driver (reviewed
BEEBUG Vol.6 No.9, summary Vol.7 No.7). The
upgrade price is £10.00 for EPROM, or £8.00 for
the disc version, both inclusive. You must send an
original EPROM or an issue disc, making cheques
payable to R.D.Burton, or send an S.A.E. for
further details to Robin at the above address.

BladeDarcer

We can report this month on a brand new game
for the BBC micro range. BladeDancer from
Omicron Technologies is a graphics adventure
game in which you choose the character you wish
to play (Archer, Wizard or Warrior) in solving over
150 puzzles in 650 different locations. You must
find the nine pieces of the Pentagram and banish

4

the Demon to its own plain before it destroys the
Norse god of war, Galac Thaar.

BladeDancer is supplied on five 5.25" discs for use
with the BBC micro or Master 128, and costs
£11.95 inclusive direct from Omicron
Technologies, P.O.Box 37, Daventry, Northants
NN11 4UG.

All Formats Compurer Fairs

If you haven't used up the free ticket which we
distributed last month with each issue of
BEEBUG, then here is the next selection of All
Formats Computer Fairs to choose from.
3 Apr Adam House, Chambers Street,
Edinburgh.
4 Apr City Hall, Candleriggs,
Glasgow.
11 Apr Corn Exchange, Church Street,
Brighton.
17 Apr Jesse Boot Centre, University
of Nottingham.
18 Apr National Motorcycle Museum, NEC,
Birmingham (J6 M42).
24 Apr Sandown Park, Esher, Surrey
J9/10 M25).
25 Apr Brunel Centre, Temple Meads,
Bristol.
1 May Northumbria Centre, Washington,
County Durham. ’
2 May University Sports Centre,
Calverley Street, Leeds.
All fairs run from 10am to 4pm. Telephone 0608
663820 for more information.

Epniny Iy Harmogate

The BBC Acorn User Show takes place in
Harrogate from 15th to 17th April at the
Harrogate International Centre. RISC
Developments will have a stand there where we
look forward to meeting BEEBUG readers.

M.W.

Beebug April 1993

Robol - The Game

Miroslaw Bobrowski shows that shifting boxes can be fun.

‘Robol’ is a pejorative expression used in
the Polish language for a dullish
labourer and as such it is used in the
same context as the English word
drudge. ‘Robol’ is also a hero of a
multilevel strategy game, which is, in
fact, a BBC-Micro version of the IBM
game called Sokobarn.

Start at the beginning

The rules of the game are very simple; all
you have to do is to move the Robol
character round the screen to push all the

Finished level 1

packs onto the target shown as a cross-
hatched area. The first levels are very easy
to complete within a few minutes but you

Beebug April 1993

need more than 20 minutes to find a
solution when playing higher levels.
Furthermore, one reckless move can make
it impossible to complete a level.

Level 2

The Robol program consists of several
files. The first one, Robol (Listing 1),
contains a short instruction screen, sprite
data, and two pieces of code for
assembling. The second file, Robol2
(Listing2), is the main program controlling
the game. The third file, RobData (Listing
3), generates the robol3 data file, which is
called by Robol2.

Level 3

Robol - The Game

There can be fifty screen levels ready for
use and these are stored in a compact
form between locations &3000 and
&4F3F (a space of &AO0 bytes is required
for each screen). Theoretically there is a
space for 14 additional screens (from
&4F40 to &57FF).

Because of the space it would take up,
the printed listing of RobData contains
only ten screens. The number of screens
is controlled in the lines 120, 130, 2520
and 2530 in RobData and in the 1610 in
Robol2. The version on the disc has the
full 50 screens so those lines will be
different.

When all three listings have been typed
in, fully debugged and saved on the disc,
then run RobData to produce the robol3
file. To run the game enter CHAIN
“ROBOL". The other files are then loaded
automatically, and you can start to play
the game at level 1. To change a level
press the 'L’ key and enter any number
that is not greater than 10 (50 on the disc
version). To move the Robol character
round the screen and to push the packs
use the “Z',X’,"/" or *" keys. The Escape
key should be used to restart the game at
the current level, whereas pressing Ctrl-
Escape enables you to exit the program.
Next month I'll be presenting a screen
designer to let you create your own
levels. Now, get shifting!

10 REM Program ROBOL

20 REM Version B 2.1

30 REM Author M.Bobrowski

40 REM BEEBUG 2pril 1993

50 REM Program subject to copyright

60 : -

100 MODE 7:VDU 23;8202;0;0;0;

110 ENVELOPE 1,4,-1,1,-1,1,1,1,20,10,0
,-30,80,100

120 PROCspritedata:PROCdisplay_spr:FRO

Ctune

130 PROCinstr

140 :

150 CHAIN"Robol2"
| 160 :

1000 DEF PROCspritedata

1010 P%=&C00

1020 [OPT 0

1030 EQUS STRINGS(32,CHRS0)
| 1040]

1050 FOR I%=1 TO 192 STEP 4

1060 READ a$

1070 [OPT 0

1080 EQUD EVAL("&"+a$)

1090]

1100 NEXT

1110 ENDEROC

1120 :

1130 DATA FF2F2F2F, FOFOFQF, FFOFOFOF, 2F2
F2F2F, FFOFOF(F, 4F4F4F4F, FFAF4FAF, FOFOFOF
1140 DATA 22118844,22118844,22118844,22
118844,22118844,22118844,22118844,221188
44

1150 DATA 43707000,53535343, 43535353, 70
7043, 2CEOEQ00, ACACAC2C, 2CACACAC, EOE02C
1160 DATA 1212110,1155BB11,20301001,602
020,8484880, 88AADDAE, 40C08008, 604040
1170 DATA BC8FSFFF, ACACACBC, BCACACAC, FF
8FBFBC, D31F1FFF, 53535303, D3535353, FF1F1F
D3

1180 DATA 1212110,11558B11,20301001,602
020,8484880, 88AADDES, 40C08008, 604040
1190 :

1200 DEF PROCdisplay_spr

1210 scr_addr=&70:temp=&72:row=&74

1220 temprow=&75:column=&76:index=&77
1230 x=&78:y=679:addr=&7A

1240 FOR pass=0 TO 2 STEP 2

1250 P%=&B00

1260 [OPT pass

1270 STX x:STY vy

1280 ASL A:ASL A:ASL A:ASL A:ASL A:STA
index

1290 LDA $&58:STA addr+1:LDA #0:STA add
r

1300 LDY y:BEQ zero

6

Beebug April 1993

Robol - The Game

1310 .loopl

1320 CLC:LDA addr:ADC #&40:STA addr
1330 LDA addr+1:ADC #1:STA addr+l

1340 DEY:BNE loopl

1350 .zero

1360 LDX x:BE] store_addr

1370 .loop2

1380 CLC:LDA addr:ADC #16:STA addr

1390 LDA addr+1:ADC #0:STA addr+l

1400 DEX:BNE loop2

1410 :

1420 .store_addr

1430 LDA addr:STA scr_addr:LDA addr+l:S
TA scr_addr+l

1440 LDA index:STA spr_addr+1:LDA #&0C:
STA spr_addr+2

1450 :

1460 LDX #2:LDY #16:5TX column:STY row
1470 LDX #0:LDY #0

1480 LDA scr_addr:STA temp:LDA scr_addr
+1:5TA temp+l

1490 .display

1500 LDA row:STA temprow

1510 .spr_addr

1520 LDA &FFFF,X:STA (scr_addr),Y

1530 INX:LDA scr_addr:AND #7

1540 CMP #7:BEQ bottom

1550 INC scr_addr:BNE nextrow

1560 INC scr_addr+l:JMP nextrow

1570 .bottom

1580 LDA scr_addr:ADC #&38:STA scr_addr
1590 LDA scr_addr+1:ADC #1:STA scr_addr
+1

1600 .nextrow

1610 DEC temprow:BNE spr_addr

1620 LDA temp:ADC #8:STA scr_addr:STA t
emp

1630 LDA temp+1:ADC #0:STA scr_addr+l:S
TA temp+l

1640 DEC column:BNE display

1650 RTS

1660]

1670 NEXT

1680 ENDPROC

1690 :

1700 DEF PROCtune

1710 osbyte=&FFF4 :0sword=&FFF1
1720 dptr=&70 :work=&80

1730 FOR pass=0 TO 2 STEP 2

1740 P%=&900

1750 [OPT pass

1760 LDA #musdata MOD 256:STA dptr
1770 LDA #musdata DIV 256:STA dptr+l
1780 LDA #0:STA work+1:STA work+3
1790 STA work+5:STA work+7

1800 .music

1810 LDA &FF:ROL A:BCC noesc

1820 BCC noesc

1830 LDA #&7E:JSR osbyte

1840 BRK:EQUB 17:EQUS"Escape” :BRK
1850 .noesc

1860 LDX #250:JSR adval

1870 CPX #0:BEQ full

1880 JSR soundl

1890 .full

1900 LDY #0:LDA (dptr),Y

1910 CMP #&FF:BNE not_end

1920 LDA #0:RTS

1930 .not_end

1940 JMP music

1950 .adval

1960 LDA #&80:LDY #0

1970 JMP osbyte

1980 .soundl

1990 DY #1:IDA (dptr),Y

2000 cMP #&FF:BEQ outl

2010 TAX:DEY

2020 LDA (dptr),Y:TAY

2030 LDA #1:JSR sound

2040 CLC:LDA dptr:ADC #2:5TA dptr
2050 LDA dptr+1:ADC #0:STA dptr+l
2060 .outl

2070 RTS

2080 .sound

2090 STA work

2100 STX work+6:STY work+4

2110 LDA work+4:BNE norm

2120 LDA #0:BEQ go

2130 .norm

2140 LDA #1

2150 .go

2160 STA work+2:ADC #0:STA work+2

Beebug April 1993

Robol - The Game

2170 LDX #work MOD 256:LDY #work DIV 29
6

2180 LDA #7:JMP osword

2190 .musdata

2200 OPT FNdata

2210]

2220 NEXT

2230 ENDEROC

2240 :

2250 DEF FNdata

2260 RESTORE 2320

2270 REFEAT

2280 READ M%,N%:7P%=M%:P%71=N%:P%=P%+2

2290 UNTIL M%=255 AND N%=255

2300 =pass

2310 :

2320 DATA 137,6,129,2,137,4,129,8,137,1
2,0,4,137,12,129,4,137,12,145,6,137,2,14
5,4,137,8,145,12,0,4,145,12,137,4,145,12
S04, 167,12 AR1, 4 157,42 (0 47141 12 133,
8,141,4,129,36,0,32,255,255

2330 :

2340 DEF PROCinstr

2350 FORI%=1 TO 2:PRINTTAE(12,I%)CHRS15
7;CHR$131;CHRS129;CHRS141; "ROBOL" ; SPC4; C
HR$156 : NEXT

2360 PRINTTAB(12,24)CHR$130"Press SPACE
";:VDU28,0,22,39,4

2370 PRINTCHRS134"Robol is a labourer e
mployed at the"'CHR$134"storehouse. Help|

him to push packs and*'CHR$134"to trans
port them to the cross-hatched"'CHR$134"
areas."

2380 PRINTCHR5131"There are 50 game lev
els and you can"'CHR5131"choose any of t
hem during the game."

2390 PRINTCHR$134"If no reascnable move

is possible to"'CHRS134"complete a leve
1 then press ESCAPE"'CHRS$134"to start wi
th the same level again."

2400 PRINT'SPC11;CHR$129"Control keys:"
''CHR$134;" Z ";CHR$131; "Move left";SPCT
;CHRS$134;"X ";CHR$131; "Move right"'CHR31
34;" * ";CHR$131; "Move up";SPCY:CHRS134;
"? ";CHR$131; "Move down"

2410 PRINTCHRS$134;" L ";CHR$131;"Change

level®;SPC3;CHR$134; "ESC" ;CHRS$131; "Resu
me game"''CHR$131;" To leave the game pr
558" ;CHRS134"CTRL+ESCAPE" ;

2420 REPEAT UNTIL GET=32:VDU26,12:ENDER
oc

10 REM Program Robol 2
20 REM Version B 2.5
30 REM Author M.Bobrowski
40 REM BEEBUG April 1993
50 REM Program subject to copyright
60 :
100 MODE 5:VDU 23;8202;0:0;0; : HIMEM=&3)
(00:*L.Robol3 3000
110 DIM M% 320:*Fx229,1
120 L%=0:F%=FALSE:Z%=TRUE
130 REPEAT:W%=0:N%=0:PROCscreen:IF 2%
THEN TIME=0
140 REPEAT
150 PROCgame
160 UNTIL N%=0 CR F% OR G%
170 IF N%=0 VDU 19,2,11;0; :CALL &900:L
%=L%+1:2%=TRUE
180 IF F% F$=FALSE:7%=FALSE
190 IF G% PROClevel:Z%=TRUE
200 UNTIL L%=50
210 vDU 22,7,10:*FX 229
220 CALL &900:*FX15,1
230 END
240
1000 DEF PROCgame
1010 T%=TIME DIV 6000:MS$S=RIGHTS("00*+ST|
R$T%, 2) : T%=(TIME MOD 6000)DIV 100:55=RIG
HTS("00"+STRSTS,2) : IF (TIME MOD 6000)DIV
10 =0 sowmD 1,-10,200,2
1020 COLOUR 3:PRINTTAB(14,0);M$;":";S§;
1030 FOR D=0 TO 100:NEXT:*FX15,0
1040 H3=X%:V%=Y%
1050 IF INKEY(-98) AND X%>1 PROCleft
1060 IF INKEY(-67) AND X%<18 PROCright
1070 IF INKEY(-73) AND ¥%>2 PROCup
1080 IF INKEY(-105) AND Y%<28 PROCdown
1090 IF INKEY(-113) AND NCT INKEY(-2) F
$=TRUE: ENDPROC
1100 IF INKEY(-113) AND INEEY(-2) THEN
210

Continued on page 56

8

Beebug April 1993

Printing Fractions

Stephen Colebourne makes this a little more straightforward from
Wordwise and Interword.

FRAC will print fractions from

. . 10 REM Program Frac
Wordwise or Interword. It is used as a 20 REM Veggim B 1.0
star command with two parameters, the 30 REM Author Stephen Colebourne

numerator and the denominator of the
fraction. e.g. *FRAC 3 7 will print in

REM BEEBUG April 1993
REM Program subject to copyright

superscript 3 followed by subscript 7 - 60 :

three sevenths. It will accept one 100 oswrch=&FFEE:osbyte=&FFF4

parameter if it is a MODE? fraction 110 osword=&FFF1:0sargs=&FFDA
120 csbget=&FFD7:0sfind=&FFCE

character.

130 FOR T=0 TO 3 STEP 3
. - ; . 140 P%=&500
Type in the listing, save as anything but 150 |
Frae, then run it. You will be asked if you 160 OPT T
want the code saved to disc, as long as 170 LDA#23 :JSRoswrch

there have been no errors in assembly
type ‘Y’ here. The code is saved to the
disc as Frac and, as it is run from the disc
rather than from memory, you will need
a copy of it on your word processor
work disc.

In Wordwise you access the facility by
making it an embedded (green)
command where ever you want it in the
text. This is done in edit mode by
pressing f1, typing *FRAC 3 4 (for

180
190
200
210
220
230
240
250
260
270
280
250
300

LDA#255:JSRoswrch
LDA#126:JSRoswrch
LDA#195:JSRoswrch
LDA#223 :JSRoswrch
LDA#199:JSRoswrch
LDA#223 :JSRoswrch
LDA#223 : JSRoswrch
LDA#126 :J5Roswrch
LDR#(0 : JSRoswrch
LDA#&75:JSRosbyte
TXA:AND#1 : BNEprinteron
LDA#255:JSRoswrch
RTS

example), followed by f2. In Interword it 310 .printeron

will need to be part of the ‘Embedded §§3 gﬂ;% ioat RuiRECE
Commands’ menu accessed via f1. Move 340 LDY#0

the cursor to the place in the text you 350 JSRosargs

want your fraction, press f1, move the 360 LDY4255

choice bar to the "’ line and enter FRAC 370 JSRsearch

3 4 then press Escape. Embedded 380 CMP#92:BEDF12 =\
commands in Interword can be rather 390 CMP#123:BEQE14 \o=
difficult to edit once they’re in the text; 400 CMp#125:BEQE34 V=
see page 93 of the manual for details. 410 CMP#58:BCCs:JMPbad:.s \ >9
You must make sure the *FRAC file is on 420 STAEOA

the disc in the drive when you are ﬁg §$§EETEECt:mpbad:.t \ 24

printing out as this when it is accessed.

- X 450 STA&IB
In ADFS it would need to be in the 460 JMPprint
current directory, though you could try 470 .f12
putting it in the root and calling it with 480 LDA#1:STA&9A;LDA#2:STALIB

*$.FRAC.
Beebug April 1993

450

JMPprint

Printing Fractions

500 .f14

510 LDA#1:STAL9A:LDA#4 :STALIB
520 JMPprint

530 .f34

540 LDZ#3:S5TA&OA:LDAA :STALIR
550 .print

560 LDA#1:JSRoswrch

570 LDA#27:J5Roswrch
580 LDAR#1:JSRoswrch

590 LDA#83:JSRoswrch
600 LDA#1:JSRoswrch

610 LDAR0:JSRoswrch

620 LDA#]:JSRoswrch

630 LDA&YA:JSRoswrch
640 -

650 LDA#1:JSRoswrch

660 LDA#27:JSRoswrch
670 LDA#1:JSRoswrch

680 LDA#83:JSRoswrch
690 LDA#1:JSRoswrch

700 LDA#1:JSRoswrch

710 LDA#1:JSRoswrch

720 LDA&9IB:JSRoswrch
T30 1

740 LDA#1:JSRoswrch

750 LDA#27:JSRoswrch
760 LDA#1:JSRoswrch

\SUPERSCRIPT

\SUBSCRIPT

\CANCEL

770 LDA#84 :JSRoswrch
780

790 LDA#3:JSRoswrch

800 LDR#255:JSRoswrch

810 LDA#2:JSRoswrch

820 RTS

830 .search

840 INY

850 LDA(&98),Y

860 CMP#13:BEQbad

870 (MP#32:BEQsearch

880 CMP#49:BCChad

890 MP#127:BCSbad

900 RTS

910 .bad

920 BRK

930 EQUB14

940 EQUS"Bad Fraction®

950 ERK

960] :NEXT

970 PRINT;~P%;

980 :

990 PRINT"Save code? (Y/N) *;
1000 g$=GETS

1010 IF g$="Y" ORq$="y" THEN *SAVE FR
AC 900 AFF

i' 1020 D

Comprehensive Magazine Database

for the BBC Micro and the Master 128

Magscan

An updated version of Magscan, which contains the
complete indexes to all BEEBUG magazines from
Volume 1 Issue 1 to Volume 11 Issue 10

alning Article

tem from Basic

Magscan with disc and manual

£9.95+p&p

Stock codes: 0005a 5.25%disc 40 track DFS

00062
1457a
Magscan update
Stock codes: 0011a
0010a
1458a

5.25"disc 80 track DFS
3.5" ADFS disc

£4.75 +p&p
5.25"disc 40 wrack DFS
5.25"disc 80 track DFS
3.5" ADFS disc

Magscan allows you to locate instantly all references
to any chosen subject mentioned anywhere in the
110 issues of BEEBUG magazine to date. hd

Just type in one or two descriptive words (using

AND/OR logic), and you can find any article or
program you need, together with a brief description
and reference to the volume, issue and page
numbers. You can also perform a search by article
type and/or volume number.

The Magscan database can be easily updated to
include future magazines. Annual updates are
available from BEEBUG for existing Magscan users.

Some of the features Magscan offers include:

full access to all BEEBUG magazines

rapid keyword search

flexible search by volume number, article type
and up to two keywords

keyword entry with selectable AND/OR logic

extensive on-screen help

4 hard copy option

easily updatable to include future magazines

@ yearly updates available from BEEBUG

RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL1 4]S. Tel (0727) 840303 Fax (0727) 860263

League Tables

League Secretary’s suffering from sleepless nights?
Phil Gisby could have the cure.

This program evolved from an exercise
in using procedures and data handling.
Having developed the idea for a fairly
simple example, it was quickly put to a
practical use.

It collates match results and produces
league tables which can be viewed on-
screen or printed out. It caters for the
number-crunching part of league tables,
but not the ‘validating” of match results
before they are accepted for inclusion.

How the league is set up, and the rules
governing how positions are resolved, is
taken from the League Rules of whoever
utilises the program. This version is for a
particular Badminton League, but could
easily be adapted to other applications.

The program should be typed in and
saved as normal. As it uses computed
GOTOs the line numbers must be exact.
Lines 2050-2120 contain the decision-
making process for positional changes.
Line 2070 restricts the process to one
division at a time. Line 2080 compares
total points scored, and line 2090
compares total games won in the event
of the previous figures being equal. The
REPEAT:sort%=0 (line 2050).....UNTIL
sort%=0 (line 2110) loop continues the
process until no further changes are
required.

The sleuths amongst you will enjoy
working out what the other records
stand for, and how they could also be
used if required.

The tables are stored as files separate to
the program. This means that no
alterations are needed to re-use it each

Beebug April 1993

season, and out-of-date files can be
erased.

Details for the League are entered as a
one-off exercise at the start of each
season. Once a set of results has been
entered, positions are adjusted
automatically. Errors or late adjustments
can also be catered for.

Guildford & District
Badninton League

Enter League details.
Load results from disc.
Enter results.

League Table.

Save results

Choose

Main menu

The general principle which the program
works on is that options from the main
menu are treated as branches from which
the various procedures are called. This
makes it possible to keep returning to
this menu with the minimum of GOTO's,
or any incomplete procedures.

The following is based upon the options
available from the main menu:

1. ENTER LEAGUE DETAILS
First enter a title for the league division.
Team names are then entered - the limit

11

League Tables

of 15 characters is to fit in with screen
displays. After a name has been typed in,
press Return and you are invited to
(R)epeat the same division, start a (N)ew
division or return to the Menu (Space
Bar).

Details should be entered in sequence,
since teams are numbered as they go in.
These numbers are used in the
running of the program, and out-of-
sequence entries may produce some
strange effects!

2. LOAD RESULTS FROM DISC
To load in previously recorded results
from option 5, and where you start
once the leagues have been
established.

The use of the date as a results file
name is recommended - with obvious
benefits, but anything can be used
within the limits for file names. For
the example shown here, in item 4 I have
used 8Apr92. A sample file, Final, is
included on this month’s disc.

3. ENTER RESULTS

A sub-menu provides options for adding
and removing results, or removing a
team completely. Adjustments are made
by removing and re-entering a result.

Running totals are kept of matches
played, wins, losses and points (rubbers)
for or against. (N.B. Badminton matches
do not end in draws, but the program
could cater for them.)

The program is bést suited for bulk
updates rather than just a few at a time.
The (R)epeat and (N)ew division key
options are used, as when first entering
the league details.

12

It is during this section that the internal
numbers are used - the only time these
figures are seen on-screen.

4. LEAGUE TABLE

Provides the facility to view league
positions on-screen, or give a complete
print-out. A sample of the former is
shown below.

HIXED 1

Team FPlayed

-n
[+]
sCc

o

10
10
10

P B Oh 00 WD

WO BEN~-
L R =l
DD e -

79
56
49
42
23
21

continue.

A league

Processing occurs during this part of the
program, so there is a short delay before
the choices appear. It is worth checking
through the table, after updating, before
saving and/or printing to check whether
any human errors have crept in.

5. SAVE RESULTS TO DISC

After updating with the latest results.
Again the use of a date is recommended
for file-names.

PROCEDURES

PROCon/PROCoff: turns flashing cursor
on/off as required.

PROCdouble: creates Teletext double-
height screen titles.

PROChender: on-screen column headings
for league divisions.

Beebug April 1993

w

League Tables

PROCprint: directs league table data to
parallel printer output.

PROCpage: prints title of league division.

PROCall: produces screen display of
complete league table, one division at a
time.

PROCsort: reverses the position of two
adjacent records, when called for.

PROChead: as PROCheader, for printer
output.

PROCadd: for adding match results.
PROCremove: for removing match results.

PROCzap: to remove a team from the
league - but only if no results are present.

SUMMARY

Although this version works for a
Badminton League, the principles apply
to virtually any league system.

The size of the table, for the number of
teams and fields per record, is catered for
in the array statement at line 80. In this
case, there are two strings (team and
division name), five numeric (games
played, won and lost, points for and
against) for up to 150 records. The last
two - t$(2) and r(5) - are used to ‘park’
records during the sort routine.

If, for example, the table needed to be
modified to cater for 200 records - and
include statistics for drawn results - the
array statement (line 80) would read

DIM team$(200,2),result(200,6},t5(2},r(6)

It would then need a careful check
through all the routines that process,
display, print, load and save the data to
cater for the extra field. Those venturing
into this would be wise to suspend line
90 for the duration of the exercise!

Beebug April 1993

A large League could be sub-divided into
more manageable parts and the data
saved as separate files, to be handled by
the program at different times. This
method is in use on an IBM-compatible
PC, using the program via a BBC Basic
emulator.

Using procedures makes the addition of

extra features quite easy. The “Enter

Results’ option, for example, only catered

for adding results initially. It is only a
matter of time before I come up with

more routines worth including.

Error-trapping features to prevent
incorrect key-strokes are incorporated,
but if this fails - the Escape key returns
you to the main menu with only the loss
of any current on-screen entries.

Anyone with experience of collating
league results by hand will appreciate
the difference a system like this makes.
Within the League it is in use for, the task
went from a nightly ordeal to about an
hours work per evening - once or twice a
month.

10 REM Program League Tables

20 REM Version B 1.3

30 REM Author P.E.Gishy

40 REM BEEBUG April 1992

50 REM Program subject to copyright

60 :

T

80 K%=0:DIM team$(150,2),result(150,5
1.£5(2),x(5)

90 ON ERROR GOTOL100

100 MODE7:REM ** Main Menu

110 PROCon:PROCdouble (134, "Guildford &
District",2) : PROCdouble (134, *Badminton

kEX N RTTT

League",5)
120 PROCdouble(130,"M E N U",8) :PRINTT
AB(16,10)CHRS130; "======="
130 PRINTTAB(6,12)CHRS134;"1. Enter Le

13

League Tables

ague details.”

140 PRINTTAB(6,14)CHRS$134;"2. Load res
ults frcm disc.*

150 PRINTTAB(6,16)CHRS134;"3.
sults.*

160 PRINTTAB(6,18)CHR$134;"4, League T
able."

170 PRINTTAB(6,20)CHRS134;"5. Save res
ults to disc.®

180 PRINTTAB(10,23)CHRS$131;"(or 0 to Q
uit)"

190 PRINTTAB(7,22)CHR$131;"Choose 1,2,
bl ot L

200 REPEAT A=GET:UNTIL A>47 AND A<54

210 IF 2=48 THEN 230

220 GOTO(A-48)*500

230 MOLDET:END

4590

500 CLS:REM New Teams

510 PROCdouble(134, "New Teams",2)
| 520 PRINT''TAB(11)CHR$131;"Division';:
| INPUT" - "DS§
| 530 PRINT'CHR$131;“Enter team name - t
hen press R(repeat),"

Enter re

540 PRINTTAB(5)CHRS$131; "N(new division |

|) or SPACE(menu):*
| 550 PRINT'TAB(7)STRINGS(15,"_*)

560 VDULL:INPUTTAB(7)TS

570 REPEAT A=GET:UNTIL 2=32 OR A=78 CR
A=82

580 K%=K%+1:team$(K%,1)=T%:teams(Ks,2)
=D8

590 IF A=82 THEN 550 ELSE IF A=78 THEN
500 ELSE IF A=32 THEN 100

90 . ;

1000 REM Load Data from disc

1010 CLS:PROCdouble (130, “Load Results",
2)

1020 PRINTTAB(6,8)CHRS131; "Enter ";:INP
UT"last file-name: "d$

1030 PROCoff:PRINTTAR(12,10)CHRS134;CHR
$136; "LOADING" .

1040 A-OPENUP(dS)

1050 REPEAT:K3%=K%+1

1060 INPUTH#A, teams$(K%,1),teams(K$,2),re
sult(K%,1), result (K%, 2),result (K%,3), res

ult (K%,4), result (K%,5)

1070 UNTIL EOF#A

1080 CLOSE#A

1090 PRINT''TAB(6,10)CHRS134;"Results f
or ";dS;" now loaded."

1100 PRINT'TAB(6)CHRS131; “Press SPACE t
o continue."

1110 REPEATUNTIL GET=32:G0T0100

1490 :

1500 REM Results

1510 PRINT'TAB(8)CHR$131"Which"; : INPUT"
Division? "D$

1520 CLS:PROCdouble (130, "Results®,2)
1530 PROCdouble(130,D$,5) : PROCOEE

1540 PRINTTAB(10,10)CHR$134;"1. Add res
ults®

1550 PRINTTAE(10,12)CHR$134;"2.
results"”

1560 PRINTTAE(10,14)CHR$134;"3.
team"

1570 PRINTTAB(10,16)CHRS134;"4,
to Main Menu"

1580 PRINTTAB(10,20)CHR$131; “Choose 1,2
B o o L

1590 REPEAT A=GET:UNTIL A>48 AND A<53
1600 IF A=49 PROCadd ELSE IF A=50 FROCr
emove ELSE IF A=51 PROCzap ELSE IF A=52
THEN 100

1610 PROCoff:PRINTTAR(9,22)CHR$131; Pre
Jss R,N or SPACE N
! 1620 REPEAT B=GET:UNTIL B=32 OR B=78 OR
B=82

1630 IF B=82 THEN 1520 ELSE IF B=78 THE
N 1510 ELSE IF B=32 THEN 100

1990 : j

2000 REM Tables

2010 CLS: PROCdouble(134, "League Tables
niz}

2020 PRINT''CHR$134;"Cptions :"

2030 PRINT'CHRS134;"1. Look at Division
i
2040 PRINT'CHRS134"2. Print out complet
e League, " :PROCoff

2050 REPEAT:sort%=0

2060 FOR T%=1TOK%-1

2070 IF teams(T%,2)<>team$(T%+1,2) THEN

Remove

Remowve

Return

14

Beebug April 1993

League Tables

2100

2080 IF result(T%,2)<result(T%+1,2) THE
N PROCsort (T%)

2090 IF team$(T%,2)=team$(T%+1,2) AND r
esult (T%,2) =result (T%+1,2) AND result(T%
(A)<result (T%+1,4) THEN PROCsort(T%)
2100 NEXT

2110 UNTIL sort%=0

2120 PROCon

2130 PRINTTAB(S,13}CHRS131;"Choose 1,2
or SPACE. ";

2140 REPEAT A=GET:UNTIL A=49 OR 2=50 OR
A=32:1IF A=32 THEN 100

2150 IF A=50 PRINT''CHRS$131;"Is Printer
connected? (Y/N) * ELSE 2170

2160 PROCoff:A=GET:IF A<>89 THEN 2000 E
LSE PROCprint:GOTO100

2170 PROCon:PRINT' 'TAB(5)CHR$131; "Enter
*; :INPUT" Division or ALL: "D$

2180 IF DS <>"ALL" THEN 2190 ELSE PROCa
11:GOT02000

2190 CLS:PROCdouble (130, "League Table",
2) :PROCdouble (130, DS, 5) : PROCof £

2200 PRINT':PROCheader:PRINT

2210 FOR T%=1TOK%

2220 IF team$(T%,2)<>D$ THEN 2240

2230 PRINTCHRS134;team$(T%,1);TAB(18);r
esult (T%,1) ; TAB(22) ;result (T%,4) ; TAB(26)
;result(T%,5) ; TAB(30) ;result(T%,2) ; TAE(3
6) jresult (T%, 3)

2240 NEXT

2250 PRINTTAB(10,22)CHR$131;"Press R or
SPACE."

2260 REPEAT A=GET:UNTIL A=32 OR A=82
2270 IF A=82 THEN 2170 ELSE 100

2490

2500 REM Save Data

2510 CLS:PROCdouble (130, "Save Results",
2)

2520 PRINT''TAB(6)}CHRS131;“Enter";:INPU
T" new file-name - "d$:PROCoff

2530 PRINT'CHRS$131; "Then press SPACE to
continue." :REPEATUNTIL GET=32

2550 PRINT:A=CPENCUT(dS)

2560 FOR C%=1TOK%

2570 PRINT#A, team$(C%,1),team$(C%,2),re

sult(C%, 1), result (C%,2),result(C%,3),res
ult(C%,4),result(C%,5)

2580 NEXT:CLOSE#A

2590 PRINT''CHR$134;"Results for ";ds;"

now saved."

2600 PRINT'TAB(7)CHRS131;"Press SPACE t
o continue."

2610 REPEATUNTIL GET=32:GOT0100

2990 :

300[] lei thkkkkkkE Procedures khkEhkkhkkEx

3010

3020 DEF PROCon:VDU23;10,&71;0;0;0; :END
PROC

3030 :

3040 DEF PROCoff:VDU23;10,32;0;0;0; :END
PROC

3050 :

3060 DEF PROCdouble(C,T$, P) :X=INT((38-L
EN(T$)) /2) |

3070 FOR Y=P TC P+1:PRINTTAE(X,Y)CHRS14
1;CHRS(C) ;TS

3080 NEXT:ENDPROC

3090 :

3100 DEF PROCheader

3110 PRINTTAB(5)CHRS130; "Team";TAB(16)"
Played" ; TAB(30) “Rubbers”

3120 PRINTTAB(21)CHR$130; "W
)*For Ag.":ENDPROC

3130 ; |

3140 DEF PROCsort(X%):sort¥=sortd+l

3150 t&(1)=teams (X%, 1) :t5(2) =team$ (X%,2 |
) :FOR R$=1TO5:r (R%)=result (X%,R%} :NEXT R |
%

3160 team$(X%,1)=teams(X%+1,1) :teams (X% |
,2) =team$ (X%+1,2) :FOR R$=1TO5:result (X%,
R%)=result (X%+1,R%) :NEXTR}

3170 team$ (X%+1,1)=t$(1):teams (¥%+1,2)=
£$(2) :FOR R%=1TO5:result (X%+1,R%)=r (R%):
NEXT R%

3180 ENDPROC

3190 :

3200 DEF PROCprint:PROCOff

3210 *Fx5,1

3220 *F¥3,10

3230 PRINT CHRS$8"Guildford & District B

Continued on page 54

L";TAB(29 |

Beebug April 1993

15

Public Domain Software

Alan Blundell introduces more new PD software this month.

I've been busy this month cataloguing
some more new releases and thought
that some of them were well worth a
mention in this column.

The first is a disc of hints and tips on the
BBC Micro, sent to me by Glyn Fowler
but compiled by Richard Sterry from the
archives of the Wakefield BBC Micro
User Group. This is perhaps the most
comprehensive collection of short hints
and tips I have seen. Many of the hints
have been fairly well known for some
time and many may duplicate some of
those which have appeared in BEEBUG
in the past. Even so, it’s handy to have
them all organized together in one place,
ready to be dipped into when you feel
the urge to extend your expertise, and
one or two of the tips were completely
new to me. In all, there are over 200 of
them, collected in plain ASCII text files
containing a few hints each. The disc
contains over 270K of text in all,
including the excellent indexes.

Also by Richard Sterry (G4BLT) is a disc
of radio amateur utilities. From
correspondence, I think this is quite a
popular interest, but one which has not
been particularly well served by PD on
the Beeb up to now. Whilst I am not well
qualified to judge, knowing little about
radio, this software has been described
to me as being of ‘near professional
quality’. Given my lack of expertise, it’s
probably better for me to detail the
software without comment of my own.
The disc includes:

Alldump - ROM/RAM memory dump
utility

CW/gso - CWtransceive program.
Needs simple tone decoder.

Demo - demo file for use with Mfile.

16

Epson - machine code for */# sign clash
on Epson-type printers.
Locate - comprehensive locator and

contest scoring program.
MasTerm - TNC driver program for the
Master (or Compact with
RS423 interface).
Mfile - acard-index database
Moonloc - program for predicting the
position of the moon in the sky.

Morse - comprehensive morse-tutor
program with key practice
facility.

RiseSet - sunrise/sunset predictor for
the Master 128.

Rtty - RTTY transceive program,

which requires an external TU.
SunLoc - program for predicting the
position of the sun in the sky.
UUBEEB - the original disc-based version
of the UU encoder/decoder
software, by G7GLN.
UUROM - the newer ROM or Sideways
RAM version of UUBEEB
PJJTERM- the TNC driver program
(v3.37) for the BBC B/B+/
Master, by G1PJ].

If all of that makes some sort of sense to
you, it may be worth a look.

REMINISCENCES OF AN OLD TIMER
I have now had a bit of time to take a
look again at the software from some of
the early BEEBUG magazine discs,
between 1984 and early 1987. There are
plenty of gems, of course, given the
quality of the listings published in
BEEBUG, but I came across some
particular old favourites.

Utilities and application programs which
you find genuinely useful on a day to
day basis never get forgotten about
because they become part of your

Beebug April 1993

Public Domain Software

routine. They may include a print spooler,
a Basic program compacter or a disc
menu program. Such programs are either
useful in the sort of computing you do or
not. There are certainly plenty of utilities
in the history of BEEBUG. Apart from
those already mentioned there were
many others between ‘84 and ‘87,
including a RAM tester, a DFS ‘move
down’ routine, screen freeze/save, Basic
cross-referencer, Basic program autorun,
Basic ‘pretty-printer’, split screen utility,
DFS 40T/80T conversion, disc
benchmarks, function key editor, picture
compression, ROM controller, View
printer drivers, Master CMOS RAM clock
controller, 6502 disassembler, disabling
the Break key, DFS and ADFS disc menus
aplenty; and windows and icons.

Closely related to utilities are those
programs which demonstrate a
particular technique or function, like
accurate arithmetic in Basic or assembler,
interrupt-driven music, colour fill
graphics (not built into the Model 'B’,
unlike the Master series), mixing screen
modes, graphics using polar co-
ordinates, multiple windows, using
Wordwise Plus segments, plotting
graphics in mode 7, using recursion,
producing a Basic language compiler,
programming sideways ROM/RAM,
disc recovery or inbetweening graphics.

During the mid-80s, BEEBUG included at
least one game in each issue. There isn’t a
lot of point in merely listing their names,
but many were implementations of
commercial games which were popular at
the time. Considering the proportion of
Basic code in most of the games, it is
surprising how playable most of them
are. These programs are perhaps the
most striking examples of using the
programming method which best suits
your end goal: use Basic, which is quick
and easy to write and debug, for the bulk

Beebug April 1993

of the program, but use assembler for the
critical parts where speed of operation is
essential. Have you ever thought how
different the history of the BBC Micro
would have been if there had been no
built-in 6502 assembler? Of course there
are several other ways to generate
machine coded software, and commercial
software probably wouldn’t have been
any different, but magazine listings and
little programs that people knocked
together and then gave to their friends
would have been completely different.
For one thing, programming for sideways
RAM would never have caught on.

BEEBUG has always had its share of
serious software applications, like
temperature measurement, domestic
accounts, spreadsheets, flowchart
generation, a pop-up calculator, loan
repayments, data storage, computer
simulation and chart recording to name a
few. But the programs which were most
evocative of memory when I looked at
them again were those which I
remembered as individual programs,
rather than examples of a type like
‘spreadsheet’ or ‘game’ or whatever. Most
of the items I latched onto in this way are,
I suppose, really just demos - if by ‘demo’
we mean things you just watch and/or
listen to, rather than use or play to beat
the high score. These programs appeal to
the computer buff in us, or at least those
of us whose main use for their computer
is messing about, learning about the thing
for its own sake, and playing the odd
game. Put like that, it doesn’t sound like
much of a justification for owning a
computer, but I believe that something
like that is at least part of the reason the
BBC Micro became so popular and has
continued to be popular long after other
machines which originated in the early
80s have become expensive bookends.
The Beeb just has so many built-in bits to

Continued on page 23

17

Gravity and Orbits (Part 2)

It's one small step for Cliff Blake.

This month’s orbit program, listed below,
takes us to the Moon and back. Type the
listing in and save it as 2-lunar.

PLANET AND MOON ORBIT

As stated last time, bodies are oversize in
relation to their spacing, and mass ratios
are reduced. This makes planet and
moon orbit simulation a little more tricky
than simple Earth orbit.

DISTANCE: 138,088 ka
VELOCITY: 7,000 kn'h

Staying close to home

THE PROGRAM

A choice is given as to whether the initial
orbit of the spaceship shall be circular or
figure-of-eight. The starting direction is
random, so that it may be up the screen
or down. Again the track is marked to
show its shape, while velocity and
distance from the centre of the Earth are
displayed.

EFFECT OF MOON'S GRAVITY

Select the circular orbit, and just let the
program run. You will notice that the
orbit becomes eccentric and elliptical due
to the pull accelerating the spaceship
when it is moving towards the Moon,
and slowing it when moving away. After
ten orbits the vehicle will crash to Earth.
Either before or after the crash, you can
press key R to repeat the circular orbit. . .

18

DISTRHCE: 134,888 kn
VELOCITY 8.808 knsh

Sick astronauts not quite landing

FIGURE-OF-EIGHT TO CIRCULAR
Press Escape, and run the complete
program again. This time select ‘Figure-
of-eight’. You can go for tea while a
number of orbits build up to show how
they vary. Press ‘R’ to repeat, and allow
almost one complete orbit to take place
then, while the spaceship is on the side
of the Earth away from the Moon, press
the ‘<’ key to slow it down. If you judge
correctly, it should orbit the planet only,
and a little adjustment as in the previous
article, can produce a low circular orbit
without crashing. This exercise is
comparatively easy.

pISTENFE o AR va
wea LU

Squashed LEMming

CIRCULAR TO FIGURE-OF-EIGHT
Press Escape, and run the complete
program again, selecting circular orbit.

Beebug April 1993

Gravity and Orbits

This time press the >’ key to accelerate
the spaceship when it is furthest from the
Moon. The aim is to achieve a figure-of-
eight orbit. This seems impossible at first,
but it becomes easier if you practice all-
night! A slight acceleration or retardation
on the journey may be useful. You can
always press ‘R’ to try again.

DISTANCE: 3%8,048 kn
VELOCITY: 18,888 kask

i
i

Going the long way round

CIRCLING THE MOON

If you can achieve a curve going round
the Moon, pressing ‘<’ key may slow the
spaceship sufficiently, so that it orbits the
Moon. Due to the strong influence of the
Earth in this simulation, only a couple of
such orbits are likely.

Keep training on these situations, and
next time we’ll look at them from the
point of view of gravitational pits.

10 REM Program LUNAR

20 REM Version B2.0

30 REM Author Cliff Blake

40 REM BEERUG April 1993

50 REM Program subject to copyright

60

100 ENVELOPEL,8,1,-1,1,1,1,1,121,-10, -
I5,-2,120,120

110 MODE7:*Fx11
| 120 PROCinfo:g%=GET

130 MODEQ :VDUS

140 REPEAT

150 quit#=FALSE

160 CLS:PROCplanet : PROCmoon : PROCspaces
hip
170 REPEAT
180 rerun¥=FALSE
190 PROCmove:PROCdistance
200 PROCgravity:PROCthrust
210 PrROCflags
220 UNTIL rerun%
230 UNTIL quit$
240 VDU4:*FX12
250 CLS:*Fx21
260 END
270 -
1000 DEF PROCmove
1010 MOVE Xs,Ys:PRINT CHRS64
1020 ENDEROC
1030 :

| 1040 DEF PROCdistance

1050 Xdp=320-Xs:Ydp=512-¥s

1060 Xdm=960-Xs:Ydm=512-Ys

1070 Rdps=Xdp*¥dp+Ydp*Ydp:Rdp=SQR(Rdps)
1080 Rdms=Xdm*Xdm+Ydm*¥dm: Rdm=SQR (Rdms)
1090 dis$=INT(.6*Rdp)

1100 IF Rdp<60 OR Rdm<15 SOUNDO,1,0,5:P
ROCcrash

1110 VDU4:PRINT TAB(55,2)*DISTANCE: *;d
is%;", 000 km";SPC3:VDUS

1120 ENDPROC

1130 :

1140 DEF PROCgravity

1150 Xgp=20000*Xdp/Rdp/Rdps:¥gp=20000*Y

idpl Rdp/Rdps
| 1160 Xgm=2000*%dm/Rdm/Rdms : Ygm=2000*Ydm

/Rdm/Rdms

1170 Xv=Xv+Xgp+Xgm: Yv=Yv+¥gp+Ygm

1180 Rvs=Xv*Xv+Yv*Yv:Rv=SQR(Rvs)

1190 vel%=INT(.85*Rv)

1200 VDU4:PRINT TAB(55,4) "VELOCITY: ";v
el%;",000 km/h";5PC3:VDUS

1210 ENDPROC

1220 :

1230 DEF PROCthrust

1240 Xt=0.15*Xv/Rv:Yt=0.15*Yv/Rv

1250 IF INKEY(-103) THEN Xv=Xv-Xt:Yv=Yv
-Yt:SOUNDO, -7, 6,4

1260 IF INKEY(-104) THEN Xv=Xv+Xt:Yv=Yv
+Yt : SOUNDO, -7, 6,4

1270 Xs=Xs+Xv:Ys=Ys+¥v

1280 ENDPROC

1290 -

1300 DEF PROCflags

Beebug April 1993

19

Gravity and Orbits

1310 IF INKEY(-52) THEN rerun%=TRUE
1320 IF INKEY(-17) THEN rerun$=TRUE:qui
t%=TRUE

1330 ENDPROC

1340

1350 DEF PROCplanet

1360 Ca=COS(PI/40):Sa=SIN(PI/40)

1370 CA=1:5A=0:MOVE 320+60,512

1380 FOR 2=1 TO 80

1390 Cp=CA:Sp=S&

1400 CA=Cp*Ca-Sp*Sa:SA=Sp*Ca+Cp*Sa

1410 x=60*CA+320:y=60*SA+512

1420 MOVE 320,512:PLOT 85,x,y

1430 NEXT A

1440 GCOLO, 0

1450 FOR n%=1 TO 50

1460 MOVE 280+RND(80),452+RND(120) : PRIN
Tl_‘_'

1470 MEXT n$

1480 GCoLO,1

1490 ENDPROC

1500 :

1510 DEF PROCmoon

1520 CA=1:8A=0:MOVE 960+15,512

1530 FOR A=1 TO 80

1540 Cp=CA:Sp=SA

1550 CA=Cp*Ca-Sp*Sa:SA=Sp*Ca+Cp*Sa

1560 x=15*CA+960:y=15*SA+512

1570 MOVE 960,512 :PLOT 85,x,y

1580 NEXT A

1590 ENDPROC

1600 -

1610 DEF PROCspaceship

1620 vDUu23,64,192,0,0,0,0,0,0,0

1630 sign=(-1)"RND(8)

1640 IF o%=1 Xs=500:Ys=512:Xv=0:Yv=sign
*1; 1

1650 IF o%=2 Xs=210:Ys=512:Xv=1:Yv=sign
*17.1]
1660 ENDPROC

1670 :

1680 DEF PROCinfo

1690 y$=CHRS$131:c$=CHR$134 :w5=CHRS135
1700 PRINT TAE(10,3)yS$+"LUNAR ORBITER"
1710 vDu28,0,24,39,6

1720 PROCselect

1730 PRINT'w$+"Gently holding down the
< key will®

1740 PRINT ws+"fire the retro unit to s
low the ship."

1750 PRINT'w$+"Gently holding down the
> key will"

1760 PRINT wS+"fire the drive to accele
rate the ship.®

1770 PRINT'w$+"Press any key to start.®
1780 PRINT'w$+"Press R to clear the scr
een & Repeat.®

1790 PRINT'w$+"Press Q to Quit."

| 1800 ENDPROC

1810 :

1820 DEF PROCselect

1830 PRINT TAB(6)wS+"Select initial orb
it

1840 PRINT''TAB(3)wS+"1 Circular aroun
d planet®

1850 PRINT'TAB(3)w$+"2 Figure-of-eight
around"

1860 PRINT TAB(6)w$+"planet and moon."
1870 REPEAT:0%=GET-48:UNTIL o%=1 OR o%=
2
1880 CLS:IF o%=1 PROCco ELSE PROCfoeo
1890 ENDEROC

1900 :

1910 DEF PROCco

1920 PRINT c$+"A spaceship is in circul
ar orbit"

1930 PRINT c$+"around a planet. Try tak
ing it"

1940 PRINT c$+"on a journey round the m
oon, "

1950 PRINT c$+"and back into planetary
orbit."

1960 ENDPRCC

1970 :

1980 DEF PROCfoeo

1990 PRINT c$+'A spaceship is in figure
-of-eight"

2000 PRINT c$+"orbit around a planet an
d moon. "

2010 PRINT c$+'"Try reducing the orbit t
o a circular®

2020 PRINT c$+"one around the planet on
Lyt

2030 ENDPROC

2040 -

2050 DEF PROCcrash

2060 REPEAT:UNTIL INKEY(-52):rerun%=TRU
E

2070 ENDPROC o
B

20

Beebug April 1993

BEE®
BEFH

I
1

1
S 6

(16 2 O R O O O

EEEEEEERIS RN SEE NS B

]
|

EEERUE
TITTT11
11
11

=
11

FEEEEECN DR EREE
EEEEEE SRR BT EE
FET T L Rt i=0]

3 6 5 S I 1 O 0 A D

Sorting (Part 1)

by David Fell

From time to time most
programmers need to
sort a list of items into
order. Maybe it's a set of
scores, or perhaps a list
of names to be put into
alphabetical sequence.
This month I'll give
details of a couple of
straightforward
methods and suggest
code which you could
use in your own programs.

First, we'll look at the
well-known and aptly-
named Bubble Sort.
Suppose we must put a
listinto ascending order.
The bubble sort starts
with the first 2 elements,
compares them and, if
needed, swaps them so
that the larger is in
position 2. It then
compares elements 2
and 3 and again puts the
larger value into the
higher position.

The sort continues until
it reaches the end of the
list when, all being well,
the largest element will
have reached the top. It
has bubbled up through
the list. The sort then
goes back to the start
and bubbles the next-
largest element up to the
second = from top
position. So it goes on
until the whole list is
sorted.

Beebug April 1993

If there is much swapping to do, the
bubble sort can be painfully slow.
However, as soon as a pass through the
list is made without swapping anything,
the whole lot is then sorted. This means
that, with only a few items out of place,
the sort can be very fast indeed. The
whole process is illustrated in figure 1.

HCFJADGIEB
CHFJADGIEB
CFHJADGIEB
CFHJADGIEB

Initial order

after 1st comparison

after 2nd comparison
after 3rd comparison

CFHADGIEBJ
CFADGHEBIJ

after 1st pass
after 2nd pass

Figure 1. Initial stages in a bubble sort

BUBBELE SORT

10000 DEF PROCbubble (ST%, FINS)
10010 IF ST%>=FIN% THEN ENDPROC
10020 LOCAL F%,I%

10030 REPEAT

10040 F$=FALSE

10050 FOR I%=ST% TO FIN%-1

10060 IF array(I%)-array(I%+1) THEN
PROCswap

10070 NEXT

10080 FIN%=FIN%-1

10090 UNTIL NOT F$%

10100 ENDPROC

10490

10500 DEF PROCswap

10510 LOCAL temp

10520 temp=array(I%)

10530 array(I%)=array(I%+1)
10540 array (I%+1)=temp
10550 F%=TRUE

10560 ENDPROC

The procedure PROCbubble assumes
that the data to be sorted is in array().
Obviously, you should use your own
variable name here. The routine expects

21

BEEBUG Workshop - Sorting

two input parameters: ST%, which
defines the first element of the array to be
sorted, and FIN% which defines the last.
This means that you don’t have to sort an
entire array every time. For instance, if
array() had 300 elements, PROChubble(100,200)
would sort the middle third only. The
procedure makes sure the limits are
sensible. The subsidiary procedure
PROCswap swaps two elements when
needed.

After each pass through the array, we
know that the next highest value has
reached its final position; FIN% is thus
reduced by 1 so that we don’t waste time
checking the sorted items at the top of
the array. F% shows if there are any
swaps in a pass through the list, and
allows an early exit.

The bubble sort is simple but can be slow.
However, there is a much faster version
known as the Shell Sort after its
originator. This time, instead of always
comparing adjacent elements, the sort
starts by comparing, and swapping,
items which are separated by some
distance. Whenever no swaps occur in a
pass, this distance is halved and the
sorting starts again.

The process continues until the gap is 1,
when it is just like a bubble sort.
However, by the time it gets there, the list
has already been sorted into rough order
and the whole thing finishes very quickly.
Here is a procedure to do this job.

SHELL, SORT

11000 DEF PROCshell({ST%, FIN%)

11010 IF ST%»>=FIN% THEN ENDPROC
11020 LOCAL F%,1%,5%,T%

11030 S%=2"INT(LOG(FIN%-5T%)/LCG(2))
11040 REPEAT

11050 T%=FIN$-S%

11060 REPEAT

11070 F$=FALSE

11080 FOR I3=8T% TO T%
22

11090 IF array(I%)>array(I%+5%)
THEN PROCSwaps

11100 NEXT

11110 T%=T%-1

11120 UNTIL NCT F%

11130 S%=S% DIV 2

11140 UNTIL S%=0

11150 ENDPROC

114590:

11500 DEF PROCswaps

11510 LOCAL temp

11520 temp=array (1%)

11530 array(I%)=array(I%+5%)
11540 array(I%+S%)=temp
11550 F%=TRUE

11560 ENDPROC

You can see its links with the bubble sort.
At line 11030, S% is set to the initial gap
value. This must be a power of 2 (so it
can be continually halved as the sort
progresses) and the line calculates the
largest number that will fit between ST%
and FIN%. T% holds the upper limit of
the FOR-NEXT loop; its start value is set
so that the program does not go outside
the array and, as before, it is
decremented on every pass.

It's hard to say how much better the
Shell sort is than the bubble, since so
much depends on the starting data. In
general terms, though, the bigger the
array, the relatively faster it is: 200
random elements are sorted about 4
times quicker, while 500 gives an
advantage of around 7. It is NOT always
quicker though. If you are certain that
only a few - say no more than 2% - of the
items in a list are misplaced, then use the
bubble sort. It will probably correct them
all in a single pass, whereas the Shell
sort must always have at least one pass
at each gap setting.

Finally, let’s have a look at these two
sorts in action with this code which uses
memory locations and indirection operators
for speed, rather than named arrays:

Beebug April 1993

BEEBUG Workshop - Sorting

100 MODE7

110 P%=HIMEM+159

120 PROCEill

130 PRINT TAB({(,1)”Bubble Sort:"

140 TIME=0

150 PROChubble(1,200)

160 TBUB=TIME

170 CLS

180 PROCEill

190 PRINT TAB(0,1)"Shell Sort: "

200 TIME=0

210 PROCshell(1,200)

220 TSHL=TIME

230 PRINT TAB(S,18) "Bubble sort: *;
TBUB/100;" secs"

240 PRINT TAB(5,20) *Shell sort: *;
TSHL/100;" secs"

250 END

260:

1000 DEF PROCEill

1010 FOR I%=1 TO 200

1020 P%?1%=64+RND(26)
1030 NEXT
1040 ENDPROC

Add the two sort routines, changing every
occurrence of array(I1%) or array(1%+5%) to
P%?1% or P%?(1%+S%) respectively.

Other references to arrays should similarly
be changed.

Run the program and two random 200-
element byte arrays are created and sorted.
However, since P% points to the mode 7
screen memory, the data is displayed on
the screen as characters which you can see
being put into order. If you increase to, say,
500 bytes rather than 200, you will see just
how much the sorts slow down.

You can, of course, play all sorts of
variations on this theme. Try watching
the effect of Bubble and Shell sorts of
arrays with only one element misplaced.
Try it with everything starting in reverse
order. How would you change the sorts
to give the result in descending order? A
complete program demonstrating the use
of both sorting techniques is included on
this month’s magazine disc.

Next month, I'll talk about other aspects
of sorting, such as a better way of sorting
strings, and how to handle arrays which
are bigger than the available memory.

Note: this Workshop is based on one first
published in BEEBUG Vol.3 No.10. B

Public Domain Software (continued from page 17)

mess around with. The other reason that
some of these programs are memorable is
simply that very few people would
actually take the time and trouble to write
them! The programs I am thinking of
include, for example ‘English Country
Garden’, which is an engaging rendition
of the well known tune, complete with a
garden display, butterflies and all. Or how
about ‘BEEBUG plays Bach’? Here we
have a computer version of a well known
tune, of which there are many for the BBC,
but this one has grand piano, complete
with pianist who smiles at his audience!
These and others like ‘Stonehenge” and
‘the Earth from Space’ were probably
written as much for the programming
exercise as for the end result.

Beebug April 1993

That rounds off my overview of what
happened in BEEBUG volumes 3, 4 and
5. A surprisingly large proportion of the
software has stood the test of time and
the range is wide enough that some of it
will be of interest to everyone. If you are
a long-time BEEBUG reader, take a look
at your back issues and remember what
excited you about your computer in
those heady days. If your interest is more
recent, just think what you missed!

Next issue, I will try to recover from nostalgia
for long enough to tell you about a few recent
pieces of software that have come my way.

Note: BEEBUG programs earlier than
volume 6 are only available as PD software
through BBC PD, not from BEEBUG.

23

Word Square Upgrade

Graham Leng makes even more of your word squares.

If you enjoyed the word-search program
in BEEBUG vol.11 no.7 you may like to
add some extra features by adding the
lines listed below to the original
program. The line numbers given ensure
that the lines slot in at the appropriate
places in the original program. You will
notice
that three
lines are
deleted

(H: data entry

Type QUIT to #inish
Maximum number c-f nnrd- is 30

GROMHIT ZILLIOH
(B0 SLOTH us:cunouq
SOUIGY
11 8:0.., FLANGE

LYDIA

2 6 D D) LEMHING

a‘Dd SOME | PN

lines are (JCEEN

replaced I

(2180, |WEfas

2190) I?enter word nunber 21
2200,

2231

2910, Entering the word list
3130). Additional features are described
below. This month’s disc has the complete
modified version on it as Wordsg.

LOAD AND SAVE
You are able
to save word
lists after
typing them
in. The files
are stored in
directory W.
Data can be
loaded back
in as required
and used to
produce new
word squares.
Note that
completed
word squares
are not saved. The program uses
*SPOOL and loads in using *EXEC

24

You need:

1. Printer set up
2. Up to 30 vords
3. A title

Decide whether some wo

will be printed backwards.

Decide whether to use upper
or lower case

Press RETURN to go on

The opening screen

HORD-SEARCH: 20 words on Marshal’s Words

OICﬁaﬁS
E
BE

LﬁG

> » » Try again? ¥-H

The key on screen
which simulates data entry from the
keyboard. This uses less code and is
easier to use than accessing the files via
OPENIN/OUT and reading to/from the
array word$(W%).

One inter-
esting
effect of
loading in
a word list
is that the
program
loses track
of how
many
words are
written
back-
wards. To
simplify
things I
have taken

The skeleton printout out the
lines which print “x words are printed
backwards”. It would be possible to
flag which words are backwards and
count them when loading in but I
thought this was unnecessarily
complicated.

Beebug April 1993

3 words are printed backwards

nunber of words:
NHHERDBSHER

Word Square Upgrade

oEome e

Y 3 T 18 0 S = T o T YT 5 S e

HAPI
BDHD
DFAY
BLEL
IYEE
ISRE
ATDS
0BRD
HOSA
ERHO
GHEQ
KTRE
SKB?Z
20HF
617l
GLLE
YOE N
ZGHI
FSIB
RHKE
FHLD
BHTL
0SH?

T b £ £ et Tt Y P S £ S 3 S
0 £ 5 3 0 0 S 0) B M D A S S
S 2 S T S i T S 0 S o e e e T
O It 0 e 3 0 e et 2 TR 3 S
T e 0 Y e 3 0.0 S R D At S
00 b 73 2 PR 2 o 3 0 i 0 £ 1t
N 0 £ T e o T e 5 2 £ 0 3 e T T e
T S o S S T P P 2t T S 8 3 et B
S T T e BB = O e T G D — S S e
o B O D Y £ £ 2 R S i 3 T P i = T
e 5 0 00 734 0 T e o 5 0 £ S T
S 3 O TP 0 0 3 P P S i 0 e Pl T
T e e S T S B e T e e E
£ T P 2 2~ P T S T D
£ 3 £ Yt 0 S et £ ek I 0 2 P 3 R T
A e e e D
T T 0 e £ £ S A 3 T T P St
T T P S 3 e £ B O T A S S T B

| =T e T IO DO ST D e s ST

X
L
]
F
H
L
K
B
f
i
L
i
i H
b
]
L
I
5
0
v
B

The final printout
DIAGONALS

In the original program diagonals were
only used from top-left to bottom-right.
Now diagonals in both directions are used
which produces more complicated squares.

WORD LIST

In the skeleton printout a list of words is
printed on the left hand side. If the
number of words exceeds 25 some words
are not printed. This is corrected by the
procedure PROCextra.

ERRORS

Disabling the Escape key with *FX229,1
makes life difficult if you want to fiddle
with the program (which was probably the
intention). ONERROR is used to restart
the program if Escape is pressed. To escape
from the program press Shift/Escape.

OTHER POSSIBILITIES

I am sure ingenious readers will be able
to add other features such as loading and
saving completed squares, un-reversing
words, using different sized grids etc.
Happy fiddling!

101 ONERRORGOTCO370
242 PRINT''Do you want to load data? ¥
/N":PRCCyesno: IFyes THEN PROCload

251 PRINT'"Do you want to save data? Y
/N":PROCyesno: IFyes THEN PROCsave
252 CLS
270 MODE4:VDU23;8202;0;0;0;
330
370
380
390
400
410
1102
1180
2180
2190
2200
TRUE
2231 IFNOThoriz ANDNOTvert THEN rowinck
=1:colinc%=-1:row%=RND(size%-wordlent) :c
0l%=RND(size%-wordlen%) +wordlen%
2600
2910
2931
2932
2933
2934
3130
%P L}
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670 CLS
3680 ENDPROC
3690 :
3700 DEFFNfilename
3710 CLS
3720 REPEAT:INFUT"Filename? "F$
3730 UNTILLEN(FS)<8
3740 =F%

VDU3 : *FX15
IFERR=17ANDNCTINKEY (-1) RUN

MODE7 :REPORT: PRINT" at line ";ERL
END

VDU23;8202;0;0;0;

IFX<25THENvert=TRUE
IFX>T75THENhor 1 z=TRUE
IF¥>25ANDE<50 THENvert=TRUE:horiz=

IFnum$>size% PROCextra
DEFPROCextra

FORR%$=5ize%+1T0num$
PRINTTAB (5) words (R%)

NEXT': ENDPROC

PRINTSEC (8) “number of words: ";num

DEFPROCsave

FS=FNfilename

OSCLI ("SPOOL W."+F$)
PRINTtit1e§;CHRS13;"Y";
FORI%=1TOnum%

PRINTword$ (I%) ;CHRS13; "y";
NEXT

*SPOOL

CLS

ENDPROC

DEFPROCload
F$=FNfilename
OSCLI("EXEC W."+F$)

(o)

Beebug April 1993

25

Troubleshooting Guide (Part 4)

Gareth Leyshon sorts out your discs and explains the Disc Filing System.

The standard BBC disc system, present
on all Masters (except the Compact) and
most Beebs, is called the Acorn DFS
(Disc Filing System). This is a single
density system which can use 40 or 80
tracks, allowing one side of the disc to
carry 100k or 200k of data respectively.

A similar amount of data can be held on
the disc’s reverse surface, provided that
the disc is of double sided quality and
your drive has a lower head to read this
surface. There are some discs which are
reversible (Flippies), in which case they
can be removed and flipped over. Such a
reversible disc can be distinguished
because it has write-protect notches on
two opposite edges.

The Master also carries an alternative
disc system, the Advanced DFS (ADFS)
which I shall deal with in the next article.
The Compact supports ADFS only. There
are some DFS systems for the Beeb made
by suppliers other than Acorn which can
increase the capacity of discs.

All Masters are equipped to use disc
drives. Beebs could be bought with or
without the necessary chips to use discs -
to find out if a machine is suitable, type
*DISC. If the computer complains ‘Bad
Command’ then it isn’t suitable, but a
dealer can perform the upgrade.
Otherwise, you have the necessary
interface fitted. The disc drive connects
to the computer via the socket labelled
‘Disc Drive’ on the bottom of the
machine - if this socket is missing then
you don’t have the required hardware,
though it is rare to find the socket
missing in all by the earliest Beebs.

Assuming you have the necessary

hardware and software, you can connect
the disc drive to the computer. All drives

26

have a broad, thin ribbon cable which
carries the data. Some take their power
from the computer via a separate lead
with three or four wires and a chunky
plug; others are connected directly into
the mains. Either way, the golden rule is
to switch off the computer before
inserting or removing any plug. Inspect
the chunky plug on the power lead (if
present) and look carefully at the large
disc socket on the computer, as both
connectors may suffer from bent pins.
These are easily straightened with thin-
nosed pliers, they are also easily broken!
Looking for bent pins is a strategy to use
whenever some plug-in piece of
equipment fails to work.

As I mentioned with printers last time,
the drive’s ribbon cable must be pushed
firmly into the socket, the side pegs will
clip themselves around the plug when it
is securely pushed home. I have
encountered many cases of disc drives,
printers and other plug-in devices failing
to work simply because the plug was not
pushed in all the way.

WE'VE GOT THE POWER

If the drive takes its power from the
computer, the chunky power plug
connects to the external power supply
socket. It is possible for one of the pins
inside the plug to become detached and
slip back inside the chunk; to cure this,
push the wire connected to it to return
the pin to its position, then wedge
something (perhaps a matchstick) into
the hole from the back to secure it in
position. An old drive may reach the
stage when the computer resets itself
whenever a drive is used; in this case get
a separate power supply for the drive, to
avoid overload. In this respect the
Master’s power supply is more robust
than that of the Beeb.

Beebug April 1993

Troubleshooting Guide

When you use a drive, either by booting
(pressing Shift-Break), from a program or
issuing a disc command, it may work
successfully. Sometimes, though, you will
get a message such as ‘Disc Fault 18 at :0
00/00" (some of the numbers may vary
from those shown). There are several
possible causes of such a cryptic error: if
you try several discs and none work
properly, the fault is probably with the
drive; it may be broken, or not
compatible with the discs you are using.
If, however, it’s a particular disc that
causes the problem, there may be a flaw
on that particular disc. In either case
press Ctrl-Break, insert the problem disc,
type *CAT and see what happens. It may
be one of the following:

1. Nothing seems to happen for several
seconds, then a similar error message
appears. In this case, the disc probably
hasn’t been designed for use with the
DFS (it may be ADFS - see the next article
- or designed for some other computer, or
possibly a brand-new disc that hasn’t
been formatted yet).

2. An error message appears straight
away, or within a couple of seconds: This
suggests a serious fault on the dise,
especially if the error code is something
other than 18 (code OE is common); it
may have to be scrapped. You cannot
recover the data on it since the catalogue
is corrupt, but you could try formatting
and verifying the disc (see below) and
see if it then becomes suitable for use as a
blank.

3. A list of the files present on the disc
appears. You could be trying to read an
80 track disc on a 40 track drive (or vice
versa) - in this case, the drive will often
make a ticking noise before the
computer gives an error message. If the
drive has a switch marked 40/80, flick
the switch (check the back of the drive
if there’s no switch on the front). If this
fails to solve the problem, it's probably

Beebug April 1993

a physical fault on the part of the disc
containing the file you want. You can
try to verify the disc (see below) - there
may be some parts of the disc not
affected by the flaw, so it may be
possible to salvage some of the data
from it.

DOUBLE TROUBLE

If you want to use two drives, you can
either buy a double drive unit or add a
second drive by using a splitter lead
(sometimes known as a DUCK or
Dualling-Up Connector Kit). If both
drives take power from the computer,
you'll need a power splitter lead or an
extra power supply unit. In a dual setup,
the individual drives are known as 0 and
1. Zero is the default drive, and you can
only boot a disc if it is in drive zero. To
select drive n as the current drive, type
*DRIVE n; this is effective until the next
time Break is pressed. *CAT n will
catalogue the disc in drive n without
selecting that drive as the current drive.
If your disc drives are double-sided, the
other side of each disc is treated as a
separate drive: drive 2 is the reverse of
drive 0, with drive 3 accessing the other
side of the disc in drive 1.

ERRORS WE KNOW AND LOVE
Not all the error nessages are of the
cryptic form. Here are some of the more
friendly complaints and cures:

Can’t Extend: a message in a data
handling program indicating that the
computer is trying to add data to a
particular file which is immediately
followed on the disc by other data; there
is thus no room to extend the file in
question. The best solution is to copy the
full file to a new disc.

Cat full: the disc can only hold details of
31 files in its catalogue, regardless of how
short they are individually. You must
delete some unwanted files or use
another disc.

27

Troubleshooting Guide

Disc changed: you removed the old disc
before the computer had tidied up the
files it was using. Put the old disc back
in the drive, type CLOSE#0, replace the
new disc and try to carry on from where
the error message appeared. Master
users see also the note on the CLOSE#0
bug, below.

Disc full: there is not enough capacity left
to store your program. There may not be
enough space on the disc to store your
data - you'll need to use an empty disc,
or at least one carrying less data. Or it
might be that the disc has enough space,
but it's not gathered up in a single block.
*COMPACT will pool all the free space
into a block - but using this command
will destroy the current memory
contents, so cannot be used in order to fit
the current contents of the memory on to
the disc. Note that when data-handling
programs open a new data file, even if it
is short, it will have a minimum of 16
kilobytes (16,384 bytes) of disc-space
reserved for it initially. Such a new data
file cannot be created if there is less than
16k is free on the disc.

Disc read only: there’s a sticky label over
the write-protect notch. Either you're
trying to change something on a disc
which mustn’t be altered, or a label has
been put on the write-protect notch by
mistake.

Locked: a file is protected from
erasure/update. See *ACCESS below.

Not enabled: you must type *ENABLE
immediately before performing a backup
or destroy files instruction.

Not found: You've used Shift-Break on a
disc which was not designed to be
booted, or some other file which a
program expects to find is missing.

Open: Typing CLOSE#0 should cure the
problem. See also Master note, below.

28

I will not take space here to discuss the
syntax of disc commands which can be
found in many reference books, but you
should note *ACCESS name will “unlock”
a file, that *COMPACT m will tidy up the
free space on the disc in drive m
(destroying the current memory contents
in the process) and *COPY s d name
copies the named file from source drive s
to destination drive d.

FORMATTING

To prepare a blank disc for use with the
DFS, it must be formatted. Newer
versions of the DFS have a built in
formatter. Type *HELP DEFS - if the word
FORM appears somewhere in the list,
you've got one built into your system.
Type *FORM 40 n or *FORM 80 n to
format to 40 or 80 tracks the disc in drive
n, where 1 is 0, 1, 2, or 3. If you have a
40/80 switchable drive, make sure the
switch is in the right position before you
start. If FORM doesn’t appear in your list
(all Masters have it, some Beebs don't)
you will need the format program on the
utility disc supplied with the drive.
Using *FORM or loading the format
program will destroy whatever happens
to be in memory at the time.

A companion command, *VERIFY n (or
its equivalent on the utility disc) will
check the disc in drive n to see if it has
been formatted correctly. The verifier
counts through the tracks on the disc - it
may fail outright at an error or else
display question marks against difficult-
to-read tracks.

If you format a disc to a lower
specification than it is capable of
carrying, you lose nothing except value
for money (e.g. a disc which says 96tpi -
96 tracks per inch, suitable for 80 track
use - on its label can be formatted to 40
tracks, but that’s not such good value as
formatting to 80 tracks). If you format a
disc to tougher standards than the label
says, the computer might not complain

Beebug April 1993

Troubleshooting Guide

initially, but you are running a big risk
with your data, which could corrupt
later.

BE KIND TO YOUR DISCS

Generally, discs must be treated with
care. They should not be exposed to dust,
heat, cold or magnetic fields. It is very
easy, especially in a school situation, for
discs to be left on top of the disc drive,
the monitor, the computer, the cassette
recorder... all of which generate magnetic
fields. On no account switch the
computer or disc drive on with a disc
sitting in the drive. Little fingers poking
about through the disc window are a
sure cause of trouble: always keep discs
in their sleeve when not in the drive.
Keeping a good store of backups is
essential! Put your master copy in
storage, if possible in a metal cabinet,
also store a backup of the master, and use
a working copy for day-to-day purposes.

To make a backup, use the command
*BACKUP 0 1 (which copies from the
disc in drive 0 to the disc - blank or with
unwanted contents, but it must already
be formatted - in drive 1) or else use
*BACKUP 0 0 if you have only one drive,
when you will be prompted to change
discs. It is wise to test the backup as soon
as it is made, to avoid putting a faulty
copy in storage. To avoid accidentally
copying the blank disc on to the original,
temporarily cover the latter’s write-
protect notch.

WHICH CHIP?

All Beebs and Masters with a disc
interface carry a chip containing the disc
Filing System (DFS). The original
version used a chip called an 8271 to
control the drive, and came with a
floppy disc of utility programs. This has
been replaced in modern Beebs (and all
Master Series computers) with a 1770
type chip, and some utilities which were
on the disc are now built into the
computer.

Beebug April 1993

With a 1770 system, if you need to access
a 40 track disc on an 80-only drive, say
on drive 1, then the *DRIVE command is
extended to *DRIVE 1 40. To go back to
drive 0 in ordinary 80 mode, use *DRIVE
0 80. There is, however, no way on any
system of reading 80 track discs using a
40-track only drive.

N.B. Some Masters include a slightly better
chip called the 1772 (though the on-screen
message still says 1770) which can make the
disc drive run faster. Some older drives
may not be able to run fast enough for the
1772; when you try to load a program the
disc drive will click repeatedly and you will
get an error code 18 (or code 50 on ADFS).
There are two solutions: have your dealer
replace the 1772 with a 1770 - or get a newer
disc drive. You can marginally affect the
speed at which a disc drive runs with the
FDRIVE configuration. Use:
*CONFIGURE FODRIVE n.

Putting n=0 or n=1 will work for most
drives. Putting n=2 or n=3 will give a
slower speed if you have the 1770 chip, and
this is essential for older drives. These
values will, however, give a faster speed
with a 1772. Try the different settings with
your drive to find the optimum, and if an
old drive refuses to work, check whether
you have a 1772 when you need a 1770.

There's another configuration setting you
might note: If you put *CONFIGURE
BOOT the computer will reverse the actions
of Break and Shift-Break, with the result
that Break or switching on will attempt to
boot a disc, while Shift-Break will not.
*CONFIGURE NOBOQOT is the reversing
command. The main use is to force the
computer to boot up as soon as switched
on; powering-up with a disc in the drive is
not recommended, and this facility is
mainly used if you have a hard disc.

THE CLOSE#0 BUG

There is a known fault in the Master’s

DFS system that affects some database
Continued on page 55

29

The Sideways Poet (Part 2)

David Houlton completes his poetry generator and he will never,
never surrender.

Last month I described how a sick sense
of humour, inflamed by alcohol,
spawned that depraved and unnecessary
ROM image The Sideways Poet. This
month I am making good my threat to
entice you deeper into the mire by
explaining how you can install a new
‘poet’ of your own.

It should easily be possible for readers
with no knowledge of machine code to
install a new “poet’. I hope that if you
look closely at the way the existing data
is presented, you’ll find you don’t need
to understand the ‘machinery’, you just
copy in a few lines here and there and
add your data in a simple format. Mind
you, you might gain some insight into
the workings of the assembler as you go
along,.

Before you start, you might make life
easier for yourself by setting up some of
the function keys to do various jobs for
you. For example:

*KEY 0 SAVE "POET_C" M
POET_C being merely one suggestion for
a filename - it must not be the same as
the filename of the original version. Use
key f0 to save your work at frequent
intervals. Also...

*KEY 1 EQUS "

*KEY 2 OLD|M MODE 7|M LISTINIM

*KEY 3 RUN|M

YOUR FINEST HOUR

Let’s suppose that the ‘poet’ you want to
add is actually a piece of prose,
Churchill’s speech “We shall fight on the
beaches....” The first thing would be to
add Churchill to the menu in the gap

30

between Burns and Shakespeare. Just

copy the format of the existing entries:
1865 EQUS "Churchill (C)+"

Now put him into the part of the

program which acts on the user’s choice:
675 CMP #ASC"C*:BEQ Churchill

Next, a label and two lines to pass on to
the main program the address of the
ChurchillData which you are about to
type irn:

734 .Churchill

735 LDX f#ChurchillData MOD &100

736 LDY #ChurchillData DIV &100:RTS

In each case, if your addition is an exact
match with the lines around it, then all is
well. The precise line-number is not
important, as long as your addition is
clearly in the right area.

Now, to write the actual ChurchillData,
you need to understand the following
symbols:

: before each phrase or punctuation-mark.
end of choice-group.

> from here nothing goes to the printer.

+ print a blank line (i.e. carriage return).

* end of ‘poet’.

< backspace (use before punctuation.)

It follows that the sequence :<<:text#
means that the word “text” has a fifty-
fifty chance of being printed, the first
alternative << being nothing - just a
couple of backspaces to tidy up the
layout. I have used this trick quite a bit.
Study the use of these symbols in the
existing poets, and all should soon be
clear.

Beebug April 1993

The Sideways Poet

THIS IS NOT THE BEGINNING
OF THE END

Let’s begin Churchill at the end of
Wordsworth, with our label which we’ve

already referred to:
3081 .ChurchillbData

Now a special line containing “&0C” to
clear the screen (the only operation
without a special symbol). Just copy
exactly the first line of the other poets:
3082 EQUS ":"+CHRS &0C+"++#"
Now a choice of titles, perhaps?
3083 EQUS " :CHURCHILL:WINNIE:VICTORY
SPEECH#"

The program will pick one of the
alternatives it finds between the previous
hash and the one that ends this choice-
group. Now we want a couple of blank
lines:

3084 BEQUS ":4+%"

In this last case there is only one item in
the choice group - two plus signs to
indicate carriage returns - so this item
will always be chosen. Now for the fun
bit:
3085 EQUS ":We:I:You:They:Saddam
Hussein:Yogi Bear#"
3086 EQUS ":will:shall:mist:can:are
scared to#"
3087 EQUS ":fight:struggle:run
away:hide:do handstands#"

By now you will be worrying that there
will soon be no spare line-numbers left:
you can’t write a new line 3090, as it
would displace the old one. All you do is
type RENUMBER. List the program
again, and you will find that what was
line 3087 a moment ago is now
3150 EQUS ":fight:struggle.... etc.

Carry on as follows:
3151 EQUS ":on:behind:at:under#"

Beebug April 1993

etcetera, and RENUMBER whenever you
run short of line-numbers. Try some
alternative punctuation at the end of a
sentence, e.g.

3277 BQUS *:.:l§
i.e. 'show a full stop or an exclamation
mark.” When it's run, you'll find an ugly
gap between the last word and the
punctuation mark. This is because the
poet inserts a space between all choices.
Rewrite the line using the backspace
symbol < to get rid of the gap: '

3722 BQUS “:r<.:<id®

At the end of the speech proper,put some
carriage-returns and > to indicate ‘printer
should stop here”:

EQUS " :sttsd?

Now write a suitable final menu such as
the others have, indicating that ‘A’ or ‘Y’
mean copy to the printer; ‘N’ means
don’t print, and ‘Q’ means quit. This
menu can itself comprise many choices,
as in Shakespeare, or consist of just one
wording sandwiched between : and #. In
Burns I have added a few bits of
nonsense prefixed with :<< before the
menu proper. Now end the whole thing:
EQUS " :++*"

BUT IT IS THE END OF THE
BEGINNING

Make sure you've saved the final version,
preferably on two separate discs, and run
it. If it works first time, you're a genius;
you’ll probably need to do Break, then
type OLD and keep checking your new
data, especially the symbols *", ‘# and ¥,
until it works. Then comes an awful lot
of tinkering to get rid of bad combinations.

Note that a choice group is not the same
thing as a line of the program, though
Continued on page 46

31

i e
Applications I Dise

BusINESs GRAPHICS - for producing graphs, charts and diagrams

z Generation 28 VIDEO CATALOGUER - catalogue and print labels for your video

: cassettes

& el L LT PHONE BOOK - an on-screen telephone book which can be eastly
5

-+

Breed a Bug
1

edited and updated

F ALISED LETTER-HI - design a stylish logo for your
g letter heads
APPOINTMENTS DIARY - a computerised appointments diary

MAPPING THE BRITISH ISLES - draw a map of the British Isles at
any size
SELECTIVE BREEDING - a superh graphical display of selective
breeding of insects

FROM SPACE - draw a picture of the Earth as seen
from any point in space
PERSONALISED ADDRESS BOOK - on-screen address and phone book
PAcE DESIGNER - a page-making package for Epson compatible printers
WoRLD BY NIGHT AND DAY - a display of the world showing night and day for any time and date of the year

% o %

_*‘
+

Flle Elandling for All
on the BBC Miere and Asern Arehimedes Fils aadling for Al
by David Spencer and Mike Williams

Computers are often used for file handling applications yet this is a subject
which computer users find difficult when it comes to developing their own
programs. File Handling for All aims to change that by providing an extensive
and comprehensive introduction to the writing of file handling programs with
particular reference to Basic.
File Handling for All, written by highly experienced authors and programmers David
Spencer and Mike Willlams, offers 144 pages of text supported by many useful program
listings. It Is aimed at Basic programmers, beginners and advanced users, and anybody interested in File Handling
and Databases on the Beeb and the Arc. However, all the file handling concepts di d are rel to most
s y - making this a sultable introduction to file handling for all.
The book starts with an tntroduction to the basic principles of file handling. and in the following chapters develops
an in-depth look at the handling of different types of files e.g. serial files, indexed files, direct access files, and
searching and sorting. A separate chapter is devoted to hierarchical and relational database design, and the book
concludes with a chapter of practical advice on how best to develop file handling programs.

The toples covered by the book include:
Card Index Files, Serial Files, File Headers, Disc and Record Buffering, Using Pointers,
Indexing Files, Searching Techniques, Hashing Functions, Sorting Methods,
Testing and Debugging, Networking Conflicts, File System Calls

The assoclated disc contains complete working programs based on the routines described in the book and a copy of
Filer, a full-feature Database program originally published in BEEBUG magazine.

Y
-
o}
<
a
~
-
0
™
()
0
-

ASTAAD
Py i i A
o 1 Enhanced ASTAAD CAD program for the
Master, offering the following features:
#* full mouse and joystick control
#* built-in printer dump
#* speed improvement
% STEAMS image manipulator
¥ Keystrips for ASTAAD and STEAMS
¥ Comprehensive user guide
#* Sample picture files
Stock Code Price Stock Code Price
ASTAAD (80 track DFS) 1407a £5.95 ASTAAD (3.5" ADFS) 1408a £5.95 \/
Applications I (80 track DFS) * 1411a £4.00 Applications I (3.5" ADFS) 14122 £4.00
Applications I Disc (40/80T DFS) 1404a £4.00 Applications I Disc (3.5 ADFS) 1408a * £4.00 V]
General Utilities Disc (40/80T DFS) 1405a £4.00 General Utilitles Dise (3.5" ADFS) 1413a £ 4.00 v
Arcade Games (40/80 track DFS) PAGla £5.95 Arcade Games (3.5" ADFS) FAGZ2a £595 /
Board Games (40/80 track DFS) PBGla £5.95 Board Games (3.5" ADFS) PBG2a £5.95
All prices include VAT where appropriate. For p&p see Membership page. i

RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS_

—

—

Board Gaines

LA
SOLITAIRE - an clegant implementation of this ancient and fascinating PIa. Toe T The, Four Five Siz Bind Sind Ffon. L3tr. K5ir, B8 D, Sc,
one-player game, and a complete solution for those who are unable to Sl i e S el R
find it for themselves.

RoLL of HONOUR - Score as many points as possible by throwing the
five dice in this on-screen version of Yahtze',

PATIENCE - a very addictive version of one of the oldest and most

popular games of Patience,

ELEVENSES - another popular version of Patience - lay down cards on

the table in three by three grid and start turning them over until they
add up to eleven,

CRIBBAGE - an authentic implementation of this very traditional card
game for two, where the object fs to score points for various combinations and sequences of cards.

TWIDDLE - a close relative of Sam Lloyd's sliding block puzzle and Rubik's cube, where you have to move numbers round a
grid to match a pattern.

CHINESE CHEQUERS - a traditional board game for two players, where the object s to move your counters, following a
pattern, and occupy the opponent’s field.

Acts HIgH - another addictive game of Paticnce, where the object Is to remove the cards from the table and finish with the
aces at the head of each column.

Appleatioms It Dise

CrosswoRD EDITOR - for designing. editing and solving
crosswords

MonTHLY DESK DIARY - a month-to-view calendar which can also
be printed

3D LANDSCAPES - generates three dimensional landscapes
Rear TiME CLOCK - a real time digital alarm clock displayed on
the screen

RunNNmNG Four TEMPERATURES - calibrates and plots up to four
temperatures

JULIA SETS - fascinating extensions of the Mandelbrot set
FOREIGN LANGUAGE TESTER - foreign character definer and
language tester

SHARE INVESTOR - assists decision making when buying and selling shares

LABEL PROCESSOR - for designing and printing labels on Epson compatible printers

Areade Games

GEORGE AND THE DRAGON - Rescue ‘Hideous Hilda' from the flames
of the dragon, but beware the flying arrows and the moving holes on
the floor,

EBONY CASTLE - You, the leader of a secret band, have been
captured and thrown in the dungeons of the infamous Ebony Castle.
Can you escape back to the countryside, fighting off the deadly
spiders on the way and collecting the keys necessary to unlock the
coloured doors?

ENIGBT QUEST - You arc a Knight on a quest to find the lost crown,
hidden deep in the ruins of a weird castle inhabited by dangerous
monsters and protected by a greedy guardian,

PiTFALL PETE - Collect all the diamonds on the screen, but try not to
trap yoursell when you dislodge the many boulders on your way.

BuiLpeR BoB - Bob is trapped on the bottom of a building that's being demolished, Can you help him build his way out?

MINEFIELD - Find your way through this grid and try to defuse the mines before they explode, but beware the mansters
which increasingly hinder your progress.

Manic MECHANIC - Try to collect all the spanners and reach the broken-down generator, before the factory freezes up.
QUAD - You will have hours of entertalnment trying to get all these different shapes to fit.

0
0
)
(o
0
™
W
g
g
W
C
0

Stock Code Price Stock Code Price
File Handling for All Book BKO2b £9.95
File Handling for All Disc (40/80T DFS] BK05a £4.75 File Handling for All Disc (3.5" ADFS| BKO7a £4.75
Joint Offer book and disc (40/80T DFS) BK04b £ 11.95 Joint Offer book and disc (3.5 ADFS) BKO6b £ 11.95 V|
Magscan {40 DFS] 0005a £9.95 Magscan Upgrade (40 DFS) 001la £4.75
Magscan (80T DFS) 0008a £9.95 Magscan Upgrade (80T DFS| 0010a £4.75
Magscan (3.5" ADFS) 0007a £9.95 Magscan Upgrade [3.5" ADFS) 1458a £475

All prices include VAT where appropriate. For p&:p see Membership page.

Tel. (O727) 840303 Fax. (0727) 860263

st

Input (3)

Alan Wrigley concludes his description of input
processing in Basic.

course

So far in this series

of articles I have
described the use of the INPUT statement
to obtain textual input from the user, and
the GET and GET$ functions which allow
your program to wait for, and process,
single key presses. In this final part, I will
be looking at the remaining Basic
keywords concerned with user input:
INKEY and INKEY$.

INKEY AND INKEY$%
The two INKEY functions are used when
you want to detect whether a key has been
pressed, but you do not want to halt the
program indefinitely until the event
occurs, as would be the case if you were to
use GET or GET$. Both the INKEY
functions are used with a value in brackets
(between 0 and 32767) to indicate how
many centiseconds to wait before
returning. If you specify zero, the call
returns immediately. For example:
A%=INKEY(100)-
would pause for a maximum of 1 second. I
have said “a maximum of” because if a
key is pressed before the time elapses,
INKEY returns immediately with the
ASCII value of the key pressed. If on the
other hand the specified time elapses
without a key being pressed, the function
returns with a value of -1. In the case of
INKEYS$, the value returned is a string just
like GETS$, and if a key is not pressed then
a null string is returned.

The BBC micro is designed in such a way
that keypresses are stored in a keyboard
buffer, from where they are removed in
the correct order by commands which
process input (or by flushing the buffer,
as we will see in a moment). This enables
you to type ahead regardless of what the

34

program is doing, and is a feature which
gave the BBC an advantage over many of
its competitors at the time. Because of this
feature, however, it is important to realise
that there could already be keypresses
waiting in the buffer before INKEY is
called. In this case, the next character due
to be removed from the buffer is detected
by the function. In other words, the
keypress returned does not have to be
made during the actual time delay
introduced by INKEY, but may have been
pressed previously.

A typical example of the use of INKEY
would be to implement a “hot keys”
function. This would involve polling the
keyboard at regular intervals to see if
particular keys had been pressed while the
program was running. For example, while
printing a long document, you might want
to give the user the option to stop the print
job by pressing ‘S’. It would be
inconvenient to keep pausing to issue a
prompt, so you might simply use
INKEY(0) at the end of every line of print,
as follows:

finished$=FALSE:REPEAT

PROCprintaline

A%=INKEY (0}

IF A%=83 OR A%=115 finished¥=TRUE

UNTIL finished$

Here, PROCprintaline would print one
line of the document, and would also set
finished% to TRUE once the last line was
printed. After each line, INKEY(0)
would detect whether a key had been
pressed. If the value returned was 83 or
115 it would mean the user had pressed
the ‘S” key at some point (‘S" is ASCII 83,
’s" is ASCII 115). finished% is therefore
set to TRUE in order to end the job.

Beebug April 1993

First Course

Because keys are stored in the buffer, there
is a danger that INKEY might extract a key
which was pressed some time ago, perhaps
inadvertently. In the situation described
above, the key might have been pressed
before the program ever got to the section
which prints the document. It is a good
idea, therefore, to flush the keyboard
buffer before entering the loop which
processes the print job. This is done with
the following command:
*FX 15,1

Bear in mind, too, that the user might press
a key several times in one line, and only
one of these presses would be removed
from the buffer by INKEY. It might
therefore be a good idea to flush the buffer
at the start of each print line.

By and large, the same reasons apply for
using INKEY in preference to INKEY$,
and vice versa, as we saw last month
with GET and GET$. However, if you
want to return a string value and use the
INSTR function to decode it as we did
last month, you must be a little more
careful. With GET$, the result can never
be a null string, since the function will
not return until a valid key is pressed.
INKEY$, on the other hand, can return a
null string as we described earlier, and if
you then use this as the target string with
INSTR, you will get a value of 1. In other
words:
A%=INSTR("ABCD","")
will set A% to 1.

To go back to the print job example,
suppose you want to offer the user a choice
of hot keys - perhaps S to stop or P to
pause (or their lower-case equivalents). A
line such as:
ON (INSTR{"SsPp",INKEYS{0))+1) DIV 2 ER
OCstop, PROCpause, PROCdonothing
will almost certainly result in the print job
ending as soon as it has begun, because
unless a key is pressed immediately, the

Beebug April 1993

first value returned by INKEY$ will be a
null string. This will result in a value of 1
for the INSTR function, thus activating
PROCstop. You would therefore need to
alter the code as follows:

AS=INKEYS (0)

IF AS>*" (N (INSTR("SsPp",AS}+l} DIV 2

PROCstop, PROCpause, PROCdonothing

NEGATIVE INKEY

INKEY (but not INKEY$) can be used with a
negative number in the brackets. This is used
to detect whether a specific key is being
physically pressed at the instant the function
is called. The function in this case always
returns immediately, with a value of TRUE (-
1) if the key was down at the time, or FALSE
(0) if not. The negative number which
applies to each key is not related to its ASCII
code in any way, but to its so-called internal
key number. There is not space here to explain
this, but a list of the negative numbers for the
entire keyboard is given in the User Guide
under the description of INKEY.

This is particularly useful in games, where
movement of an object may be controlled
by holding down a particular key. For
example, you may want a spaceship to be
moved left, right, up or down using the
four cursor keys. The negative numbers for
these are -26, -122, -58 and -42 respectively.
Your program might then be based around
a loop which, as well is moving other
objects (aliens, bombs :tc.), contains the
following lines:

IF INKEY(-26) FROCleft

IF INKEY(-122' PROCright

IF INKEY(-58" PROCup

IF INKEY(-4") PROCdown
Each time round .he loop, these lines scan
the keyboard tr see if any of the cursor
keys are currently down, and call the
appropriate procedure if this is the case.

We will conclude this article with a short
listing which demonstrates the principle.

35

First Course

If you followed our earlier 1st Course
series on graphics programming (Vol.11
Nos. 4-7) you will remember the
bouncing ball program from part 3 of the
series. We will amend this so that the ball
is moved under the control of the
keyboard, using ‘Z’ and ‘X’ for horizontal
movement, and ™’ and ‘?" for vertical, in
common with most games. The listing
also demonstrates the use of INKEY/(0) -
by pressing the C key, the colour of the
ball will change.

10 MCDEQ

Y
50 VDU23,243,255,255,254,252, 248,224, 0,0
60 a$=CHR5240+CHRS241+CHRS 10+CHRS 8+ CHRSA
+CHRS242+CHRS243
70 VDUS:step$=8:col%=1
80 vDU19,1,col$,0,0,0
90 x%=400:y%=400:G00L4, 1
100 REPEAT
110 IF (INKEY(0) OR 32)=99 PROCcol
120 IF INKEY(-98) x$=x3-step$
130 IF INKEY(-67) x%=x%+step}
140 IF INKEY(-73) y$=y%+step}
150 IF INKEY(-105) y%=y%-step$
160 IF x%<0 x%=0 ELSE IF x%>1248
x%=1248

170 IF y%<64 y%=64 ELSE IF y3>1024

v%=1024
180 PROCmove
150 UNTIL FALSE
200 DEF PROCcol
210 col%=col% ECR 3
220 vDUl9,1,col%,0,0,0
230 ENDPROC
240 DEF PRCCmove
250 MOVE x%,v%:PRINTaS
260 *FX19
270 MOVE x%,y%:PRINTa%
280 ENDPROC

36

The ball is made up by re-defining four
characters as before (refer to Vol.11 No. 6,
page 24 for a fuller description). However,
instead of moving the ball automatically,
the main program loop (lines 100-190) now
tests for keys pressed. First of all, line 110
uses INKEY(0) to see if C has been pressed,
and if so it calls PROCcolour to change the
ball colour from red to green or vice versa.
Then the program uses the negative
INKEY function to check for each of the
movement keys in turn. If any of them is
down at the time, the appropriate screen
co-ordinates will be updated and the ball
redrawn with PROCmove. Lines 160-170
ensure that the ball cannot move outside
the screen area. If you release all the keys,
the ball will stop moving,

Note that PROCmove is called whether or
not a key is being pressed - this is
because the effect of the procedure is to
draw and then immediately erase the ball
(using GCOL action 4) so that if it
subsequently moves its position, the
background will have been restored. If
PROCmove were only called when a key
is pressed, the ball would be invisible at
other times.

You will find that you can move the ball
diagonally by holding down a
horizontal and a vertical movement key
at the same time. The diagonal
movement is actually an illusion - what
happens is that a horizontal movement
is processed followed immediately by a
vertical movement. You can also press C
to change the colour while you are
holding down one of the movement
keys, but not if you are holding down
two other keys. The reason for this is
too complex to be discussed in this
article.

This concludes our look at the subject of
input, and next month 1st Course will
move on to a fresh topic. B

Beebug April 1993

A Fast Single Drive ADFS
Backup (Part 2)

Roger Smith completes his ADFS backup utility.

Last month’s article presented the
program MakeBackup which produces
FastBackup, a machine code program for
performing fast backups of ADFS discs.
Two programs are listed at the end of
this month’s article: InitBackup, which
creates a backup disc for a specific
original disc, and CheckADFS, which
compares two ADFS discs.

USING THE PROGRAMS

Both programs should be entered and
saved to disc. When InitBackup is run it
searches for FastBackup (it looks in the
current directory, then the root directory
and finally in directory “$.Lib*”), and
then asks for the source disc to be
inserted. After reading the disc title it will
offer to write FastBackup to the disc if it
is not already present; it then asks for the
backup disc. After checking that the
backup disc is the same size as the source
disc, it writes an encoded version of the
source disc title onto the backup disc. If
the source disc has not been given a title,
InitBackup will prompt for a new title -
try to keep disc titles unique as this is
how FastBackup checks that the correct
backup disc is being used. The backup
disc supplied to InitBackup must be
formatted, but its contents do not matter.

For safety, try out InitBackup on discs
which do not matter, or write protect the
source disc.

The CheckADFS program compares two
ADFS discs. It displays the free space
map of the first disc and then reads all
the sectors of the disc and stores a 16-bit
cyclic redundancy check (CRC) for each

Beebug April 1993

sector. It then reads all the sectors of the
second disc, comparing CRC values as it
reads each sector. It displays a map of
those sectors where the sector CRCs
disagree. When FastBackup has been
used to copy a disc there will be a
discrepancy in sector 6 (because the disc
title has been altered) and there may be
discrepancies in the free space sectors.
Any other differences indicate a fault in
the copying process. Due to the nature of
CRCs, there is a small possibility (1 in
2716) that two different sectors will be
shown as equivalent; this should not
cause a problem in practice. CheckADFS
is a useful way of verifying the correct
operation of any backup utility - the last
thing you want is backups which are
faulty! I have used FastBackup in its
current form for eight months without
any problems and now only check its
operation intermittently.

PROGRAM NOTES

InitBackup makes extensive use of
OSFILE calls, which are made easier to
use with the function FNosfile. It also
uses OSWORD &72 to directly read and
write ADFS sectors; the Basic procedures
PROCget and PROCput do this. The
coding of these procedures makes use of
the (little known) fact that the DEF
keyword comments out the rest of the
line when that line is executed, so when
PROCget is called, line 1440 is ignored
and execution continues with line 1450.

CheckADFS reads in a number of disc
sectors at a time, determined by the
value in the wvariable chunk, and
calculates the CRC for each sector using

37

A Fast Single Drive ADFS Backup

the machine code routine generated by
PROCmc. The CRC algorithm used is the
same as that used by the cassette filing
system. The size of chunk (line 110) is a
suitable value for use on a Model B; if
memory permits, it can be increased to 64
with a slight increase in speed. I have
found that further increasing it to 128
slows the program down as the
processing of the sectors takes longer
than the disc time-out, and the drive
motor stops and starts between each
batch of sectors.

I hope you find these programs useful,
they certainly take a lot of the donkey
work out of backing up ADFS discs.

10 REM Program CheckADFS

20 REM Version B 1.00

30 REM Ruthor Roger Smith

40 REM BEEBUG April 1993

50 REM Program Subject to Copyright
60 :

100 MODE 7

120 DIM track chunk*256,pblk 15

130 DIM crcl MaxSize*2

140 PROCmC

150 :

160 REPEAT

170 CLs

180 PRINT"ADFS disc comparison®

190 PRINT'"Insert reference disc and h
it a key"

200 A%=GET:PRINT

210 Nsect=1:PROCreadchunk(0) :DiscSize=
track!252 AND &FFFFFF

220 Nsect=DiscSize

230 IF Nsect>MaxSize THEN PRINT"Too ma
ny sectors""Increeise MaxSize to ";Nsect
:END

110 chunk=32:0SWORD=,FFF1 :MaxSize=2560 |

Creadchunk (s%) : PROCsaveCRCs (s%) :NEXT

280 PRINT'"Insert copy disc and hit a
key";

290 A%=GET:PRINT''"Differences"'"Addre
ss Length"

300 Nsect=1:PROCreadchunk(0) :Nsect=tra
ck!252 AND &FFFFFF

310 IF Nsect<>DiscSize THEN PRINT"Disc
s are different sizes":END

320 start=-1

330 FOR s%=0 TO Nsect-1 STEP chunk:PRO
Creadchunk(s%) : PROCcheck (s%) : NEXT

340 PROCsame (Nsect)

350 PRINT"Press any key...";A$=GET

360 UNTIL FALSE

370 END

380 :

1000 DEF PROCCmc

1010 DIM mc_area 100

1020 addr=&70

1030 crec=£72

1040 H=crc:L=crc+l

1050 FOR J%=0 TO 3

1060 P¥=mc_area

1070 [oPT J% ,
1080 .docrc '

1090 LDA #0:STA H:STA L:TaY

1100 .nbyt LDA H:EOR (addr),¥:STA H:LDX
48

1110 .loop LDA H:ROL A:BCC b7z

1120 LDA H:EOR #8:STA H:LDA L:EOR #&10:
STA L

1130 .b7z ROL L:ROL H:DEX:ENE loop
1140 INY:BNE nbyt

1150 RTS

1160]

1170 NEXT

1180 ENDPROC

1190 -

1200 DEF PROCreadchunk (N%)

1210 len=chunk

1220 IF (N%+len)>Nsect THENlen=Nsect-N%
1230 PRINT"Reading sectors ";N%;"-";N&+

240 VDU 14 len-1;
250 *mount 1240 pblk!l=track
260 *map | 1250 sector=N%
i 270 FOR s%=0 TO Nsect-1 STEP chunk:PRO f 1260 pblk?5=8
38 Beebug April 1993

A Fast Single Drive ADFS Backup

1270 pblk?6=sector DIV &10000

1280 pblk?7=(sector DIV &100) AND &FF
1290 pblk?8=sector AND &FF

1300 pblk?9=len

1310 pblk?10=0

1320 pblk!11=0

1330 A%=£72:X%=pblk AND &FF:Y%=pblk DIV
&100

1340 CALL OSWORD

1350 VDU13:PRINTSPC(39);:VDULl3

1360 ENDPROC

1370

1380 DEF PROCsaveCRCs(N%)

1390 addr?0=track MOD 256:addr?1=track
DIV 256

1400 crcptr=crcl+Ng*2

1410 FOR J%=0 TO len-1

1420 CALL docrec:creptr?0=cre?0:creptr?l
=crc?l

1430 creptr=crcptr+2:addr?l=addr?1+1
| 1440 NEXT

1450 ENDPROC

1460 :

1470 DEF PROCcheck (N%)

1480 addr?0=track MOD 256:addr?l=track
DIV 256

1490 creptr=crcl+N$*2

1500 FOR S%=N% TO N%+len-1

1510 CALL docrc

1520 IF creptr?0=crc?0 AND creptr?l=crc
?1 THEN PROCsame(S%) ELSE PROCAiff (S%)
1530 creptr=crcptr+2:addr?l=addr?1+1
1540 NEXT

1550 ENDPROC

1560

1570 DEF PROCsame(S%)

1580 IF start<(ENDPROC

1590 PRINTRIGHTS("00000"+STR$~start,6);
1600 PRINT* : *;

1610 PRINTRIGHTS("00000"+STRS~(S%-start
), 6)

1620 start=-1

1630 ENDPROC

1640 :

1650 DEF PROCAiff (S%)

1660 IF start=-1 THEN start=S%

1670 ENDPROC

10 REM Program InitBackup

20 REM Version B 1.00

30 REM Author FRoger Smith

40 REM BEEBUG April 1993

50 REM Program Subject to Copyright
60 :

100 MODE 7

110 DIM blk &11,misc 255,sect6 255

120 name$=STRINGS{20, "**)

130 OSARGS = &FFDA:0SFILE = &FFDD

140 OSWORD = &FFF1

150 A%=0:Y%=0:F%=USR(0SARGS) AND 255

160 IF F$<>8 THEN PRINT"ERROR - not us
ing ADFS":STOP

170 PRINT''"Searching for FastBackup ¢
ode.., .

180 Code$=FNfindcode: PRINT

190 IF Code$="" THEN PRINT"ERROR - can
not find FastBackup code":STOP

200 T%=FNosfile(5,Code$,0,0,0,0)

210 CodeLen=blk!&0A:CodelaD=blk!&02

220 CodeXAD=blk!&06:DIM code CodeLen

230 T%=FNosfile(&FF,Code$,code,0,0,0)

240 T$=CHRS$141+CHRS131+" --- InitB
ackup ---*

250 CLS:PRINT''TS$'T$''"This program cr
eates a backup disc for"'"use with the F
astBackup utility."''"Both the SOURCE an
d BACKUP discs must"'"be formatted."

260 REPEAT

270 PRINT'''"Insert";CHR$130;"SOURCE";
CHR$135;"disc and hit a key";

280 Z%=GET:PRINT:*MOUNT

290 REPEAT

300 nameS="":term=-1

310 PROCget(0,misc)

320 size(=misc!252 AND &FFFFFF

330 PROCget (6, secth)

340 J%=0

350 REPEAT

360 C%=secth? (&D9+J%)

370 IF C%>31 THEN name$=name$+CHRSCE E
LSE term=C%

380 J%=0%+1

390 UNTIL J%>18 COR term>=0

400 IF name$="S$" THEN PROCrename

410 UNTIL name$<>"$"

|

Beebug April 1993

39

A Fast Single Drive ADFS Backup

420 PRINT"Disc is called";CHR5134;name
§
430 IF term<>13 THEN PRINT;CHR$129; "
(probably a BACKUP)"

440 IF term=13 AND FNfindcode="" THEN
PROCwritecode

450 PRINT'"Insert";CHR$129;"BACKUP" ;CH
R$135;"disc and hit a key";

460 Z%=GET:PRINT

470 PROCget (0,misc)

480 sizel=misc!252 AND &FFFFFF

490 IF size0<>sizel THEN PRINT'"Wrong s
ize BACKUP disc!":STOP

500 PROCget (6, misc)

510 FOR J%=0 TO 18

520 misc?(&D9+J%) = sect6?(&DI+J%) EOR
15

530 NEXT

540 PROCput (6, misc)

550 PRINT'‘'Initialise another backup?®

560 UNTIL (GET AND &DF)<>89

570 PRINT:END

580 :

1000 DEF PROCrename

1010 LOCAL X%,¥%

1020 PRINT"This disc is called";CHR$134
;"5";CHRST

1030 PRINT"Please supply a new title:"
1040 Smisc="TITLE *®

1050 INPUT LINE ">>> " §(misc+6)

1060 X%=misc MOD 256:Y$=misc DIV 256:CA
LL &FFF7

1070 ENDPROC

1080 :

1080 DEF Fnfindcode

1100 T%=FNosfile(5,"$.Lib**,0,0,0,0)
1110 LIB%=T%=2

1120 T%=FNosfile(5, "FastBackup®,0,0,0,0
)
1130 IF T%=1 THEN ="FastBackup"

1140 T%=FNosfile(5,"$.FastBackup",0,0,0
.0}

1150 IF T$=1 THEN =*$.FastBackup"

1160 IF NOT LIB% THEN ="*

1170 T%=FNosfile(5,"$.Lib* .FastBackup®,
0,0,0,0)

1180 IF T%=1 THEN ="$.Lib*.FastBackup"

1180 ===

1200 :

1210 DEF PROCwritecode

1220 PRINT"Write FastBackup code to thi
s disc?";

1230 Z%=GET AND &DF:FRINT:IF Z%<>89 THE
N ENDPROC

1240 T%=FNosfile(5, "Lib*",0,0,0,0)

1250 IF T%=2 THEN PRINT"Put it in libra
ry?"; :Z%=GET AND &DF:PRINT ELSE Z%=0
1260 name$="$.FastBackup"

1270 IF Z%=89 THEN name$="%.Lib* FastBa
ckup*®

1280 T%$=FNosfile(0, name$, CodelAD, CodeXA
D, code, code+CodeLen)

1290 ENDPROC

1300 -

1310 DEF FNosfile (A%, name$,LAD, XAD, SAD,
EAD}

1320 LOCAL X%,Y%

1330 X%=blk MOD 256:Y%=blk DIV 256

1340 Smisc=name$

1350 blk?&00=misc MOD 256

1360 blk?&01-misc DIV 256

1370 blk!&02=LAD

1380 blk!&06=XaAD

1390 blki&0a=SaD

1400 blk!&0E=EAD

1410 =USR(OSFILE) AND 255

1420 ;

1430 DEF PROCget (S%,mem} :blk?&05=508
1440 DEF PROCput (S%,mem) :blk?&05=60A
1450 LOCAL A%, x%,Y%

1460 A%=572

1470 X%=blk MOD 256:Y¥%=blk DIV 256

1480 blk?&00 = 0

1490 blk!&01 = mem

1500 REM blk?&05 is function code

1510 blk?&06 =(5% DIV &10000)AND &1F
1520 blk?&07 = 8% DIV &100

1530 blk?&08 = 5%

1540 blk?&09 = 1 : REM one sector

1550 blk?&0a = 0

1560 blk!&0E = 0

1570 CALL QSWORD

1580 IF ?blk=0 THEN ENDPROC

1530 PRINT''"Disc error: &':;~?blk

1600 STOP

40

Beebug April 1993

Datasheet2

Stephen Colebourne upgrades his spreadsheet program.

The original Datasheet was published in
BEEBUG Vol. 11 Nos. 1 & 2. The listing
below introduces three improvements to the
spreadsheet program. These are:

1. Minor correction ensuring that
numbers are rounded up correctly, e.g.
1.175 is shown as 1.18 not 1.17 after the
correction.

2. Major improvement to formulae
calculations, e.g. Average, Minimum,
Maximum and VAT calculations.

3. Substantial improvement to the
printer handling abilities, i.e. four pre-
selected output styles/sizes are offered
not one.

DATHEHEET

= Print Whole Sheet
= Print Window

- Spool Window

1
3
4
5

- End Progran
C - Edit Sheet

Your Choice 7
The main menu

Load the original program, delete lines
2000 to 2130 inclusive and add the lines
listed below. The new version of the
entire program is on this month’s disc as
DSHEET+.

Using the new version the
improvements should become
apparent. Each time part of the sheet is
to be printed you are asked to select
from Pica, Elite, Condensed Pica and
Condensed Elite (Set up on Star LC24-
200). These choices can be changed in
data statements at the end of the
program.

Beebug April 1993

The other new commands are formulae
commands. Enter some numbers, then
press f0 for a formula. Try any of the
following, press COPY to evaluate:

S(AA,AD) -Sum from AA to AD
inclusive

A(AA AE) - Mean average AA to AE

M(CB,CH) - Maximum of CB to CH

N(AFEGF) -Minimum of AF to GF
V(DC) - Gives 17.5% of DC
W(BF) - Gives BF + 17.5%
X(CD) - Gives CD ex VAT

Note that the VAT rate can be changed in
PROCUSER, and that PROCSUM is not
new (although it now works differently).
Why not try adding your own functions?

10 REM Program Datasheet2
40 REM BEEBUG 2April 1993
790 V=VAL(CS)
1000 IFPXS="S" IFPYS$="(" IFC%=0 E%=5:PR
OCFUNC (2, "SUM" }
1001 IFPXS="A" IFPYS$="(" IFC%=0 E$=5:PR
OCFUNC (2, "AVGE")
1002 IFPXS$="M" IFPYS="(" IFC%=0 E%=5:PR
OCFUNC (2, "MAX")
1003 IFPX$="N" IFPY5="(" IFC%=0 E$=5:PR
OCFUNC (2, "MIN"}
1004 IFPX$="V" IFPYS$="(" IFC%=0 E$=5:PR
OCFUNC (1, "VAT") |
1005 IFPXS$="W" IFPY$="(" IFC%=0 E%=5:FR |
OCFUNC (1, "WVAT")
1006 IFPX$="X" IFPY$="(" IFC$=0 E$=5:PR
CCFUNC (1, "XVAT*)
1500 DEF PROCFUNC (A%,CS)
1510 IFMIDS(F$,P%+A%*3+1,1)<>")" PROCFC
D(1) :ENDPROC
1520 IFFNPAIR(MIDS(F$,P%+A%*3-1,2)) CRL
EN(E$)>235 PROCFCD({8) :ENDPROC
1530 IFA%=1 PROCFUNCZ:ENDPROC
1540 T%=PX%:U%=PY%

Datasheet2

| 1550 IFFNPAIR(MIDS (F$,P%+2,2)) PROCFCD(
8) : ENDPROC

1560 T%=T%-PX%:U%=U%-PY%

1570 IFNOT(T$%=0EORU%=0) PROCFCD(8):ENDP
ROC

1580 ES=ES+"FN"+C$+" ("+STRS (PX%)+", "+ST
RS (PY%)+", "+5TRS (T%)+", "+STRS (U%) +") "
1590 P$=P%+7

1600 ENDPROC

1610

1620 DEF PROCFUNC2

1630 E$=E$+"FN"+C$+" ("+STRS (PX%)+", "+ST
RS (PY%)+") "

1640 P%=P%+4

1650 ENDPROC

1660 :

1670 :

1680 DEF FNVAT (A%, B%)

1690 =D(A%,B%) * (VAT/100)

1700 -

1710 DEF FNWVAT(A%,B%)

1720 =D(A%,B%)* (14VAT/100)

1730 :

1740) DEF FNXVAT(A%,B%)

1750 =D(A$%,B%)/ (1+VAT/100)

1760 =

1770 DEF FNMAX (A%,B%,C%,D3%)

1780 V=D(A%, B%)

1790 FORZ%=1TOABS (C%+D%)

1800 A%=A%+SGN(C%) :B%=B%+SGN(D%)
1810 IFD(A%,B%)>V V=D(A%,B%)

1820 NEXT

1830 =v

1840 :

1850 DEF FNMIN(A%,B%,C%,D%)

1860 V=D(2%,B3)

1870 FORZ%=1TOABS (C%+D%)

1880 A%=A%+SGN(C%) :B%=B%+5GN (D%}
1890 IFD(A%,B%)<V V=D(A%,B%)

1900 NEXT

1910 =v -

1920 :

1930 DEF FNSUM{A%,B%,C%,D%)

1940 v=D(A%, B%)

1950 FORZ%=1TOABS (C%+D%)

1960 A%=A%+SGN(C%) :B%=B%+SGN(D%)

1970 v=V+D(2%,B%)

1980 NEXT

1990 =v

2000 :

2010 DEF FNAVGE(A%,B$%,C$,D%)

2020 =FNSUM(A%,B%,C%,D%)/(ABS(C%+D%)+1)
2030 -

3520 IFFNPCODES VDU26:ENDPROC

3590 IFE$ VDUL,27,1,64,3:PC%=COLSIDIVCW
%-1:ELSEOSCLI (*SPOOL")

3800 DEF FNPCODES

3810 IFE%=0 PROCSPOOL:=0

3820 CLS:FORZ%=0T03

3830 PRINTTAB(6,3+2%*2) ;CHRS134;CDS(2%)

3840 NEXT

3850 PRINTTAB(11,13);CHR$131; "Your Choi
ce “;:INPUT"? “CD%

3860 IFCD%<1 ORCD$>4 THEN=1

3870 VDU2:FORZ$=1T010

3880 VDU1,CD%(CD%-1,2%)

3890 NEXT

3900 PC%=CD%(CD%-1,0)DIVCWS-1

3910 =0

3920 :

5190 PRINT,D(V%,W%)+0.000001;

5270 @¥=AT1%:PRINTRIGHTS (S4+STRS (D(X%,Y
%)+0.000001),CW8) ;

5955 DIMCDS(3),CD%(3,10) :CD%=0

6052 FORCD%=0T03 :READCDS (CD%)

6054 FORZ%=0T010:READCD% (CD%, Z%)

6056 NEXT,

6252 DATAL - Pica (10 cpi),72,27,80,0,0
,0,0,0,0,0,0

6253 DATA2 - Elite (12 cpi),88,27,77,0,
0,0,0,0,0,0,0

6254 DATA3 - Condensed Pica (17 cpi), 12
8,27,80,15,0,0,0,0,0,0,0

6255 DATA4 - Condensed Elite (20 cpi),1
44,27,77,15,0,0,0,0,0,0,0

6320 REM**No.of columns when spooled**
6332 REM**VAT percentage**

6334 VAT=17.5
B]

42

Beebug April 1993

Spriter (Part 2)

Alan Blundell concludes his examination of Acorn’s undocumented
graphics ROM image for the Master.

Last issue, we covered the general
functions of Spriter and looked at how
sprites are defined, together with the
housekeeping functions of the ROM
image like sprite load/save, etc. In this
article, I will cover the basics of how to
use Spriter in your own programs to
display and animate sprites.

BUT FIRST, THIS

Before going on to that here is a
summary of the commands obeyed by
Spriter which weren’t covered last time.

*SGET is an easy way to define a sprite,
if the image you want to use as a sprite is
visible on the screen, or can be displayed
on the screen.

*SGET (n), where n is a sprite number,
will capture an image from screen
memory and store it in sprite number 7.
It is actually very easy to use: before
calling *SGET, you need to perform two
Basic MOVE commands to set two
diagonally opposite corners of the
rectangular part of the screen you wish
to make into a sprite. Having done that,
*SGET (n) does the rest.

*SCHOOSE selects a sprite for plotting
on the screen - you need to select the
sprite, as there is no one command to
both select and display a sprite. Both
*SGET and *SCHOOSE have alternative
means of being called. If a star command
doesn’t suit the way your program
works, the same results can be achieved
via VDU commands. This works as an
extension of the VDU23 command,
commonly used to redefine characters.

VDU 23,27,1,n,0;0;0; is the equivalent of
*SGET. Note that you still need to have

Beebug April 1993

performed the two MOVE commands to
select the area of the screen to be read.

VDU 23,27,0,n,0;0;0; is the equivalent of
*SCHOOSE. For this command no
setting up is needed, as it merely selects
an existing sprite for the next display
command.

The actual display of a sprite can also be
achieved by a VDU command, this time
by a PLOT (VDU25) command. The
plotting of sprites is handled in the same
way as any other graphics plotting, such
as lines, circles, triangles, etc. The PLOT
commands relevant to sprites are codes
&E8 to &EF. Acorn allocated PLOT codes
in blocks of 8, so that there are 8 ways of
plotting a line, 8 ways of plotting a
triangle, and so on. Only the relative and
absolute co-ordinates part of these options
is really useful with sprites; Normally, you
would use n+1 (233) for relative plotting
and n+5 (237) for absolute plotting. You'll
find a complete list of PLOT codes on
page 231 of the Welcome Guide.

EXAMPLES

That essentially gives you
all the information you
need to use Spriter for

yourself. However, it is The sprite
always easier to get the feel ~created by
Spritel

of how to do something by
seeing an example of how it all works in
practice, so Spritel is an example of just
that. The sprite it uses isn’t exactly
original and the program only allows you
to move it around a blank screen, but that
is all to the good: the whole point of the
program is to show how the sprite
commands work, so a complex program

43

Spriter

would defeat the object of the exercise.
Because I couldn’t provide a sprite
directly as part of the listing, much of the
program is devoted to defining a few
character graphics and then using *SGET
to grab these into a sprite.

EXPLANATION OF SPRITE1
Lines 80-140 and 480-520 redefine a
few characters and display these on
the screen as a two-coloured ‘“Pacman’
type creation.

Lines 230-250 use the VDU code
equivalent of *SGET to grab Pacman as
a sprite. The two MOVE commands
mark two diagonally opposite corners
of a notional box around the sprite.

Line 300 selects GCOL type 3 - EOR
plotting of graphics. The graphics
colour chosen does not matter, as sprites
by their nature contain their own colour
information. EOR plotting is usually the
best option if graphics are to be
animated: the first plot displays the
sprite, a second plot at the same position
will EOR the displayed sprite with itself,
which is the quickest way of removing it
from the display before re-plotting it at
its new position.

Line 310 uses the VDU equivalent of
*SCHOOSE to select sprite number 1
(defined in line 250) to be the next sprite
displayed. This command stays in effect
until a new *SCHOOSE command is
issued - in other words, the selected
sprite stays selected until another
selection is made.

Line 340 Plots the sprite on the middle of
the screen (PLOT 237 = &E8 + 5 to PLOT
to absolute screen co*ordinates).

Finally, lines 350-440 form an endless
loop which checks for keypresses for
up/down/left/right, keeps track of the

44

position in X% and Y%, and (in line 430)
moves the sprite. The movement works
by plotting the sprite at its original
position for a second time (using EOR
mode) to remove it from the screen, then
plotting it again in its new position. Note
the use of *FX19 (wait for vertical sync.)
to reduce flicker.

st art

SPrite 4 =z

The screen from Spritel

MORE SOPHISTICATED
ANIMATION

If you try Spritel, you will probably see a
fair bit of flicker as the sprite is moved
about the screen. Much of this is due to
the slowness of Basic for this sort of
purpose. The actual sprite plotting
routines in Spriter are quite speedy, but
for each move, Basic has to interpret the
VDU commands and pass them on to the
MOS before they reach Spriter. Also, don’t
forget, all this has to be done twice for
each step in the movement of the sprite;
once to delete it from its original position,
once to plot it in the new position.

ALL THIS AND SPRITE2

Listing 2 demonstrates one of the ways
round this, by halving the number of
sprite plots needed for animation, so
doubling the speed. The method relies on
creating a second sprite which consists of
the original EORed with itself at a pre-
determined offset position. In this simple
example, only horizontal movement of
the sprite from left to right is dealt with

Beebug April 1993

Spriter

but the principle can be extended. This
example use the *SGET and *SCHOOSE
star commands, so that you can see the
alternative way of doing things. Also, it
uses relative PLOT coordinates with
PLOT code &E8+1 (233), rather than the
absolute co-ordinates used in the
previous example.

The program simply alternates between
two methods of displaying a moving
sprite - the first being the ‘delete and
display in new position’ two step
method, the second being the complex
sprite approach. Because the sprite used
contains a copy of the original ‘pre-
EORed’ with itself, only one step is
needed to both delete the original and
display in the new position. In this case,
the new position is 16 absolute graphical
units to the right (see lines 210-250). If
you type in and run this listing, you are
first asked for 5 characters of input text.
This is used to create a relatively large
sprite, which emphasizes any flicker in
the display. Then you should be able to
see clearly the improvement in display
which can be achieved with a bit of effort.

OVER TO YOU

I hope that the brief guide to the mysteries
of Spriter in this and the previous article
has been enough to show you how to use
it in your own programs. Perhaps we’ll
see more on the subject in future issues, or
even programs published which make use
of the ‘new’ facilities.

Listing 1

10 REM Program Spritel

20 REM Version B 1.0

30 REM Author Alan Blundell

40 REM BEEBUG April 1993

50 REM Program subject to copyright
60 MODE 2

70 *SPRITE ON

80 FOR loopl$=251 TO 255

90 VDU23, loopl%
100 FOR loop2%=0 TO 7
110 READ byte%
120 VDU byte%
130 NEXT
14() NEXT
150 PRINT TAR(0,24)"Sprite 1:"
160 vDus
170 GCOL 0,3
180 MOVE 670,280
190 vDU251,252,10,8,8,253,254,8,11
200 GooL 3,2
210 vDu255
220 vDu 4
230 MOVE 650,200
240 MOVE 800,300
250 vou 23,27,1,1,0;0;0;

260

270 PRINT TAB(0,5)'Use Z,X,: and / to"
'"move about”!

280 PRINT"Press a key to start"'"...";

290 IF GET CLS

300 GoOL 3,0 :REM The colour doesn't m
atter - only the ECR option!

310 voU 23,27,0,1,0;0;0;

320 X%=600

330 Y%=600

340 PLOT 237,X%, Y%

350 REPEAT

360 H%=0

370 v&=0

380 IF INKEY(-98) THEN H3%=-8

390 IF INKEY(-67) THEN H%=8 :REM X

400 IF INKEY(-105) THEN V%=-8 :REM /

410 IF INKEY(-73) THEN V%=8 :REM :

420 *Fx19

430 IF H%<>0 OR Vi<>0 THEN PLOT 237,X%
S KBRS +HY YR=YS+VE PLOT 237,X%,Y%

440 UNTIL 0

450 END

460 :

470 REM Character definition data

480 DATA 7,31,63,127,127,255,255, 255

490 DATA 224,248,252,254,254,255,255,2
55

500 DATA 255,255,255,127,127,63,31,7

510 DATA 223,192,224,254,254,252,248,2
24

:REM Z

I 520 DATA 0,0,204,204,0,0,0,0

Beebug April 1993

45

Spriter

Listing 2

10 REM Program Sprite2

20 REM Version B 1.0

30 REM Author Alan Blundell

40 REM BEEBUG April 1993

50 REM Program subject to copyright
60 MODE 2

70 *SPRITE ON

80 PRINT''"Type 5 letters then";
90 PRINT''"press RETURN: ";

100 COLOUR 1

110 INPUT""sprite$

120 MOVE 880,900

130 MOVE 1200, 860

140 *SGET 0

150 GCOL 3,0

160 *SCHOOSE 0

170 COLOUR 2

180 PRINT TAB(0,25) "Sprite 0:"
190 PLOT 237,650,190

200 PRINT TAB(0,27)"Sprite 1:®
210 PLOT 237,650,120

220 PLOT 237,666,120
230 MOVE 650,120

240 MOVE 1000, 180

250 *SGET 1

260 choice=-1

270 REPEAT

280 choice = NOT choice

290 IF choice PROCcomplex ELSE PROCSim

ple
300 UNTIL 0
310 END
320 :
330 REM Simple EOR method
340 DEF PROCsimple
350 PRINT TAB(0,8)"Simple sprite :"
360 *SCHOOSE 0
370 MOVE 0,600
380 FOR loop%=0 TO 55
390 *FX 19
400 PLOT 233,16,0
410 *FX 19
420 PLOT 233,0,0
430 NEXT
440 ENDBROC
450 :
460 REM Complex EOR method
470 DEF PROCcomplex
480 PRINT TAB(0,8) "Complex sprite:®
48(*SCHOOSE 0
500 PLOT 237,16, 600
510 MOVE 0,600
520 *SCHOOSE 1
530 FOR loop%=0 TO 55
540 *FX 19
550 PLOT 233,16,0
560 NEXT
570 *SCHOOSE 0
580 PLOT 233,16,0
590 ENDPROC

The Sideways Poet (continued from page 31)

for readability I have mostly made it so
here. As this assembly language
program assembles the machine code, all
the line numbers and EQUS directives
disappear; they were only there to
provide a structure for the programmer.
You could in principle write the whole
set of data as one long line, except that
the Beeb can’t handle lines of more than
about 250 characters, but you can tag
short groups such as :++* on the end of
the previous line, or split a very long
group into two lines. Each choice group
should contain a maximum of 15
alternatives: if you add more, the extras
will never be chosen. If you really need

46

to, you can extend this limit to 31 by
changing the statement AND #&0F in
line 1240 to AND #&1F, but at some cost
in speed.

Here are a few ideas for suitable new
‘poets’: The Lambton Worm; Jerusalem; a
script for East Enders, Neighbours or The
Archers; Horatius at the Bridge; a worn-
out proverb; Jabberwocky. I hope you
have some fun. Always bear in mind the
immortal words of Hermann Goering:
“Wenn ich das Wort ‘Kultur” hoere, greife
ich nach meinem21 Revolver.” (When I
hear the word ‘culture’, I reach for m

revolver.) S

Beebug April 1993

Machine Code Corner

Mr Toad goes rummaging about in the Basic ROM.

Happy Spring, bipeds. Mr T has just
come back from the World Hamster
Fondling Olympiad in Bognor, and let
me tell you, that final round was pretty
close. The chimney of the old Beeb fairly
belched sparks and smoke as it added up
the scores.

Despite severe exhaustion, Mr T has
been labouring day and night since his
return to prepare Part 2 of his epic
answer to one Silas Brown. The question
remaining is: “How do you access Basic
commands from machine-code?”

Well, generally you don’t, in the strict
sense. Your code can switch in the Basic
ROM, as explained last time, with LDA
#&0C:STA &FE30, unless the code is
designed to be running with Basic,
anyhow. You can then do a JSR to any
subroutine in the Basic ROM - i.e. one
known to end with an RTS - if you've
got a disassembly of the ROM. Such
routines may or may not be in the same
place in the various versions of Basic:
very likely not, so compatibility with
other machines would be doubtful.
Certainly, everything in Basic has
moved in the new bolt-on OS chip, and
some commercial software which uses
Basic’s code has had to be updated for
the new ROM. Many hobbyist
programmers are sure to have done it,
and the addresses of some such routines
are sure to have appeared in various
publications over the years, but it's not
normally worth the trouble, in Mr T’s
view, except perhaps in the case of a few
especially useful bits of code. Mr T
loathes disassembling and has never
tried to access the Basic ROM. Why
can’t we have the Beeb equivalent of
that wonderful book, “The Complete
Spectrum Rom Disassembly?” In fact, I
believe one was published early on, but
I have never actually seen it.

Beebug April 1993

The bits of code which really would be
useful, to Mr T’s mind, would be the
floating-point arithmetic routines and,
above all, the one which prints out
numbers in decimal. This last may or
may not be in the Basic ROM on any
given model, but it would be lovely to
get the address(es) and see. Mr T's
home-brewed decimal printout routine is
very clumsy, and being a linguist rather
than a mathematician he can’t think of a
neat algorithm. If you know of one or
know any of the above-mentioned
addresses, please send them in.

Anyhow, what you certainly can use in
the Beeb are the various MOS routines
documented by Acorn, such as OSASCI,
OSRDCH and of course that wonderful
ragbag of OSBYTEs, on which many
Basic functions are based. I went through
details of two such OSBYTE calls last
month. The full list of MOS calls is in the
Master Reference Manual, page D.1-2,
and in section N.5 there is a list of 37
Basic commands and the MOS routines
which they call.

This is where the writer of a column like
this has a problem: how much of the
manual does he regurgitate? Not all
readers will have these two quite
expensive tomes, but for those who do,
such rehashing is a waste of time. Mr T’s
view is that anyone who really wants to
write machine-code programs has
simply got to find the cash and buy the
manual, or Part One at the very least. I
can’t see how anyone can do without it.
What we'll try to do here is to comment
on a few of the most useful MOS calls.

What you should be aware of is that calls
to the MOS are not 6502 instructions. On
a Commodore, JSR &FFEE will not print
characters. The difference may be
thought to be purely academic, since it

47

Machine Code Corner

will always work on any BBC computer,
but let’s keep our thinking clear and
remember that these are subroutines
provided by Acorn, not parts of the 6502
instruction-set.

Secondly, T would always recommend
that at the top of your code you declare
as variables all the MOS routines which
you'll be using, and that those variables
be the official names by which Auntie
Acorn, God bless her aged bones,
baptised them back in the Dark Ages

when the Beeb began.
100 oswrch = &FFEE
110 osbyte = &FFF4
120 osrdch = &FFEQ

You will be doing this anyway with parts
of your own program, very likely:
130 zPagelo = &B0
140 zPageHi = &B1
and also with things like vectors which
you grab:
150 insVecLo
160 insVecHi

&0222
&022B

It’s so much easier, and you should keep
some standard headers on disc for this
purpose. But this is one of Mr T’s
digressions, for which he won the Harold
Pinter Memorial Rambling Award in
1991. We’ll have a go at a very brief
summary of the most useful of these calls:

OSBYTE, &FFF4. The low-level routines
which the *FX calls use, plus a few which
*FX can’t do. You must have a book
which details these; I can’t even begin to
list the areas they cover. You can do some
things with only the User Guide by
putting the *FX number into A and any
parameter(s) into X (and Y), but the
information in the *FX list is rather
limited. Here’s an example: *FX21,0
flushes the keyboard buffer. Mr Williams
thinks it’s too often used; he may be
right. *FX21,0 translates to:

LDA #&15:LDX #0 \ no Y parameter
for this one

JSR oshyte

48

OSWORD, &FFF1, is similar to OSBYTE
in that it covers a varied range of
functions, but there are only a few calls.
You set up a ‘parameter block’, different
for each call, and point XY at it, but you
can’t do without the layout of the
parameter block, which is different for
each OSWORD.

The ones you cannot possibly do without
are OSWRCH, &FFEE and OSASCI,
&FFE3. OSWRCH does precisely what
VDU does, (call it with the ASCII code in
A), and so does OSASCI with the very
important difference that when you call it
with A=&0D, it does line feed (CHR$
&0A) and carriage-return with the one
call. With OSWRCH you have to do both
separately. OSWRCH is that teeny bit
faster, but it rarely matters. OSNEWL,
&FFE7 does a line-feed plus carriage
return regardless of the value in A, which
can save two bytes. X and Y are
irrelevant on entry to all three calls. All
registers are preserved on exit, except
that, in the case of OSNEWL, A will
always hold &0D, but all three calls may
corrupt the flags. This is an infuriatingly
silly oversight on Acorn’s part. In fact,
you generally find that the zero flag,
which is the one you want preserved in a
loop with zero as end-marker, is not
corrupted, but Mr T will never risk it.

OSRDCH, &FFEO is like GET$ - it waits
indefinitely for a keypress. No entry
parameters, X and Y are preserved on exit
and A holds the character read. If the
carry-flag is set on exit, it normally means
that Escape has been pressed, and you
should code a response if you don’t want
your masterpiece to hang up. A BCS to an
exit routine is generally indicated.

OSCLI, &FFF7, is the same as Basic’s
OSCLI - it issues a star command.
Point XY at a string in memory, not
beginning with an asterisk but
terminating with &0D, and that string

Continued on page 53

Beebug April 1993

Well well, here I
am again after
all.

Last month we
looked at displays up to CGA. This
month we'll cover CGA to the present.
This won’t help you to persuade
programs to run on the 512, but you will
see why some can’t. Also, if you're
contemplating a machine upgrade it’s an
introduction to current PC graphics,
which can then be compared with
alternatives.

EGA AND BEYOND

CGA was the first PC colour display, but
as hardware advanced, so did the
demands made on graphics hardware by
applications. Soon CGA wasn’t enough.

EGA (the Enhanced Graphics Adaptor)
came next after CGA. The modes and
resolutions supported include all those
in last month’s table plus the following.

Mode Resolution
13 320 x 200 16 colour graphics
14 640 x 200 16 colour graphics
15 640 x 350 monochrome graphics
16 640 x 350 4 or 16 colour graphics

EGA DISPLAY MODES

Clearly EGA was quite a leap forward in
colours and resolution. At 320x200 the
number of colours jumped from four in
CGA to sixteen, while 640x200 offered
sixteen colours as opposed to CGA's two
at that resolution.

Note that, although the maximum
horizontal resolution is still 640 pixels
(which the BBC can match) vertical
resolution increased by 75%, even in
colour. It hardly needs saying that
640x350 pixels is way beyond the BBC
micro (and the 512). Even without colour
640x350 requires 28K, so if a program

Beebug April 1993

512 Forum

by Robin Burton

demands EGA, forget it as far as the 512
is concerned: everything from now on is
for information only.

One point you might notice is that there
was no additional DOS text support with
the introduction of EGA. Since CGA text
surely offers all one could reasonably
want in the way of coloured text, it was
not surprising that nothing was added.
CGA is still the standard for DOS text
today, regardless of display type. Note,
however that I said ‘for DOS’. It’s not
necessarily so for all PCs.

With the arrival of EGA, extra display
RAM could be used for text. Using a
specially installed driver, text could be
displayed in 25, 43 or 50 lines by 80 or
132 characters, even though these aren’t
standard in DOS itself.

Interestingly, EGA was also the first
standard under which there was some
choice over how much RAM to use for
the display. The minimum used (in mode
sixteen) gave four colours at 640x350
pixels, but simply by adding RAM to
your existing card this could be
increased to sixteen at relatively low
cost.

Calculating display RAM is simple. Four
colours require two bits (values 0 to 3)
for each pixel, so 640x350 requires
640x350x2 bits for a full screen, or 56K.
Sixteen colours require twice the number
of bits (values 0 to 15) so 112K are
needed.

Notice that this amount of display RAM
represents almost twice the total RAM the
6502 processor can address. It’s easy to see
why no-one ever offered graphics
enhancement hardware for the 8-bit BBC -
it can’t be done. The only way is to
completely redesign the machine, then call
it something else, such as “ Archimedes”!

49

512 Forum

DOS AND BEYOND

Of course EGA wasn't the end either.
Along came VGA (Video Graphics
Array) offering higher resolution and
more colours again. The range was now
from 640x400 in sixteen colours (128K
needed) to 640x480 in up to 256 colours
(512K). VGA is the minimum you can
now buy, but it too has been long
surpassed, as we shall see.

VGA was notable as the first display to
employ what is now the norm for
graphics support in PCs. Bear in mind
that, although MS-DOS is up to version 5
and DR-DOS is on version 6 (with 7 soon
to be released) MS-DOS 3.3 is still very
much current and most PC vendors offer
the choice of 3.3 or 5. As you can see
from the table, DOS doesn’t support
VGA, so how's it done?

PC graphics hardware developed faster
than DOS, a normal state of affairs
when, unlike Acorn, Macintosh, Amiga
and others, the hardware manufacturers
don’t provide the operating system. If
you design and supply everything
yourself you have to make sure it all
matches (more or less). If you don't, as
is the case with PCs, it’s not your
problem.

Display modes already provided by DOS
must be maintained for millions of old
machine users, otherwise they can’t
upgrade. Given the huge numbers of
users with old display hardware, any
other idea is financially out of the
question, so existing DOS screen modes
are supported by all new versions of
DOS. My old XT, for example, runs
MDA, CGA and EGA quite happily in
DR-DOS 5.

A different approach is needed, one that
doesn’t rely on, or affect, DOS. The
answer, inspired by the PC’s original
design, was to remove graphics support
from DOS. VGA installable graphics
drivers began to appear.

50

Once a method of dealing with a
problem has been devised there’s often a
knock-on effect. Just as EGA was the first
display to offer support for text in DOS’s
built-in modes, VGA was the first to offer
support for graphics. This approach is
now standard for all current display
types, though the original screen modes
are still supported by DOS.

CURRENT TRENDS

Over the past couple of years SVGA
(Super VGA) and XVGA (eXtended
VGA) have become the norm for PC
displays. Notice I didn’t say ‘standard’.
Neither of these terms is well enough
defined for everyone to agree precisely
where the boundaries lie. Suffice it to say,
the name doesn’t matter, since both
exceed VGA resolution by a considerable
margin.

Minimum VGA colour graphics
stabilised at 600 x 480 pixels in 16
colours, but SVGA or XVGA is what
you'll normally get with a new machine
these days. If you request a monochrome
display it will be monochrome VGA.
SVGA offers 800x600 and (some say)
1024x768 resolution, while XVGA offers
1280x1024. Naturally, most SVGA and
XVGA boards support lower resolutions
too.

It's not easy to specify a standard
number of colours for SVGA and XVGA
either, since that depends on the amount
of RAM fitted and the board type. At
their highest resolutions the cheaper
(£40.00 or so) SVGA boards only manage
16 colours, but 256 is more usual. SVGA
resolution is the minimum if you intend
to do much work in Windows or DTP,
while XVGA is required for serious CAD.

Naturally, as the resolution of PC
graphics increased, so did that of screen
hardware, using finer phosphor dots and
operating at higher refresh rates.
However, be aware that when you get
past 800x600 pixels, regardless of colour,

Beebug April 1993

512 Forum

a 14-inch monitor really isn't up to the
job. This is because, however good a
screen’s definition or quality, the physical
area of a 14-inch screen just isn’t enough
for the huge amount of data which can
be displayed at high graphics
resolutions. Large high resolution screens
are pretty expensive, but prices are
falling as competition increases. SVGA
plus a 15 inch screen is a popular choice
for home use (constrained by cost) but 17
inch is the minimum for XVGA at
1280x1024.

The number of display colours varies in
proportion to the amount of graphics
RAM and inversely with resolution. 256
colours at 800 by 600 is the minimum for
any self-respecting SVGA card, but the
following table shows the options more
fully. The first figure is the actual amount
of RAM required, while the figure in
brackets is the physical amount you’ll
need on a board to provide it.

require formidable processing power.
Work it out! At 1280x1024 there are over
1.3 million pixels to maintain, while at
1600x1200 the number is almost 2 million
(and you’ve still got to deal with
colours).

At 1600x1200 in 256 colours a complete
screen re-draw means moving 2Mb of
data - after you've processed it all.
Clearly this takes time, enough in fact for
even today’s fastest 486 processors (now
66MHz) to begin to show the strain, with
undesirable effects on overall
performance. Until very recently the only
options were to accept poor performance,
or to upgrade to a PC with a faster
processor.

Looking ahead a little, it’s clearly not
possible to continue to push displays
much further without a rethink. The
quantity of RAM needed and (perhaps
more importantly) the power to drive it
varies with the product of a display’s

Resolution Colours Ram needed
640x480 16 153,600 (256K)
640x480 256 307,200 (512K)
800x600 16 240,000 (256K)
800x600 256 480,000 (512K)

1024x768 16 393,216 (512K)
1024x768 256 786,432 (1Mb)
1280x1024 16 655,360 (1Mb)
1280x1024 256 1,310,720 (2Mb)

XY resolution. For example a display
of 2148x1600 would be almost 3.5
million pixels, which would need 4Mb
of RAM in 256 colours.

Display RAM is already independent of
the computer’s main RAM, while
software support is already independent
of DOS. The next step is fairly obvious -

Display resolution/colours versus RAM

These are the commonest resolutions, but
if you really want to push the boat out
you can go to 1600x1200 colour graphics
too, though screen cost becomes a major
consideration at that level. You definitely
need a 20 or 21 inch screen and a suitable
model will cost (and weigh) more than
the average 486 PC.

WHAT NEXT?

Higher resolution with more colours
demands more graphics RAM, but
another factor becomes significant.
Supporting full XVGA in colour can

Beebug April 1993

direct graphics processor support.

The latest (affordable) development in
display adaptors are ‘graphics
accelerator” cards and ‘local-bus’ main
boards. These cards have a dedicated
graphics processor (usually an S3) and a
high speed, custom colour chip called a
RAMDAC, plus typically 2 or 3Mb of
RAM. (Let’s ignore TIGA boards, they
start at over £1000.00!) Local-bus means
the main processor has a fast, direct 32-
bit data path to the graphics controller,
by-passing the slow AT-bus.

Graphics accelerators are rapidly
becoming popular, though of course they

51

512 Forum

cost more than normal graphics boards.
Typically £300.00 buys a card that, with a
suitable screen (hold your breath!) can
handle a resolution of 1280x1024
displaying 32,000 colours from a palette
of 16.7 million. Some cards support lower
resolutions too, if drivers are provided,
but at say 640x480 pixels they offer more
colours than there are pixels to display
them, so some don't!

Accelerator cards relieve the main
processor of much of the graphics load,
operating quite differently from
conventional display methods. The
principle is more similar to the page
description languages used by laser
printers than to a normal display. The
main processor tells the graphics card
what to draw and where to draw it, but
not how to. The graphics processor
knows all about geometric shapes, bezier
curves, lines, vectors, coordinates and so
on, while the RAMDAC supplies the
colour. A simplified example of how this
works goes as follows.

The main processor tells the graphics
processor to display (say) a filled circle of
a certain size in a particular shade of a
certain colour, centred on screen
coordinates of X and Y. This data amounts
to only a few dozen bytes. Having told the
graphics processor what to do, the main
processor can immediately get on with
something else while the circle is being
drawn by the accelerator card.

DISPLAY DRIVERS

Ever since VGA appeared, graphics and
text drivers have taken over display
support from DOS. Drivers are installed
in the system and loaded as and when
when required, bypassing the BIOS often
even in text modes. Drivers must be
supplied with each graphics card.

Without display drivers most high
resolution display cards can produce
only CGA text in DOS. In fact some of
the more specialised cards can’t even do

52

that on their own and a few don’t even
support DOS text at all. This is one
reason, as mentioned last month, for dual
screen systems. DOS runs on one (cheap)
display, while high definition graphics
are displayed exclusively on the other
(very much more expensive) one.

Display drivers aren’t only specific to a
graphics card - they must also
match the application or the application’s
environment. A range of drivers is
supplied with graphics cards to cater for
a range of the most popular tasks. Most
mass-market SVGA and XVGA cards do
provide support for standard DOS
modes, but nowadays even simple cards
employ a different driver for each
different graphics resolution.

Drivers for entirely graphical
environments such as Windows and
0S5/2, or for major DOS graphics
applications like AutoCAD, are supplied
with the majority of display cards. For
less popular applications drivers must
often be acquired separately. It's usual in
such cases for the application itself to
provide a range of drivers for the more
popular graphics cards.

However (and this might be amusing for
512 users), if you have a specialised
graphics card AND you want to use an
obscure graphics application, you may
well find the two incompatible if no-one
has yet written a suitable driver.

THE END? NOT YET!

I hope, after this flight through modern
PC graphics you can see why questions
about DOS 5 and Windows are
frustrating. The subject is complex, and it
should be obvious even from our brief
look at the subject that such questions are
mostly pointless. Not only is there a
yawning (and ever-increasing) gulf
between the 512’s hardware and current
PC hardware, the software employed in
VGA, SVGA and XVGA display cards is
beyond the 80186 processor anyway. It

Beebug April 1993

512 Forum

wouldn’t work even if the 512 processor
was used in a real PC, when we wouldn't
be restricted by the venerable old Beeb at
the other end of the Tube. It wouldn’t
even be any help if you could run DOS
3.3 or 5 on the 512, since DOS doesn’t
handle these new displays.

There is a cheerful note for 512 users
though. There are still millions of XTs
and even a good many 80286 ATs that
can’t support more than a megabyte of
main RAM. XTs can’t run Windows
(recommended minimum 4Mb) or OS/2
(8Mb) at all, since they use an earlier
processor than the 80186, and they can’t
run displays more recent than EGA
either. 286 machines can run Windows,
but they are so slow that they are
virtually unusable.

Why is this good news? Well, no-one
writes programs for EGA or VGA these
days. They either write programs for
standard DOS screen modes, or for the
latest display standards. Many do both.

This means, leaving aside SVGA and
XVGA (and whatever happens next),
that the 512 is still reasonably
compatible with the majority of PCs in
use today, and software is still being
written for these machines. Old
machines don’t make headlines, but
there are far too many of them for even
the likes of Microsoft to ignore. A recent
market projection showed that the
number of DOS users is expected to
continue to rise for the rest of the
decade and that in five years DOS users
will still outnumber Windows users
four to one.

Speaking of recent technology, you may
find this interesting. You probably
know that the 80186 was never used as
a PC processor, but did you know that it
has lately found a new role? It's the
processor in at least one type of hard
disc caching controller, used to speed
up average disc access and data
throughput rates. There’s life in the old
chip yet!

Machine Code Corner (continued from page 48)

will be issued as a star command. For
example: the MOS command *SHOW n
lists the text currently assigned to
function key n, but no call is provided to
list all ten keys at one go. The Toad Rom
90 has a star-command *S which does
just this. The string EQUS “SHOW
0”:EQUB &0D is copied into RAM at
&DC00, (which is where star-commands
are generally processed by the MOS). A
loop is then entered which does:

LDX #0:1DY #&DC:JSR oscli
then increments the key-number at the
end of the string, round and round ten
times. Doing *S on Mr T’s Master Turbo
thus lists all ten soft-key strings in a neat
column - and it’s very useful indeed.

There are several other MOS calls, mostly
to do with filing, but I reckon the ones
given here are the most useful. You really
should get the manual, though. David
Atherton’s excellent “Master Operating

Beebug April 1993

System” is also worth the money; Beebug
stock both.

This month’s competition: will somebody
please do some intensive research and tell
us exactly when OSWRCH /OSASCI
corrupt which flags? Mr T has always
intended to find out but never seems to
have a spare fortnight. There are still a few
TM A SWOT’ badges left to be awarded.

That's it for now, frog-fanciers - “And not
before time!” I hear you croak. Next month
we spill the beans about that legendary
gang, FRED, JIM, SHEILA, HAZEL,
LYNNE and ANDY, full-colour action
photographs and all. We’ll also be listing a
Tibetan prayer-wheel simulator program
which prints OM MANI PADMI HUM
every 170 microseconds, fast enough to get
even a toad to Nirvana in only 1.2 standard
lifetimes. It also lists the Nine Billion
Names Of God. B

53

League Tables (continued from page 15)

adminton League."

3240 PRINT STRINGS(38,"=")

3250 PRINT"Table dated *;d$

3260 PRINT STRINGS(12+LEN(dS),"=")

3270 FOR T%=1 TO K%

3280 IF team$(T%,2)<>team$({T%-1,2} PROC
page

3290 PRINTteam$(T%,1);TAB(17);result(T%
, 1) ;TAB(21} ;result (T%,4) ; TAB(25) ;result (
T%,5) ; TAB(29) ;result (T%, 2) ; TAE(35) ;resul
t(T%,3}

3300 NEXT

3310 *Fx3,0

3320 PRINT'''TAB(5)CHR$131;"Press SPACE
to continue.":REPEATUNTIL GET=32:PROCon
:ENDPROC

3330 :

3340 DEF PROCpage

3350 PRINT''"Division - *;team$(T%,2)
3360 PRINT:PROChead:PRINT

3370 ENDPROC

3380 :

3390 DEF PROCall:T%=1:VDUld:PROCoff
3400 IF T%>K% VDUL15:PROCon:ENDPROC

3410 CLS:D$=team$(T%,2) : PROCdouble (130,
D%, 3)

3420 PRINT':PROCheader:PRINT

3430 REPEAT:PRINTCHR$134;teams(T%,1);TA
B(18);result(T%,1) ;TAB(22);result (T%,4);
TAB(26) ;result (T%,5) ; TAB(30) ;result (T%,2
) ;TAB(36) ;result (T%,3)

3440 T%=T%+1:UNTIL team$(T%,2)<>teams(T
$-1,2)

3450 PRINTTAB(8,22)CHR$131;"Press SPACE
to continue.":REPEATUNTIL GET=32:G0T034
00

3460 :

3470 DEF PROChead

3480 PRINTTAB(S)"Team";TAB(16)"Played";
TAB(30) "Rubbers*”
3490 PRINTTAB(Z1)"W
Ag." :ENDFROC ®
3500 :

3510 DEF PROCadd _
3520 CLS:PROCdouble(130, "Add Results®,2

L";TAB(29) "For

J

3530 PROCdouble(130,D$,5)

354() PRINT'TAB(2)CHRS$130;"Teams:"

3550 FOR T%=1TO K%

3560 IF team$(T%,2)=DS PRINTTAB(5);T%;"
. ";team$ (T%, 1)

3570 NEXT:PROCon

3580 PRINT'TAB(Z2)CHR$131;"Select";:INPU
T" two teams by no. (A,B):"NA,NB

3590 IF team$(NA,2) <>D$ OR team$(NB,2) |
<>D$ VDU7:VDU11:VDU11:GOTO3580

3600 PRINTTAB(2,18)CHRS134; "Rubbers for
" ;team$ (N&, 1)

3610 PRINTTAB(2,2()CHRS$134;"Rubbers for
" ;teams (NB, 1)

3620 INPUTTAB(33,18)R1:INPUTTAB(33,20)R
2:PROCoEE

3630 PRINT''TAB(9,22)CHR$131;"Is this ¢
orrect? (Y/N)":A=GET

3640 IF A<>89 THEN 3520 ELSE PROCon
3650 result(Na,1l)=result(Na,1)+1:result
(NB, 1) =result (NB, 1)+1

3660 result(NA,2)=result(Na,2)+R1:resul
t(NB, 2) =result (NB, 2} +R2

3670 result(WA,3)=result(Na,3)+R2:resul
t (NB, 3)=result (NB, 3)+R1

3680 IF R1>R2 result(NA,4)=result(NA,4)
+1:result (NB,5)=result (NB,5)+1

3690 IF R2>R1 result(NB,4)=result(NE,4)
+1:result (N3, 5)=result (NA,5)+1

3700 ENDPROC

3710 ;

3720 DEF PROCremove

3730 CLS:PROCdouble (130, "Remove Results
e

3740 PROCdouble(130,DS$,5)

3750 PRINT'TAB(2)CHR$130;"Teams:"

3760 FOR T%=1TO K%

3770 IF team$(T%,2)=D$ PRINTTAB(S);T%;"
. ";team$(T%,1)

3780 NEXT:PROCon

3790 PRINT'TAB(2)CHRS131;"Select"; :INPU :
T two teams by no.(A,B):"NA,NB

3800 IF team$(NA,2) <>DS$ OR team$(NB,2)
<>D$ VDU7:VDU11:VDU11:GOT03790

3810 PRINTTAB(2,18)CHR$129; "Rubbers for
" ;team$ (NA, 1)

54

Beebug April 1993

League Tables

3820 PRINTTAB(2,20)CHR$129; "Rubbers for
";team$ (NB, 1)

3830 INPUTTAR(33,18)R1:INPUTTAB(33,20)R
2:PROCOfE

3840 PRINT''TAB(9,22)CHRS131;"Is this ¢
orrect? (Y/N)":A=GET

3850 IF A<>BY9 THEN 3720 ELSE PROCon
3860 result(NA,1)=result(NA,1)-1:result
(NB, 1) =result (NB,1)-1

3870 result(NA,2)=result(Na,2)-Rl:resul
t(NB,2)=result (NB, 2} -R2

3880 result(Na,3)=result(NA,3)-R2:resul
t (NB, 3)=result (NB,3)-R1

3890 IF R1>R2 result(NA,4)=result(NA,4)
-1:result(NB,5)=result (NB,5)-1

3900 IF R2>R1 result(NB,4)=result(NE,4)
-l:result (NA,5)=result (N&,5)-1

3910 ENDEROC

3920 .

3930 DEF PROCzap

3940 CLS:PROCdouble (130, "Remove Team", 2
)

3950 PROCdouble(130,D3,5)

3960 PRINT'TAB(2)CHRS$130; "Teams:"
3970 FOR T$%=1TO K%

3980 IF team$(T%,2)=D5 PRINTTAB(5);T%;"
. ";team$(T%,1)

3990 NEXT:PROCon

4000 PRINT'TAB(2)CHRS129;"Select"; :INFU
T* team to be removed : "R%

4010 IF team$(R%,2)<>D§ VDUT:GOTO3950
4020 IF result(R%,1)<>0 PRINT''CHR$129;
team$ (R%,1);" STILL HAS RESULTS RECORDED
1" :ENDPROC

4030 PROCoff:PRINT''TAB(9)CHRS131;"Is t
his correct? (Y/N)":A=GET

4040 IF A<>89 THEN 3940

4050 FOR Z%=R3TCK%

4060 FOR Y$=1T02:team$ (Z%,Y%)=teams (Z%+
1,Y¥%) :NEXTYS

4070 FOR X%=1TO5:result(Z%,X%)=result(Z
$+1,X%) :NEXT X%

4080 NEXT Z%:K%=K%-1
4090 ENDPROC

Troubleshooting Guide (continued from page 29)

programs, known as the CLOSE#0 bug.
When a database program is
transferring data between memory and
disc, it opens what is known as a
CHANNEL between the computer and
the disc drive. Several channels may be
open at any one time, the maximum
being five. Each channel is given a
number between 17 and 21 inclusive.
When the computer finishes amending
a file, it closes the channel to that file
with the command CLOSE#n, where n
is the channel number. There is also a
command, CLOSE#0, which ought to
close all the channels. When this
general version is used, however, the
channels get closed at their original
length rather than their updated length.
One solution would be to transfer the
database system to ADFS, which does
not suffer from this problem - see next
month’s article.

Beebug April 1993

You may have looked up this paragraph
from a reference above, where I have
advised curing a fault by typing
CLOSE#0. If you are using a Master and
think your program has updated files on
DFS, you should instead type CLOSE#17
, CLOSE#18 and so on up to channel 21.
If the computer gives you a message
“Channel”, it is telling you that that
channel was not open when you tried to
close it; ignore this and go on to the next
number. By closing the channels
individually, you avoid the fault which
only affects the general CLOSE#0
command. Note also that there is an
operating system command, *CLOSE,
which shares the faults of CLOSE#0.
More details can be found in BEEBUG
Vol.8 No.6 page 42.

Next month, my final article will look at boot

files and ADFS problems. Until then, happy

discing!

55

Robol - The Game (Continued from page 8)

1110 IF INKEY(-87) G$%=TRUE:ENDFROC
1120 IF H%=X% AND V%=Y% ENDPRCC

1130 P%=M%? (H%+10*V%) : PROCdisplay (H%, V%
S PE-4) (M%7 (H%+10*VE) =P%-4

1140 PROCAisplay (X3,Y$,4):IF 0%=2 OR 0%
1=5 M%? (X%+Y%*10) =6 ELSE M3%? (X%+Y%*10)=4
1150 IF Q%=3 AND R%=2 N%=N%-1 ELSE IF @
$=5 AND R%=0 N%¥=N%+1

1160 COLOUR3 :W%=W%+1:PRINTTAB(6,31)RIGH
TS("0000"+STRSWS, 4) ; TAB(17, 31) ; RIGHTS ("0
0"+STRSN%, 2} ; : ENDPROC

1170 :

1200 DEF PROCleft:C%=X%-1+Y%*10:0%=M32C
%
1210 IF 0%=0 OR Q%=2 X%=X%-1:ENDPROC
1220 IF X%<2 ENDPROC

1230 D$=X%-2+Y%*10:R%=M%?D%:IF(Q%=3 .OR
0%=5)AND(R%=0 OR R%$=2) :PROCpush(-1,0)
1240 ENDPROC

1250 -

1300 DEF PROCright:C%=X%+1+Y3*10:0%=M%?
%

1310 IF 0%=0 OR Q%=2 X%=X%+1:ENDPROC
1320 IF X%>17 ENDPROC
1330 D%=X%+2+Y%*10:R%=M%7D%:IF(0%=3 OR
0%=5)AND(R%=0 OR R%$=2) :PROCpush(1,0)
1340 ENDPROC

1350 :

1400 DEF PROCup:C%=X%+(Y%-2)*10:Q%=M32C
%
1410 IF Q%=0 OR Q%=2 Y%=Y%-2:ENDPROC
1420 IF ¥Y%<6 ENDPROC

1430 D%=X%+(Y%-4) *10:R¥=M¥?D%:IF(Q%=3 O
R 0%=5)AND(R%=0 OR R%=2) PROCpush(0,-2)
1440 ENDPROC
1450 }

1500 DEF PROCdown:C%=X%+(¥Y%+2)*10:Q%=M%
%

1510 IF Q%=0 OR (Q%=2 Y$%=Y%+2:ENDFROC
1520 IF Y%$>26 ENDPROC
1530 D%=X%+(¥%+4) *10:R%=M3?D%: IF(Q%=3 O
R 0%=5)AND(R%=0 OR R%=2) PROCpush(0,2)
1540 ENDPROC
1550 -
1600 DEF PROClevel:*FX15,1
1610 REPEAT:CLS:VDU 19,0,4;0; :COLOUR2: I
NPUTTAB(2,10) "Enter level "L%:UNTIL L%>0
AND L%$<11:L%=L%-1:G%=FALSE:ENDPROC

1620 :

1700 DEF PROCscreen

1710 VDU 20:B$=L$*160+&3000:K%=0

1720 FOR I%=0 TO 159:5%=B%21%:M37K%=5%
DIV 15

1730 M%? (K%+1)=5% AND 15:K%=K%+2 :NEXT

1740 K%=0:FOR I%=0 TO 30 STEP2:FOR J%=0

TO 19

1750 S$=M%7K%:PROCdisplay (J%, I%,5%) :K%=
K$+1

1760 IF S%=4 X%=J%:Y%=I%

1770 IF S$%=2 N%=N%+1

1780 NEXT,

1790 PRINTTAB((,0);SPC20;TAB(0,31);SPCL
9;CHRS30 : COLOURL : PRINTTAB(0,0) "Lev:"; :CO
LOUR3 : PRINT; RIGHTS { " 00" +STRS (L$+1) ,2) ; :C
OLOURZ : PRINT" ROBOL "; :COLOUR3:PRINT"00
00";

1800 COLOURL:FRINTTAB(0,31) "Moves:";:C0
LOUR3 : PRINT; *0000" ; : COLOUR1: PRINT; * Pack
s:"; :COLOUR3: PRINT; RIGHTS ("00"+STRSNE, 2) |
; :GCOLO, 0:MOVED, 32:DRAW1279, 32:GCOL0, 3 :E
NDPROC

1810 :

1900 DEF PROCdisplay (%%,Y%,A%)

1910 CALL &B00:ENDEROC

1920 :

2000 DEF PROCpush(I%,J%)

2010 PROCAisplay (X%+1%,Y%+J%,0) :IF R$=2
PROCAisplay (X$+2*I%, Y$+2*J%, 5) :M3?D%=5
ELSE PROCdisplay (X%+2*1%,Y%+2%J%,3) :M¥?D

$=3

2020 X%=X%+I%:¥Y$=Y$+J%:S0UND 1,-10,20,1
:ENDPROC

10 REM Program RobData

20 REM Version B 2.2

30 REM Ruthor M.Bobrowski

40 REM BEEBUG 2Zpril 1993

50 REM Program subject to copyright

60 -

100 MODE 7:A%=&5400 :HIMEM=A%

110 FORI%=ASTOA%+&2TFC STEP4:!1%=0:NEX
T

120 FORI%=0TO&63F STEP4:READ AS:I%!A%=
EVAL("&"4+A8) :NEXT

130 err%=FALSE:FORN$=1TO10:READ checks

56

Beebug April 1993

Robol - The Game

um$

140 S%=0:FORI%=0TO&IF:S%=5%+I1%72% : NEXT

150 IF S%<>checksum$ PRINT'"Error in D
ATA for Screen ";N%:err3=TRUE

160 A%=A%+&A0 :NEXT:IF err% VDUT:END

170 QSCLI"SAVE robol3 5400 +1080 3000
3000

180 END

190 -

200 REM Scr 1

1000 paTA 0,0,0,0,0,0,0,0,111101,0,1000
0,1,0,13001,0,110100,1031,1000000,103030
00,0

1010 paTaA 1011101,11011010,11011,111001
01,10220011,30000301,0,11011022,1110111,
10220041, 10000,11110100,1011,11111101, 0,
0,0,0,0,0

1020 REM Scr 2

1030 paTa 0,0,0,0,0,0,0,1000000,1121111
1,1011,220100,11000010,1000010,30100022,
100003,220100,111113,1000010,40000022,10
0011

1040 DATA 220100,1031010,1000010,111011
11,103030,3010000, 30303000, 10, 10000001, 1
¢0000,11010000,11211121,10,0,0,0,0,0,0,0
1050 REM Scr 3 i

1060 DATA 0,0,0,0,0,0,0,0,11010000,1011
| 11,0,4000001,10,3010000,100113,0,3100030
1,0,13010000, 103

1070 DATA 11111100,1010311,12000011,301
2022,13000,20221100,33000,12000001,11012
022,111111,11111100,11,0,0,0,0,0,0,0,0
1080 REM Scr 4

1090 DATA 0,0,0,1000000,10111111,0,2200
0100,11111022,11111111,10222200,10010,22
003030,33101022,1033031, 10222200,310, 220
00103,33101022, 31303001, 10111111

1100 DATA 10310,100,1110000,11111111,0,
10010, 1000, 100000,11003000,0,33310310,41
00,100000,11000001,0,11121121,1012,0,0,0
1110 REM Scr 5

1120 paTa 0,0,0,11010000,11,0,11020001,
11,1010000,11031,0,3000001, 11000001, 1111
111,10011,20221200,31000301,12000011,300
02022, 100133

1130 paTa 20221200,4033001,11000010,111
111,100130,0,30301,10,11010000,101001,0,
100,10,1000000,101111,0,0,0,0,0

1140 REM Scr 6

1150 paTa 0,0,0,0,0,11110000,10110011,0
,1012012,1114,20120000,1001101,0,2012,13
3,20120000,1030101,0,1112112,103

1160 DATA 11110000,1300103,0,31000100,1
03,1000000,1300003,0,11000100,100, 100000
0,11111111,0,0,0,0,0,0,0,0

1170 REM Scr 7

1180 paTA 0,0,0,0,0,0,10111100,0,101111
11,1100,10100100,1331041,1000000,300000,
100,30000100,1001101,1000000,11110111,11
31

1190 paTa 30100,10221011,1000000,203030
3,1022,100,10221211,1000000,12103003,102
2,11000100,10111110, 1000000,1011,0,0,0,0
0,0

1200 REM Scr 8

1210 paTa 11110000,0,0,11110110,111111
100000,3030003,1,1033110,13000,3100000,1
00003,11000001,13110,11111,3131400,11000
3,10000001,31010300,10100

1220 DATA 30001000,3030300,11000001,110
11011,111111,100000,100,0,1000010,0,2212
0000,2122,0,21222212,0,22120000,2122,0,1
1111111,0

1230 REM Scr 9

1240 paTA 0,0,0,1000000,111111,0,220001
00,21,11110100,212200,1000000,20000000,2
1,11000100,212200,1000000,22001110,21,11
101100,111111

1250 DATA 10000000,113033,11000000,3031
011,111101,13001001,10003, 40010001, 330,1
0330,10111101,11010333,11,1000,1,1100000
0,111111,0,0,0

1260 REM Scr 10

1270 DATA 11001101,11111111,41111011,10
11,10001000,3003310,2030330,3101022,3001
033,10221200,10003010,12300333,10111022,
31000,10221200,10000010,12303030,101022,
10111101, 10221211

1280 DATA 10000111,12000303,1101022,333
1010,10221103,10102210,3,22101012,303310
10,10123033,10101111,10000000,1012,11111
110,10121011,100000,0,1012,11111111,1011
1111

2510 REM Checksum data

2520 DATA 881,1106,789,1715,1016,755,10
26,1223,1232,2531 B

Beebug April 1993

57

), ¢ enera L’/'a/(,/

RISC User, the highly popular magazine for Archimedes
users, is bigger and better. The new RISC User is now BS
size which offers a sophisticated design, bigger colour
illustrations and bigger pages with more information.
Altogether better value and no increase in price.

RISC User is still a convenient size to assemble into an easy-
to-use reference library, containing all the information you
need as an Archimedes user. Every issue of RISC User offers
a wealth of articles and programs with professionally written
reviews, lively news, help and advice for beginners and
experienced users, and items of home entertainment.
Altogether RISC User has established a reputation for
accurate, objective and informed articles of real practical use
to all users of Acorn's range of RISC computers.

YOUR ARCHIMEDES ON THE PHONE
A guide to communications introducing the readers to
bulletin boards, file transfer protocols, conferencing
and comms software.
REVELATION IMAGE PRO
A review of this impressive painting package from
Longman Logotron. !
RISC OS 3 SCREEN MODES
A comprehensive look into the range of Desktop
modes available to Arc users.
THE PC EMULATOR SURVIVAL
GUIDE (1)
New series on how to use the PC emulator which
starts with introducing the PC world.
FAXPACK UPDATE
A look at the latest addition to Computer Concept's
Fax Pack which now allows vou to use your computer
as an answering machine.
QUICK INDEX
A useful index generator for books and manuals.
WRITE-BACK
The readers’ section of RISC User for comment, help,
information - a magazine version of a bulletin board.
WP/DTP

" Articles on using different DTP and WP packages.
INTO THE ARC
A regular series for beginners.
TECHNICAL QUERIES
A column which answers your technical queries.
NOOT
Review of the new animation package for the
educational market.

HIM g‘w Hlmt‘% Hlmgw HIM% HIELSW

Please do keep sending in your hints for all BBC and
Master computers. Don't forget, if your hint gets
published, there's a financial reward.

BIT FIELDS IN BASIC

Nick Mellor

Following last month's tip for extracting a single
bit from a value returned by USR, here are some
further ideas on a similar theme: squeezing
several small pieces of information (fields) into a
single byte.

The first function, store_field, is used to store a
small number within a byte between specified bit
positions.

DEFFNstore field(byte%,start bit%, stop_
bit%,datas)

LOCAL bits%,mask%,ad

mask¥=0:bits%=stop_bit%-start_bitk+1

bits%=stop_bit¥-start_bit%+l

FCR a%=1 TO bits%:mask¥=mask%*2+1:NEXT

data%=data%ANDmazk}

bits%=7-stop_bit}

IF bits%<>0 THEN FCRa%=1TCbits%: data%=d
ara%*2:mask¥=mask%*2;NEXT

={byte% AND NOTmask}) EOR data%

FNstore_field is called with four parameters. The
first is the original byte of data in which the field
is to be inserted. The second and third parameters
are the start and stop bit positions, numbered
from 0 to 7 and from left to right. The fourth is
the field value to be inserted into the original
byte. The byte returned will have the new field
value inserted.

The next function can be used to extract fields
from a byte. The function takes three arguments:
the first is the byte to read from, and the second
and third are the start and stop bit positions,
numbered as for FNstore_field.

DEF FNfield(byte¥,start_bit%,stop bit%)
LOCAL mask$,bits%

Beebug April 1993

bits% = stop_bit¥-start_bith
mask$=&FF DIV (2°(7-bits%))
={byte% DIV (2"(7-stop_bit%)) AND mask$)

The functions can be used as a pair to save
memory by storing several small objects in one
byte. Doing so can make a huge difference to the
amount of memory used as against storing true-
false flags or small integer ranges in integer
variables or even bytes. For example, storing a
number whose range is from 0 and 7 (3 bits wide)
could be achieved by:

?lock=FNstore bits(?loc%, 5,7, fields)
and can be read using;
field=FNfield(?loc$,5,7)

Such sub-byte manipulations are the basis of
many compression algorithms.

INSTANT ITALICS

Al Harwood
Use the following procedure in any program for
instant italic text in modes 0 to 6:

DEFPROCitalic(text$)

LOCAL A, A%, AS, X%, V%

FOR A=1 TO LENtext$:AS=MIDS (text$,A, 1)
2&T0=ASCAS : X%=70:Y%=0
A%=10;CALL&FFF1

1£79=L6A007089: 1&7D=60007098
FORY%=1 TOQ B:IF Y%=4 2&7C=IA:¥%=6
CALL&79: NEXT

VDU23,128, ?&71, 2&72, 2&73, 2&74, 7875,
2576, 7677, 7678,128

NEXT : ENDPROC

The routine uses locations &70 to &80, and
redefines the character with code 128. The first
character of text$ is printed in italics at the
current cursor position. B

59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads
(including 'wants') in BEEBUG. These are completely free of charge but please keep your ad as short as
possible. Although we will try to include all ads received, we reserve the right to edit or reject any if

ry. Any ads which

t be dated in one issue will be held over o the next, so please

advise us if you do nol wish us te do this. We will accept adverts for software, but prospective purchasers
should ensure that they always receive original copies including documentation to avoid any abuse of

this facility.

We also accept members’ Business Ads at the rate of 40p per word (inclusive of VAT) and these will be
featured separately. Please send all ads (personal and business) to MEMBERS' ADS, BEEBUG,
117 Hatfield Road, St. Albans, Herts AL1 4.JS.

BBC B, Ogus DDOS, dual D/S 40/80 &
sinsje D/S 40/80 disc drives with PSU's,
Aries ROM/RAM board with shadow
RAM and many ROMs, 6502 2Znd
processor, Philips 12" mono menitor, all
manuals, all BEEBUG issues to date and
Acorn User issues 2-65 inc. all in binders,
software with manuals, text books plus
other extras, Tel. 081-551 5648 days/eves.

WANTED: Copy of Viewsheet, Viewstore
& 5.25" utility disc - by Dabs Press.
WANTED: ATPL sideways ROM board
for BBC B+. Tel. (0734) 345959,

3xM128's with various ROM software
£150 each, 2xMicrovitec Cub RGB £50 each,
1x Taxan RGB monitor £75 please ring for
details on the above Masters all in excjlenl
condition. Tel. ((453) 885139,

A310 package plus extras £700 o.n.o, Tel.
((!?&3)&32;9. P

WANTED: Computer Concepts’
Spellmaster RO complete with
ocumentation and manual for BEC
Master, must be in perfect working order.
Tel. (0955) 81 243,

Micro User magazines complete set from
Vol.1 Nod to Vol.10 No.8 many in binders
complate with cassettes Vol.1 No.1 to Vol.3
No.d and 80T DFS discs from April '89 to
Oct 92 £60 0.n.0. Also BBC Preste? Adaptor
and ROM still in original box £30 o.n.o.
Buyer () collect. Tel. ((i742) 46899,

WANTED: Could anyone please lend or
sell me a manual for Intersheet? Tel. (0821)
642652 eves.

WANTED: BBC B or Master in reasonable
condition for my handicapped son - must
be cheap. Tel. (0821} 642555 eves,

WE Video Digitiser £60, Spellmaster, PMS
Multifont NTQ + utility & 4 font discs,
PMS Publisher + utility & 3 fonts discs,
Stop Press + extras 182 7 fonts/graphics
dises - all £25 each, ADI, ADT, Snatch,
Interword, Music Processor V2, CJE
Multifont NLQ + 4 fonts discs, GraEhito.
Navex v3.1 + charts, Holed Out Extra
Courses 1&2, Nidd Valley Digimouse - all
£10 each, MOS+, Dumpout 3, Scythe (inc.
utility disc), Procyon, Peh’ Friend,
Dumpmaster, Helping Hand, Adv printer
buffer, Vector 2, Colossus Bridge, Voltmace
Delta 3b joystick - all £5 each. Tel.
(0883)3452%4 eves.

AMX SuperArt £10, System Delta £10,
Peartree Business System £10, Edword2

60

| £5, Dumg £6, Toolkit
£4, Exmon £4, Viewstore £15, Printer
Driver (View) £3, Artist (Peartree) £8,
Discrmaster £2, GrandPrix £4, Brother [F-50
typewriter interface £15, all originals with
handbooks ete, Tel. (0623) 27423,

BBC B issue 3 with DDFS, 32k Shadow
RAM and Sideways ROM/RAM boards,
View Professional, Toolkit Plus, Exmon,
Sleuth, 5.25" & 3.5" DS 80T disc drives,
Revs, Aviator £160, BEEBUG magazines
Vols. 1-11 complete and bound £60. Tel.
(0923) 239788,

Stars and Planets plotted for any date and
time, BBC Master or equivalent, BT on
5.25" disc, nominal charge for disc and
postage. Tel. (0932) 873278,

WANTED: Cop; of Dabs [IPress
Hyperdriver for View either on ROM or
disc for sideways RAM, complete with
documentation, secondly a spellchecker for
View preferably on ROM but dise would
do. Tel. {0274) 505288,

Free to charity, cheap to a good home BEC
B and Master 128 software, phone for
details. Taxan Kaga KP810 9 pin DM

inter inc. RAM chip, vge only £65. BBC

aster 128 ROM cartridge with Exmon [1
and WE NLQ Designer and many NLQ
fonts on disc to download to KP810 RAM
£30 (both items £80). Tel. (0283) 31403
anytime.

WANTED: Monitor for BBC B ferably
Microvitec 14" model 1451 or 15? Offers
(0602) 654426 after Gpm.

Master 512 in excellent working order,
included are two 5.25 floppies, mouse,
joysticks and the following EPROMs in
addition to the resident View and
Viewsheet: Epson printer driver, Wordwise
Plus, Pascal, Screendump, Toolkit and
Graphics, full original manuals and discs for
the 512 plus various extra manuals,

of BBC dedicated 2ines, software
or both BBC & PC maode including games.
Only £325 o.n.0. Will deliver north of
En . Tel. (0535) 662157,

Music software; Music Master with
microphone interface, 5.25" dise,
handbook Mupados Recorder Tutor with
Ensemble, Duet and Classroom packs
(5%3.25" discs, handbooks and cassettes),
Micro Maestro with 5.257 disc and 6
cassettes, all for £32 including postage
(worth £179). Tel. (0256) 27018.

WANTED: Teletext adaptor. Tel. (81-539
TH07 eves.

WANTED: Snooker , also manual for
BEEBUG Wordease, Eu 0

r copy, Cumana
40/80T dual drive. Tel. 8!3637) %88

WANTED: 256k printer buffer made by
Watford Electronics, may consider a faulty
unit, if cheap. Tel. (0294) 52250 eves.

WANTED: Dumpmaster]I ROM with
instruction book for my BBEC Master 128,
Tel. (0751) 73342,

WANTED: Combined 525" and 35" drive
for Master, manuals for Ovation (mine lost)
and Viewsheet, copies of Peter Killworth's
"How to Write Adventure Games” and
"Creative Assembler on the BBC Micro”.
Tel. (0279) B13463 after 6pm.

Loads of BBC B games and some utility

rograms, you will need a double sided
EUI' disc drive to ate them £50 o.n.0.
Tel. (0707) 635132 after 6pm.

Tandata Td1400 Viewdata terminal,
1200/75bps, little used, perfect condition
with manual. Offers? Tel. ((928) 722454,

A5000 4Mb RAM, Acorn multisyne,
Learning Curve with PC Emulator v1.8,
various software, discs, books etc.
£1400, Acorn Desktop C £150, Clares
Ilusionist £50, CC Compression £25,
RISC User complete £30, Archive
complete £30, BEEBUG complete £30,
v21/22 f23/22bis/42/42bis MNP 4/5
madem, terminals plus, Arc to Hayes
lead £150. Or all for £1700. Tel. 081-698
77

WANTED: BEC hard drive 20 or 40Mb,
any make, I'C software CAD, Deluxepaint
11, GEM 3, Shibumi Problem Solver 5"
disc, good PC wordprocessor, PMS real
time Genie clock, also Pace eurolink
modem - autodial fanswer. FOR SALE:
SoundCAD £25, Superdump £25,
Dumpout 3 £7, Wapping Editor £25, GXR
B+ M £10, Termulator B+ ROM £10,
Office Mate £5, Office Master £5, 12
cassette games £10 the lot. Also 12 BEC
books. Write with s.a.e to; Mr C Game, 24
Grosvenor Close, Tiptree, Colchester,
Essex CO5 O]N.

EPROM blower with software in EPROM
£15, Master Smart cartridge £15, Master
ROM £20, Overview suite £40, Contex
Bank Manager with Business utilities
{Master version) £20, Gemini money

management (BBC) £5, Play it Apain Sam
13, Repton 3, Regn 4, Citadel, ian,
Sim City all £8, Death Star £5. Tel. (0263
TH488,

Beebug April 1993

RINGING THE CHANGES

In thinking of possible ways to solve the
BEEBUG Christmas competition my first
ideas revolved around letting the computer
do most of the work. After finding the three
most obvious constants, it would be a matter
of testing permutations for the remaining
unknowns. The trouble was to find an
algorithm to produce the rows; my change-
ringing theory might possibly have done the
job, but it was going to be a cumbersome
business writing a suitable program. I gave in
and used brute force (and not a little
ignorance).

In all the articles I have read on maths topics,
I don't remember seeing anything on
producing permutations and wonder if any
other readers have any methods of doing so.
R.J.Lindsell

PROBLEMS OF AN AGING BEEB

I find I'm starting to get curious things
happening to my BBC model B (purchased
October 1982). Please don't suggest that it's
most likely to be the power supply. This,
with respect is the standard answer. I'm still
on my original power supply, but had I
taken previous advice I would now be on
my 4th or 5th.

My Beeb is 10 years old. A few years ago I
converted it to ADFS and replaced the disc
controller chip with the 1770 version. Over the
years I have physically removed the power
supply away from the computer (to assist in
cool running), and this is now attached by an
umbilical cord. I've also cut a hole in the
Beeb’s case and fitted a fan, again to assist in
cooling. I use the Beeb most days, and it is
usually switched on for 10 hours at a time.

Beebug April 1993

Recently I've experienced the Beeb simply
switching itself off: in other words, all power
has vanished as if it had been switched off or
blown a fuse. The monitor, disc drive etc.
remain powered up. Switching off, preparatory
to checking fuses etc., but just switching back
on again first, and all worked and remained
working for another month or two.

Question: what is failing, and is it something
I can easily repair/replace myself? I can't
afford to be without the use of the Beeb, and I
can’t afford to buy an A3000 or any other
machine. Any useful suggestions will be
gratefully received.

Ian Crawford

No electronic equipment can be expected to
continue working indefinitely, but as time goes by
spare components are likely to become more and
more difficult to find. Despite Mr.Crawford's
initial plea, an old power supply can be the cause
of problems such as described, particularly if tofal

failure is encountered. We would suggest checking

carefully, with the machine unplugged and
switched off, that all the connections to and from
the power supply are examined for any weak or
suspect joints.

Power supplies can eventually fail, and given the
decreasing availability of spares, it could be a
prudent move to purchase a spare power supply
and store this for when that eventuality arises,
assuming that there is a definite intention of
retaining your Beeb for as long as possible.

On the other hand, machines such as the new
A3010, and secondhand A3000s (see back cover)
are available at reasonable prices, and it may still
be possible to obtain some resale value for your
BBC micro. This is an issue which we will be
looking at in future issues of BEEBUG.

61

Send applications for membership renewals, membership queries and orders fof back issues 1 the
address below: Al membership fees, including overseas, should be in pounds sterling drawn (for
cheques) on @ UK bank Members may also subscribe 10 |SC User atd specidl reduced rate.

BEEBUG SUBSCR\PT\ON RhTES BEEBUG & RiISC USER
£18.40 1 year UK, BFPO, ch.l £28.90
£27.50 Rest of gurope & Eire £42.90
£33.50 Middle East £53.10

£36.50 Americas & Africa £58.40

£39.50 Elsewhere £62.50
BACK 1SSUE PRlCES
All overseas items are sent airmail. We will

+ official UK orders for subscriptions

acc

andBEack issues, but please note that there

will be a £1 andling chargé for orders under
n invoice:

e, but pleaseé ive us
substantfal that you intend fo write. jeaflet Notes to
c:::ntrfbutors' is available on receipt of N AS (or larger) SAE.

Please submit your contributions on disc of cassette in
dable form, using View', sWordwise" of other
se ensure @l adequate written description i
cassette, please include a backup

tion, please quote your membership

RISC Developmems Ld (€) 1993

Printed DY Arlon Printers (0923) 268328 ISSN - 0263 - 7561

P-the gsecond part of Roger smith's
ADFS backup Thisisa front-en program for
the Fast Backup utility prmntad in the last issué:
PARISON - Roger gmith's utility for

ADFS DISC COM!
comparing two ADFS discs

he
eet” that

Robol - The Game

in nterword
nighrict

FRACT\OHS - utility to

and/or Wordwise. 5

LEAGUE TABLES - an ndispensable aid 011 &
padminton league gecretary! Can easily be adapted
for other purposu.

SQUARES - an upgrade to Graham Leng's

word search program resented in Vol 11 No.7-

- an interesting
{he Earth and

he
its)- Orbital

DEMONST RATION OF \NKEY(n) and INKEY(n) -

Example program from 1st course by Alan Wrigley-

ROBOL - & BBC version of
or the 1BM pC.

SOkobani
SPRITES - examples {rom Alan
{ Aco

{he strategy game

plundell's

examination © n's undowmemed graphics

facilities fof the Master.
\ emonstrates the

SORTING - oxample program that d
Bubble and Shell sorting methods dvnamica\ly.

SCANDATA - Blb'.lography for this issue

(81,8 onLY
£p550
£5000

VAT

£56.00
Prices are inclisive of and postage as app!rcan!e sSterling anly please

C Developments,

Upgrading to an Archimedes

We know that many BEEBUG readers
have already upgraded to an
Archimedes, and no doubt many more
will choose to follow a similar route. For
their benefit we offer our advice to help
them make a sensible decision on
whether to upgrade and if so, what
path to take.

Any prices quoted relate to our
associated company Beebug Ltd., but
note that all prices, particularly those
on trade-ins and secondhand items,
are likely to change without notice. You
should always telephone or write for
the |atest information.

Archimedes A5000

What System to Choose

All new Archimedes systems are now
supplied with the RISC OS 3.10
operating system. Any secondhand
system should be upgraded to this.
Based on the experience of existing
users, we would strongly recommend a
minimum of 2Mb of RAM. Most users
find a hard disc adds significantly to the
convenience of using an Archimedes,
but you can always add a low-cost hard
drive later, and more memory, but
check on the likely price of future
expansions - it is not necessarily the
same for all machines. If you might be
interested in more specialised add-ons
(scanners, digitisers, etc.) then check
the expansion capability of your
preferred system.

Compatibility and Transferability

You will need to decide to what extent
you wish to continue using existing
discs and disc drives on an
Archimedes. An Archimedes and a
BBC micro can be directly connected
for transfer of files. You can also
connect a 5.25" drive to an Archimedes
via an additional interface to continue
to access 5.25" discs (ADFS format).

Our DFS Reader will also allow files to
be transferred to the Arc from DFS
format discs. However, none of this is
possible with the latest
A3010/A3020/A4000 systems.

Much BBC micro software will run
directly on an Archimedes, or via the
6502 emulator. However, consider this
carefully; in our experience, despite
prior misgivings, most Archimedes
users find that they rapidly adjust to the
Desktop environment of the
Archimedes, and quickly abandon the
software and data of their old system
after an initial period.

Software for the Archimedes

The Archimedes is supplied complete
with a range of basic applications
software. Before embarking on any
further purchases it may be better to
familiarise yourself with the new
machine. Most users look for a word
processor (or DTP package), maybe a
spreadsheet, or a database, plus other
more specialist software. We cannot
give detailed guidance here, but back
issues of RISC User contain a wealth
of useful information - we can advise
on suitable issues.

the outset. Note: the price on some
systems includes a monitor; in other
cases a choice of monitor is available
at an additional cost. The details given
in the fable are minimum specifications
of the different Archimedes models.

The A3010

It may also be possible to frade in an
existing monitor and/or disc drive, but
check if your existing monitor is suitable
for use with an Archimedes first. You
may find it better to advertise your BEC
system in BEEBUG and sell privately -
this applies particularly to any software
and hardware add-ons which cannot be

Archimedes Systems - Typical or Current Prices

Secondhand New
+ A310 1Mb RAM £350
+ A410/1 1Mb RAM £565
+ A420/1 2Mb RAM, 20Mb hard drive £650
+ A440/1 4Mb RAM, 40Mb hard drive £725
+* A3000 1Mb RAM £350
Wi A3010 1Mb RAM, Family Solution £ 499.00
" A3020 2Mb RAM, 60Mb hard drive £1056.33
- A4000 2Mb RAM, 80Mb hard drive £1115.08
& AS5000 2Mb RAM, 80Mb hard drive £1643.83
+* Acorn standard colour monitor £145 £ 258.50

All systarns above include a single floppy disc drive.
New (*) and secondhand (+) - all prices inc. VAT.
The AS000 price includes a multiscan colour monitor,
A3020/A4000 price includes standard colour menitor.

BBC Micros - Typical Trade-in Prices

Model B (Issue 7) £35
Model B (issue 7) + DFS £ 75
Master 128 £125
Master Compact £ 50

General Advice

It is advisable to discuss your
requirements with the BEEBUG
technical team before making a final
decision on what you want. Try to
anticipate future expansion needs at

For further information on all Archimedes systems contact:

accepted for a trade-in. In future, all
personal ads for Archimedes systems in
RISC User will also be included in
BEEBUG. You may also defer a trade-in
until a later date provided you make this
clear at the time of purchase.

BEEBUG Lid. 117 Hatfield Road, St Albans, Herts AL1 4JS. Tel. 0727 840303 Fax 0727 860263

	01.jpg
	02.jpg
	03.jpg
	04.jpg
	05.jpg
	06.jpg
	07.jpg
	08.jpg
	09.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg
	18.jpg
	19.jpg
	20.jpg
	21.jpg
	22.jpg
	23.jpg
	24.jpg
	25.jpg
	26.jpg
	27.jpg
	28.jpg
	29.jpg
	30.jpg
	31.jpg
	32.jpg
	33.jpg
	34.jpg
	35.jpg
	36.jpg
	37.jpg
	38.jpg
	39.jpg
	40.jpg
	41.jpg
	42.jpg
	43.jpg
	44.jpg
	45.jpg
	46.jpg
	47.jpg
	48.jpg
	49.jpg
	50.jpg
	51.jpg
	52.jpg
	53.jpg
	54.jpg
	55.jpg
	56.jpg
	57.jpg
	58.jpg
	59.jpg
	60.jpg
	61.jpg
	62.jpg
	63.jpg
	64.jpg

