FOR THE BBCMICRO -@\E@@@@-
oy EeEcE

"\.
a =

% R =)
B {5

.“/F\ . -‘::” r

W oo D30T
2 R |
= 2o ‘:: !
P‘T‘\a OO > S ' - .CI 1

. O

| = ; |
CEEEUE QT

REVIEWS

FEATU RESA v EEBanES:r?;E:;;S sofware O
. APersonal cCO Moder
BEEBUG - A o [TEMS
he Early Days GU LA
ot " yeadsheet 10 RE . "
Datasheet Aoy .\ 45 Editor's Jong® 5
The Hidden Persuader (Again i ;
Tabform: Label Generator Hints and TipS 80
User 50
reen DUMPS RISC
M(}de 0S¢ ’ BEEP ROM 25 Postoag &
d's Keyboar
Puplic Dokt S gubscriptions g Back Issu 63
\fr Toad's Mechin® Code 37 Magazine DIsC
corner (2) g TIP s
BEEBUG FUﬂCt‘On’ H‘NT > Text To BasiC
procedure Library Text Files Versus
View Hints
512 Forum _ ‘ —
' 'S NOtebOOK‘ Clearing The 20M
Wol:ﬂdﬁ?lg L131\50(?9 of Markers View Professional Mests The Master
a

PROGRAM INFORMATION
All listings published in BEEBUG magazine are

produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space
following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered -
exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

difference between the digit one and a lower case 1
(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic Il or later, unless otherwise
indicated. Members with Basic I are referred to the
article on page 44 of BEEBUG Vol.7 No.2 (reprints

y - Save sheet

| mulil function
| parallel port

prE Load sheet

3 print whole sheet
4 - print Window + jrammm=== ¥
415244 | huﬂ-ereﬁ
| 4524 | address” and
| data-bus

¢ - End program
+ +
{ second
| processor

-1 gpool window

ESC - Edit gheet

T5="

PROClarge—msg

PRINT

PROCspace—line-

PRINT " 1 Find Marked plock”
PROCspace
PRINT 7
?ROCspace—lin
pRINT * 3 cop
PROCspace-line
PRlNT wgsSC gdit Mode"
pRINT
pRINT

-line
peleté marked Block”
e

Y marked plock”

available on recei
advised to pt of an A5 SAE
upgrade to Basic IL u:;“md b, strongly
processor

fitted to the
computer
programs are m:’ bt tiad
off before the

Wherea
pro
fa inmms“‘;rqum a certain confi
article (as shown y symbols at the begi guration,
are referred to a;:]mm. m other I::I‘.l';s of the
y in the text of rements
the article.

Ldlvors Jottings .~
i s

BEEBUG CELEBRATES TENTH
AMWVERSARY

Welcome to the Tenth Anniversary issue of BEEBUG
magazine. Beebug was involved from the very first
announcement of the BBC micro back in 1981 when
the BBC announced its Computer Literacy project,
and the first issue of the magazine was published in
April 1982, To mark this occasion we are publishing
an article by Lee Calcraft, who under the pen name
of David Graham was one of the founders of Beebug,
and editor and contributor to the magazine for
several years. The article recounts for the first time
the circumstances under which Beebug was
founded, and some of its subsequent history, from
the personal stand-point of one of those intimately
involved at the time.

Lee Calcraft no longer has any involvement with
BEEBUG magazine, but in a freelance capacity co-
edits and contributes to RISC User, our magazine for
Archimedes users. The other co-founder of Beebug is
Sheridan Williams, an occasional contributor to
Beebug and RISC User, and still very active as a
Director of both Beebug and of RISC Developments.

It is doubtful whether either realised just what they
were starting back in 1982, nor the huge success
which the BBC micro was to become. By developing
the BBC micro, to a specification put together by the
BBC, Acorn directly and indirectly created an entire
world, involving in one way or another millions of
people worldwide. It is also true to say that many
livelihoods now depend on the continuing success
(or otherwise) of the Acorn market. Despite various
ups and downs (and Acorn's rescue at one stage by
Italian giant Olivetti), Acorn's Archimedes range
(itself launched nearly five years ago now) has set
the base line for an expanding and successful future
for all involved.

4

VOLUME TEN INDEX

As is always the case with the start of a new volume
(Volume 11), we include with each mailed out copy of
this issue a free printed index to the whole of
Volume 10 arranged for easy reference. We are also
including the complete Volume 10 MagScan index on
this month's magazine disc.

SPECIAL TENTH ANWERSARY DISC

To mark ten years of publication we have compiled a
collection of what we consider to be a selection of the
best programs published over the years. The disc
contains serious applications and utilities, some
games, visuals and other more leisure oriented
items. Everyone could, of course, make their own
personal selection, but we believe that this disc
contains something for everyone.

The disc is available now, only to BEEBUG
members, at the price of just £4.95 inc. VAT. Post
and packing is extra (£1.00 if ordered on its own).
Full details of the programs contained on this
special disc are published elsewhere in this issue.
This disc will be available for a limited period of time
only (probably until initial stocks run out) so we
recommend you order the disc as soon as possible.

FOUNDER MEMBERSE

From time to time some readers have referred to
themselves as founder members of BEEBUG. It may
be of interest to note that there are still 475 readers
whose subscriptions run continuously from Vol.1
No.1. Our many thanks to these members for their
long-standing and loyal support of BEEBUG.

MW

Beebug May 1992

THE DRAGON ROARS

A new game, Explorer, has been released for the
BBC micro by DragonSoft. And quite a game it is
too, comprising a 16K EPROM and two discs.
Explorer is essentially an adventure game in
which you must penetrate the fire-filled
underworld of Hallar, conquer the fiendish
Vandar, plunge through icy polar regions, rugged
mountains, and danger infested jungles. There
are many hazards on the way, but help is
sometimes at hand as well, as you seek to redeem
your tarnished reputation as a member of the
Explorers Club.

Explorer costs £25.99 from Dragonsoft, P.O.Box 22,
Whitchurch, Shropshire SY13 277, tel. (0948) 840522.

MUSIC PUBLISHER RELEASED

Back in BEEBUG Vol.10 No.4 we reported on the
imminent release of Hybrid Technology’s Music
Publisher for the BBC micro and Master series.
Music Publisher deals with the whole process of
music composition and score layout, with
support for both 9-pin and 24-pin dot matrix
printers. After much delay, this product is now
available, and we expect to be publishing a
review in the June issue of the magazine. Music
Publisher costs £60 ex. VAT from Hybrid
Technology Ltd., 88 Butt Lane, Cambridge CB4
6DG, tel. (0223) 861522.

SHOWS FOR COMPUTER USERS

ALL FORMAT FAIRS
Future dates and venues for All Formats
Computer Fairs are as follows:

Jun 7 City Hall, Candleriggs, Glasgow.

Jun 14 Haydock Park, Jct 23 Mé.
For information and tickets contact John Riding
on (0225) 868100.

BBC ACORN USER SHOW
Following the success of last year’s event, this
year’s BBC Acorn User Show will again be held

Beebug May 1992

at the Wembley Conference Centre, but this time
in the larger hall three of this complex. The show
will run from Friday 16th October through to
Sunday 18th October. We will bring you more
detailed information nearer the time.

COMPUTER SHOPPER SHOWS

The Spring Computer Shopper Show is taking
place from 28th to 31st May 1992 at the National
Hall, Olympia, while the Christmas Computer
Shopper Show is scheduled for the Grand Hall,
Olympia from 19th November to 22nd November
1992.

EDUCATIONAL SOFTWARE

BECOMES SHAREWARE

John Lyons Computer Software has announced
that the majority of its 60 odd educational
programs will become shareware. Some
programs will also be treated as public domain
(see this month’s PD column). Shareware discs
will be available for £1.50 in the first instance, but
users who then continue to use the software will
be expected to pay a further registration fee of
£7.50. The buyer is then free to make copies as
required for their own use, and will be sent full
documentation plus any future updates.

By sending £1.50 readers can obtain a sample disc
with details of all other programs from John
Lyons Computer Software, Freepost, Camberley,
Surrey GU15 3BR, tel. (0276) 65275.

ERIC FOR EDUCATIONAL SOFTWARE
We have received a copy of the latest catalogue
from ERIC (Educational Resources in Computing).
This lists a range of software covering
Mathematics, English, Special Needs, French,
Latin, History, Science and Geography. All discs
cost £14.50 each (inc. VAT and p&p) and are
available for the BBC micro, Archimedes and RML
Nimbus. For a copy of the catalogue or for more
information phone ERIC on (0903) 872400. B

5

Beebug - A personal Ac

by Lee Calcraft

The Beebug story starts back in 1981 when home
computing was in its infancy. There were very few
affordable machines around: you had to make do with a

Sinclair ZX80 or 81, or one of the single-board machines

such as the Nascom or the UK101 or the Acorn Atom.
For people with more serious budgets there were also early
versions of the Apple and Commodore Pet. Into this
relative vacuum there appeared the BBC micro - or if not
the machine itself, at least the machine’s specification.

In that year, the BBC announced the so-called Computer
Literacy Project, and after some debate Acorn were
chosen as the suppliers of the machine which would
spearhead the project. This was an enormous coup for

Acorn since it placed them centre-stage in a massive
media-based project. They would produce the machine
to a spec laid down by the BBC, and the BBC would take

a 10% royalty on all machines sold.

The spec was a very full one, and included a vast array of
interfaces as well as full colour graphics and sound
support. In the autumn of 1981 it occurred to me that not
only would this machine be well worth having, it might
also provide an opportunity to start a computer user
group - an idea which had appealed to me for some time.

In December ‘81 I proposed the idea as a joint venture
to Sheridan Williams. Sheridan lived just around the
corner from me at the time, and we had met in connection
with work on Personal Computer World magazine.
Sheridan ran the popular Computer Answers pages, and I
had written a number of articles for PCW on computer
interfacing, and he turned up on my doorstep one day
with some hardware questions for his column. I
remember that this first encounter began with some
confusion. Sheridan asked me if I knew a Mr Graham. I
said that I didn’t, but then recalled that D.E.Graham
was a pen name that I had been using in PCW. Since
then we had kept in touch.

& Beebug May 1992

ount of the Early Days

Sheridan had been involved in running the Research
Machines user group, and was very positive about the
idea of a BBC user group, and we quickly got things
moving. We sent in orders for a BBC micro each, and

booked a quarter page ad in Your Computer. This

magazine is no longer in circulation, but at the time it was
read by ‘home users’. Then we just sat back and waited.

A couple of days after the anxiously awaited ad came out,
Sheridan dropped round to say that we had received a
single membership application. Just one! But the next post
brought 30, and the next 30 more, and the next 30 more;

and this continued day after day. We began to register
each applicant on a membership list (just a big piece of
paper), and to bank some of the cheques, but there were |
just too many.

After we had got several days behind, we enlisted
secretarial help to assist with the administration, but after a
tew weeks we were still getting behind, such was the
torrent of applications. At this point we employed the
services of a computer bureau to deal with the
administration. We forwarded all applications on to them
by Securicor, and they maintained a database of
members. They would also mail out our magazine, and
in due course issue renewal reminders and so on.

The volume of response to the small ads which we had Vs
placed shocked us both. The time was clearly right for such HEEB"E
a venture, and what worked in Beebug’s favour was the

contrast between the desirability of the new BBC micro '
(and the hype surrounding it), and the dearth of
information about it. Most of our early members had
ordered the machine but had not yet received it, and

Beebug seemed to provide a channel of communication

that was otherwise missing. The fact that the machine Aaiacd)
had such potential when it finally did arrive, and that
the initial ‘provisional” manual was so sparse made
Beebug an even more important source of information.

Beebug May 1992 7

Beebug - A Personal Account of the Early Days

But the lateness of the machine also
caused us a problem. Our promotional
material was based on a projected first
issue of our magazine in April 82, but by
late March we had still not received our
own BBC Micros. We were rescued from
a potentially disastrous situation by the
Mehta brothers who run Technomatic.
Like other prominent computer dealers,
they had been sent early BBC machines
for demonstration purposes, and they
were kind enough to lend us one for a
couple of days. All the articles in the first
issue of Beebug were created using this
machine in just two or three days of
frenetic activity, with the machine
shuffling between my house and
Sheridan’s.

Sheridan entered all the text for this and
many subsequent issues into a text editor
on his trusty RML 380Z - a machine
which actually had disc drives! - and we
pasted the whole lot together and
handed it to a bemused man at the
counter of a local copy shop. Within a
few days they shipped the finished
magazine to the computer bureau, and
some 2000 members received the first
issue of Beebug magazine. After
breathing a sigh of relief, Sheridan and I
sat down to plan the May issue. We had
created a kind of monster who required
feeding vast quantities of programs,
hints, news and other articles on a
regular basis, for the forseeable future.

Both Sheridan and I were lecturers - he at
Hendon College, and I at Hatfield
Polytechnic; and running two full time
jobs created a lot of pressure. But it was
very rewarding work. Membership
continued to grow - by the time that the
fourth issue went to press we already
had well over 7000 members, and we

8

were getting very positive feedback from
the membership. As the year went by we
enlisted friends (and relatives) to help
with editing, and by the end of the year
we had secured some premises, and had
employed a part-time editor, as well as a
full time technical assistant.

That autumn we branched into software
sales, and these proved a very useful
addition to revenue. In 1983 my brother
Adrian joined the company as software
manager, and Mike Williams (no relation
to Sheridan) as editor, and as you will
know they are still with the company. In
1984 I quit my day job, and Sheridan
followed suit a year or so later.

As the years went by the company grew,
employing some 25 or 30 people at its
zenith, with Beebug attaining a
membership of close to 30000. In the
summer of 1985 the company moved
from its small suite of offices in
Marlborough Road, St Albans to new
premises at Dolphin Place, St Albans,
which also housed a showroom.

In May ‘86 I reduced my shareholding in
the company, and my brother Adrian
took up the administrative reins, running
the company jointly with Sheridan. This
was something of a relief for me as it
meant that I could get on and do some
computing - as the company had grown
over the years, so the amount of hands-
on computing that I had time for went
down and down. Under the new
management the company has continued
to do well, bringing out RISC User
magazine in response to the launch of the
Archimedes in July 1987, and moving
into even larger premises in Hatfield
Road, St Albans in August 1989. Here’s
to the next ten years! B

Beebug May 1992

HEE B UG DHHLIGH § =5

To celebrate the tenth anniversary of

the founding of BEEBUG tagazine, we
have put together a selection of the best
programs which we have published over the
past ten years. This disc is packed with
applications, utilities and games most of
which have not been available previously
other than when first published in
BEEBUG. All the programs come with _full
on-screen help files, which can be printed out
as well for permanent reference.

=5
Ca
L=
>
-
=
=
a

THE AL TS

BEBBBUG 10th Anniversary Dise

Celebrate BEEBUG's 10th anniversary with this disc at the special low price of £4.95
and you will have something to celebrate too.

DRAUGHTS - An implementation of the classic board game The world

according

in which you pit your wits against a computerised opponent. to GARP I
KEYSTRIP DESIGNER - A very well written program to
enable the creation, editing and printing of function key
strips.
GARP - GARP (Geographical Atlas using Radial Projection)
allows views of the globe to be displayed from any point above
the Earth’s surface.
MULTI-COLUMN PRINTING - This utility formats any
text file into columns, and prints the result using an Epson
FX-80 or compatble printer.
PERPETUAL CALENDAR - This program can display or
print the calendar month by month for any year between
1753 and 5000 A.D. in the United Kingdom, or even earlier ez lgt.: 35
in other countries. GARP
QUAD - Quad is a Tetris-like game, in which you must
manipulate falling blocks to slot into each other. Dangerously
addictive!
STEALTH - In this game you play against an opponent (or
the computer), who sets 2 number of targets for you to find,
and you must use your skill to discover the locations of the
targets in as few goes as possible.
RECURSIVE TREES - This fascinating program uses
recursion to create an infinite variety of tree-like designs - you
choose a set of numbers, and the computer does the rest.
THE WORLD BY DAY AND NIGHT - This program will
draw a map of the world showing graphically where the sun is
in the sky or where it’s night at every spot on earth.
CROSSWORD COMPILER - This program allows
crosswords to be designed and the clues compiled. : -

RICUCRSIVE TRIES

" : RISC Developments Limited.
PBB3a 3.5" ADFS £4.95 inc. VAT plus £1 p&p 117 Hatfield Road, St Albans, Herts AL1 4JS.

PBB5a 5.25" DFS 40/80T £4.95 inc. VAT plus £1 p&p Tel. (0727) 40303 Fax. (0727) 860263

10

DataSheet

Stephen Colebourne presents the first part of his powerful Basic
spreadsheet.

DataSheet shows that you can write full-
feature business software in Basic. It is
an easy to use, general purpose
spreadsheet. For the wuninitiated,
spreadsheets allow you to ask any
number of What If questions of numerical
data. Typical uses are in accounts or
stock taking. For instance, by entering
details about your income and regular

~ expenditure you could see if §¥ou could

afford a holiday this year.

- Save Sheet

2 - Load Sheet
- Print Whole Sheet
- Print Window

5 - Spool Window

6 - End Program

ESC - Edit Sheet

Your Choice 7

The Main Menu

THE PROGRAM

This month’s listing is the skeleton
version of the program which includes
the screen displays and formula routines.
This should allow you to get the feel of
the program, but you will not be able to
save or print anything you create, as
these functions will be provided next
month along with many others.

Type in the program as listed, making
sure that the line numbers are followed
exactly. When complete save as SHEETT.

CONTROLS

When run, the program first asks for a
column width. This is the number of
characters in each column of the display.

Your choice will affect the number of
columns on screen at any time and the
largest value which may be handled.
When setting up an important
spreadsheet this must be considered
carefully as it cannot be changed later.
For now, press Return which will select
the value of 8. Note that this default
value can be altered in PROC USER.

The main menu has six options,
including Save, Load, Print and Spool.
However, until next month, only option
6, End Program, will work. This is the best
way to leave the program. Star
commands can be issued from the menu;
simply type in the command, including
the star, at the prompt. To reach the
editing screen of the spreadsheet press
Escape. Pressing it again will bring you
back to the main menu.

A Blank Page

EDITING

The editing screen should initially
consist of 3, 4, or 5 columns of ‘0.00" - a
blank sheet. This will be surrounded by
reference letters in green along the top
and down the side. Using these letters,
each square in the sheet has a unique
two letter code. To find this code you

Beebug May 1992

Datasheet

take the letter given at the top for the
column, and follow it by the letter given
at the side for the row. e.g. Column 1,
Row 3 is AC; and Column 25, Row 27 is
Y@. Note that @ is the 27th letter in the
‘alphabet’ in this program, and
represents the maximum size allowed.

te, E
omove

W te,Title
), Sizel@@)
A+AB+ACHAD+AE+AF

Entering a Formula

You move around the sheet using the
cursor keys. Your current location is
shown by the yellow cursor. To enter a
value into the current square, simply type
in the number. The computer will check it
and format it before placing it in the sheet.
Any previous value will be overwritten.

FORMULAE

The use of formulae is central to the
operation of any spreadsheet. They allow
calculations to be made and questions to
be asked. To enter a formula press
function key f0. A new prompt will
appear at which you can type a formula
up to 68 characters long. Reference to
other squares is by means of the two letter
codes described above. Typical formulae
might be AA+AB or CC*(AC-BC). Once a
formula has been accepted, the cursor will
turn blue and the formula will be shown
at the top of the sheet. The resulting will
not be shown until evaluation.

Other Basic expressions can be entered;
mathematical functions such as PI, SIN,
COS etc. must be entered between square

Beebug May 1992

brackets (these appear as arrows on the
screen). If this is not done the computer
will treat them as references to squares in
the sheet. The program converts all the
two letter codes to a form which the
computer can understand. Sometimes
this conversion may not have the result
you wanted - you will only be able to tell
when you evaluate the sheet.

Evaluating the sheet will calculate the
contents of all the boxes according to
their formulae. This is done by pressing
the Copy key. Evaluation takes place
across each row before proceeding down
to the next one, and takes a few seconds.

After Evaluation

OTHER FUNCTIONS

The formula key, f0, also allows access to
three other commands, one of which will
be added next month. Pressing f0 twice
will delete the formula from any square
but leave the actual number it last
produced in that square. Pressing f0
followed by f2 will clear the present
square to zero, whatever it’s current state.

As with many programs, the best way to
get to know what it can do is to experiment.
There is an error handling system which is
particularly useful if you type in an
incorrect formula. It will show you both the
version of the formula it thinks you typed,
plus the version it converted it to. Try
making an error and see!

11

Datasheet

NEXT MONTH
The second part of this article will add
options that will allow you to load, save
and print out your spreadsheets as well
as adding many more powerful functions
for the processing of your data.

10 REM Program DataSheet

20 REM Version B 1.0

30 REM Author Stephen Colebourne

40 REM BEEBUG May 1992

50 REM Program Subject to Copyright

60 :

70 MODE135:PROCSETUP

80 0%=2:0NERROR GOTOL60

90 :

100 REPEAT:PROCMENU:UNTILCS="6"

110 PRINT'TAB(S)CHR$131"End Program (Y
/N

120 INPUT" ? "C$:IFC$<>"Y" GOTO100

130 CLS:*FX4,0 H

140 END

150 VDU3:CLOSE#(0

160 IF ERR=17 (0%=0%-1:G0T0100

170 VDU7:PROCP(380) :*FX21,0

180 PROCCLS:PRINT'CHRS$131"Error:"'

190 IF Q%<9 REPORT:PRINT" at line ";ER
L: PROCK:GOTO100

200 PRINT"Bad Formula at square ";AS(V
%) ;AS(WR) ;"

210 PRINT'SEC2;F$ (V%,W%)'SPC2;ES (V8, WS
)

220 Q%=1:PROCK

230 GOTO0100

240

250 DEF PROCMENU

260 IF Q%=1 PROCEDIT:ENDPROC

270 Q%=2:PROCCLS:FOR 2%=1 TO 6

280 PRINTTAE(8,2+Z%*2)CHRS134;M5 (2%) :N
EXT

290 PRINTTAB(6,16)CHRS134 ;M5 (0)

300 PRINTTAB(11,19)CHR$131"Your Choice
| ";:INPUT"? "C$:Q%=4
| 310 REM

320 REM

330 REM

340 REM
| 350 REM
| 360 IF LEFTS (C§,1)="*" PROCSTAR
370 ENDPROC

400 DEF PROCEDIT
410 Q%=4:PROCCLS

420 SX%:I:S‘{'%:I:X%:I:Y%:l:H%:Q:N%:D:AM

=0

430 PROCSCREEN: PROCMENUBAR

440 REPEAT:R%=0:5%=0 i

450 OX%=X%:0Y%=Y%:0SX%=SX%:0SY%=5Y%

460 CS=FNIN("Your Choice",CW%-1)

470 IF VAL(CS)<>0 ORCS$="0" THENPROCVAL
UE

480 IF C$="<" TFX%>1 X%=N%-1:IFX%-SH3<
1 ANDSK%>1 SK%=X%-1

490 IF C$="*" IFY%>1 Y%=Y¥%-1:IFY%-5Y¥%<
1 ANDSY$>1 SY$=Y%-1

500 IF C$=">" ORR% IFX%<M% X%=X3+1:IF
X%-SN%>CN%-1 ANDSKS<MH%-CN% SX3=X$-CN%+1

510 IF C$="?" ORS% IFY%<MY% Y$=Y%+1:IF
¥%-5Y%>13 ANDSY$<MY$-14 SY%=Y%-13

520 IF0SX%<>S5X% OROSY$<>SY$ PROCSCREEN

530 IF OX%<>X% OROY%<>Y$% PROCEOS

540 IF C$="F" PROCFORMULA

550 REM

560 REM

570 REM

580 REM

590 REM

600 REM

610 REM

620 IF C$="Q" ORC5="E" PROCCALC

630 UNTILCS="M"

6540 ENDPROC

650 :

660 DEF PROCCALC

670 Q%=09:FORWE=1TOMYS:FORVE=1TOMX%

680 IF ES(V%,W%)>"" D(V$,Wk)=FNCALC2

690 NEXT, :Q%=4

700 PROCSCREEN

710 ENDPROC

720 :

730 DEF FNCALC2

740 V=EVAL(ES$ (V%,W$)) : IFV<VS THEN=VS

750 IFV>VM THEN=VM

760 =V

770 :

780 DEF PROCVALUE

790 V=INT(VAL(CS$)*100+0.5)/100

800 IFV<VS QORV>VM THENVDU7:ENDPROC

810 PROCSCRVAL (V) :R%=M¥:5%=N%

820 ENDPROC

830 :

840 DEF PROCFCRMULA

850 F$=FNIN("Formula",68)

860 IFF$="G" PROCSCRVAL(0):ENDPROC

870 IFF$="F" F5(X%,Y%)="":E5 (X%, ¥%)=""
:Fs:‘"

880 IFF$="R" F$="":FROCSREP

890 IFF$>"* PROCFCONV

$00 PROCPOS

Beebug May 1992

Datasheet

910 ENDPROC
920 :
930 DEF PROCFCONV
940 P%¥=0:E$="":C%=0:B%=0
950 REPEAT:P%=P%+1
960 E%=FNPAIR(MIDS(F$,P%,2))
970 B%¥=B%+(PX$=")")-(PX$="(")
980 IFPXS="[" C%=3
990 IFPXS="]" C%=1
1000 IFPXS$="S" IFPY$="(" IFC%=0 E3%=5:FR
OCSUM
1010 IFE%=0 IFC%=0 E%=5-FNFCA
1020 C%=C%-C%MOD2:IFE%<5 PROCFCC
1030 UNTILE%=1 ORP%>=LEN(FS)
1040 ES (X%, Y$)=FNFCB(ES) :F$ (X%, Y$) =FNFC
B(F$)
1050 ENDPROC
1060 :
1070 DEF FNFCA
1080 IF LEN(ES$)>246 THEN=1
1090 E$=E$+"D("+STRS (PX%)+", "+STRS (PY%)
+I]I
1100 P%=P%+1
1110 =0
1120 :
1130 DEFFNFCB(CS)
1140 =STRINGS (B%* (B%<0), " ("] +CS+STRINGS
(-B%*(B$>0),")")
1150 =
1160 DEF PROCFCC
1170 IF INSTR(KS (C%),PX$) ES=ES+PX$
1180 IF INSTR(KS$(C%+1),PX$) PROCFCD(1)
1190 ENDPROC
1200
1210 DEF PROCFCD(A%)
1220 FS=LEFTS (FS$, P%-1) +MIDS (FS, PE+A%)
1230 Pi=p%-1
1240 ENDPROC
1250 :
1260 : :
2000 DEF PROCSREP:VDUT:ENDPROC
2010 DEF PROCSUM:VDU7:ENDPROC
5000 DEF PROCCLS
5010 VDU26:CLS:FORZ%=1T02:VDU130,157,13
2,141
5020 PRINTSPC(12);"DATASHEET" :NEXT
5030 ENDPROC
5040 :
5050 DEF PROCSCREEN
5060 vDU28,0,19,39,4,12,26,23,1,0;0;0;0

5070 PROCSCR(SKX%,SY%, SX%+CN%, SY%+14,CHR
$130,CHR$135)
5080 OX%=X%:0Y%=Y%:PROCPOS

5090 ENDPROC

5100 :

5110 DEF PROCSCR(JX$,JY%,KX%,KY%,08,NS)
5120 PRINT'TAB(0,4);SPC(CWS);

5130 FOR V¥=JX% TO KX%

5140 IF Vi>=WA% IFV%<=WC% PRINTOS;AS (V%
);N$:TS(0, V%) ; :ELSEPRINT" ";AS(VE);" ";T
$(0,V8);

5150 NEXT:FOR W%=JY% TO KY%

5160 PRINT'TAB(0,W%-JY%+5);TS$(1,Wk);
5170 IF We>=WB% IF Wi<=WD% PRINTOS$;AS (W
%) ; :ELSEPRINT" ";AS(W%);

5180 FOR V$=JX% TO KX%

5190 PRINT,D{V%, W%);

5200 NEXT:IF N$>" " PRINTTAB(CW%, Wi-JY%
+5) ;NS;

5210 NEXT:PRINT

5220 ENDPROC

5230 :

5240 DEF PROCSCRVAL(V)

5250 D(X%,Y%)=V:F5(X%, Y¥)="":E5(X%, ¥%)=
5260 VDU3L, (X%-5X%+1) *CW%, Y$-5Y%+5

5270 @%=AT1%:PRINTRIGKTS (S5+STRS (D(X%,Y
%)), CW%);

5280 PROCPOS:@%=AT%

5290 ENDPROC

5300 :

5310 DEF PROCPOS

5320 vDU23,1,0;0;0;0;28,0,3,39,2,12,26, '

31,0,2,134:2%=131: PRINT"Formula:";

5330 IF F§(X%,Y%)>"" PRINTLEFTS(FS(X%,Y
%),31);CHR$134;MIDS (FS (X%, Y%),32,39);:2%
=134
5340 PROCPOSZ (0X%,0Y%,135,32)

5350 PROCPOS2 (X%, Y%,2%,135)

5360 voU31,0,20,134,23,1,1,0,0;0;0;
5370 ENDPROC
5380 : ;

5390 DEF PROCPOSZ (A%,B%,C%,D%)

5400 VDU31, (A%-SX%+1) *CW%, B%-5Y%+5,C%
5410 IF A%<MX% PRINTSTRINGS (CW%-1,CHRSY
) ;CHRSD%

5420 ENDPROC ~
5430 :

5440 DEF PROCMENUBAR
5450 PRINTTAB(0,20);CHR$134; "Formula,Go
to,Replicate, Evaluate, Titles";

5460 PRINTTAB(1,21);CHR$134; "Window(";W
15;",%;W25; "), Automove [*; AMS (AM%) ; "), Siz
e(";MS5;")";

5470 ENDPROC
5480 :

5490 DEF FNPAIR(CS)

Beebug May 1992

13

Datasheet

5500 PX$=LEFT$(C$,1):PY$=MIDS(CS,2,1)
5510 IFPX$="" ORPYS5="" THEN=1

5520 PX$=0:PY%=0

5530 FOR Z%=1TOMX%:IF PX$=AS5(Z%) PX%=2%
5540 NEXT:IF PX%=0 THEN=2

5550 FOR 2%=1TOMY%:IF PY$=AS(Z%) PY%=Z%
5560 NEXT:IF PY%=() THEN=2

5570 =0

5580 :

5590 DEF FNIN(CS.C%)

5600 LOCAL A%, X%,Y%:PROCP(200):*FX21,0
5610 PRINTT2B(0,22)CHR$131;C4;" 2 *;
5620 !BLK%=BUF%:BLK$?2=C%:BLK$?3=32:BLK
$74=127

5630 A%=0:X%=(BLK$MOD256) : Y%= (BLK$DIV25
)

5640 CALL&FFF1

5650 VDU28,0,24,39,22,12,26

5660 =SBUFS%

5670 :

5680 DEF PROCSTAR

5690 PROCCLS:PRINT'CHR$131;:C$

5700 OSCLI (C$) :PROCK

-5710 ENDPROC

5720 :

5730 DEF PROCP(A%)

5740 FOR Z%=1 TO A%:NEXT

5750 ENDEROC

5760 :

5770 DEF PROCK

5780 PRINT'CHR$131"Press any key";:Z%=G
ET

5790 ENDEROC

5800 :

5810 :

5820 DEF FNCW

5830 PROCCLS:PRINTTAE(3, 8)CHR$131"Selec
t Column Width (6-10)*;:INPUT® ? *C$
5840 Z%=VAL(C$):IFZ2%=0 Z%=CW%

5850 IFZ%>10 THEN=10

5860 IFZ%<6 THEN=6

5870 =2%

5880 :

5890 DEF PROCSETUP

5900 LOCAL V,PX%, PY%, RX% RY%, RX2% RY2%,
RA%,RB%, RC%, RD%, TX%, TY%, OX%,0Y%,05X%, 05Y
%

5910 MSS="@@":MA%=27:MKS=MA%:MY3=MA%
5920 E$=STRINGS (255, "*"):55=STRINGS (10,
" l:

5930 C$=STRINGS(70,"*"):F$=C$:PROCUSER
5940 CW$=FNCW:PROCCWSET:READOS, NS, PX$, P
Y$

5950 DIM D(MX% MY$),FS (MX%, MY%), ES (MK,

MY%), TS (1, MA%) ,AS (MA%) , AMS (2} ,K$(3) , M5 (6
) ,BLE% 6,BUF% 80

5960 READ AMS(0),AM$(1),AMS(2),CS,KS(0)
K$(3)

5970 K$(2)=KS(0)+CS:K$(1)=K$(3)+CS

5980 FOR Y$=0 TO 1:FOR Z%= 1TO MX%

5990 T§(¥%,2%)=LEFT3(SS, CWs-3+Y%) :NEXT,
6000 FOR 2Z%=1 TO 27

6010 AS$(Z%)=CHRS (64+Z3MOD27)

6020 NEXT:*FX4,2

6030 FOR Z%=0 TO 15:READCS

6040 OSCLI("KEY"+STRS (2%)+" 12121212121
2[2"+CS+" [M") :NEXT

6050 FOR Z%=0 TO 6:READMS (Z%) :NEXT:@%=A
b]

6060 ENDPROC

6070 :

6080 DEF PROCCWSET

6090 CN%=7-(CW¥+1)DIV2: PC$=COLSSDIVCWS-
1

6100 V8=-(10"{CW%-5)}+0.01:VM=-V5*10+0.
09

6110 AT%=&00020200+CW%:AT1%=£01020200+C

6120 PROCWNSET
6130 ENDPROC

6150 DEF PROCWNSET

6160 W1$="RAA" :WA%=1:WB%=1

6170 W25=MS$:WCH=MK% :WD%=MY%

6180 ENDPROC

6190 :

6200 DATA*, *,*,*," *],v, "OWERTYUIOPASD
FGHIKLZXCVENMSS&! 7, "

6210 DATA"+-*/. () <>=0123456789", "qwerty
uiopasdfghiklzxcvbnm ~#':;_"{]}""@"
6220 DATAF,R,G,E,W,A,S,/,:,M,0LDIM,Q,<,
S

6230 DATAESC - Edit Sheet,l - Save Shee
t,2 - Load Sheet

6240 DATA3 - Print Whole Sheet,4 - Prin
t Window

6250 DATAS - Spool Window,6 - End Progr

am
6260 :

6270 DEF PROCUSER

6280 REM**Default Column Width**

6290 CW%=8

6300 REM**Insert Printer Codes Here**
6310 vouz, 3

6320 REM**No.of Columns across Paper**
6330 COLS%=72

6340 ENDPRCC

6350 : BJ

14

Beebug May 1992

The Hidden Pe_rsuaders (Again)

Part two of David Holton’s article starts with an apology.

I hope you didn’t mind Listing 2 of The
Hidden Persuaders last month. The
Beebug front desk has had to pacify
scores of angry readers carrying bricks,
pick-handles and these funny milk
bottles with little damp scarves round
their necks, all demanding my address.
To calm the punters down, Mr.
Williams asked me to apologise and tell
you all how I managed to slip it past
him, and I found his hands round my
throat so persuasive that I could but
croak my agreement. Please don't keep
asking where I am, though - Salman
and I are having a great time, you’ll
never find us.

Listing 1 was quite genuine, and that
list of names really is exactly where I
said it was. The name Roger really is at
the end of the Basic ROM, too. Listing
two was the devious bit. Obviously, the
real routine was in those data
statements at the beginning. All you
have to do to pull this stunt on some
poor unsuspecting victim is to write
your routine in assembly language,
assemble it somewhere handy and use
Basic to peek the locations and print
them out as hex numbers. You then
type them back in as EQUB statements.

MEMORY LANE

Everything in a computer’s memory is
stored as numbers; it’s only the context
of those numbers which tells the
machine whether you want them to
mean an instruction, a byte of data, a
character, a Basic keyword or whatever.
The machine neither knows nor cares
what method you used to put those

Beebug May 1992

numbers into memory, it simply acts on
them.

&043C is the address of the variable 0%,
which was set to equal P% at the start,
so CALL !&043C simply calls the code. I
feared that even in the form of numbers,
the data “APRIL FOOL!” might be
spotted as you typed it in - all those
bytes suspiciously in the same range -
and a memory-editor would have blown
it instantly. Therefore a handy stretch of
the MOS ROM was chosen and another
Basic routine used to print out the
results of EORing the string “APRIL
FOOL!” with the bytes of that area of
ROM. Those results became the data,
and the machine-code routine which
you typed in (or not, as the case may be)
EORed them again with the same stretch
of the ROM to restore the text.

The second part, which was in
assembly language, was genuine to the
extent that it printed out an error
message which exists in the MOS Rom
at &E530. The label acon, however, was
indeed a con, as I'm sure you realised;
all the code connected with it was
window-dressing. &FD34 is in JIM and
poking it does nothing unless you are
accessing extra memory in cartridges or
some such unusual trick; most of JIM is
reserved for code to be used by such
devices. Doing CALL code, of course,
called that second routine.

Next month, Twisted Listings presents
a virus with a difference - it doesn’t
affect the computer, but the user grows
another head. B

15

Tabform
Willem van Schaik presents his flexible table formatter.

As soon as you use your word processor
for a little more then just writing a letter,
there will come a time when you have to
include some information which is best
presented as a table. Sometimes you go
ahead and create it by editing, moving,
copying etc., but often you will take the
easy track (at least I do) and avoid the
issue by describing the information in
plain text. The reason is that, while
creating a table is not such a big deal, as
soon as you start improving and
changing the text it is a lot of work to
keep the table formatted.

After 10 years of manual table formatting
I finally decided that the BBC should do
this hard work for me, and to my
surprise writing a program for it
appeared to be rather simple. I opted for
the method where you store in a separate
file the text to be put in the table together
with the formatting information. A table
formatting program will then read this
file, process it and write the formatted
table into another file.

The formatting process can best be
compared with the way a word processor
formats lines. Words that do not fit
completely on the line are shifted to the
next, while incomplete lines are filled
with text from the next line. For our table
things work similarly, but in this case
everything has to take place within a box.
This means that besides moving words
we also have to add spaces to fill the box.
Further, the box within a row with the
most lines of text determines the vertical
size of all boxes in that row.

After formatting you can switch back to
your word processor document to

16

include the file with the formatted table,
loading it in using whatever insert text
function you have. If you want to make
modifications, don’t do it in the final
table but go through the process of
saving your document, then load the
table definition file, modify it, run the
TABFORM program, load the document
again, delete the previous version of the
table and include the new one. This
looks like going all round the houses, but
in the end it will save time, because in
practice the minor changes you think of
in the beginning always end up into
becoming complete re-designs of your
table.

The table definition file is created in your
word processor and saved out as plain
text; its contents are quite simple. First it
must define the sizes of the columns,
which is done with a ruler. Then the text
to be put into the rows and columns of
the table has to be separated to provide
the program with an indication about
when to start a new box.

RULER LINE

The ruler, defining the column widths,
will normally be the first line of the
definition file, although this is not
obligatory. It consists of a line with
hyphens, where the sizes of the columns
are indicated with either a plus (+) or a
bar (1). Using a plus means that you
want the boxes in the resulting table to
be separated with lines, while using bars
in the ruler will indicate that only spaces
and blank lines are to be used for
separation.

In the ruler you can put spaces around the
plus or the bar to define how much space

Beebug May 1992

Tabform

you want to put between the text and the
border lines. In the example given here we
use one space between text and lines. To
keep the program simple only the number
of spaces after the first plus or bar of the
ruler will be checked and this value will be
used for all the columns. However, it will
improve readability when you put the
spaces equally around all pluses or bars. In
addition you can make the table indented
from the left margin by starting the ruler
with as many spaces as the table must be
shifted to the right.

TABLE TEXT

The main principle of the format to be
used for row/column text definitions is
the use of an ‘equals’ sign (=) or a
hyphen (-) in the first column of the
definition file. We will call this the format
character. When TABFORM encounters a
hyphen at the beginning of a line, a new
box will be started. The text following
the format character will be put in a new
box; however, when all boxes in a row
are used a new line of boxes will be
started and the text will go to the first
box of that new row. When you want to
force the program to start a new row of
boxes you only need to use the ‘equals’
sign instead of the hyphen.

This way of defining boxes permits a
high level of flexibility when entering
text. For example, after the hyphen, you
are free to enter the text immediately on
the same line, or you can start on a new
line. If you use more spaces (or new-
lines) between two words, they will be
compressed into one. Therefore blank
lines in your text or starting on a new
line will be filtered out.

To show all the possibilities of the
scanning function of TABFORM it is best
to study the following example.

Beebug May 1992

* -
i printer

+ __________
I user I/0

+ + “+ +
=PORT

- CONNECTED TO

- FUNCTION

= disc

-8271

= printer

- 7415244 + 6522

- parallel printer port
- user /O

- 6522

- multi
1MHz bus
-74L.5244 7415245

-buffered address-and data-bus
= tube

- second processor

function parallel port

The table definition file is not very
consistently created, but it illustrates all
features of the program and produces the
following table.

FUNCTION

parallel
printer port

nulti function
parallel port

adgress- and

processor

+
I
|
+
|
+
|
|
+
I
[
+
I
I
| d
+
I
I
+

1
1
1
1
1
1
1
1
1
]
1
1
1
]
]
]
1
e

Formatted table from definition above

So, let’s walk through it from beginning
to end:

= PORT is the standard notation, in this
case the text is on the same line after the
format character.

17

Tabform

- CONNECTED TO illustrates that when
a single word is too long for the column
it will be cut in two without
hyphenation.

= disc forces the start of a new row of
boxes.

= printer also starts a new row, however,
in this case it results in an empty last box
on the second row.

the line before - parallel is blank, which
has no further consequences.

- user I/O is an example of starting a new
row without an equals sign in the first
column.

- multi shows multiple spaces are
no problem, but will be filtered out.

1Mhz bus and on: here the text is put on
new lines; to avoid confusion it is best to
select either the format above or this way
for our definitions and not to use a mix.

- buffered illustrates how formatting is
done within a box.

- - shows how to put a hyphen (or
equals-sign) as text in a box; as long as
the format-character is not at the start of
the line it will be considered to be
standard text. ;

To learn all the different possibilities of
TABFORM it is easiest to start with the
example given and check that you get the
same table. Then step by step do some
experiments like changing the pluses in
the ruler into bars, changing column
widths, indenting the ruler, etc. to see
how that alters the resulting table. The
table is displayed on the screen by
TABFORM to show you what is in the

18

output file. You can always check the
contents of an output file with *TYPE.

WORD PROCESSORS

TABFORM was written and tested in
conjunction with View, although there is
no reason why it should not work with
other word processors. To facilitate this,
the program checks first which <CR>
and/or <LF> combination is used in the
definition file and it will use the same
line separator for the output file. Using
View you can both load and read the file
with the formatted table. As the file is
plain ASCII there should be no problems
with any standard word processors.

A problem that could exist is when your
word processor starts a file with some
type of a header-record, even when
exporting pure ASCIL. If this is the case
you can remove the REM from line 1550.
By doing this everything before the first
plus or bar in the ruler will be written to
the output file. In case a plus or bar
character is part of your word
processor’s header record, you must
select another character and change the
program accordingly.

And that’s it. I hope that this will save
you some time and make your
documents easier to produce. May all
your tabulations be happy ones.

10 REM TABFORM Table Formatter
20 REM Version B 1.4
30 REM Author Willem van Schaik
40 REM BEEBUG May 1992
50 REM Program subject to copyright
60 : :
100 ON ERROR CLOSE#0:REPORT:PRINT " at
line ";ERL:END
110 DIM eol%(2)
120 DIM coltext$(32)

Beebug May 1992

Tabform

130

DIM colsize%(32)

140 :

150
160
170
180
150
200
210
220
230
240
250
260
270
280
290

300 :
310 :

1000
1010
1020
1030

ition:

1040
1050
1060

table:

| 1070
| 1080
| 1090

1100 :

1200
1210
1220
1230
1240

1250

1300
1310
1320
1330
1340
1350

VDU 15
PROCopen
PROCanaleol
PROCruler
PROCreadcol (0)
PROCwritedash
REPEAT
PROCreadrow
REPEAT
PROCwriteline
UNTIL rowfini%
PROCwritedash
UNTIL eof$%
PROCclose

END

DEF PROCopen

PRINT

REPEAT

INPUT "Input file with table defin
* rdfile$
rdfile%=0PENIN(rdfile$) |
UNTIL rdfile$<>0 [
INEUT "Qutput file with formatted
* wrfile$

wrfile$=0PENOUT (wrfile$)

PRINT

ENDPROC

DEF PROCclose
CLOSE#rdfile%
CLOSE#wrfile$
PRINT

ENDPROC

DEF PROCanaleol
REPEAT
byte$=BGET#rdfile% [
UNTIL byte$=10 OR byte%=13 ;
eol%(0)=1:e01%(1) =byted
byte%=BGET#rdfile%

| 1390 =

| 1680

1360 IF byte¥<>eol%(1) AND (byte¥=10 OR
byte%=13) THEN eol%(0)=2:e01%(2)=byte%
1370 PTR#rdfile%=0

1380 ENDPROC

1500 DEF PROCruler
1510 lead%=-1

1520 REPEAT

1530 byte%$=BGET#rdfile%
1540 lead$=lead¥+1
1550 REM IF byte%<>ASC("+") AND byte%<> |
ASC("|") THEN BPUTHwrfile%, byte%

1560 IF byte$=10 OR byte$=13 THEN lead$
=-1

1570 UNTIL byte$=ASC("+*) OR byte=ASC(
L)

1580 IF byte%=ASC("+") THEN lines$=TRUE
ELSE lines%=FALSE

1590 nrcols$=0

1600 sep%=-1

1610 REPEAT

1620 size%=0

1630 REPEAT

1640 byte%=BGET#rdfile% |
1650 IF sep¥=-1 AND byte$<>ASC(" ") THE
N sep%=size%

1660 size%=size%+l

1670 UNTIL byte%=ASC("+") OR byte%=2aSC(
)
nrcols$=nrcols%+1

1690 colsize%(nrcolst)=size%-1

1700 byte$=BGET#rdfile$

1710 PTR#rdfile%=PTR#rdfile%-1

1720 UNTIL byte%=eol%(1)

1730 ENDPROC

1740

1800 DEF PROCreadrow

1810 c%=1

1820 REPEAT

1830 PROCreadcol (c%)

1840 c%=c%+1 |
1850 UNTIL eof$ OR c¥>nrcols$ OR byte$= |
ASC("=")

1860 ENDPROC

Beebug May 1992

Tabform

1870 :

1900 DEF PROCreadcol (c%)

1910 coltext$(c%)=""

1920 REPEAT

1930 prevé=byte%

1940 byte%=BGET#rdfile%

1950 IF EOF#rdfile% THEN eof%=TRUE ELSE
eof¥=FALSE

1960 IF byte%<>10 AND byte%<>13 THEN co
ltext$(c%)=coltexts(c%)+CHRS (byte%) ELSE
coltext$(c%)=coltextS(ck)+" *

1970 IF coltext$(c%)=" " THEN coltext$(
et) =11

1980 IF LEN(coltext$(c%))>2 AND RIGHTS(
coltext$(c%),2)=" " THEN coltext$(c%)=L
EFT$ {coltext$(ck),LEN{coltext$(c%))-1)
1990 UNTIL eof% OR ((prev$=10 OR previ=
13) AND (byte%=ASC("-") OR byte%=ASC("="
m

2000 coltext$(c%)=LEFTS(coltext$(ck),LE
N(coltext$(c%))-1)

2010 ENDPROC

2020 :

2100 DEF PROCwritedash

2110 IF NOT lines% THEN PROCeol:ENDPROC
2120 IF lead$>0 THEN PROCwritelead

2130 BPUT#wrfile%,ASC("+"):VDU ASC("+")
2140 FOR c%=1 TO nrcols%

2150 FOR i%=1 TO colsize%(c$)

2160 BPUT#wrfile%,ASC("-"):VDU ASC("-"
2170 NEXT i%

2180 BPUTH#wrfile%,ASC("+"):VDU ASC("+")
2190 NEXT c%

2200 PROCeol

2210 ENDPROC

2220 :

2300 DEF PROCwriteline

2310 rowfini%=TRUE

2320 IF lead%>0 THEN PROCwritelead

2330 IF lines% THEN BPUT#wrfile%,ASC("|
") :VDU ASC("|*) ELSE BPUT#wrfile%, ASC("
") :VDU ASC(" ")

2340 FOR c%=1 TO nrcols%

2350 IF sep%>0 THEN FOR i%$=1 TO sep%:BP

UT#wrfile$,ASC(" "):VDU ASC(" "):NEXT i%
2360 s$=colsize%(c%)+2-2*sep}

2370 REPEAT

2380 s%=s%-1

2390 UNTIL MIDS$(coltext$(c%),s%,1)=" "
OR s%=1

2400 IF s%=1 s%=colsize%(c%)-2*sep%
2410 tS$=LEFTS (coltext$(ck),s%)

2420 t$=t5+STRINGS(255-LEN(tS)," ")
2430 t$=LEFTS(t$,colsize%(c%)-2*sept)
2440 PROCwritetext (t$)

2450 coltext$(c%)=MIDS (coltext$(c%),s%+
1)

2460 IF sep%>0 THEN FOR i%=1 TO sep%:BP
UT#wrfile%,ASC(" "):VDU ASC(" ") :NEXT i%
2470 IF lines% THEN BPUT#wrfile%,ASC("|
"} :VDU ASC("|") ELSE BPUT#wrfile%,ASC("

") :VDU ASC(" ")

2480 IF LEN(coltext$(c%))>0 THEN rowfin
i%=FALSE

2490 NEXT c$%

2500 PROCeol

2510 ENDEROC

2520 :

2600 DEF PROCwritelead

2610 FOR i%=1 TO lead?

2620 BPUT# wrfile%,ASC(" "):VDU ASC(" "

2630 NEXT i%

2640 ENDPROC

2650 :

2700 DEF PROCwritetext(s$)

2710 FOR 1%=1 TO LEN(sS)

2720 BPUT#wrfile%, ASC(MIDS(sS,1%,1)):VD
U ASC(MIDS(sS,1%,1))

2730 NEXT 1%

2740 ENDPROC

2750

2800 DEF PROCeol

2810 FOR i%=1 TO eol%(0})

2820 BPUT#wrfile%,eol%(i%) :PRINT

2830 NEXT i%

2840 ENDPROC

2850 : B

20

Beebug May 1992

Mode O Screen Dumps

David Stevens gives us two screendump programs especially for lovers
of round circles.

Hard copy of a mode 0 graphics screen is
often useful, and some programming
articles assume that you have a printer
dump. If you haven’t and your printer
is compatible with a 9-pin Epson, one of
the programs listed here programs
should meet your needs.

They work best in mode 0, but will also
cope with mode 4. They are of little use
in the other graphics modes, because
any non-background pixel is represented
by a dot on the paper.

To get close to the proper ratio between
width and height, both dumps
compensate for the different shapes of
screen, printer characters and graphics
bytes. Each printer byte is made up of
bits 7 to 1 corresponding to screen
pixels and a computed bit 0.

The machine code for each dump is just
over one memory page long. The source
programs, Sdumpl and Sdump2 assemble
the code at &DDO00 if run on a Master, or
at &900 on a Model B. You can assemble
elsewhere by substituting:
1030 code¥=&k<address in hex>

in either program. On the Master with
the Tube active, &DDO00 is okay if
HiBasic is not used.

If your printer does not accept the code
to set line spacing to n/216” (ESC 3" -
check your manual) you will need to
substitute:

1390 EQUE 27:EQUB 65:BEQUB 8
in either program.

THE STANDARD DUMP

Type in the first program and save it as
Sdumpl. When you run it type Y in
response to the prompt so that the code
is saved as dumpl. Don’t change the file

Beebug May 1992

name at this stage or the demo program
won't work.

Screendump testcard on screen

Now type in the third program and save
it as Dmpdemo. Run it and choose dumpl.
A diagram will be drawn on the screen
and dumped to the printer. The print is
about 5” wide and 4” high, and the
whole of the screen is reproduced.

THE SIDEWAYS DUMP

Sometimes a larger print is useful. The
second program creates a dump with the
screen rotated through 90e to produce a
dump that fills a whole page. Type this
in and save it as Sdump2. Run it and save
the machine code as dump2. Now chain
Dmpdemo and this time choose dump?2.

Printing takes about four times as long
as dumpl. It reads the pixels in each
column, starting at the top right of the
diagram, and builds them into lines for
the printer. The resulting print is 8” wide
and nearly 10” long. It will just fit on A4
or a sheet of 11” continuous paper.

You will notice that the demo diagram
does not quite cover the whole screen.

21

Mode O Screen Dumps

Paper size limits the width that can be
dumped. Height is limited because the
printer cannot take more than 960 bytes
per line in double-density mode. Any
screen image to be dumped must
therefore fall within the area covered by
the demo diagram.

The dump omits a slice 2 characters deep
at the top of the screen. If you need the
slice omitted to be at the bottom of the
screen substitute this line in Sdump?2:

1090 LDA #&FF:STA ylo:LDA #3:STA

vhi:LDX #0

(the printer will ignore any surplus bytes
from the bottom of the screen).

USING THE PROGRAMS

If you put the machine code in the same
directory as the Basic program that will
call it, the program should include the
statement *RUN dumpl or *RUN dump?2;
if the code is in your library directory, the
word RUN can of course be omitted.

Either program could be modified to
dump only a selected part of the screen.
If you try this, bear in mind that the
number of bytes per line sent to the
printer must match the VDU sequence in
line 1400 (of either program). This is
VDU27,76,n1,n2, where nl + n2*&100
gives the minimum number of bytes the
printer must receive for each line.

Ltstmg 1

i 10 R.E:M Program Sdumpl
| 20 REM Version B 2.0
30 REM Author David Stevens
| 40 REM BEEBUG May 1992
[50 REM Program subject to copyright
60
100 ON ERROR PROCer
110 MODEO:VDU19,0,4;0;19,1,3;0;
120 PROCassem:PROCsave
130 END
140 :
| 1000 DEF PROCassem
| 1010 x10=670:xhi=671:ylo=572:yhi=673:pi
| x=&74:1y10=&75:1yhi=§76:0f fset =577 :byte=

e

22

&78
|[1020 osbyte=&FFF4:0sword=&FFF1:oswrch=&
| FFEE
| 1030 A%=0:%%=1:mos%=
|)/&100: IFmos$>2 code$=&DD00 ELSEcode%=&9
| 00
| 1040 FOR pass=0 TO 2 STEP 2:P%=code%

‘ 1050 [OPT pass
1060 .dump LDA #2:JSR oswrch:LDX #0
1070 .sloop LDA svdu,X:JSR prt:INX:CPX

#6:BNE sloop
| 1080 LDA #8:STA rylo:LDA #4:STA ryhi

1090 .newline LDX #0:STX xlo:STX xhi

1100 .1loop LDA lvdu,X:JSR prt:INX:CPX
#4:BNE lloop

1110 .newbyte LDA #0:STA byte:STA offse
t:JMP esc

1120 .newbit JSR rdpix:JSR addpix

| MP #28:BNE newbit

1140 JSR bytel

1150 CLC:LDA xlo:ADC #2:STA xlo:LDA xhi
:ADC #0:STA xhi:CMP #5:BENE newbyte

1160 LDA #&D:JSR prt

1170 SEC:LDA rylo:SBC #28:STA rylo:LDA
ryhi:SBC #0:STA ryhi:CMP #&FF:BEQ end

1180 JMP newline

1190 .end LDA #27:JSR prt:LDA #64:JSR p
rt

1200 LDA #3:JSR oswrch:RTS

1210 :

1220 .rdpix SEC:LDA rylo:SBC offset:STA

ylo:LDA ryhi:SBC #0:STA yhi

1230 LDA #9:LDX #xlo:LDY #0:JSR osword:
| JSR chkpix:RTS

1240 .byte0 LDA xlo:PHA;LDA xhi:PHA:LDA
pix:BEQ done

1250 JSR rdpix:BEQ done

1260 CLC:LDA xlo:ADC #2:STA xlo:LDA xhi
:ADC #0:STA xhi:JSR rdpix:BNE done

1270 SEC:LDA xlo:SBC #4:STA xlo:LDA xhi
:SBC #0:STA xhi:JSR rdpix
| 1280 .done PLA:STA xhi:PLA:STA xlo:JSR
| addpix:JSR prt:RTS

! 1290 .addpix LDA byte:ASL A:CLC:ADC pix
| :STA byte:RTS

| 1300 .chkpix LDA pix:CMP #&FF:BNE pixok
| 1310 LDA #0:STA pix

1320 .pixok RTS
1330 .prt PHA:LDA #1:JSR oswrch:PLA: JSR
| oswrch:RTS

((USRosbyte) AND&F00 |

| 1130 CLC:LDA offset:ADC #4:STA offset:C [

Beebug May 1992

Mode 0 Screen Dumps

1340 .esc LDA #129:LDX #&8F:LDY #&FF:JS
R osbyte:CPX #&FF:BEQ escape

1350 JMP newbit

| 1360 .escape LDA #126:JSR oshyte:JMP en
d

1370 :

1380 .swdu EQUB 27:EQUB 108:EQUB 14
1390 EQUB 27:EQUB 51:EQUB 25

1400 .lvdu EQUE 27:BQUB 76:EQUB &80:EQU
B2

1410] :NEXT:ENDPROC

1420 :

1430 DEFPROCsave

1440 £$="dumpl®:PRINTTAB(2,5)"Do you wi
sh to save the code as ""dumpl®""? (Y/N)
. :TFNOTFNyes PRINTTAB(43,5)"No " : INPU
TTAB(2,7) "File name: "f$

1450 QSCLI"SAVE “+f£$+" "+STRS~code%+" "
+STR$~P% : PRINTTAE (2, 9) "Code runs from "S
TR$~codet" to "STRS~P%:ENDPROC

1460 :

1470 DEFFNyes

1480 REPEATQ%=INSTR("YN", CHRS (GETAND&DF
)) :UNTILQ%:=q%-2

1490 :

1500 DEFEROCer

1510 ONERROROFF:PRINT:REPORT:PRINT" at
Line ";ERL:END

Listing 2

10 REM Program Sdump2
20 REM Version B 2.0
30 REM Ruthor David Stevens
40 REM BEEBUG May 1992
50 REM Program subject to copyright
60 :
100 ONERRORPROCer
110 MODE0:VDU19,0,4;0;19,1,3;0;
120 PROCassem:PROCsave
130 END
140 :
1000 DEFPROCassem
1010 x1o=&70:xhi=&71:ylo=&72:yhi=&73:pi
x=574:rx10=75:rxhi=£76:0ffset=£77 :byte=
&78
1020 osbyte=&FFF4 :osword=&FFF1 :oswrch=&
FFEE
1030 A%=0:X%%=1:mos%=((USRosbyte)AND&F00
) /&100 : TFmos%>2 code%=&DD00 ELSEcode%=&Y
00
1040 FORpass=0TO2STEP2:P%=code%

1050 [OPT pass

1060 .dump LDA #2:JSR oswrch:LDX #0
1070 .sloop LDA svdu,X:JSR prt:INX:CPX
#6:BNE sloop

1080 LDA #&C2:STA rxlo:LDA #4:STA rxhi
1090 .newline LDA #&BF:STA ylo:LDA #3:5
TA yhi:LDX #0

1100 .lloop LDA lvdu,X:JSR prt:INX:CPX
#4:BENE 1loop

1110 .newbyte LDA #0:STA byte:STA offse
t:JMP esc

1120 .newbit JSR rdpix:JSR addpix

1130 CLC:LDA offset:ADC #2:STA offset:C
MP #14:BNE newbit

1140 JSR bytel

1150 SEC:LDA ylo:SBC #1:STA ylo:LDA yhi
:SBC #0:STA yhi:CMP #&FF:BNE newhyte
1160 LDA #&D:JSR prt

1170 SEC:LDA rxlo:SBC #14:STA rxlo:LDA
rxhi:SBC #0:STA rxhi:BNE nextline

1180 LDA rxlo:CMP #42:BEQ end

1190 .nextline JMP newline

1200 .end LDA #27:JSR prt:LDA #64:JSR p
et

1210 LDA #3:JSR oswrch:RTS

1220 :

1230 .rdpix SEC:LDA rxlo:SBC offset:STA
xlo:LDA rxhi:SBC #0:STA xhi

1240 LDA #9:LDX #xlo:LDY #0:JSR osword:
JSR chkpix:RTS

1250 .bytel LDA ylo:PHA:LDA yhi :PHA:LDA
pix:BEQ done

1260 JSR rdpix:BEQ done

1270 CLC:LDA ylo:ADC #1:STA ylo:LDA yhi
:ADC #0:STA yhi:JSR rdpix:BNE done

1280 SEC:LDA ylo:SBC #2:STA ylo:LDA yhi
:SBC #0:STA yhi:JSR rdpix

1290 .done PLA:STA yhi:PLA:STA ylo:JSR
addpix:JSR prt:RTS

1300 .addpix LDA byte:ASL A:CLC:ADC pix
:STA byte:RTS

1310 .chkpix LDA pix:CMP #&FF:BNE pixok
1320 LDA #0:STA pix

1330 .pixok RTS

1340 .prt PHA:LDA #1:JSR oswrch:PLA:JSR
oswrch:RTS

1350 .esc LDA #129:LDX #&8F:LDY #&FF:JS
R osbyte:CPX #&FF:BEQ escape

1360 JMP newbit

1370 .escape LDA #126:JSR osbyte:JMP en
d

Beebug May 1992

23

Mode O Screen Dumps

(1380 .svdu BEQUB 27:EQUB 108:EQUB 0

1390 EQUB 27:EQUB 51:EQUB 25

1400 .lvdu EQUB 27:EQUB 76:EQUB &C0:EQU
B3

1410] :NEXT:ENDPROC

1420 :

1430 DEFPROCsave

1440 f$="dump2":PRINTTAB(2,5)"Do you wi
sh to save the code as ""dump2""? (Y/N)
»; :IFNOTFNyes PRINTTAB(43,5)"No *:INPU
TTAB(2,7) "File name: "f$

1450 OSCLI"SAVE "+f$+" "+STR$~code®+" "
+STR$~P% : PRINTTAE (2, 9) "Code runs from "S
TRS~code%" to "STRS~P%:ENDPROC

1460 :

1470 DEFFNyes

1480 REPEATG%=INSTR("YN", CHRS (GETAND&DF
)) :UNTILq%:=q3%-2

1490

1500 DEFPROCer

1510 ONERROROFF:PRINT:REPORT:PRINT" at
Line * ;ERL:END F

Listing 3

10 REM Program Dmpdemo
20 REM Version 1.0
30 REM Author David Stevens
40 REM BEEBUG May 1992
50 REM Program subject to copyright
60 :
100 ONERROR MODEL :PROCer
110 MODE1:VvDU19,0,4;0;19,3,3;0;
120 PROCprinter
130 D=FNdump:MODEQ
140 vDU12,19,0,4;0;19,1,3;0;23;10,32,0
;0;0;
150 IFD=1 PROCscreenl:t(0%=TIME:*RUN du
mpl
160 IFD=2 PROCscreen2:t0%=TIME:*RUN du
mp2
170 CLS
180 vDU7,23;10,103,0;0;0;
190 t%=(TIME-t0%)/100:PRINT'" time: ";
t$DIV60; " minutes ";t$MOD60;" seconds"''
200 END
210 :
1000 DEFPROCscreenl
1010 PROCrect(0,0,424,340) : PROCrect (856
,0,1279,340) : PROCrect (0, 684, 424,1023) :PR
OCrect (856, 684,1279,1023)
1020 MOVE64, 64:DRAW1216, 64 :DRAW1216, 960

:DRAW64, 960 :DRAW64, 64 : DRAW1216, 960 : MOVEL
216, 64 :DRAWG4, 960

1030 PROCcircle(100):PROCcircle(250) :ER
0OCcircle(400)

1040 MOVEG4,yc%+64:MOVE6S, yc%-64:PLOTES
,224,yc% :MOVE1216, yc3+64 :MOVE1216, yc3-64
:PLOT85, 1056, yc%

1050 ENDPROC

1060 :

1070 DEFPROCscreen2

1080 PROCrect(52,0,424,276) : PROCrect (84
6,0,1218,276) : PROCrect (52, 680, 424, 956) :P
ROCrect (846, 680,1218, 956)

1090 MOVES4,32:DRRW1186,32:DRAW1186,922
:DRAW84, 922 :DRAW84, 32 :DRAW1186, 922 : MOVEL
186,32:DRAWS4, 922

1100 PROCcircle(100) :PROCcircle(250) :PR
0Ccircle(400)

1110 MOVES4,yc%+64:MOVES4, yc%-64:PLOTES
,212,yc% :MOVEL186, yck+64 :MOVEL186, yck-64
:PLOT85, 1058, yc%

1120 ENDEROC

1430; :

1140 DEFPROCrect (a%,b%,c%,ds)

1150 MOVEa%,b%:DREWa%, d%:DRAWCE, d% :DRAW
c%,b% :DRAWa%, b% : ENDPROC

160 :

1170 DEFPROCcircle(r%)

1180 n=2*PI/30:yc%=512+34*(D=2) :MOVE640
,ycE+rd

1190 FORj%=1T030:a=n*j%:c=C0S(a) :s=SIN(
a) :x¥=r¥*s:y¥=r¥*c:DRAW640+x%, yc+y}
1200 NEXT:ENDPROC

1210 :

1220 DEFPROCprinter

1230 REPEATVDUZ,1,32,8,3:IFINKEY(10):IF
ADVAL (-4) <63PRINT''"* RETURN when printer
is on line *;:REPEATUNTILGET=13:CLS
1240 UNTILADVAL(-4)>62:ENDPROC

1250 :

1260 DEFFNdump

1270 PRINTTAB(2,7)"Which dump?*;TAB(10,
9)"1 normal,small®;TAB(10,11)"2 sidewa
ys, large";TAB(5,13)"Type 1 or 2 *;:REPE
ATA=GET:UNTILd=49 OR d=50:=d-48
1280 :
1290 DEFPROCer
1300 ONERROROFF
1310 vDU23;10,103,0;0;0;

1320 REPORT:PRINT* at Line ";ERL
1330 END B

24

Beebug May 1992

Mr Toad’s keyboard BEEP ROM

BEEBUG's warty friend makes your Master keyboard pip and squeak.

I wonder how many of you started
computing on the Sinclair Spectrum.
Because it only had a membrane keyboard,
albeit disguised by rubber or plastic keys,
the speaker was made to emit a slight click
at every press of a key, and this went a
long way towards making up for the
sloppy feel of the keyboard. There was a
system variable known as PIP which you
could poke to lengthen the click into a
‘beep’, and though I've forgotten much of
my Speccy lore, I'll never forget POKE
23609,100. When I got a Master I often
made use of a facility on the old AIDS II
ROM which added a beep to key-presses,
despite the excellent feel of the Beeb's keys.
I gradually let this drop, though, as the
sound on offer wasn’t ideal and the
cartridge always had to be plugged in.

So, I wrote a new facility: in ROM slot
eight I keep my own personal go-faster
EPROM, the Toad ROM 90, and from time
to time I add more facilities and blow a
new chip. The listing published here was
extracted from the Toad ROM and tidied
up into a short self-contained sideways
ROM image. Ideally, this assembly text
would be tacked onto the texts of other
ROMs, as one doesn’t want one’s working
disc cluttered with several different
ROMs, all to be loaded in and assembled
to separate slots. One day I hope to write
an article for these august pages on how
to do just that. In the original, labels for
the many routines are in various
languages, to cut down on accidental
duplication; those for this section are in
Latin, and they have been left thus, so as
to minimise duplication problems if you
do tack this listing onto another one.
Labels are more fun in Latin, anyway.

Beebug May 1992

GET TYPING

Type in the listing BEEPROM, saving
frequently as you go, and run the
program to assemble the code. It will
find a free slot, if there is one, and tell
you so. *ROMS and *HELP should both
show its presence since you don’t have
to press Ctrl-Break to initialise the image
after assembling it from this listing.
Enter *BP and you should get prompts
inviting you to choose the tone, volume,
pitch and duration of the beep. Once
running it cannot be eliminated by a
Break, hard or soft, but typing *BP again
will toggle it off, then on again, until you
turn the machine off.

I hope you have some fun with this, and
that you find it pleasant and helpful in
use, as I do. This article was written
partly with PIP, volume 2, pitch 7,
duration 1; and partly with
SQUEAK,volume 3, pitch 0, duration 1.
You’ll soon find your own favourite
sound.

HOW IT WORKS

The principle is very simple; once you
have typed in the parameters, the ROM
grabs a vector, RDCHV. Beebs have a
number of these vectors which are RAM
copies of the addresses of all the major
facilities such as input and output to
filing systems, key input and so on.
Under the standard setup, they are
unnecessary intermediate jumps, early in
the routines, to the address of the main
part of the routine. Being in RAM, the
MOS has to copy them in on power-up -
it also resets them on Break The user can
alter them to point to their own code, so
that every time something passes

25

Mr Toad's Keyboard Beep ROM

through the vector it is diverted to the
user’s own routine. When that routine
has done its bit, it must pass control to
the address which was in the vector
before it was changed unless, of course,
the user’s code completely replaces the
MOS routine, as it would in the case of a
printer buffer for example.

ONE SMALL CATCH

One would think that KEYV at &0228
would be the obvious vector to use here,
rather than RDCHY, but if you try it, you'll
find that each interrupt reads the average
key- press several times, and all the repeats
go through KEYV - or so one would
surmise from the resulting noise, which is
like a cracked doorbell. Therefore we use
the RDCHYV vector. When anything passes
through RDCHYV, our routine .fiat pushes
all the registers, flushes the appropriate
sound buffer, sends a seven to OSWRCH,
which makes the beep, then pops the
registers and hands over to the original
destination previously held in the vector.

Any machine-code routine can intercept a
vector in this way, but the interesting part
is the way it is done with sideways ROMs.
Problem: if a ROM like Basic or View is
paged in, then our ROM isn’t. How, then,
can it do anything? On the face of it, the
ROM would have to do one of two things;
if the essential code were short, as here, it
could copy out that code to some un-
crowded corner of main memory and
point the vector at it, after which the ROM
itself would be entirely redundant. If the
vital code were long, a short routine
copied into main memory would have to
page the ROM in and pass control to it.
Once finished, the ROM would hand over
to the external routine, which would page
back in whatever ROM had originally
been active and then hand over to the
original vector destination.

26

The latter is what actually happens, but
the programmer doesn’t need to worry,
as Uncle Acorn has thoughtfully
provided facilities for it to be done
automatically. Instead of pointing the
vector directly to the ROM, you leave the
ROM number and your routine’s address
in page &0D, at an address calculated
from the vector’s number, and then point
the vector itself at a similarly calculated
address in page &FF. The rest is done by
the MOS.

A trip down memory lane with a
memory editor, starting at &0DBO0, will
show that Basic (ROM 9) has directed a
lot of these vectors to itself (addresses
between &8000 and &BFFF, the third
parameter being 9). If the BEEPROM is
active, &0DB9 will contain the number
of the slot it’s in, and &0DB7-8 will
point to &815D, which is the address of
the routine .fiat. Look from &FFO00 to
&FF4E, and you will see that all the
extended vectors contain the same
instruction, JSR &FF51. Nevertheless, if
you use the wrong address you get a
crash, so here we jump to &FF18, as we
should. Another tempting short-cut is to
pass control on exit to the default
contents of the vector - in the case of
RDCHYV it’s &E7BC. This is naughty,
since another program may already
have grabbed the vector. You should
store the actual address contained in the
vector, using:
LDA vector:STA oldVec
LDA vector+1:STA oldVec+l

On exit, your routine should pass control
to that address, JMP (oldVec), which will
be to that other program, if there is one.
If your code deselects itself (as here when
you turn the beep off), it should put the
stored value back into the vector. Mind
you, if extended vectors are used, only
one ROM can have any one vector, but

Beebug May 1992

Mr Toad's Keyboard Beep ROM

it’s just barely possible that some
program in main memory might be using
it, which is why it’s done properly here.

You may notice a rather odd way of
changing a vector. Interrupts must be
disabled during the changeover, else one
might be called when one byte had been
changed, but not the other; disastrous if
the interrupt code uses that vector. It is
good practice to have interrupts off for
the shortest possible time, and since here
we happen to have all registers free at the
crucial points, we can load X and Y with
the necessary bytes, then disable
interrupts and store X and Y in the vector
- it’s a lot quicker. Notice that &0DB7 to
&0DB9 are set up with interrupts still
enabled - those data won’t be used until
the vector points to &FF18.

IT’S A FAIR COP

Not everything is ‘legal’ in this ROM -
the page &0D numbers pointing to our
code are put in directly, instead of by
reading the start with OSBYTE &AS8, and
the VDU 7 parameters are likewise
poked directly, instead of via OSBYTEs
&D3 to &Dé6; the same goes for the buffer
start and end indices which are poked
with &FF to emulate OSBYTE &15. This
ROM can only run on a Master, unless
rewritten to use direct vectoring, and no
new Master O.S."s are ever going to be
released now, so not everything needs to
be scrupulously kosher any more. Most
of the above short-cuts save a few bytes;
the last is one byte longer than calling
Osbyte but is much quicker in a place
where speed matters.

Another way in which I break with
convention here is to use workspace
inside the ROM image. It’s by far the best
solution in a case where no-one is ever
going to blow it into a chip. You could

Beebug May 1992

always change the text and use a bit of
main RAM, anyway. Four page zero
bytes are used, but they can be corrupted
between calls. They’'re in the filing
system scratch space, which is stated to
be OK for such uses.

The routines which set up the VDU 7
parameters proved to be great fun. First
we need to poke &0263 with 0 for the
noise channel or 3 for the default
channel. Now the ASCII code of capital P
is &50, so S is &53. Lower-case p and s
are &70 and &73. Names for the ‘bell’
and ‘noise’ channels which begin with S
and P respectively would therefore
simplify the code a lot. ‘PIP’ and
‘SQUEAK’ seem suitable, but the wrong
way round, as ‘SQUEAK’ should be the
noise channel.

Let’s say we’ll break the wusual
convention and get our routine to use
ORA #&20 to force bit 5 of the ASCII,
thus forcing lower case rather than
masking to a capital by AND #&DF. That
way we won’'t have to do a test and a
branch to cope with numerals, in all of
which bit 5 is set. Setting p and s as the
limits of acceptable entries will therefore
leave us with a byte of between &70 and
&73; i.e. 011100xx. EOR #3 will invert the
last 2 bits so s gives the noise channel 0
and p the sound channel 3. The user is
not prevented from entering g or r but
they will select sound channels 1 or 2,
which is acceptable.

The next move seems to be AND #3 to
reset bits 4, 5 and 6 - turn &70 into 0 or &73
into 3 - but in fact EORing those bits with 1
will do it, so EOR #&73 is all that's needed
to turn s into 0 and p into 3. Incidentally, in
practice the MOS seems to reset those
higher bits for us automatically, but EOR
#&73 is as easy as EOR #3, so why not?

27

Mr Toad's Keyboard Beep ROM

Before emitting each beep, we need to
poke the locations used by OSBYTE &15
to flush the appropriate sound channel. X
has to hold the number of that channel
plus 4. After storing the channel number
in the variable chan, therefore, we add 4
to the number by forcing bit 3 with ORA
#4 and store the byte in flag. The first
purpose of this variable is to tell the
ROM whether it’s on or off, but for that it
only needs to be zero or non-zero, so it
can double as a store for that X value to
emulate OSBYTE &15. In fact, as we’re
not calling the actual OSBYTE, we could
use any register, but X is all we have free
if Y is to be left undisturbed holding the
start of the next prompt.

The next parameter is the volume, to be
poked into &0264. We need a negative
number of the form 1xxx0000, as any bit
set in the last 3 bits produces silence -
don’t ask me why, but it does. We also
need the highest number for the quietest
beep. Numerals are all ASCII &3x, so if
we set the limits at 1 and 5, we will get a
byte of the form 00110xxx, where the part
that matters is in the xxx.

Again, EOR #7 will take care of the
‘highest=quietest’ problem, and four
shifts left will leave us with a byte
0xxx0000. Fine, except bit 7 should be set.
Now, if we write EOR #&0F instead of #7
before the shifts, we get a byte 00111xxx,
which after four ASL As ends up as
1xxx0000, the lowest original number
now being the highest. The unwanted
bits 5 and 4 of the ASCII numerals just
drop off the left-hand edge, like ships
that tried to sail round the world in the
days when it was still flat.

Next comes the pitch; no great problem,
except that a change of just one digit in
this value makes no perceptible

28

difference. Trial and error showed that a
range of 0 to 9, multiplied by 16 (four
ASL As again), is a bit low, but adding
the ASCII of the original numeral moves
it into about the right range.

The last one is the length of the beep.
One to three seemed right, so AND #3 is
all that’s needed to reset those naughty
bits 5 and 4, then we poke it into &0266.
You can alter this if you like; change the
value in line 840 (to one above the
desired limit) and substitute AND #&0F
in line 840.

Finally, I should point out that if you
select SQUEAK at the first prompt,
certain pitch parameters give funny
results; even silence, in two cases. Read
the manual on the effects of the the third
parameter of SOUND with channel 0,
and you’ll see why. It's not worth all the
code needed to ‘fix’ that feature, and it's
not a bug, because a bug is a feature you
didn’t know about, and a feature is a bug
which you're too idle to fix.

10 REM Program Mr Toad's Beep Rom
20 REM Version B 1.0
30 REM Author Mr Toad
40 REM BEEBUG May 1992
50 REM Program subject to copyright.
60
100 Z$=TOP+&200
110 lo=&B8:hi=lo+l
120 pLo=lo+2:pHi=lo+3
130 rdchvLo=&0210
140 rdchvHi=&0211
150 oswrch=&FFEE
160 osnewl=&FFE7
170 osasci=&FFE3
180 osrdch=&FFE0
190 :
200 FOR N%=4 TO 6 STEP 2
210 P%=&8000:0%=2%
220 [OPT N%
230 BRK:BRK:BRK

Beebug May 1992

Mr Toad's Keyboard Beep ROM

240 JMP hicIncipit

250 EQUB &82

260 EQUB longinquitas MOD &100
270 EQUB &91

280 .nomen
290 EQUS "Mr Toad's Magic Beep ROM"
300 .longinquitas

310 BRK:EQUS *(C) BEEBUG May 1992"
320 : :

330 .auxilium

340 LDA (&F2),Y

350 CMP #&0D:BNE nuncDimittis
360 JSR osnewl:LDX #&FF

370 .gyrus

380 INX:LDA ncmen,X

390 PHP:JSR osasci:PLP

400 BNE gyrus:JSR osnewl

410 :

420 .nuncDimittis

430 PLY:PLX:PLA:RTS

440

450 .noliFugere

460 LDA flag:BEQ nuncDimittis
470 JMP aditus

480 :

490 .requiescat

500 LDX oldVec:LDY oldVec+l
510 SEI:STX rdchvlo

520 STY rdchvHi:CLI:STZ flag
530 JMP iteMissaEst

540 :

550 .hicIncipit

560 PHA:PHX:PHY

570 CMP #&27:BEQ noliFugere
580 CMP #9:BEQ auxilium

590 CMP #4:BNE nuncDimittis
600 LDA (&F2),Y:AND #&DF

610 CMP #ASC"B":BNE nuncDimittis
620 INY:LDA (&F2),Y:AND #&DF
630 CMP #ASC"P":BNE nuncDimittis
640 LDA flag:BNE requiescat
650 : :

660 LDA #ASC"p":STA lo

670 LDA #ASC"t":STA hi

680 JSR imprimatio

690 EOR #&73:STA chan

700 ORA #4:STA flag

710 :

720 LDA #ASC"1":STA lo

730 LDA #ASC"6":STA hi

740 JSR etSequ:EOR #&0F

750 ASL A:ASL A

760 ASL A:ASL A:STA vol

TN

780 LDA #asSC"(":STA lo

790 LDA #1+ASC"9":STA hi
800 JSR etSequ:STA pitch
810 ASL A:ASL A:ASL A:ASL A

820 ADC pitch:STA pitch

830 :
840 LDA #ASC"1":STA lo
850 LDA #ASC"4":STA hi

860 JSR etSequ:AND #3:STA dur
870 :
880 JSR osnewl:JSR osnewl
890 LDA rdchvLo:STA oldvec
900 LDA rdchvHi:STA oldVec+l
910 :

920 .aditus

930 LDA chan:STA &0263

940 LDA vol:STA &0264

950 LDA pitch:STA &0265

960 LDA dur:STA &0266

970 LDA &F4:STA &DB9

980 LDA #fiat DIV &100:STA &DB8
990 LDA #fiat MOD &100:STA &DE7
1000 LDY #&FF:LDX #&18

1010 SEI:STY rdchvHi

1020 STX rdchvLo:CLI

1030 :

1040 .iteMissaEst

1050 PLY:PLX:PLA
1060 CMP #4:BNE exeat:LDA #0
1070 .exeat

1080 RTS

1090 :

1100 .imprimatio

1110 LDA #mandata MOD &100:STA pLo
1120 LDA #mandata DIV &100:STA pHi
1130 LDY #&FF

1140 .etSequ

1150 LDA #7:JSR oswrch

1160 .gyrus

1170 INY:LDA (pLo),¥Y:PHP:JSR osasci
1180 PLP:BNE gyrus

 continued on page 58

Beebug May 1992

29

Public Domain Software

Alan Blundell continues his look at the PD scene with a review of
educational software.

Many parents, I suspect, originally
bought their BBC micro because it was
the same computer as the one their
children used at school, with the more or
less vague idea that it might give their
child some advantage in development.
This made sense, as it meant that the
child only needed to become familiar
with the use of one system and there was
the possibility that they could use the
same software at home as at school.
Because of the traditional links between
Acorn and education, a lot of software
with educational uses has been
produced, covering a wide range of ages
and skills. I didn’t have that excuse when
I first bought my micro, but now have
three children aged five and two (twins),
so over the past couple of years I have
taken a personal interest in educational
uses in addition to my general interest,
which arose from my wife’s work as a
remedial class teacher.

Although the Archimedes is becoming
more and more common in schools, there
are still plenty of BBC micros and
Masters in everyday use around the
country, and I know from letters which I
have received that parents still have an
interest in this subject. Although I have
no desire to knock more recent micros,
good educational software does not
necessarily depend on the use of
windows, 16 million colours, or the other
paraphernalia of modern computing,
although these no doubt add to the
presentation of software. The most
important thing about educational
software is its educational content, and
this should be as valid for programs for
the BBC as it was when they were first
written - if a program had educational

30

value 5 years ago, then it still has,
national curriculum willing.

Three ranges of educational software
will be looked at in this and next
month’s column, to give a balanced view
of what is available in the field. First of
all, let’s look at the public domain (as
distinct from shareware or freeware).
Starting with the youngest first, I was
particularly pleased to acquire a copy of
Jim Stirk’s collection of programs for
younger children. His Caroline &
Philippa’s House was the first program
which really engaged the interest of my
two year olds; even better, it kept them
happy and occupied (if not quiet) for
longer than anything else I could think
of! The user interaction consists of
nothing more than repeatedly pressing
any key on the keyboard, but as the keys
are pressed, a house, its rooms and their
contents are gradually revealed. The
pictures are colourful and well drawn
and, from my research sample, generate
plenty of interest, excitement and
‘discussion’. Jim's collection contains
about 20 varied programs, suited to
children aged from 2 upwards, many of
which may be suitable for use in junior
schools.

David Shepherdson (under the alias
‘Dragonrider’, which has nothing to do
with his software) has produced a useful
selection of programs aimed at slightly
older children. Chain Letters, one of his
works, is a well produced way of
developing spelling skills by trying to
outdo the computer in changing one
word into another by changing one letter
at a time. Three versions are available,
for 3, 4 or 5 letter words, and the

Beebug May 1992

Public Domain Software

difficulty increases in proportion to the
number of letters in a word. One
potential pitfall of this type of program is
a limited vocabulary built into it, but
David has neatly got round that problem
by storing a range of words in sideways
RAM; the 3 letter version I tried seemed
to know every 3 letter word I could think
of, and a few I couldn’t.

Grace Educational Software’s Maths
Competition Pack is a fairly standard
mental arithmetic game, using all four
basic rules of arithmetic in a race against
a clock to answer questions correctly at a
chosen difficulty level. Its strengths lie in
its real-time clock display, the range of
choices available to the supervisor in
setting it up, and its competitive element.
A number of children can ‘play’ in turn,
and try to reach the top of the league
table.

Moving onwards to teenage use, there
are several science teaching aids.
Institute of Metals Schools Disc and
Introduction to the Rutherford Appleton
Laboratory are two examples which
particularly appealed to me, from my
own general interest. The IoM disc
covers materials science at a level suited
to A-level physics and chemistry
students, and includes subjects such as
diffusion and diffraction in solids, and
p-n transistor junctions. The RAL disc
describes the work done at this famous
laboratory, and demonstrates subjects
such as molecular structure, Haley’s
Comet and the Giotto project. Each
subject is very well presented and
explained, such that the interested
amateur (me!) can learn and enjoy.
C.A McGaughey has collected a range of
programs which also find a use in the
teaching of science, although I should
perhaps say that these do not all have a
polished user interface. There is also a

Beebug May 1992

small collection of programs under the
heading Chemistry CAL (Computer
Aided Learning).

Finally in this category (for now), there is
a range of programs such as
trigonometric and quadratic equation
solvers, other mathematical routines and
data handling demonstrations, many of
which were developed as aids to
teaching A-level computing and so may
possibly be useful in schools.

John Lyons was possibly the first
commercial software distributor to take
an active interest in distributing software
via the public domain. Fidei Defensor and
Multiple Choice Quiz for Christians are two
packages which he released into the
public domain in 1991; both have a
similar theme in Christianity, and are of
use equally in religious studies and in the
home. Also last year, he released a
demonstration disc of his range of
educational software into the public
domain. This gave details of his range of
software and included examples from
various packages in the range. Now he
has decided to re-release almost his
entire product range as shareware. I have
mentioned shareware before, but briefly
the term refers to software which may be
distributed by anyone to anyone, but
which you must pay for if you find it
useful.

That serves as a ‘taster’ for the subject
which I will be covering in the next issue:
the remaining two of the three areas
which were mentioned at the start of this
column are shareware and free software.
Unfortunately, there isn’t room to cover
these this month, so they will be the
subject next time. The John Lyons range
will be covered, together with a look at
the free software available from Peter
Davy for use in adult basic education. 3

31

Applications I
Busiess GRAPHICS - for producing graphs, charts and diagrams
'Vmeo CATALOGUER - catalogue and print labels for your video cassettes
PHONE BOOK - an on-screen telephone book which can be easily edited and updated
PeRsONALISED LETTER-HEADINGS - design a stylish logo for your letter heads
APPOINTMENTS DIARY - a computerised appointments diary
MAPPING THE BRITISH ISLES - draw a map of the British Isles at any stze
SELECTIVE BREEDING - a superb graphical display of selective breeding of 1
PERSONALISED ADDRESS BOOK - on-screen address and phone book
THE EARTH FROM SPACE - draw a picture of the Earth as seen from any point in space
PAGE DESIGNER - a page-making package for Epson compatible printers
WosLD BY NiGHT AND DAY - a display of the world showing night and day for any time and
date of the year

Mile Elandliing for All
om the BBC Micreo and Acerm Arehimedes
by David Spencer and Mike Williams

Computers are often used for file handling applications yet this is a subject
which computer users find difficult when it comes to developing their own
programs. File Handling for All aims to change that by providing an extensive
and comprehensive introeduction to the writing of file handling programs with
particular reference to Basic.

File Handling for All written by highly experienced authors and programmers David Spencer and Mike Williams,
offers 144 pages of text supported by many useful program listings. It is almed at Basic programmers, beginners
and advanced users, and anybody mr.crtstod in File Handling and Databases on the Beeb and the Arc. However, all

the file handling concepts di to most p 5y making this a sultable introduction to
file handling for all.
The book starts with an introduction to the basic principles of file handling, and in the following ct levelop

an in-depth look at the handling of different types of flles e.g. serial files, indexed files, direct access files, and
searching and sorting. A separate chapter Is devoted to hierarchical and relational database design, and the book
concludes with a chapter of practical advice on how best to develop file handling programs.

The topics covered by the book include:
Card Index Files, Serial Files, File Headers, Disc and Record Buffering, Using Pointers,
Indexing Files, Searching Techniques, Hashing Functions, Sorting Methods,
Testing and Debugging, Networking Conflicts, File System Calls

The associated disc contains complete working programs based on the routines described in the book and a copy of
Filer, a full-feature Database program originally published in BEEBUG magazine.

Best of BEEBUG

ASTAND
Enhanced ASTAAD CAD program for the
Master, offering the following features:
full mouse and joystick control
built-in printer dump
speed improvement
STEAMS image manipulator
Keystrips for ASTAAD and STEAMS
¥ Comprehensive user guide
Sample picture files
Stock Code Price Stock Code Price
ASTAAD (80 track DFS) 1407a £5.95 ASTAAD (3.5" ADFS) 1408a £5.95
Applications II (80 track DFS) 1411a £4.00 Applications I (3.5" ADFS) 1412a £4.00
Applications I Disc (40/80T DFS) 1404a £4.00 Applications I Disc (3.5" ADFS) 1409a £4.00
General Utilities Disc (40/80T DFS) 1405a £4.00 General Utilities Disc (3.5" ADFS) 1413a £4.00
Arcade Games (40,80 track DFS) PAGla £5.95 Arcade Games (3.5" ADFS) PAG2a £5.95
Board Games (40/80 track DFS) PBGla £5.95 Board Games (3.5" ADFS) PBG2a £5.95
All prices include VAT where appropriate

RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS.

Board Games SOLITAIRE

SOLITAIRE - an elegant implementation of this ancient and fascinating
one-player game, and a complete solution for those who are unable to
find it for themselves.

RoLL oF HONOUR - Score as many points as possible by throwing the
five dice in this on-screen version of Yahtze'.

PATIENCE - a very addictive version of one of the oldest and most
popular games of Patience.

ELEVENSES - another popular version of Patience - lay down cards on
the table in three by three grid and start turning them over untll they
add up to eleven.

C = th it fon of this very traditional card
game for two, where the object is to score points for various combinations and seq of cards.

TWIDDLE - a close relative of Sam Lloyd's sliding block puzzle and Rubik's cube, where you have to move numbers round a
grid to match a pattern.

CHINESE CHEQUERS - a traditional board game for two players, where the object is to move your counters, following a
pattern, and occupy the opponent’s field.

Aces HiGHE - another addictive game of Patience, where the object Is to remove the cards from the table and finish with the
aces at the head of each column.

Applications I Dise

C EDITOR - for designing, editing and solving crosswords
MoNTHLY DESE DIARY - a month-to-view calendar which can also be printed
3D LANDSCAPES - & three d fonal land

Real Tive CEM a real time digital alarm clock dlbplaytd on the screen
Ruwnmic Four TEMPERATURES - calibrates and plots up to four temperatures
JULIA SETS - f; ng extensions of the Mandelbrot set

Fore1eN LANGUAGE TESTER - foreign character definer and language tester

LAEEL PROCESSOR - for designing and printing labels on Epson compatible printers
SHARE INVESTOR - assists decislon making when buying and selling shares.

Arcade Games P e e

GEORGE AND THE DRAGON - Rescue ‘Hideous Hilda' from the flames
of the dragon, but beware the flylng arrows and the moving holes on
the floor.

EBoNY CASTLE - You, the leader of a secret band, have been captured
and thrown in the dungeons of the infamous Ebony Castle. Can you
escape back to the countryside, fighting off the deadly spiders on the : = .
way and collecting the keys necessary to unlock the coloured doors?
ENIGHT QUEST - You are a Knight on a quest to find the lost crown,
hidden deep in the ruins of a weird castle inhabited by dangerous
monsters and protected by a greedy guardian.

PITFALL PETE - Collect all the diamonds on the screen, but try not to
trap yourself when you dislodge the many boulders on your way.
BuUILDER BOB - Bob is trapped on the bottom of a building that's being demolished. Can you help him build his way out?
MINEFIELD - Find your way through this grid and try to defuse the mines before they explode, but beware the monsters
which increasingly hinder your progress.

Manic MECHANIC - Try to collect all the spanners and reach the broken-down generator, before the factory freezes up.

QuaAD - You will have hours of entertainment trying to get all these different shapes to fit.

CEAMEIMEATE AN IIK EA A AT EATLE

DIMNHAHHHAHE JO I3sod

Stock Code Price Stock Code Price
File Handling for All Book BKO2b £9.95
File Handling for All Disc (40/80T DFS) BKO0S5a £4.75 File Handlng for All Disc (3.5" ADFS) BK07a £4.75
Joint Offer book and disc (40/80T DFS) BK0O4b £ 11.95 Joint Offer book and disc (3.5" ADFS) BKO6b £ 11.96
Euro , Africa Elsewh

BAR b 52 miﬁ?zmt e = Carriage is donated by the letter after the stock code.

a £1.00 £ 1.60 £ 2.40 £ 2.60 When ordering several items use the highest price code,

b £2.00 £ 3.00 £ 5.00 £ 5.50 plus half the price of each subsequent code.

Tel. (O727) 40303 Fax. (0727) 860263

BEEBUG Education
Modern Languages
by Mark K. Sealey

The Scottish Council for Educational
Technology has recently released an
enterprising batch of packages which
will form the basis of reviews over the
next issue or two of Beebug Education.

To begin with, we will examine some
software for a curriculum area to which
we have not given much attention
previously in this column: modern
languages.

Product
Supplier

En Ville, In der Stadt

Scottish Council for
Educational Technology,

74 Victoria Crescent,
Glasgow G12 9JN.
£15.00 ex. VAT.

Firstly, En Ville and In der Stadt are
French and German versions,
respectively, of a simulation. The
scenario is a shopping expedition by
someone who has been staying with a
penfriend in the relevant country.

AIMS

The aims of the programs are to develop
language skills, provide substitute
experience of shopping in a French or
German town, and consolidate reading
skills. I use the word ‘consolidate’
because it is clearly necessary for pupils
(probably of middle secondary age) to
have some facility in the language - the
suite will not really teach any aspect of
French or German from scratch.

The package could also usefully fit into a
cross-curricular project on shopping, and

34

be employed to direct pupils” language
specifically to use intentional and
planning registers - maybe in groups .
away from the computer.

USE

Decision making is at the core of the
program, and this is evident from the
first screen after booting and the title
page. Here, participants are required to
choose how they will get to the shopping
area... on foot, by taxi or bus etc.

All the instructions are in French/
German. Thus by working with the
programs pupils ought to acquire
familiarity with the equivalent
expressions for menu handling and
other housekeeping tasks such as
pressing the space bar to continue, as
instructions in the computer program
are not in English.

Since both French and German have
characters, accents and umlauts, that do
not appear in the English alphabet, use
has been made of the function keys to
accommodate this. The manual has
cardboard strips for the purpose. It is
important because the user may have to
type in sentences or word answers
instead of selecting a number against the
correct string. This can be determined by
the teacher (see later).

Wherever this is the case, exact spelling
is necessary. Children often fail to
distinguish between a and &, say, and
this feature should help to reinforce the
point.

Beebug May 1992

BEEBUG Education - Modern Languages

After arriving at the shopping centre,
successive screens representing one of 15
shops are presented; each has a chunky
but effective graphic, two time-displays
(the current time and the start-out time),
and the simple menu panel.

COMPLETION OF THE TASK

If the user needs to consult the shopping
list and/or establish how well or badly
they are doing in comparison with the
tasks set, they can exit the shopping area
and obtain a summary before re-entering
to make further purchases. This happens
by means of simple selection from a
menu, and the computer prompts by
asking whether each item is a gift or for
personal ‘consumption’.

The application ends when the pupil has
arrived back home for feedback on their
shopping day, and points are awarded
. for how well they handled things in
terms of times, budget and items chosen.

TEACHERS’ EDITOR

One of the most useful features of En
Ville/In der Stadt is the teachers” and
pupils’ editors, permitting a range of
user-parameters to be set. Chief amongst
these is the facility that will require users
to enter complete answers to cues on
screen, not merely to select the number
corresponding to an answer string.

Data can also be updated - by pupils too -
so that they could research the current
prices of items for sale in the shops and,
by entering these via the editor, work
from up-to-date and real information.
The same is true of general data about
the country concerned (currency
symbol, exchange rates and so on),
which means that for French users the
shopping trip could be set in Corsica or

Beebug May 1992

Zaire as well as Metropolitan France, for
example.

Amusingly, the screen colour for the
pupil editor changes to red “so that the
teacher can see from a distance when it is
being used”!

CONCLUSIONS

It is a pity that states reached in the
simulation cannot be saved. On the plus
side, decisions have to be taken when a
bus is late or there is the option to
purchase the ticket on the train: further
realistic language practice.

The documentation is adequate, if a little
slim. The program is easy to use, and
could spawn a number of related
activites. As such, it deserves to have a
specific and well defined place in
modern language and continuing
education classes for some time to come.

TELETEL FOR MASTER 128
Product Teletel
Supplier Scottish Council for
Educational Technology,
74 Victoria Crescent,
Glasgow G12 9JN.
Price £15.00 ex. VAT (Parts 1, 2 & 3).

£5.00 ex. VAT (Metz data).

£5.00 ex. VAT (Dieppe data).

£6.00 ex. VAT (Dieppe
extended data file).

Teletel is the French equivalent of Prestel,
and is widely acknowledged as being
superior to the BT service, which - in
fairness - pioneered videotext in this
country in the early 1980s.

The second package to be reviewed this
month is a simulator for Teletel. Despite

35

BEEBUG Education - Modern Languages

the existence of Comms packages (such
as the excellent ArcComm II for the
Acorn 32 bit range, which specialises in
European terminals), it would be
financially prohibitative to provide
pupils with regular access to the real
network. Hence a package - with
associated training and sample material -
to emulate it.

The complete SCET package consists of
two programs - the simulator itself and
an editor, sample databses (on Dieppe
and Metz) and an in-service training
manual on the use of the editor.

Loading of the databases is
straightforward. They then behave much
as the real Teletel service itself, although
clearly not so many services can ever be
simulated (there are over 12,000). The
package nevertheless gives a clear and
easy to use idea of what it is like to use
the database.

TECHNICALITIES

In each of the programs nearly all those
operations that you would wish to alter
can be easily set to ensure smooth
operation: printer configuration, time
delay for display, access to relevant O.S.
commands from within the program. To
make full use of the suites, access to a
network, a mouse and twin 80 track disc
drives is mandatory. In any case, you
must have at least a Master and 80 track
drives.

THE EDITOR

Designed to handle about 100 frames to
be stored on a single disc (a twin disc
system is envisaged), this part of the
software can actually log onto Teletel
(though for this a separate (Aldoda)

36

ROM must be purchased and installed)
to capture frames. These are then to be
edited - thus providing an emulation of
the more complete service. As with the
real thing, frames can be routed and
linked, the system can be made fully
interactive - only the graphics and scope
of what the user can access will be
different.

The documentation for this part of the
package is the clearest and most
satisfactory, though it lacks an index.

PLACE IN THE CURRICULUM
Teletel is a well thought out and easy to
use - if specialist - package. Plenty of
resource sheets, cribs, appendices with
background and technical information
have been assembled, and a realistic and
accessible short cut to experiencing
aspects of European culture as well as the
world of comms has been found.

Those using this package will be able to
practice research skills and make the
sorts of inquiry, perhaps, that would
equip them to update En Ville (current
prices, for example). Many of the
procedures and skills in handling this
software effectively lie in the domain of
Information Technology as much as
language; at the same time, the appeal of
the package is slightly more limited than
that of the shopping simulations.

To sum up: a lot of thought and
development time has clearly gone into
both the products under review this
month; as specific answers to specific
requirements in the secondary
curriculum, they are worthy of serious
consideration.

@
Beebug May 1992

Mr Toad’s Machine Code Corner 2
This month our slippery friend looks at screen printing.

In some issues, Machine Code Corner will
be aiming to treat topics aimed frankly
more at the beginner than at the
experienced programmer, and this
month’s column is one such: Mr Toad
wants to look at printing from assembly-
language.

Some simple applications may not need to
print to the screen, but most do. Many
need their own screen, or screens, but
these are no harder to implement than
simple prompts once your print-routine is
set up. For any normal purposes, the MOS
routines OSWRCH and OSASCI are quite
fast enough; these take care of a huge
amount of work for you, such as
expanding bytes in some modes to take
account of colour, keeping track of the
cursor position and scrolling.

Generally speaking, you place your data in
a neat section of the listing (Mr Toad
prefers the end), heading each section with
a label and ending with an end-marker
byte, which is most likely to be zero,
though we shall see in a moment that there
are other possibilities, for example:
.toadText
BEQUS*Mr Toad rules crOaK®:BRK
Note that BRK assembles a zero, since zero
is the opcode for BRK; this is shorter than
EQUB 0.

Now choose OSWRCH or OSASCI for
your print routine. The latter does a new
line as well as a carriage-return when it
gets a &0D sent to it, and so is generally
handier. A, X and Y emerge unchanged
after the call, but the flags (P) cannot be
guaranteed to do so, which is a nuisance.
At the top of the listing most people like to
put oswrch=&FFEE or osasci=&FFE3, as
labels are easier to remember. Pick a couple
of page-zero addresses - I like to use &BO0 to
&BF, as these are free for transitory use.
Write something like: printLo=&B0 (or
wherever), printHi=&B1. The actual print-
routine is like this:

Beebug May 1992

.print

STY printHi

STX printlo

LDY #&FF

.loop

INY

LDA (printlo),Y

PHP

JSR osasci

PLP

ENE locp

RTS
You push the flags so that when the LDA
picks up the end-marker and the zero-flag
is set, the PLP guarantees that it is still set
after the call to OSASCI - which may have
corrupted it - so the BNE fails and the
routine exits.

By beginning with Y=&FF we can tuck the
INY away at the start of the loop where its
effect on the flags won't upset things; this
is worth remembering in other kinds of
loop, too. It's not the only way, of course.
The end- marker, zero, is sent to OSASCI
but is ignored. If you don’t want the end-
marker to be ‘printed’, you have to write a
BEQ after the LDA as well as a JMP at the
end:

.loop

INY

LDA (printlo),Y

BEQ end

JSR osasci

JMP loop

.end

RTS
This is untidy. JMP takes three bytes, but
BRA (only available on the Master) will take
an extra cycle if a page-boundary is crossed,
s0 Mr Toad invariably jumps. What use has
a reptile for a BRA, anyway?

Call your print routine by putting the
address of the label indicating the start of
your text into XY:

LDY toadText DIV &100

LDX toadText MOD &100

JSR print

37

Mr Toad's Machine Code Corner 2

The page zero locations don’t need to be
preserved between calls. There are other
approaches but this method is as good as
any.

There are times when we don't use zero as
an end-marker, however, even though this
then involves a CMP# instruction in the
print loop. If you are only printing short
prompts throughout the program, &0D is a
handy marker: you get a new line after
each prompt. In such cases, though, Mr
Toad often uses a 7 as marker, since a nice
beep is produced each time. The loop is
now as follows:

. loop

INY

LDA (printLo),Y

JSR osasci

CMP #&0D \ (or #7)

BNE loop

RTS

When we go into sideways ROM headers,.

we shall see that there are cases when
neither zero nor &0D nor 7 will do - here
Mr Toad always uses &1B, which does
nothing when ‘printed’; a 6 (enable VDU)
is also harmless.

Say you want to begin a completely new
screen. The new screen had better set the
desired mode first; send &16 to OSASCI,
then the mode - let’s say, shadow mode 135.

.newScreen

EQUB &16:BQUB &87 \ (i.e. 135)
Note that mode 135 on the Master looks
the same as mode 7 on the Beeb.

Now call your print-routine as above. Bingo
- a nice clear mode 7 screen with the cursor
at 0,0. We can do a TAB next using EQUB
&1F followed by the column, then the row
(as with TAB). Want page-mode on? Include
EQUB &0E. A beep? EQUB 7. Printer on or
off at some point? EQUB 2 or 3. Thus,
armed with nothing more esoteric than
pages 181 to 187 of the Master’s Welcome
Guide (the VDU codes), any or all possible
effects can be achieved more easily and
neatly than in Basic.

If the screen is mode 7 you can include
colour codes in the listing with the

38

function keys, as in Basic. Don't forget the
end-marker.

AND FINALLY
You could include the following
subroutine in your listing if
OSWRCH/OSASCI are called often:
.oswrch
PHF
JSR &FFEE
PLP
RTS
Very structured, is that.

For those with a Spectrum, good 280
assemblers allow DEFB (like EQUB)
followed by any number of bytes separated
by commas. Why couldn’t we have that?
After all Basic's DATA allows it. Still, you
can tidy up listings by using EQUW for 2
bytes of data or even EQUD for four:
EQUW &8716 sets mode 135, as EQUW
assembles the bytes in reverse order.

You can kill the cursor (VDU 23,1,0;0;0;0;) -
which Mr Toad always does because
nothing looks scruffier than a white flashing
line in the middle of a lovely artistic screen -
with EQUW &0117 (that’s 23,1), EQUD
0:EQUD 0 (that’s eight noughts).

EQUW followed by a one-byte number
assembles that number followed by a zero
- handy for the old end-marker: EQUW 7 =
‘beep and end’, or EQUW &0D = ‘new line
and end’.

Now for this month’s quiz - what does this
lot do?

.beebugad

EQUW &8716:BEQUW &0117

EQUD 0:EQUD 0

EQUW &041F:EQUW &070B

EQUB &88

EQUS"Beebug kills all known bugs"

EQUW &0D
The sender of the first wrong entry opened
wins a weekend in Bognor with Mr Toad's
children.

Next month: bolting a dynamo onto your

exercise-bike - how to cut down your electricity
bills and get fit as you program. B

Beebug May 1992

C/ BEEBUG

Q.
R

This month we come to the final part of
R.W. Smith’s procedures and functions.
These deal with sideways RAM and will
give you the opportunity to explore,

by R.W, Smith

Function/Procedure Library (11)

from Basic, the extra power it supplies.
This has been a substantial contribution

and we hope that you have found it
useful.

THE FUNCTION/PROCEDURE LIBRARY (PART 11)

Routine 30: Sideways memory access:
Get character

Type: FUNCTION

Syntax: FNgc(K%,N%) Purpose:

To call characters from

sideways memory into

working memory.

K% is the sideways memory

absolute byte number. N%

is the sideways memory

bank number.

See later routines for

placing the data into

sideways memory.

Uses FNpk

Parameters:

Notes:

Related:
Example:
10 N$=FNgc (8020, 4)

Related: Uses FNpk
Example:

10 K%=48010

20 N%=4

+ 30 Y%=FNgn(K%,N%)

Routine 31: Get integer from sideways

memory.
Type: FUNCTION
Syntax: FNgn(K%,N%)
Purpose: To get an integer from

sideways memory and to
place it into an integer
variable.
Parameters: K% is the sideways memory
absolute byte number. N%
is the sideways bank
number.
Creates the integer from
four bytes as placed into
sideways memory by
Routine 40

Notes:

Beebug May 1992

Routine 32: Get a string from sideways

memory.

Type: FUNCTION
Syntax: FNgs(K%,N%)
Purpose: To get a string from

sideways memory and place
it in a string variable.
Parameters: K% is the sideways memory
absolute byte number. N% is
the sideways bank number.

Notes: The string must be ended
with a carriage return
character (ASCII 13) when
placed into memory.

Related: Uses FNgc

Example:

10 K%=&8020
20 N%=5

30 N$=FNgs(K%,N%)

Routine 33: Pick a byte in sideways

memory.
Type: FUNCTION
Syntax: FNpk(K%,N%)
Purpose: To read a byte from

sideways memory using the
Operating System routine -
OSRDSC.

39

BEEBUG Function/Procedure Library

Parameters:

K% is the absolute address
in sideways memory. N% is
the sideways bank number.

Notes: None.
Related: Used by routine 30, 31 and
32.
Example:
10 K%=48000
20 N%=6

30 Y%=FNpk(K%,N%)

Routine 34:

Type:
Syntax:
Purpose:

Parameters:

Notes:

Related:

Example:

Poke a block of bytes into
sideways memory.
PROCEDURE
PROCpo(K%,N%,L%)

To place a block of bytes into
sideways memory using
OSWORD 66. The block can
be of varied data.

N% is the address in
sideways memory which
must be in absolute notation
- &8000 to &BFFF. K% is the
sideways bank number. L%
is the number of bytes in
the block.

The block of bytes to be
transferred must be in free
memory starting at &B00.
Uses PROCpp: Used by
routine 39 and 40

10 A$="This is the name of the game"
20 S&BO0=AS
30 PROCpo(5,&8000,LEN(AS))

Parameters:
Notes:
Related:
Example:

which must be identified
after the transfer. See later
routines which deal with
this.

As Routine 34.

None.

Uses PROCpp.

10 PROCpi (5, &8000,20)
20 AS=LEFTS(5&B00,20)

Routine 35:
Type:

Syntax:
Purpose:

40

Pick a block of bytes from
sideways memory.
PROCEDURE
PROCpi(K%,N%,L%)

To transfer a block of bytes
from sideways memory to
free memory starting at
&B00. Uses OSWORD 66.
The block of bytes can be
string or numeric data

Routine 36:

OSWORD routine for
block transfer to/from
sideways memory.

Type: PROCEDURE

Syntax: PROCpp

Purpose: To use the OSWORD
Routine to pick or poke
blocks of bytes from free
memory to sideways
memory.

Parameters: None. Taken from related
routines.

Notes: The routine uses absolute
or pseudo addressing.

Related: Used by PROCpo, PROCpi,
PROCpop, PROCpip.

Routine 37: Poke block to sideways
memory using pseudo
addressing.

Type: PROCEDURE.

Syntax: PROCpop(4,N%,L%)

Purpose: As routine 34 but using

pseudo addressing.

Parameters: Pseudo address - N% being

Notes:

Related:

from 0 to &FFBF, L% being
number of bytes in block.
The first parameter is
always 4 indicating that the
first byte 0 is in bank 4.
Pseudo addressing mode
must have be set within
program by *SRDATA N%
Uses PROCpp

Beebug May 1992

BEEBUG Function/Procedure Library

Example:
10 *SRDATA 5
20 A%="This is the Data Block"
30 $&B00=AS
40 K$=4
50 N%=&100
60 L¥=LEN(AS)
70 PROCpop (K%, N%,L%)

Routine 38: Pick block to sideways
memory using pseudo

addressing.
Type: PROCEDURE
Syntax: PROCpip(K%,N%,L%)
Purpose: As routine 35 but using

pseudo addressing.
Parameters: As routine 37.

Notes: Pseudo addressing mode
must have been set using
*SRDATA.
Related: Uses PROCpp.
Example:
10 *SRDATA 5
20 K%$=4
30 N%=£100
40 L%=30

50 PROCpip(K%,N%,L%)
60 A$=LEFTS($&B00,L%)

Routine 39: Put block of string data
into sideways memory.

Type: FUNCTION
Syntax: FNpokes(K%,N%,N$)
Purpose: Routine 34 can be used when

Parameters:

Notes:

Related:
Example:

function returns the next
memory byte address at
which the next block of data
commences.

K% is the bank number. N%
is the sideways absolute
address - &8000 to &BFFF.
N$ is the string or string
variable.

The string is placed in Free
memory at &B00 before
being stored. If the
parameter N% is used
repeatedly, it will not need
to be reset after each call if
used as the function call
variable.

Uses PROCpo.

10 N$=&8000

20 K%=4

30 AS="THIS IS THE FIRST STRING"
40 B$="THIS IS THE SECOND OF THE

STRINGS”

50 N¥=FNpokes (K%, N%,A$)
60 N%=FNpokes (K%, N3, BS)

Routine 40:

Type:
Syntax:
Purpose:

Put an integer into
sideways memory.
FUNCTION
FNpoken(K%,N%,L%)
To store integers into

-sideways memory.

Parameters: K% is the bank number N%

is the absolute memory

the length of the strings to be

put in sideways memory is

fixed. When variable length
strings are to be stored, it is
necessary to make provision
for the length of the string to
be available when recalling

from memory. This routine

adds the length of the string

as the first character to the
string before storing into
memory. Additionally the

Beebug May 1992

address. L% is the integer or
integer variable.

The integer is placed in free
memory at &B00 before
storing. The function returns
the next sideways memory
address.

Uses PROCpo

Notes:

Related:
Example:
10 K%=4
20 N%=58000

41

BEEBUG Function/Procedure Library

30 7%=1234567
40 Y¥%=890123
50 N%=FNpoken (K%,N%,Z2%)
60 N%=FNpoken (K%, N%, Y%)

Routine 41: Get a variable length string
from sideways memory.

Type: FUNCTION

Syntax: FNpicks(K%,N%)

Purpose: ~ To recall a variable length
string from sideways
memory, placed there by
routine 39.

Parameters: K% is the bank number. N%
is the absolute memory
address

Notes: Uses free memory at &BO0O.
The memory address is not
updated during the function
and is the responsibility of
the programmer.

Related: Uses PROCpi

Example:

10 K%=4
20 N%=£8000

30 AS$=FNpicks (K%, N%)

40 N%=N% + LEN(2S) + 1
50 B$=FNpicks (K$,N$)

Routine 42: Get an integer from
sideways memory.

Type: FUNCTION

Syntax: FNpickn(K%,N%)

Purpose: To recall an integer from
sideways memory as placed
there by routine 40.

Parameters: K% is the bank number. N%
is the absolute memory
address.

Notes: Uses free memory at &B00.
Note that this routine is
complementary to routine
31(FNgn) and is included to
retain compatibility with
routine 41

Related: PROCpi

Example:

10 K%=4

20 N%=£8000

30 Z%¥=FNpickn(K%,N%)
40 N¥=N%+4

50 Y$=FNpickn(K%,N$)

30500 REM Sideways Memory Access.

30510 :

30520 REM Get Character from Sideways Me
mory.

30530 :

30540 DEFFNgc(_%, %) : =CHRS(FNpk(_%, %))
30550 :

30560 REM Get an Integer from Sideways M
| emory. '

(30570 DEFFNan(_%,"$)

) *&10000+FNpk (_%+2, "%) *&100+FNpk (_%+3, %
)
30590 :

30600 REM Get a String from Sideways Mem
ory.

30610 :

30620 DEFFNgs(_%,'%) : _$=""

30630 REPEAT: _S$= S$+FNgc(_%,'%): _$=_%+1
30640 UNTIL FNgc(_%,'%) =CHRS$13

30580 =FNpk(_%, %) *&1000000+FNpk(_%+1,"%

1

30650 =_$
30660
30670
30680
30690
30700
30710
30720
30730
30740
30750
OCpp:
30760 :
30770 REM Pick.
30780 :
30790 DEFPROCDi(_%,'%,_%):
|pp: ENDPROC
130800 :
30810 REM Sideways Memory Access Routine
Continued on page 46

REM Get Byte from Sideways Memory.
DEFFNpk (!&F6,Y%) : =USR (&FFB9) AND&FF

REM Poke & Pick Sideways Memory.

REM Poke.

DEFPROCDO(_$, *%,_%) : 2&80=128: PR |

ENDPROC :

?&80=0: PROC

42

Beebug May 1992

Direct Memory Access (1)

st I
by Alan Wrigley

course This month First

Course moves on to
a new topic. Direct memory access refers to
the practice of reading from, and writing
to, specific addresses in the computer’s
memory. Over the next couple of issues
we will consider why you might want to
do this, how to do it, and how you
decide exactly which part of memory to
access, though not necessarily in that
order since all three aspects are to some
extent bound up with each other.

Reading from a memory location is
sometimes referred to as “peeking”,
while writing to a location is known as
“poking”. Many dialects of Basic do in
fact have two keywords, PEEK and
POKE, which perform these very
functions. Generally they only operate
on one byte at a time and are therefore
somewhat limited in their usefulness.
However, BBC Basic has a more
powerful set of commands for memory
access, allowing you to read and write
strings and four-byte integers as well as
single bytes, as we shall see in a moment.

WHY ACCESS MEMORY
DIRECTLY?

Many Basic programs can perform their
duties quite happily without ever
needing to know what goes on in the
computer outside the space allocated to
the program itself. BBC Basic in
particular is a well-developed variant of
the language with many powerful
features that were missing in earlier
Basics; for example, with some older
versions of Basic, it was even necessary
to write directly to memory locations to
produce sound or graphics.

Beebug May 1992

Nevertheless, there are still many
reasons why a program might want to
address memory directly, and these will
gradually become apparent as this series
progresses.

INDIRECTION OPERATORS

First of all, though, we need to know
exactly how to access memory directly.
BBC Basic has a set of commands for this
purpose which are known as indirection
operators. The reason for this rather grand
piece of jargon is simply this: referring to
data held at a memory location is an
indirect reference to that data rather than
a direct one. For example, if your
program refers to a variable X% which
holds a value to be used by the program
(123 or -20, say), then you are using the
contents of X% directly. But if X% holds
the address of a memory location, such
as &701C, then you are using X% not as a
value itself but as an indirect reference to
the value held in that location (note that
memory addresses are normally referred
to in hex, as here). So an indirection
operator signifies “the contents of”
rather than “the value of”.

There are three indirection operators
available on the BBC micro. These
consist of the single characters ?, ! and §,
and they operate on a single byte, four
bytes and a string respectively. If you
need to refer to them verbally they are
known as query, pling and dollar. They
can all be used on either side of an
expression, i.e. for both reading from and
writing to memory, and they can operate
on either a constant or a variable. To take
a simple example, suppose that you
want to put a value of 123 into location

43

First Course - Direct Memory Access

&701C (don’t worry about why for the
moment), you would use the byte
operator as follows:

2&701C=123
and to read the value:

val%=?&701C
Equally, you could specify the location in
the form of a variable:

lock=&549A

?loct=1
i.e. the location is &549A, and a value of
1 is placed at that location. Because we
are using the query operator here, the
range of values possible is 0 to 255
(which is the maximum value that can be
held in 1 byte).

Before we go on to discuss the other
indirection operators, we can explore the
use of query with an example or two.
When you type in a Basic program, or
load one from disc, it is stored in
memory, starting at PAGE (if you're not
sure of the significance of PAGE, see First
Course, Vol.10 No0.9). This means that it is
possible to use the indirection operators
to look at the way the program is
actually stored in memory. This is a
complex topic whose full details are
beyond the scope of the present article,
but it does offer a useful way to test the
use of the indirection operators. First of
all, type in the following simple program:

10 PRINT “"Hello"

20 END

A Basic program in memory starts with a
carriage return (ASCII 13) marking the
beginning of the program. This is
followed by the first line, starting with
two bytes which hold the line number
(high byte first), a further byte giving the
total number of bytes taken up by that
line, and then the contents of the line
itself, with keywords tokenised, and a
carriage return to end the line. This is

44

repeated for every subsequent line in the
program, and finally the end of the
program is signalled by a byte of 255.
The function TOP will return the address
of the first byte above the end of the
program, so TOP-1 should contain 255. If
you type in:

PRINT ?(TOP-1)
255 should be returned as the result. -
Now type in the following:

?(TOP-1)=123
which places a value of 123 in (TOP-1).
You have now interfered with the end-of-
program marker, so if you try to list the
program you will get a “Bad program”
error. Restore the marker with:

?{TOP-1) =255
and you can list it properly again.

If you have typed in the program
correctly (i.e. with the spaces exactly as
shown), the H of “Hello” should be
located at PAGE+8. Type:

? (PAGE+8) =74
and list the program again; you should
now see that line 10 is listed as:

10 PRINT *Jello"
because the value of 74 that you have
inserted into that location is the ASCII
code for J.

Note that your programs should never be
written in such a way that they modify
themselves - this is extremely bad
programming practice. We have only
included this example here in order to
demonstrate the use of indirection
operators.

If you are using a variable as the operand
to the query operator, then there is a
useful extension to the syntax which
allows you to add an offset to the
variable. For example, whereas ?loc%
accesses the contents of loc% as we have
seen, loc%?1 refers to the contents of

Beebug May 1992

First Course - Direct Memory Access

loc%+1, loc%?2 to the contents of loc%+2
and so on. This is a simpler way of
saying ?(loc%+1), ?(loc%+2) etc. This
comes into its own when the offset itself
is a variable, as in:

loc%?offset’
This provides the means for referencing
tables of data in memory, where the
offset of the byte required is calculated
elsewhere in the program. For example,
you could read every tenth byte of a 100-
byte table as follows:

FOR offset%=0 TO 99 STEP 10

PRINT loct?offset¥

NEXT

A thoroughly practical example of using
an indirection operator in this way was
the movedown routine for the model B
described in the Vol.10 No.9 First Course
referred to above. To recap, this was
designed to move a program down in
memory once loaded to allow more space
for it to run (if you are unsure about the
reasons for doing this, you should refer
to the article). The routine programs a
function key to move the program down,
reset PAGE to a lower value, and run the
program at the new value of PAGE. The
actual code given in Vol.10 No.9 used the
pling operator to move the program by
four bytes at a time, but we can just as
easily do it one byte at a time using the
query operator. To move it down from
the current value of PAGE to a new value
of, say, &1400 we would use:

FOR A%=0 TO (TOP-PAGE)

A%261400=A%?PAGE

NEXT

The length of the program is returned by
(TOP-PAGE), and so A% is being used as
an offset starting at zero and going up to
the program length. Each time through
the loop, the value at (PAGE+offset) is
transferred to (&1400+offset), which

Beebug May 1992

results in the entire program being
moved down to start at &1400. Once
PAGE has been set to the new value, the
program can be run just as if it had
always been there.

FOUR-BYTE VALUES
Being able to insert a single byte into
memory, and read from a single location,
is very useful for a number of purposes.
However, BBC Basic, unlike some other
dialects of the language, can handle four-
byte integer variables with potential
values far greater (-2147483648 to
+2147483647) than can be placed into a
single byte. It would therefore be
extremely useful to be able to put a
whole four-byte integer into memory at
one go, and this is the purpose of the
pling operator. It is used in exactly the
same way as query, as for example:
110c%=2000
but in this case the value is stored as four
consecutive bytes starting at loc%, with
the least significant byte first. Note that
the value is always stored as four bytes
when pling is used, even if it could have
fitted into one byte (i.e. 255 or lower).

Pling can also make use of the same
syntax extension as query to enable
offsets to be used. This is done in exactly
the same way;, i.e.:

loctloffset=1234

val¥=loct!offset$

You can try out the use of pling with the
following program:

10 DIM loc% 3

20 !loc%=587654321

30 FOR i%=0 TO 3

40 PRINT loc$?i%:NEXT
You should get the values 177, 104, 222
and 58, representing the values held in
the four bytes starting at loc%. These
values do not make a lot of sense at first

45

First Course - Direct Memory Access

sight, but if you change line 20 to:

20 !loc%=&3ADE6SB1
(which is the hex representation of
987654321) and force the values to be
printed in hex by altering line 40 to:

40 PRINT ~loc%?i%:NEXT
you will get B1, 68, DE and 3A. You can
immediately see that these are the four
bytes of the number in reverse order.
This is why you will usually find it very
much easier to work in hex when
handling four-byte numbers. Note the
use of DIM in line 10 to reserve a block of
memory for loc% - we will discuss how
and when to do this later in the series.

Now alter line 20 to:

20 !loc%=25
and run the program again. Now you will
see that the four bytes pointed to by loc%

contain 25 (or &19 in hex), 0, 0 and 0. This
demonstrates the point that a single-byte
number still occupies the full four bytes.

There is much more we could say about
pling, and in the course of these articles
we will cover a number of uses for it, but
just for the moment we will finish this
month by looking again at the
movedown routine referred to above. We
used query to move the program down a
byte at a time, but using pling is much
more efficient as you can move four
bytes at a time. All you need to do is
substitute one operator for the other and
alter the loop to increment by four, as
follows:

FOR A%=0 TO (TOP-PAGE) STEP 4

A%161400=A%! PAGE :

NEXT B]

BEEBUG Function/Procedure Library (continued from page 42)

30820 : ?
30830 DEFPROCpD

30840 !&81=£B00: ?&85=__%:
‘%: ?7&89="% DIV 256: ?&87=_%

30850 A%=66: Y%=0: X%$=480: CALL&FFF1
30860 ENDPROC

| 30870 :

130880 REM Pseudo Addressing Mode Poke.
30890 -

30900 DEFPROCpop(_%, ‘%, _ %):
PROCpp: ENDPROC

30910 -

30920 REM Pseudo Addressing Mode Pick.
30930 :

30940 DEFPROCDip(_%, %
PROCDD: ENDPROC

30950 :

30960 REM Put Data to Sideways Memory. |
30970 :

30980 REM String to Sideways Memory (Abs
olute Addressing)

30990 -

31000 DEFFNpokes(_%, %, _S)

31010 $&B00=CHRS(LEN(_$))+_$: PROCpo(_%,

2&80=192: |

%): 2680=64:

1586=0: 2&88= |

'3, LAN(_§)+1) |
31020 ="% +LEN(_$)+1 !
31030 :

31040 REM Integer to Sideways Memory (ab |
solute Addressing) '
i:3105[} :

31060 DEFFNpoken(_%,- *%,__%):!&B00 = __%
31070 PROCpo(_%, '%, 4): ="%+d

31080 :

31090 REM Get a variable length string
from Sideways Memory

31100 :

31110 DEFFNpicks{_%,'%)

131120 PROCPi(_%, %,1)

31130 “%="%+1:_ $=7&B00

31140 PROCPi(_%,'%,_ %)
31150 ?(&B00 +__%)=13
31160 =$&B00

31170 -

31180 :

31190 DEFFNpickn(_%,"%)
31200 PROCPi(_%, '%.4)
31210 =!&B00

31220 : B

46

Beebug May 1992

512

c This month
Q we’ll continue
our look at the
outside world
for a while; after all the weather’s
steadily improving and the nights are
getting lighter.

CHANGING TIMES

It's becoming apparent from my postbag
that a steadily increasing number of
‘new’ 512 users are reading the Forum,
which probably means that a
proportional number of existing readers
must be upgrading their hardware and
moving on.

This is hardly startling or unexpected,
but it has been made more pointed by the
fact that a good many of the query topics
I've had recently are items that have long
since been covered in 512 Forum, some as
long ago as two or three years.

As I mentioned last month, things aren’t
standing still in the PC world, and
naturally it’s just the same for Acorn
users too. Over time, some BBC
micro /512 users migrate to later systems,
either to the Archimedes or as in quite a
number of cases I've heard of, to a PC.

In both upgrade paths there’s plenty to
cater very well for the needs of 512 users,
regardless of whether they see themselves
primarily as DOS or BBC enthusiasts.
Given the wealth of PC software, for 512
owners who have spent most of their time
in DOS rather than BBC mode, the move
to a PC can only improve all their existing
DOS facilities and add a vast number of
new opportunities.

At the same time, many of these users
will have some of their own BBC Basic

Beebug May 1992

+ 512 Forum

by Robin Burton

programs which they don’t want to lose.
These will have been previously catered
for either by the BBC micro itself, or
perhaps by 512BBCBASIC. Even for
those with quite an extensive Basic
program library however, a switch to M-
Tech’s PC wversion, BBCBASIC(86)
(reviewed in the Forum in early 1989 and
similar to 512BBCBASIC) offers a simple
and virtually painless transition.

For those who choose the other obvious
upgrade path, the support for BBC Basic
and even machine code programs and
ROM software is well known, while the
Archimedes PC emulator can cater for
DOS needs, although it must be
acknowledged that it’s pretty slow, even
compared to the humble 512. Still, it’s
not expensive and it does do the job.
However, as you might have seen, DOS
options for Archimedes users have now
been dramatically enhanced by the
recent announcement of the 386SX
based Archimedes expansion card by

Aleph Ore.

The processor clock speed is 20MHz, so
this upgrade now offers the chance of
‘real” PC performance for the
Archimedes. While it may not be quite as
fast as an equivalent speed 386 PC, the
expansion board will obviously show a
clean pair of heels to the 512 since it is, in
effect, a much faster co-processor than a
512 attached to a much faster host than
an eight-bit BBC micro.

However, on the negative side it must be
said that at a price of £495 for a 1 Mb
board and £625.00 for 4 Mb of RAM
(prices ex. VAT), the expansion board is
by no means the bargain of the century.
In fact the expansion board alone is a
substantial proportion of the cost of a

47

512 Forum

complete 386 PC system, without
considering the cost of the Archimedes.
For someone who mainly uses DOS
therefore, a PC might still be a more
attractive proposition, given that
BBCBASIC(86) can be purchased for a PC
at well under £100.00 to fill in the only
obvious gap.

UPGRADING?

Don’t get the idea I'm particularly trying
to recommend an upgrade to a PC. Even
given what I've said above, plus last
month’s comments about current PC
processor power and cost, anyone who
has seen Microsoft Windows (even 3.1)
will know that it’s still not a patch on the
RISC OS Desktop. Added to that, there
are of course a great many improvements
and additions to many aspects of the
system in RISC OS 3 too.

The best that can be said for MS
Windows in my opinion, bearing in mind
that in general I'm not a mouse fan no
matter who breeds it, is that the software
can only improve with time, but it still
has a fair way to go.

Of course the other ingredient in making
a decision on which way to go, if or
when you feel it’s time to upgrade, is the
range and price of software for your
intended new system. Certainly the
range of applications available for a PC
isn’t a problem as there are literally tens
of thousands of packages, but while the
price of some Archimedes software may
come as a bit of an unwelcome surprise
to long time BBC users, they‘re actually
generally quite reasonable. By contrast
the prices asked for certain PC packages
are so high it’s difficult to take them
seriously.

As an example, I recently noticed in a PC
magazine that one particular software
package (for a single user system by the
way, not a site licence) is over £1250.00.

48

Still, it was the April issue of the
magazine, so maybe that’s the
explanation!

As I said, I'm not trying to promote PCs
in particular as the best upgrade path for
512 users, nor the Archimedes range for
that matter either. The justification for
this discussion is simple. It’s no good
adopting the ostrich mentality, thinking
that if you bury your head in the sand
and ignore progress it will go away. We
haven’t looked at general developments
in 512 Forum very frequently in the past,
if at all, but obviously it is an area of
interest to at least some 512 users. That’s
why it was featured as part of last
month’s Forum and again now.

Having been prompted to think about
possible upgrades by some of my recent
mail, the truth is that I find one particular
aspect ironic and, to be honest, just plain
amusing. After all, the single group of
Acorn users least well served (i.e.
ignored) for years, both by Acorn and its
hundreds of third party suppliers (with
so few exceptions you can count them on
one hand) now find themselves ‘spoilt
for choice” when it’s time to consider an
upgrade.

That there are two completely different
routes to choose from, both of which
offer very simple and direct growth paths
for much if not all of a user’s existing
software is remarkable if not unique.
Perhaps there is justice after all.

As to advice, the only suggestions I'd
offer to would-be upgraders from the
BBC/512 is common sense. First, decide
exactly what gains you expect from the
change and decide objectively (not
forgetting costs) whether it’s justified
right now, or whether you should wait a
while longer. When you do decide it’s
time to do something choose the growth
path that you think best suits not only

Beebug May 1992

512 Forum

your current plans, but your likely future
needs too.

Don't forget to add into your decision list
associated factors, such as the range and
cost of the types of application that
interest you most, the typical cost of extra
hardware you might want to add sooner
or later, such as a hard disc, a scanner, a
digitiser, CD-ROMs, MIDI equipment
and so on. The initial hardware cost of
upgrading is most certainly not the only
item to weigh up. The same extras often
don't cost the same for different systems.

CONSTRAINTS

Naturally, for most 512 users who sell up
and move on, there’s another, usually
existing BBC micro user, who buys the
equipment and finds a completely new
world of opportunity opening up, with
usually a fair number of new problems
too. This changing user base poses a
problem for me too in the Forum, so I'm
going to ask you for your input.

My difficulty is that, while I've always
tried not to repeat topics previously dealt
with in the Forum, this inevitably gets
harder all the time. For one thing, this is
(I think) the thirty-eighth 512 Forum, so a
lot of ground has been covered over the
past four years. On top of this, the 512’s
software, especially the operating system
(but applications too for the reasons
given last month), and the hardware
(except for a memory expansion) is
pretty well static. In consequence the
new topics that continually crop up for
current systems don’t exist for the 512.

Another problem is that old hands are, by
definition, experienced, so it’s difficult to
find new items to interest them anyway.
At the same time new users are finding
things in the 512 or DOS as much of a
mystery as they once were to many of us.
Of course many of these ‘new user” topics
we've already covered in past issues.

Beebug May 1992

My difficulty therefore, is trying to find a
balance in the Forum. The ideal is that on
the one hand experienced users who
aren’t upgrading (yet) don’t become
bored, while on the other, new 512
owners can learn some of the things
which will help them get more out of the
system.

What I'd like you to do therefore,
whether you're a new user or not, is to let
me know the sort of things you’d like to
see in the Forum. Some of you will know
I've made similar requests from time to
time in the past, but let me offer some
guidelines.

One frequently repeated request is an up
to date software compatibility list. I
understand how useful this could be, but
such a list would take a lot of effort and
time to compile. It also assumes that the
necessary user input is forthcoming. It
usually isn’t, or at least not in enough
volume (or detail) to make a useful list of
a wide range of applications.

If anyone wants to contribute to such a
list, I'll publish the information in the
Forum in batches, but I can’t do it
without you. For this sort of exercise,
nothing is worse than single pieces of
information that arrive over a lengthy
period of time. Equally, the information
is virtually useless to others if it isn’t
complete.

The necessary information is obvious,
but all too frequently at least one vital
item is missing from what users tell me,
so I'll list the points which are needed if
details are to be useful to others.

Often a program isn’t given its full and
correct name, or there’s no version
number. If that part’s OK, the source of
supply (including shareware or public
domain outlets) or the correct name of
the publisher for commercial software

49

512 Forum

often isn’t included. Less vital, but useful
all the same, is the price of a package.
Very rarely have I been given that
information for commercial software.

Another point which others need to
know is whether a program runs in a
standard memory 512, or needs
expanded memory. Finally, very few
mention which version of DOS Plus
they’re using; it’s not much help if I to
have to guess whether it's 1.2 or 2.1.

QUICKIES

The final two points for this month are
old and well known facts for most 512
users. However, they are causing
problems again for a few new users.

It’s been quite a surprise to me to find
out just how many 512 owners have
recently purchased a board complete
with a copy of DOS Plus that turns out to
be version 1.2.

This means that the previous owner
simply hadn’t bothered to upgrade and
didn’t bother to mention it to the new
owner either, or perhaps didn’t even
know that there is a later version. There
is, it’s 2.1 and it can still be obtained from
Acorn Customer Services at Fulbourn
Road, Cherry Hinton, Cambridge, tel.
0223 245200.

If you’re still using 1.2 you should
upgrade. There’s no charge and

application compatibility will be much
improved.

Another old problem that’s catching out
a number of new users is the ‘Can’t find
command.com’ message on leaving an
application. This is easy to cure if you
know how, but many are confused
because they think that setting ‘PATH’
ought to fix it. It doesn’t.

First, make sure that COMMAND.COM
is in a current path, which means that it
must be on one of the discs that’s in the
system at the time you get the problem. If
this path isn’t the root directory of the
default (current) drive at the time, you
need to tell DOS where it is by using the
‘SET’ command.

For example, suppose you're running a
program from drive B:, but
COMMAND.COM is in the root
directory of drive A:. Before you run the
program that causes the problem, you
should issue the command:
SET COMSPEC = A:\COMMAND.COM

This tells DOS plus, no matter which disc
or directory you’re in at the time, that
COMMAND.COM should be loaded
from the root directory of drive A: when
required. If you haven’t sufficient space
on floppies for it, you can put
COMMAND.COM in the RAM disc
(which has speed advantages too) so long
as you remember to tell DOS about it
using ‘SET". B

Points Arising...Points Arising...Points Arising...Points Arising....

THE GAME OF ZEUS

(Vol.10 No.9)

In certain circumstances some blocks will
not disappear quite correctly. To overcome
this, add the following line to Zeus2:

2355 IF playfield%(CX%,CY%,0)<>CB% =0
Thanks to Albert Gardner for pointing
this out. The version on that month’s
magazine disc includes this line.

50

MUSICAL MUSKRATS
(Vol.10 No.10)
An error crept into the lines needed to be
added to the MUSTRAN program on
page 11 column 1. The correct line 220
should be:
220 REPEAT:PROCchoosesym:IF EP$=1 THE
N 230 ELSE UNTIL FALSE B

Beebug May 1992

Wordwise User's Notebook:
Making More of Markers

Chris Robbins adds some powerful features to Wordwise Plus.

One of the most powerful features of
word processing packages in general is
the ability to manipulate text in bulk;
moving whole sections around, copying
them, deleting them, and so on. In
Wordwise (WW) and Wordwise Plus
(WW+), blocks of text are marked by
pressing the function key {3 to put a
square blob on screen at the start and
end of a section to be manipulated.

Adequate though this is, it’s only
possible to work with one block or
section of text at a time. Wouldn't it be
nice to get round this, and have more
than just a measly two markers?

ADDITIONAL MARKERS

For WW+ users there’s no great difficulty
in implementing this; the segment
program at the end of this article (Marksb
on the disc) provides an additional 10
pairs of markers (numbered 0-9) which
can be used in much the same way as the
standard issue f3 variety. It makes use of
the little known but highly useful fact that
anything between Green (f1) and White
(f2) markers is treated as an embedded
command, so that although the extra
markers can be seen in Edit mode, they
do not affect either previewing or
printing. They have the added advantage
over standard f3 markers in that, like all
embedded commands, they are saved
with the text.

These extra markers have the form
fl<n>f2, where <n> denotes a numeric
character in the range 0-9. I've stuck to
this range for the sake of simplicity, but
there’s no reason why it can’t be

Beebug May 1992

increased (or reduced) by changing the
appropriate sections of the program.

USING THE PROGRAM

Having loaded the program into a suitable
segment, it can be invoked at any time
from Edit mode by holding down Shift
and pressing the appropriate function key
e.g. if loaded into Segment 0, then Shift-f0.
This will bring up the Main Menu which
gives four options; Set Markers, Delete
Markers, Action Markers, and Collect
Markers. If nothing takes your fancy you
can escape from this (as from all menus)
naturally enough by pressing Escape,
which will take you back to Edit mode.

Set Markers: Selecting this produces a
display of the known current settings of
the additional markers, whether one or
both of a pair are in use, or free to be
used. The emphasis on known is
important since the additional markers
can be manipulated just like ordinary
text and, for instance, deleted without
the marker system being aware of it. But
more of that later.

Assuming one or both markers of a pair
are available, pressing the appropriate
numeric key (0-9) inserts the associated
marker in the text at the current cursor
position and returns you to Edit mode.

Delete Markers: This option also
displays the known current settings.
Pressing a numeric key (0-9) removes all
the markers with the selected number,
thus clearing a marked section and
making the markers available for use
elsewhere. It also comes in handy for
removing the odds and ends of markers

51

Wordwise User's Notebook

that might be left over after a complicated
sequence of block edit operations.

Action Markers: This option brings up a
further menu providing facilities to Find,
Delete, or Copy blocks. No Mowve facility
has been included, since this would
mean yet more code, and can in any case
be achieved by a judicious application of
Copy followed by Delete. Simply select
the required operation then, when
prompted, the marker number, and the
operation will be performed.

Collect Markers: This, unlike the other
Main Menu options, isn’t so obvious, and
perhaps requires a little more explanation.

I mentioned earlier that any additional
markers left lying around in text are
saved when the text is saved. But, when
reloading a file containing these, they
won’t necessarily (if the Beeb has been
turned off in the meantime, for instance)
be known to the multiple marker system.
That’s where the Collect option comes in.
Selecting Collect, either after a cold start
using a saved file containing additional
markers, or at any time during editing,
will ensure that the status of any and all
additional markers is collected and made
known to the system.

Collect is also unlike the other options, in
that once collection is complete, it leaves
the cursor at the end of text, rather than
where it was found.

HOW IT WORKS

Apart from the additional markers
fl<n>f2, the program also makes use of
two other special embedded commands.

f1@f2 is used to mark the cursor position
during block operations so that it can be
restored to its rightful place in text once
an operation has been completed.

52

f1Bf2 is used to mark the positions of
any real WW+ markers during block
operations so that they can, if present,
also be restored.

Because of this you should be careful not
to leave the cursor or any WW+ markers
in text to be manipulated.

PROCEDURE DEFINITIONS

You’ll notice that all of the procedures
have been defined prior to the main body
of the program. This gives a slightly
faster program; of no great importance in
this application perhaps, but it's a point
worth bearing in mind when developing
your own segment programs.

INITIALISATION

When first invoked, by pressing Shift and
the relevant function key, the variables
used by the program are initialised, and

the first time used flag, U%, is set to

TRUE. When invoked subsequently, this
flag stops the variables from being re-
initialised.

If for any reason you need to re-initialise
the marker system, simply type:
:U%=FALSE

from Menu mode, but be aware that this
will also produce an acute attack of
marker amnesia. This is easily cured by
using the Collect Markers facility to find
and record any markers in the text.

BELLS AND WHISTLES

Perhaps I shouldn’t say this as it’s rather
tempting fate, but the program is
reasonably fail-safe. It would be possible
to include more error checking and
correcting, but at the cost of extra code,
and a slower program. I believe I've
achieved the right balance between
safety and size, but if you feel like
adding your own features, go ahead.

Beebug May 1992

Wordwise User's Notebook

For instance, as set up, the system works
on text in the main text area. An obvious
enhancement would be to make the
working area selectable at run-time.
Another extra might be a Delete All
Markers option. However, each extra
feature means more code and less space
for word processing.

I have, however, included one or two
bells and whistles, which strictly
speaking do nothing extra for the
program, except make it slightly more
interesting to use. Error messages are
displayed at the bottom of the screen for
a brief period in a contrasting display of
blue on white, and one of three possible
attention getting sounds; either the
standard VDU 7 beep, a gentle alarm, or
a real ‘wake-em-up!” effect. The required
sound is determined by setting N% to
either 0,1, or 2.

PROGRAM SIZE

The complete program as printed here
occupies some 5K bytes of WW+
workspace. I've also included two other
versions of the program on this month’s
disc. The first, MARKSA, has extensive
REMs to explain how it works. The
second, MARKSC has been compressed
as much as possible to save space and
run faster.

| IF U$=TRUE THEN GOTO main-program
U%=TRUE

F$=0

L%=0

5%=0

M%=0

[Mg=n

2%=0
G$=CHR$(2)
WS=CHRS (7)
C$=G$+'@'+W$
i B5=GS+"B"+W$

N#=0

GOTO main-program
.warning

IF N%=1 THEN GOTO beep
IF N%=2 THEN GOTO whoop
VDU7

ENDPROC

.beep

REPEAT

*FX214,4
*FX213,150

vDu7

*FX213,120

VDU7

TIMES 2

GOTO warning-end
.whoop

*FX214,1

REPEAT

1%=100

REPEAT
OSCLI(*FX213,"+STRS(I%))
| vDu7

| 13=1%+1

UNTIL I1%=120
TIMES 2
.warning-end
*FX214,7
*FX213,100
ENDPROC

.message
VDU31,39,23
VDU131,157,132
PRINT TS;
PROCwarning
TIME=0

REFEAT

UNTIL TIME=250
VDU31,?126,11
ENDPROC
.large-msg
REPEAT
VDU131,141

BRINT TS

[TIMES 2

ENDPROC
.space-line
PRINT

Beebug May 1992

53

Wordwise User's Notebook

VDU134

ENDPROC

.restore-cursor

CURSOR TOP

REPLACE C§,*"

ENDPROC

.exit

*Fx21,0

*FX138,0,27

*FX138,0,27
VDU23;11,255;0;0;0

*FX229,0

END

|ENDPROC

.set-and-value

A%=1

IF M%=(THEN ENDPROC

REPEAT

A%=A%*2

TIMES M%

ENDPROC

.not-found

E$=TRUE

T$="Marker "+MS$+" not found"
PROCmessage

ENDPROC

.find-marker

E$=FALSE

|FIND P$

IF EOT THEN PROCnot-found
ENDPROC

.test-marker

S%=0

PROCset-and-value

IF (F% AND A%) >0 THEN S%=S%+1
IF (L% AND A%) >0 THEN S%=5%+1
ENDPROC

.validate-markers
PROCtest-marker

IF S%=2 THEN GOTO validate-find

REPEAT

PROCf ind-marker

IF E%<>TRUE THEN S%=S%+1

IF E%=TRUE THEN GOTOQ validate-find-
restore

CURSOR RIGHT

TIMES 2
.validate-find-restore
PROCrestore-cursor

|IF S$%<>2 THEN PROCexit
ENDPROC

.set-first

F%=F%+A%

TYPE P$

PROCexit

ENDFROC

.set-last

L¥=L$+A%

TYPE P$

PROCexit

ENDPROC

.select-marker

PRINT

PRINT "Select Marker (0-9)*";
| REPEAT

!M%=GE.T

)IF M$>=48 THEN M3=M3-48
UNTIL M%$>=0 AND M%<=9 OR M%=27
IF M$=27 THEN PROCexit
M$=STRS (M%)

PS=GS+MS+WS

ENDPROC

.display-markers

PRINT

M%=0

REPEAT

PROCspace-line

PRINT “Marker "+STRS(M%)+* *;
PROCtest -marker

PRINT STR$(S%)+" set”

IF S%=0 THEN T$="No markers "+M$ ME=ME+1

IF S%=1 THEN T5="Only one marker "+M$ UNTIL M%>%

PROCmessage PROCselect-marker

PROCexit ENDPROC

.validate-find .set-markers

TYPE C$ CLS

CURSOR TOP T5=" Set Markers Menu"

S%=0 PROClarge-msg

54 Beebug May 1992

Wordwise User's Notebook

PROCdisplay-markers
PROCtest-marker

IF S%=0 THEN PROCset-first

IF S%=1 THEN PROCset-last
T$="Both markers "+MS+" already set"
PROCmessage

GOTO set-markers

ENDPROC

.delete-markers

CLS

o= Delete Markers Menu"
PROClarge-msg
PROCdisplay-markers

TYPE C$

CURSOR TOP

REPEAT

REPLACE P§,""

UNTIL EOT

PROCset-and-value

IF (F% AND A%) >0 THEN F%=F%-A%
IF (L% AND A%) >0 THEN L%=L%-2%
PROCrestore-cursor g
GOTO delete-markers

ENDPROC

.mark-real

TYPE C$

CURSOR TOP

B¥=0

REPEAT

FIND MARKERS

IF EOT THEN GOTO mark-real-loop
B%=E%+1

DELETE AT

TYPE BS

.mark-real-loop

UNTIL EOT

ENDPROC

.restore-real

IF B%=0 THEN ENDPROC

S%=0

CURSOR TOP

REPEAT

FIND BS

IF EOT THEN GOTOQ restore-real-loop
S%=5%+1

DELETE AT 3

IF S%<3 THEN FKEY3

.restore-real-loop
UNTIL EOT

ENDPROC
.mark-block
CURSOR TOP

REPEAT
PROCEind-marker
DELETE AT 3

FKEY3

TIMES 2

ENDPROC
.copy-block

CLS

T Copy Marked Block"
PROClarge-msg
PROCselect-marker
PROCvalidate-markers
PROCmark-real
PROCmark-block
PROCrestore-cursor
FKEY9

TYPE C$

CURSOR TOP

REPEAT

FIND MARKERS
DELETE AT

TYPE PS

TIMES 2
PROCrestore-real
PROCrestore-cursor

PROCexit

ENDPROC

.delete-block

CLS

oo Delete Marked Block"
PROClarge-msg

PROCselect-marker
PROCvalidate-markers
PROCmark-real
PROCmark-block
DELETE MARKED
PROCrestore-real
PROCset-and-value
F$=F%-2A%

L3¥=L%-2%
PROCrestore-cursor
PROCexit '

Beebug May 1992

55

Wordwise User's Notebook

ENDPROC

.find-block

CLS

T4=" Find Marked Block"
PROClarge-msg
PROCselect-marker
PROCEind-marker

PROCexit

ENDPROC

.action-markers

CLS

TS=" Action Markers Menu"
PROClarge-msg

PRINT

PROCspace-line

PRINT * 1 Find Marked Block®
PROCspace-line

PRINT " 2 Delete Marked Block"
PROCspace-line

PRINT " 3 Copy Marked Block"
PROCspace-line

PRINT "ESC Edit Mode"

PRINT

PRINT "Please enter choice ";
REPEAT

R%=GET

IF R%>=48 THEN R%=R%-48

UNTIL R%>0 AND R%<4 OR R%=27
IF R%=27 THEN PROCexit

IF R$=1 THEN PROCfind-block
IF R%=2 THEN PROCdelete-block
IF R$=3 THEN PROCcopy-block
ENDPROC

.collect-markers

F$=0

L%=0

T$="Looking for markers - please wait"
PROCmessage

CURSOR TOP

REPEAT

FIND GS

IF EOT THEN GOTO collect-end
CURSOR RIGHT

M$=VAL (GCTS)

IF EOT THEN GOTO collect-end
IF M%>9 THEN GOTO fl-search
M$=GCT$

IF MS<>WS THEN GOTO fl-search

PROCset-and-value

IF (L% AND A%)=0 THEN GOTO fl-first-

check

T$="Too many markers "+STRS(M%)+" (15
spaces) "

PROCmessage

T$="Looking for markers - please wait"

PROCmessage

GOTO fl-sedrch

.f1-first-check

I%=(F% AND A%)

IF I%=0 THEN F%=F%+A%

IF I%<>0 THEN L%=L%+A%

.f1-search

UNTIL ECOT

.collect-end

PROCexit

ENDPROC

.main-program

vDU23;11,0;0;0;0

SELECT TEXT

CLS

*FX229,1 _

TS=" Multiple Markers Main Menu*

PROClarge-msg

FRINT

PROCspace-line

PRINT * 1 Set Markers"

PROCspace-line !

PRINT * 2 Delete Markers®

PROCspace-line

PRINT " 3 Action Markers"

PROCspace-line

PRINT * 4 Collect Markers"

PROCspace-line

PRINT "ESC Edit Mode"

PRINT

PRINT "Please enter choice *;

REPEAT

R%=GET

IF R%>=48 THEN R%=R%-48

UNTIL R%>0 AND R%<5 OR R%=27

IF R%=27 THEN PROCexit

IF R%=1 THEN PROCset-markers

IF R%=2 THEN PROCdelete-markers

IF R%=3 THEN PROCaction-markers

IF R%=4 THEN PROCcollect-markers B

56

Beebug May 1992

Hlﬂ% HINTOSW HIELSW HINTS

and

75, AR

Please keep sending in your hints on anything
relevant to the BBC and Master computers. Don't
forget, we pay for all hints we publish.

TEXT FILES VERSUS TEXT TO BASIC
N.PToft

Without wishing to diminish Jack Phillips’
ingenious Text to Basic program in the March
BEEBUG, may I submit my own, possibly
simpler solution to the problem of displaying
word processed text from a program.

Spooling text out from a word processor
produces a text file that can be displayed from a
program using the *TYPE command. This
method avoids having to juggle around with
the Basic program, and has the advantage that
the text takes up no memory in Basic. However,
there must be a disc present when the text is
required, which can be a drawback.

For 40 column modes, a line length of 39
characters is required (to accommodate the end
of line character), and 80 column modes require
lines of 79 characters. Embedded commands
should be omitted, as well as any printer
highlight codes.

VIEW HINTS

Elaine Kemp

In View, the Format command reformats all the
text. If you wish to protect addresses on the left
hand side from being formatted then you can
use the LJ stored command. If, however, you
have set a left margin, then L] sets the
characters to the extreme left, not to the set
margin. To overcome this problem, the View
manual suggests you insert a margin without
end markers above the text, but an easier
method is not to use the L] command and to
put a Tab character at the end of each line that
you don’t want formatted.

If you wish to use the graphics character set on
your printer, first select the alternative font by
sending the appropriate code (as described in
your printer manual), and then send the code
for setting the top bit of data sent to the printer.

Beebug May 1992

You can then incorporate graphics symbols into
your text files.

If you use the ADFS filing system, then it is a
good idea to include the following key
definition in your !Boot file:

*KEY 0 *DIR $IM*CATIM
This will mount and catalogue the current
drive. If you have a disc toolkit ROM such as
ADT, then *CAT can be more usefully replaced
by *AMENU (for example).

CLEARING THE ASH TRAY

David Fairhurst

Having 18 BBC computers in one classroom
causes several problems. One of these is the
frequency with which the children push sweet
papers and other objects into the “ash tray”
speaker grilles. I tried quite a few ways of
bunging them up until I hit upon the idea of
using dead phone cards.

Cut about 6mm off the long edge of the card.
Clean all the paint off with steel wool. Scour
the back of the card with the steel wool and
then stick it over the hole using a good quality
super glue. The problem no longer exists, but
do remember that the volume of the sound will
be greatly reduced.

VIEW PROFESSIONAL MEETS THE
MASTER ROM

J.Scott

In BEEBUG Vol.6 No.2 there were some loaders
published for use with the Master ROM. As
View Professional was not included, the

following loader will work. Create the
following file using *BUILD IMENUVP:
MODE 0

VDU 19,1,2,0,0,0

OSCLI("KEY0 *VP [M\L "+5&100+"M")

*FX 138,0,128
The second line is optional - it simply gives
green writing on a black background. On the
BBC B IMENUVP will reside in the $ directory,
and on the Master with ADFS it must reside in
every directory in which there are View
Professional files. B

57

Mr Toad's Keyboard Beep ROM (continued from page 29)

1190
1200
1210
1220
1230

.lectio

JSR osrdch:0RA #&20
CMP hi:BCS lectio
CMP lo:BMI lectio
JSR oswrch:RTS

1240 :

1250
1260
1270
1280
1290
1300
1310

.fiat

PHA : PHX : PHY

LDA #&FF:LDX flag

STA &02D7,X:STA &02E0,X
LDA #7:JSR oswrch

PLY : PLX:PLA

JMP (oldVec)

1320 :

1330
1340
1350
1360
1370
1380
1390
1400
1410
1420

.mandata
EQUB &0D

EQUS"Select PIP or SQUEAK "

BRK:EQUW &0D0D

EQUS"Select beep VOLUME 1-5 *

BRK:EQUW &0D0D

EQUS"Select beep PITCH 0-9 *

BRK:EQUW &0D0D

EQUS"Select beep DURATION 1-3 "

BRK

1430 :

1440 .oldvec
1450 BRK:BRK
1460 .chan
1470 BRK
1480 .vol
1490 BRK
1500 .pitch
1510 BRK

| 1520 .dur

1530 BRK
1540 .flag
1550 BRK
1560] :NEXT
1570 :

| 1580 FOR N%=7 TO 4 STEP-1

1590 IF N%?7&2A1 NEXT:PRINT'*Sorry - no
free SRAM slot.":END

1600 OSCLI "SRWRITE *+STR$~Z%+" "+STRS~
(0%+1)+" 8000 "+STRSN%

1610 N%?&2A1=£82

1620 PRINT'"BEEP ROM running in slot “;

N%

1630 N%=4:NEXT:END B |

Desktop Publishing on Acorn Systems

» What are the component parts of a DTP system?
» How can I do DTP using Acorn computer systems?
» How good are they compared with Mac’s and PC’s?

Norwich Computer Services
96a Vauxhall Street, Norwich NR2 2SD.
Phone 0603-766592, Fax 0603-764011

« How much will it all cost?

« Where can I go for expert advice?

All these questions and more are answered in the booklet, “Desktop Publishing on
Acorn Systems”, published by Norwich Computer Services, price 75p (inc p&p).

To get one copy, free of charge, write to us
stating “I saw your advertisement in Beebug
magazine. Please send me a free copy of your
DTP booklet”. Alternatively, just fill in the
coupon opposite and send it to...

Please send me a free copy of “Desktop Publish-
ing on Acorn Systems”.

Name

Address

BB Postcode

58

Beebug May 1992

EB

p)

POISSON DISTRIBUTION

Since I last wrote, I have been doing some
work with Poisson random number
generators. Knuth's book Semi-Numerical
Algorithms, 2nd Ed., Addison-Wesley, gives
several algorithms for generating Poisson
distributed random variates. I have also
found a method of implementing the
cumulative distribution method for the
Poisson distribution which is quite fast. This
uses the recursive relations for the Poisson
probabilities (p(n), and the cumulative
Poisson probabilities P(n):

p(0)=exp(- 1)

pn)=p(-1). p /n

P(0)=p(0)

P(n+1)=P(n)+p(n)

Ron Larham

The BEEBUG Workshops in Vol.10 No.4 on
Random Sampling, and Vol.10 Nos.5 to 8 on
Simulation Modelling referred to various random
distributions. No algorithm was given for the
Poisson distribution, so Ron Larham’s letter
makes a useful contribution to this series. See also
the Postbag pages in some of the same issues for
further reader input.

FAMILY TREE PROGRAMS AND

DATABASES
In response to Mr. Pope’s letter in Postbag
Vol.10 No.9 I would like to point out that I
have recently sent off a disc called Ancestry to
BBC PD (who advertise in BEEBUG). There
will be a utilities disc soon to go with it.
Ancestry is compressed and the disc contains
a program to decompress the application
which then requires four discs.

Silas Brown

I use Masterfile II for general sorting of
records and find it efficient and easy to use. I
use it for lots of genealogical applications

Beebug May 1992

(parish register entries, Mormon index, etc.)
and for general purpose record keeping.

With regard to the Micro-Aid program, The
Family History System, I use it as my main
‘tree” program for producing family trees. It is
simple to use, and has a wide range of
printouts, although as a sortable database it is
less impressive. On a model B, it holds 200
family groups with 350 people, and on a
Master 400 family groups with 750 people.

With regard to a more complex application,
including free format searchable text, I use
Texbase from BEEBUG Vol.10 Nos4, 5 & 6. It is
extremely flexible with 21 lines of text space
per page, from which keywords can be selected
and used by the search procedure. I use it for
all transcription work and general notes.

Finally, is there a program available which will
automatically grab DFS disc information and
save it as part of a database disc catalogue?

i Robert Clayton

We publish an indexing system which might

be of help to Mr. Pope’s indexing problem.

JISYS is a journal indexing system, but could

well be applied to other items such as slides.

This costs £45.00 and further details are
available from ourselves.

Kenneth Spencer

KAS Software, 74 Dovers Park, Bathford,

Nr. Bath, Avon BA1 7UE, tel. (0225) 858464.

Note, Masterfile 11 is available from Beebug for
£22.48 inc. VAT, plus £2.00 p&p. Micro-Aid are
at Kildonan Courtyard, Barrhill, S. Ayrshire,
Scotland KA26 OPS, tel. (0465) 82288. The
complete Texbase program is available on
BEEBUG magazine disc Vol.10 No.6 for £4.75
inc. VAT plus £1.00 p&p. For DFS disc catalogue
information we recommend Indexing DFS Format
Discs in BEEBUG Vol.7 No.10, or Disc File
Identifier in Vol.8 No.6. B

59

SUBSCRIPTION DETAILS

As a member of BEEBUG y ye
your subscription to include RISC User lor only:

Destination Additional Cost
UK.BFPO &Ch Is £ 10.50

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads
{including 'wants') in BEEBUG. These are completely free of charge but please keep your ad as short as
possible. Although we will try to include all ads received, we reserve the right to edit or reject any if
necessary. Any ads which cannot be accommodated in one issue will be held over to the next, so please
advise us if you do not wish us to do this. We will accept adverts for software, but prospective purchasers
should ensure that they always receive original copies including documentation to avoid any abuse of

this facility.

We also accept members’' Business Ads at the rate of 40p per word (inclusive of VAT) and these will be
featured separately. Please send all ads (personal and business) to MEMBERS' ADS, BEEBUG,
117 Hatfield Road, St. Albans, Herts ALI 4.J8S.

Mexican built BBC B with View, Speech,
NFS, 40/80T disc drive, CUB colour
monitor, bound manuals, joystick as new
£300, CST Procyon IEEE interface £15, 12"
NEC mono monitor £30, A310 base unit &
keyboard £380, Wordwise ROM £12,
mouse as new £30, BeebDOS and BeebPC
£20 each. Tel. ((483) 480632,

BBC Master 128 £250, Turbo board (65¢
1002 second processor) £50, Master 512
second processor with Essential Software’s
memory upgrade, can be used with master
or BEC, Dos Plus version 1.2 and 2.1 Gem
software and mouse £175, Dabs Press 512
shareware collections 1&2 £10,

Dabs Press Sidewriter (5.25

discs, also Tull mouse driver, Shibumi
Problem Solver & Essential's CPFS ROM,
complete with User Guides £200, Morley
BBC 5C51 hard disc control card &
utilities disc £60. Tel. 071-543 7800,

BBC B issue 4, with 128 solidisc SWR,
40T S5 DD plus 40/80 DS drive, both
with own PSU, BBC teletext adaptor,
Music 500 (5000}, dozens of ROMs, 100's
of discs, 100's of books and magazines,
all for £450, Ferguson TX14" TV with
RGB input £90, can deliver within
reasonable area, otherwise plus carriage.

Tel. (41-887 7200.

internal modem for M128 £60, BEEBUG
magazines £6 a volume, Micro User £8 a
volume, Mini Office I1 (BBC 80T) £6, Dabs
View book with disc £11, Dabs Master OS
book £6. WANTED: Ground control
teletext adaptor. Tel 051-606 0289,

CommStar ROM, Fontaid ROM/discs,
Sanyo DR101, Extra! Extral, Genie ROM,
Masterfile 1, Graphics discs, Gamma
System ROM/discs, printer KP810,
Publisher ROM, Signwriter 10 fonts,
Viewsheet, Viewindex, Viewstore ROM,
ROM cartridges, plus manuals. Tel. (0293)
535229.

WANTED: BBC JP101 printer in

40/80T) £5, Dabs Press
Hyperdriver ROM and disc £15,
C.C Print Master ROM £25, C.C
Interchart ROM £15, C.C Interbase
ROM £30, C.C Spellmaster ROM
£25, StarBase Database ROM and
utilities disc £10, Acorn Overview
1&2 (all the View family plus
manuals for Master or BBC with
View and Viewsheet) £50, Acorn
View printer driver generator £5,
Acorn View index (5.25 40/80T)
£5, Three Master ROM cartridges
(Full height) £5 each, BBC Soft Vu-
Type Professional £7.50, Fourth
Dimension Holed Out Golf £7.50,
Acorn Let's Count (5.25 40/80T)
£2, Acorn Juggle Puzzle (5.25
40/80T) £, Acorn Workshop (3.25

Wish something new was happening for
your BBC Micro, Master or Electron?

Something is!

Snacker - One of the latest batch of additions to
the catalogue, and probably the most professional

PD game yet!

Send £1.50 for catalogue and sampler disc to;
BBC PD, 18 Carlton Close, Blackrod,

Bolton, BL6 5DL
Make cheques payable to;

‘A Blundell' or send an A5 s.a.e for more details

(Please state disc size and format)

working order with cable for
BBC micro. Tel. (0747) 55006.

512 co-processor for Master 128
with mouse, D08 2.1, in excellent
condition £100 o.n.o. Tel. (0324)
38816 after 6pm.

WANTED: Acorn ADFS book.
Tel. (0293) 529129 after 6pm.

Master 512, Microvitec medium
resolution monitor, twin 40/80T
drives with PSU, teletext
adaptor, mountains of software
(games, education, business),
ROMs, all manuals plus many
extra books £450. Tel. (0222)
865248 for full details.

40/80T) £2, Acorn Picture Maker
(5.25 40/80T) £2, 10 BBC B games on tape
£5, BBC User Guide £2.50, Master reference
manuals 182 £5 each, Advanced reference
manuals for BBC Master £7.50, Dabs Press
Master operating system £5, Dabs Press
Master 512 User guide & disc £7.50, Dabs
Press Master reference guide & disc £7.50,
Mastering Dos Plus £5, Glentop Dos Plus
reference guice £10. All software is original
and both software and hardware comes
with guides and manuals, will sell
separately or as a job lot. Make me an offer.
Tel. 081684 9340 eves & w /ends.

BBC 512 co-processor & Essential's
memory expansion, Original system
discs & Essential's CLmouse driver,
RAMdisc, FSTboot & miscellaneous

Beebug May 1992

M128 reference manuals 1&2, View &
Viewsheet guides £12, Micropulse ROM-

Modem - Pace Nightingale
V21/23 with BEEBUG Command
ications ROM (serolling text and

Box £15, dual BBC/Master 128 Voltmace
joysticks £12, Master Compact joystick
(Voltmace) £7, MAX 16k EPROM £2,
four used 32k EPROMSs £2.50 each, BBC
ROM extension lead, works on Master
128 or Compact £8. Tel. (0332) 572009.

BBC B Microvitec med. res. colour
monitor, Opus 40/80T DD with own
PsU, AMX Mouse, AMX Pagemaker,
AMX Super-Art, View, View -Store,
ViewSheet, DataBase, User Guide, 30
Hour Basic, Elite £300. Tel. ((249) 816463,

M128 computer and disc drive £250,
Canon BJ10ex printer £200 o.n.0. BEEBUG

Viewdata), plus data cable for BBC
computer, everything in mint condition,
with original instruction manuals £40, inc.
péep. Tel. (0294) 52250.

Morley teletext adaptor £30, Spellmaster
£20, Printmaster (EPROM) £7, Watford NLQ
(EPROM) ROM £7, Master control panel and
1770 DFS ROMs by ACP £ each, Signwriter
software including leon and Xmas font discs
£12, Full set BEEBUG £40, Master reference
manuals £12 pair, complete BBC user book
£5, Mastering Assembly Code £5, BEEBUG
vols 2 to 5 plus part vols 1 and 6. Tel. (0276)
20193 after 6pm.

61

All overseas jtems
airmail. e will accept official
orders for subscriptions and
pack issues: put pleasé note
il be a £1 handling

that there Wi be
charge for orders under £10

jch require an invoice.
Note Hjat there is N@ VAT in

magazines.

articles and

are always seeking good quality
> n BEEBUG. Al contributions

in
per page: but please give

you intend to
s available on

se:ncludeabac‘ p col
commumcation

ship number-

RISC pevelopme
26832

hors and do not nece:
RISC Devel prments Limited
Printed Y Arion Printers 0923)

member
)

WAY 1992
DISC CONTENTS

DATA SHEET - The first part of
spfeadshee: program, which imp
jormula and cell functions-

TABLE FORM.&TTE'R - A program
to be produced automatically from
production much easier than ina

this powerful Basic
lements the ma! n

bles tables

that end
able

Basic, making ¥

o o assemble 2
nables each keypress 0]
ping easier. Thereare @
4, all accessed

MR TOAD'S BE ogram 1

sideways ROM image which e
emit a beep hus making fast ty
number of sounds that can be use
{hrough oné star command.

FUNCT!ONJPROCEDURE LIBR
routines for use with sideways RAM, o
strings and blocks of memory 1o be stored and

in this useful exira memory.

WORDWISE USER
plus segment pro
markers for use
programs all do
save memory, an
explain the methods used.

MODE 0 SCREEN DUM
rams for printing

prints the image the cor

the image sideways-

ARY 11 - A set of

enable integers.
i retriev

pS - Two screen dum
0 screens on a

rect way up, an

us ftem for

RUBIK'S CUBE - A bon!
implements the Rubik's cude puzzle. The cube is shown
on screen, and can be jumbled up {o provide @ real
challenge.
BEEBUG yOLUME 10 BIBLIOGRAPH‘!‘ - The
complete Volume 10 bibliography tile for use with
MagScan.
MAGSCAN DATA - Bibliography for this issue {Vol.11
No.1)

& 3.5" DISC)

£4.75 (5.25"
from Vol

3 5" discs 5

ALL THIS FOR
Back issues 525 and
pIsC (5.25" of 3.5") sUBSCRI
& months (5 jssues)
12 months (10 issues)

pTION R ATES

Prices an

RISC pDevelop

printer. One
d the othet prints

Master OWners that

. £1P&P(

o Inclusive of VAT

menis,

,l_./li(.\T“/:-t

=
.._.:-—--‘-
:]

-

P

gop FOR EACH ADD\T!ONAL ITEM)

Mo 1Y available at the same prices
OVEFISEP.S

£30.00

£56.00

plicable

UK ONLY
£2550

£50.00
pl*l"d:-'n"

and postage as apl Stering anly

L1 4JS

117 Hatfield Road, st.Albans, Herts A

Magscan

Comprehensive Magazine Database
for the BBC Micro and the Master 128

An updated version of Magscan, which contains the
complete indexes to all BEEBUG magazines from
Volume 1 Issue 1 to Volume 10 Issue 10

Volume lO

Type : Review
String 1 : HD\'EN‘IURE
String 2 :

Logic

Review: Stranded by Robico
Adventure Game
¥ol .8 Ho.7 Fage 21

BEEBUG Education/Educational Software
BEC Soft/Make » Wildlife Garden

Through the Dragon's EyesAdventure Come
¥ol.8 Ho.7 Page 26

Review: The Last Days of Doom

Topologika Adventure Game
¥ol.9 MHo.2 Page 55

Magscan with disc and manual £9.95+p&p
Stock codes: 0005a 5.25"disc 40 track DFS

0006a 5.25"disc 80 track DFS

1457a 3.5" ADFS disc
Magscan update £4.75 +p&p
Stock codes: 0011a 5.25"disc 40 track DFS

0010a 5.25"disc 80 track DFS

1458a 3.5" ADFS disc

Magscan allows you to locate instantly all references
to any chosen subject mentioned anywhere in the 95
issues of BEEBUG magazine to date.

Just type in one or two descriptive words (using
AND/OR logic), and you can find any article or
program you need, together with a brief description
and reference to the volume, issue and page
numbers. You can also perform a search by article
type and/or volume number.

The Magscan database can be easily updated to
include future magazines. Annual updates are
available from BEEBUG for existing Magscan users.

Some of the features Magscan offers inchade:

full access to all BEEBUG magazines

rapid keyword search

flexible search by volume number, article type
and up to two keywords

keyword entry with selectable AND/OR logic

extensive on-screen help

@ hard copy option

casily updatable to include future magazines

yearly updates available from BEEBUG

Special Offers to BEEBUG Members May 1992

1407a ASTAADS3 - 5" Disc (DFS) 5.95
1408a ASTAADS3 - 3.5" Disc (ADFS) 5.95
1404a Beebug Applics | - 5" Disc 400
1409a Beebug Applics I - 3.5"Disc 4.00
1411a Beebug Applics II - 5" Disc 4.00
1412a Beebug Applics II - 3.5" Disc 4.00
1405a Beebug Utilities - 5" Disc 4.00
1413a Beebug Utilities - 3.5" Disc 4.00
0005b Magscan Vol.1-8 40 Track 9.95
0006b Magscan Vol.1 -8 80 Track 9.95
1457b Magscan Vol.1 -8 3.5" ADFS 9.95
0011a Magscan Update 40 track 4.75
0010a Magscan Update 80 track 475
14582 Magscan Update 3.5" ADFS 475
PAGla Arcade Games (5.25" 40/80T) 5.95
PAG2a Arcade Games (3.57) 5.95
PBGla Board Games (5.25" 40/80T) 5.95
PBG2a Board Games (3.5") 5.95
All prices include VAT where appropriate

1600a Beebug magazine disc 4.75
0077b C - Stand Alone Generator 14.56
0081b Masterfile ADFS M128 80 T 16.86
0024b Masterfile DFS 40T 16.86
0025b Masterfile DFS80T 16.86
0074b Beebug C 40 Track 45.21
0075b Beebug C 80 Track 45.21
0084b Command 29.88
0073b Command(Hayes compatible) 29.88
0053b Dumpmaster II 23.76
0004b Exmon I 24,52
0087b Master ROM 29.88
1421b Beebug Binder 4.20
P&P UK Europe Americas, Africa Elsewhere
Mid. East

a £100 &£ 160 £ 2.40 £ 2.60

b £ 2.00 & 3.00 £ 5.00 .5 5.50
Carriage is donated by the letter after the stock code. When ordering

several ftems use the Bighest price code, plus balf the price nfeacb
subsequent code.

Have you got your BEEBUG Binder for Volume 11?7

Only £4.20

RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS. Tel (0727) 40303 Fax (0727) 860263

	BeebUGv11n01_Page_01.jpg
	BeebUGv11n01_Page_02.jpg
	BeebUGv11n01_Page_03.jpg
	BeebUGv11n01_Page_04.jpg
	BeebUGv11n01_Page_05.jpg
	BeebUGv11n01_Page_06.jpg
	BeebUGv11n01_Page_07.jpg
	BeebUGv11n01_Page_08.jpg
	BeebUGv11n01_Page_09.jpg
	BeebUGv11n01_Page_10.jpg
	BeebUGv11n01_Page_11.jpg
	BeebUGv11n01_Page_12.jpg
	BeebUGv11n01_Page_13.jpg
	BeebUGv11n01_Page_14.jpg
	BeebUGv11n01_Page_15.jpg
	BeebUGv11n01_Page_16.jpg
	BeebUGv11n01_Page_17.jpg
	BeebUGv11n01_Page_18.jpg
	BeebUGv11n01_Page_19.jpg
	BeebUGv11n01_Page_20.jpg
	BeebUGv11n01_Page_21.jpg
	BeebUGv11n01_Page_22.jpg
	BeebUGv11n01_Page_23.jpg
	BeebUGv11n01_Page_24.jpg
	BeebUGv11n01_Page_25.jpg
	BeebUGv11n01_Page_26.jpg
	BeebUGv11n01_Page_27.jpg
	BeebUGv11n01_Page_28.jpg
	BeebUGv11n01_Page_29.jpg
	BeebUGv11n01_Page_30.jpg
	BeebUGv11n01_Page_31.jpg
	BeebUGv11n01_Page_32.jpg
	BeebUGv11n01_Page_33.jpg
	BeebUGv11n01_Page_34.jpg
	BeebUGv11n01_Page_35.jpg
	BeebUGv11n01_Page_36.jpg
	BeebUGv11n01_Page_37.jpg
	BeebUGv11n01_Page_38.jpg
	BeebUGv11n01_Page_39.jpg
	BeebUGv11n01_Page_40.jpg
	BeebUGv11n01_Page_41.jpg
	BeebUGv11n01_Page_42.jpg
	BeebUGv11n01_Page_43.jpg
	BeebUGv11n01_Page_44.jpg
	BeebUGv11n01_Page_45.jpg
	BeebUGv11n01_Page_46.jpg
	BeebUGv11n01_Page_47.jpg
	BeebUGv11n01_Page_48.jpg
	BeebUGv11n01_Page_49.jpg
	BeebUGv11n01_Page_50.jpg
	BeebUGv11n01_Page_51.jpg
	BeebUGv11n01_Page_52.jpg
	BeebUGv11n01_Page_53.jpg
	BeebUGv11n01_Page_54.jpg
	BeebUGv11n01_Page_55.jpg
	BeebUGv11n01_Page_56.jpg
	BeebUGv11n01_Page_57.jpg
	BeebUGv11n01_Page_58.jpg
	BeebUGv11n01_Page_59.jpg
	BeebUGv11n01_Page_60.jpg
	BeebUGv11n01_Page_61.jpg
	BeebUGv11n01_Page_62.jpg
	BeebUGv11n01_Page_63.jpg
	BeebUGv11n01_Page_64.jpg

