Volui :
i ALl

String 1 . DATABASE
String 2 . SPREADSHEET
Lo g ta R

Filer Accounts F' L
BEEBUG Data b # Home Banking
Vol 5 No s P age 53

ROM Rev -Dtb e Publicati
IttHiUff Tl mmn

Col ons
Wordp or, Database, Spreads h t
Vol 5 N 8 Pa age 5

/» CEEBUG Educ t

/‘" 3ss Dat b ev1eu ewman Colle
1982/(\ abase chools, Colleqe.
\ o age

ollapsing SCf
(\:nsta‘r)\t Access 10 Magscan on

eens

a Master

PROGRAM INFORMATION

Al listings published in BEEBUG magazine are
produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space
following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered

... exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

REVIEWS

{ 19
New Products from Essential

REGULAR ITEMS
4
Editor's Jottings v
News 5
Points Arising 5
RISC User 2
Hints and Tips "
Postbagd ¥ 6(;
sonal AGS 4
Psirbscﬁp\'\ons & Back lssues -
Magazine Disc
HINTS & TIPS

Extended Searche§ in V\e\s
Basic Program quck Sav
BBC v Mastef Printout .
New Master ROM Upda

difference between the digit one and a lower case 1
(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the
article on page 44 of BEEBUG Vol.7 No.2 (reprints

BEEEUG HAGSCAN VOLUMES 1-9

Enter yolumne Ho- (1-9 or » ¥ <

Ente’

- Genera

* Prcgramming
- Review

- Hews

»*

3
DH \BEEBUS gpril 1991 FallTat 8 1

DF WP
tbnt(

s T L
Collapsing creens

- sing

i 1ication progran

- 1ity program

- Games Program

L Hiscenaneous

Confuse yout friends (and enenies) with
this alarning graphical effect by Kevin

Bracey:

u:nﬂmanm

yBasic <
SProgram <
YANDL

as an original ¥

us tuee i !
Jdisctusingi® listing L and save this to

i & 150 allo
3402 prime umbers 10 be s:anned using
the Up and Down cursor keys?

The prime factors of 13 are:
13 only (a prime umber?

1ts Euler Humber is 12.

what is the nunber to be éactorised’!

123457

The prime factors of 123457 are:

123457 only (2 prime umber?

feticles
Booksales
EnptyFoldr
Holidays
Tncomelax
Inuestnnts
Miscellous
purchases
Sarah
Vieusheet

available on recei
ldvisedto“mndl‘:ofanASSAE),mda
to Basic IL. Any n': strongly
processor

fitted to th
to the computer should be turned off
off before the

programs are rui
n. :
rogram will not function on a auett
e

based system.

Where a
program
this is indi requires a certai
cated by symbols at thenbconﬂsurmon, Program need:
eginning of the s at least one bank of

article (as sh
own opposite). Any other requi sideways RAM.
rements

are referred } |
to explicitly in the text of the artick m
s Program
gram is for Master 128 and Compact

M

Laitors Jortings

MAGIAN

In this month'’s issue of BEEBUG you will find an
article and program related to BEEBUG's Magscan.
Magscan is a computerised index to all the back
issues of BEEBUG, and was first launched in 1985
when it was supplied with the indexes to volumes 1 to
3 inclusive. Subsequently, monthly indexes have been
included on the magazine disc for each issue, and an
annual Magscan update has been available after the
completion of each volume.

Thus users of the Magscan system can maintain an
up-to-date index to the contents of all their
magazines, by typing in and creating new indexes
themselves, by subscribing to the magazine discs, or
by purchasing the annual update. As readers will
appreciate, with nine complete volumes, that
represents a wealth of information, yet Magscan
provides an efficient and speedy way of locating a
particular article, or finding the references to all
articles on a particular subject, using the keyword
system employed by Magscan.

In fact, Magscan has proved so successful over the
years, that an equivalent program called ArcScan has
been written for the Archimedes, and this is available
to Archimedes users complete with indexes for both
BEEBUG and RISC User, our magazine for
Archimedes users (and, indeed, with indexes to all the
Acorn manuals for the Archimedes). ArcScan uses an
identical data format to Magscan, so all Magscan files
are immediately accessible via ArcScan as well.

With the completion of volume 9 of BEEBUG, and the
imminent start of volume 10, we feel that it is a good

il S)

R S R e o R - S

time to update Magscan, and more importantly draw
Magscan to the attention of newer readers.

We have made some modifications to Magscan to
improve flexibility. For example, 40 track users will
find that it is essential to start using a second data
disc once the index to volume 10 begins to be built
up. The new version automates such considerations
as far as possible.

Magscan is supplied on 40 track or 80 track (double-
sided) 5.25 disc, or on 3.5" ADFS format disc (for the
first time). It is accompanied by a manual and a set of
release notes covering the latest modifications, and
comes with all the indexes for volumes 1 to 9
complete on one disc. The full package is now
available at the new price (to members) of £9.95.
Existing Magscan users can obtain a full update for
just £4.75 on returning their original disc or proof of
purchase. Full details for ordering Magscan may be
found elsewhere in this issue - please refer to this
before placing an order.

As this issue of BEEBUG marks the completion of
volume 9, all readers will receive with the first issue of
volume 10 a full printed index to volume 9.

I am sure that when BEEBUG was first founded back
in April 1982, its originators had no idea that nearly
ten years later BEEBUG would still be going strong,
or that the organisation would have grown to the size
which it is today. Let us hope that the future is as
interesting for all users of Acorn computers as the
last ten years have been.

MW.

Beebug April 1991

News News News

News News News

PANDERING TO BBC USERS

Proving that there is a viable market still for new products
for the BBC micro, Panda Discs (perhaps best known for its
music collections) has announced three new products for
1991.

Touch and Learn is a content free Concept Keyboard package
which will appeal to teachers in primary and special
schools, and it runs on all BBC micros and networks. The
primary function of the software is to present questions on
screen which can be answered by touching overlays on the
Concept Keyboard. There is also a database mode, allowing
multiple records to be linked to each overlay item.

The other two releases are both intended to enhance the use
of Computer Concepts’ word processor Wordwise Plus.
+Windows enables green embedded commands to be
obtained through a series of pull-down menus, making
their selection or alteration much easier. This includes
control of printing, and although +Windows is configured
for Epson printer codes, it can be reconfigured by the user
as required.

To complement +Windows Panda Discs has also produced
+Catalogue, a versatile information storage system for
Wordwise Plus. The software allows large amounts of
information to be stored and searched using normal
Wordwise Plus files. Subject to disc capacity, +Catalogue can
search automatically up to 25 separate text files. It is
claimed to be ideal for storing and searching record
collections, sets of slides, names and addresses, video titles,
books etc.

Each disc costs £9.95 including post and packing direct
from Panda Discs, Four Seasons, Tinkers Lane, Brewood,
Stafford ST19 9DE.

BEEBUG ON MICRONET

The BEEBUG database on Micronet has now moved from
its original base node on page 800909 to a new one on page
800708. The keywords *BEEBUG and *DATABUS will still
take you to the front page or the DATABUS menu. At the
same time, the retail price lists have been removed from the
database as it is proving impossible to keep them up to

Beebug April 1991

date. Instead, a free retail catalogue will be supplied to
anyone who requests it, and there will be a new section on
the database devoted to current special offers, including
secondhand and shop-soiled items. It will still be possible
to place orders and renew subscriptions via Prestel. An
expansion of the editorial section is also planned. This will
include more news and information about BEEBUG and all
things Acorn. The hints and tips section may also be
increased, and further areas may be added to enhance the
database.

LOGO AND MATHEMATICS

Logo and Mathematics is the title of a new book published
by the Education Department of the University of Keele,
and compiled by T..Fletcher, WWMilner & FER.Watson,
and running to just over
400 pages. It is a
compendium of papers
and articles written at
different times, but all
the examples of
programming in Logo
are based upon BBC
Logo (available from
Longman Logotron).
Information is also
given on any differences
between that and Logo
on the RML Nimbus
and Acorn Archimedes,
and a supporting disc of programs is available in any of
these three formats.

Logo
and
Mathematics

Keele Mathematical Education Publications

The sections of the book discuss the application of Logo
in the teaching of a variety of mathematical topics, for
example: graphics, trigonometric functions, Fibonacci
series, arrays and determinants, number theory, vectors,
Turing machines and a great deal more. The book appears
to represent an ideal source of ideas and applications
based on the use of Logo and is available price £10.00
from Keele Mathematical Education Publications,
Department of Education, University of Keele, Keele,
Staffordshire ST5 5BG, tel. (0782) 621111. The supporting
disc (state format) costs £9.00 (both prices are inclusive of
post & packing). B

5

CROSSWORD EDITOR - for designing, editing and solving
crosswords ,
MoNTHLY DESK DIARY - a month-to-view calendar which can also be
printed

3D LANDSCAPES - generates three dimensional landscapes.
REAL TIME CLOCK - a real time digital alarm clock displayed on the
screen

RUNNING FOUR TEMPERATURES - calibrates and plots up to four
temperatures :
JULIA SETS - fascinating extensions of the Mandelbrot set

FOREIGN LANGUAGE TESTER - forelgn character definer and
language tester

LABEL PROCESSOR - for designing and printing labels on Epson compatible printers
SHARE INVESTOR - assists decision making when buying and selling shares.

Applicatioms It Dise

BUSINESS GRAPHICS - for producing graphs, charts and diagrams

VDo CATALOGUER - catalogue and print labels for your video cassettes

'WoRLD BY NIGHT AND DAY - adisplay of the world showing night and day for any time and date
PHONE BOOK - an on-screen telephone book which can be easily edited and updated
PAGE DESIGNER - a sclf contained page-making package for Epson compatible printers
PERSONALISED LETTER-HEADINGS - design a stylish logo for your letter heads
APPOINTMENTS DIARY - a computerised appointments diary

MAPPING THE BRITISH ISLES - draw a map of the British Isles at any size

SELECTIVE BREEDING - a superb graphical display of selective breeding of insects
THE EARTH FROM SPACE - draw a picturc of the Earth as scen from any point in space
P ISED A Boox - address and phone book

ASTAND

Enhanced ASTAAD CAD program for the
Master, offering the following features:

full mouse and joystick control

built-in printer dump '

speed improvement

STEAMS image manipulator

Keystrips for ASTAAD and STEAMS
 Comprehensive user guide '

Sample picture files

XK KKK K

4
5
TETABE 0 28U KT

ACITORS RS, 125

CGeneral Utilities Dise BT ROM

An indispensible utility ROM for all Basic programmers,

* o ¥ ANTMA
PRINTER BUFFER SPRITE EDITOR/ANIMATOR containing the following commands:

¥ MopE 7 ScReeN EDITOR
% EPsoN CHARACTER DEFINER *FTEXT (find text) *FBASIC (find Basic) *FPROCFN (find procedure/function)
*LPROC (list procedure) °*LFN (list function) *LFROM (list 8 lines of a program)
: ;ﬁi‘:ﬁws‘s‘“‘ G’:‘""““"‘ *RTEXT (replace text) *RBASIC (replace Basi)) *SYSINF (system information)
Pravr *VARLIST (list program variables) *FKDEFS (function key definitions)
¥ MULTI-CHARACTER PRINTER DRIVER FOR VIEW
% ROM Controuzr % BEEBUG MWmp +

° Master series only.
1 Requires sideways RAM.

[
.
o
g
i
o]
0)
Y
®
=
g
[
K
Y
o
e
0
Y
&

Incorporating the updated Basic Booster utilities:

SUPER SQUEEZE PARTIAL RENUMBER PROGRAM LISTER
RESEQUENCER SMART RENUMBER TEXTLOAD AND TEXTSAVE

Stock Code Price Stock Code Price
ASTAAD (80 track DFS) 1407A £5.95 ASTAAD (3.5" ADFS) ~ l408A £5.95
EDIKIT (EPROM) 1451A £7.75 ~ . ;
EDIKIT (40/80T DFS) 1450A £575 EDIKIT (35'ADFS) | 1A o575
Applications II (80 track DFS) 1411A £4.00 ~ Applications I (3.5"ADFS)} = 1412A £4.00
Applications I Disc (40/80T DFS) 1404A £4.00 Applications I Disc (3.5 ADFS) 1409A £4.00
General Utilities Disc (40/80TDFS) 1405A £4.00 General Utilities Disc (35"ADFS) 1413 £4.00

Please add p&p - 60p for the first item and 30p for every additional item.

BEEBUG Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS. Tel. (0727) 40303 Fax. (0727) 860263

Collapsing Screens

Confuse your friends (and enemies) with this alarming graphical effect by Kevin Bracey.

The program listed at the end of this article
causes an interesting effect on text displayed on
the screen of your BBC micro. It was originally
designed for an April Fool’s joke, but could also
be used as an original way of clearing a screen.

Just type in listing 1 and save this to disc using
any suitable name (but not Fall). Master users
should check below for changes required for
their machines. Run the program and the
assembled machine code will be saved with the
name Fall. To test this just type:
*FALL

fill the screen with some text (by typing *CAT
for example), press ‘K’ and enjoy the show as
the letters fall into random heaps at the foot of
the screen.

If you want to catch some friends out on April
1st, then simply load the machine code into
their computer before they use it, press Break
and wait!

BM 3
DH \BEEBUG Rpril 1991\ FallTxt vi\ 1D\

“1P=\\

Confuse your friends (and enenies) with
this alarning graphical effect by Kevin

Bracey.

The progran listed at the end of this

article causes an interesting effect on

text displayed on the screen of your BBC

nicro, It was originally designed for an

April Fool’s joke, but could also be used
vay of clearing a screen.

as an original w

us type
Jdisctusingin listing 1 and save this to

The text begins to fall

The assembled routine will remain in the
machine through both Break and Ctrl-Break, and
so can only be removed by switching the
machine off. Pressing ‘K’ at any time after the
code is loaded will initiate the routine, even
within word processors, in the middle of listing a
program, and while running a program. When
the routine has completed its work, the computer
will carry on with what it was doing unaware
that anything untoward has happened. It can be
quite entertaining to watch otherwise dignified
programs come crashing to the ground.

Beebug April 1991

SCREEN CLEARING
To use the routine as a novel way of clearing
the screen in your own programs simply delete
lines 180 to 380 of the assembly code program
and change line 660 to read:

660 RTS

Run the program to assemble the revised code,
and add the command *LOAD Fall at the start
of your program. You will also need to append
the procedure given in listing 2 to the end of
your program. You can then use the procedure
call PROCcls to clear the screen. Note that the
higher the number of the screen mode you are
using, the faster the routine will work.

HF). #8U,

PTI62,3B-G%.. . *.
THL361EP \\Ap. iy (99,
HMM33-1.p.

FM3EN#lassing

BHBN. 1fualeyourcreiesd...

asd,
DF\.nasey.arningfrranhis(ineffe .
D.Yorecprograunligtepancatheeindtbfythevi,
JoCttxiclescaasessandihttrestengoeofecisots
CiBricrtdilpluyedorintneescreesngffyourtBBh,
hhansrio.Footasjokegibal lyodldianedfboruaCi<#
Tepausanlorilinsloway,outcleauinglsoscreesenn. .
discek

The final result

MASTER USERS

The routine normally loads at &1400, within an
area of disc file work space normally unused on
a model B. As this space is part of user memory
on a Master, it is necessary to find somewhere
else. If you are using shadow memory, then the
best place is at &7B00. You must then set
HIMEM=&7B00 before calling *Fall. Alter the
program to reflect this in line 120, and don’t
forget to change line 30020 of PROCcls as well
if you use it.

PROGRAM NOTES

The routine intercepts all ‘Character entering
buffer’ events, and checks whether the
triggering key has been pressed. This key can
be altered in line 120 (but note that the routine

7

L L e

Collapsing Screens

IS case sensitive). The number of characters 260 JSR OSBYTE

which fall together can be altered for different 270 LDA #248:1DX #SetVec2 MOD 256:LDY
effects in line 130. The variable MaxChars% |0

should be set to a value in the range 2-255, this 280 JSR OSBYTE

being the number of letters falling at a time. 255 290 LDA #249:LDX #SetVec2 DIV 256:LDY

is the most realistic value, but this is far too 0
slow in any mode other than mode 7. The

: 20 . 0 JSR OSBY
falling routine is 100% legal, accessing screen 2 i

i 5 + R
memory via documented OS routines. This ;;8 'TS
means that it will work in any screen mode and :

330 .NewVec

shadow mode, and should even run on an

Archimedes under the 6502 emulator. 340 PHP:PHA:TXA:PHA:TYA:PHA

350 CPY #key%:BEQ Fall

The falling routine works by first scanning the 360 .Leave
screen for non-space characters, and storing the 370 PLA:TAY:PLA:TAX:PLA:PLP:JMP (OldVe
co-ordinates of any it finds in an array. When the | ¢)
array is full (its capacity being defined by the 380 :
value of MaxChars%), it then checks the spaces 390 .Fall
below each character on the screen to see firstly 400 LDA #134:JSR OSBYTE:STX pos:STY vp
if it can fall downwards, or secondly topple to | os
one side. After every character has been moved, 410 LDA #26:JSR OSWRCH
it checks to see how many characters actually 420 LDA #17:JSR OSWRCH
moved. If none moved, then they have all fallen 430 LDA #7:JSR OSWRCH
as far as they will go, and the routine goes on to 440 LDA #17:JSR OSWRCH
make the next group of characters fall. Note, 450 LDA #128:JSR OSWRCH
because of the algorithm used, the program may 460 LDX #0
crash if it is activated when a larg_e number'of 470 .VLoop:LDA cursoff,X:JSR OSWRCH
Fharacterq cannot fall, e.g. by pressing ‘K’ twice 480 INX:CPX #10:BNE VLoop
in succession. Have fun! 490 LDA #2:STA &DO
e 500 LDA #135:JSR OSBYTE
Listing 1 510 LDA WTable,Y:STA Width
10 REM Program Collapsing Screens 520 LDA HTable,Y:STA Height:STA MaxY
20 REM Version B4.4 830 ¢
30 REM Author Kevin Bracey 540 .Floop
40 REM BEEBUG April 1991 : 550 JSR FindChars
50 REM Program subject to copyright 560 LDA Pointer:CMP #0:BEQ Finished
60 ¢ 570 JSR Drop:JMP Floop
100 DIM code% &500 580 .Finished
110 OSWRCH=&FFEE :0SBYTE=&FFF4 590 LDA#31:JSR OSWRCH
120 exec%=&1400:key%=ASC"K" 600 LDA pos:JSR OSWRCH
130 MaxChars%=23 610 LDA vpos:JSR OSWRCH
140 FOR pass%=4 TO 7 STEP 3 620 LDA#0:STA &D0:LDX#0
150 O%=code%:P%=exec% 630 .V2Loop
160 [640 LDA curson,X:JSR OSWRCH
170 OPT pass$% 650 INX:CPX #10:BNE V2Loop
180 .SetVec 660 JMP Leave
190 LDX &220:STX OldVec 670 ¢
200 IDY &221:STY OldVec+l 680 .FindChars
210 .SetVec2 690 LDA #0:STA Pointer
220 LDX #NewVec MOD 256:STX &220 700 LDA MaxY:STA Ypos
230 LDY #NewVec DIV 256:STY &221 710 .Yloop
240 LDA #14:LDX #2:JSR OSBYTE 720 LDA #0:STA Xpos
250 LDA #247:LDX #&4C:LDY #0 730 LDA #31:JSR OSWRCH

8 Beebug April 1991

Collapsing Screens

740 LDA #0:JSR OSWRCH

750 LDA Ypos:JSR OSWRCH

760 .Xloop

770 LDA #135:JSR OSBYTE

780 CPX #0:BEQ FindNext

790 CPX #32:BEQ FindNext
800 LDY Pointer

810 LDA Xpos:STA CharX,Y
820 LDA Ypos:STA CharY,Y
830 INC Pointer:LDA Pointer
840 CMP #MaxChars%:BEQ Exit
850 .FindNext

860 INC Xpos:LDA Xpos

870 CMP Width:BEQ Uprow

880 LDA #9:JSR OSWRCH

890 JMP Xloop

900 .Uprow

910 DEC Ypos:LDA Ypos:BPL Yloop
920 LDA #0:STA Ypos

930 Exit

940 LDA Ypos:STA MaxyY

250 RIS

960 .Drop

970 LDA Pointer:STA NotMoved
980 LDA #0:STA DCount

990 .DLoop

1000 LDY DCount

1010 LDA CharX,Y:STA Xpos
1020 IDA Char¥,Y:STA Ypos
1030 CMP Height:BNE Continue
1040 .GotoNoFall

1050 JMP NoFall
1060 .Continue
1070 LDA #31:JSR OSWRCH
1080 LDA Xpos:JSR OSWRCH
1090 LDA Ypos:JSR OSWRCH
1100 LDA #135:JSR OSBYTE
1110 S0 CChar
1120 LDA #10:JSR OSWRCH
1130 LDA #135:JSR OSBYTE
1140 CPX #32:BNE FallRight
1150 LDA CChar:JSR OSWRCH
1160 LDA #11:JSR OSWRCH
1170 LDA #8:JSR OSWRCH
1180 LDA #32:JSR OSWRCH
1190 IDX DCount:INC Chary, X
1200 JMP NextChar
1210 .FallRight
1220 LDA #31:JSR OSWRCH
1230 INC Xpos:LDA Xpos:JSR OSWRCH

1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

1640 :

1650
1660
1670
1680
1690
1700
1710
1720
1730

LDA #135:JSR OSBYTE

CPX #32:BNE FalllLeft

LDA #11:JSR OSWRCH

LDA #135:JSR OSBYTE

CPX #32:BNE FallLeft

LDA #10:JSR OSWRCH

LDA CChar:JSR OSWRCH

LDA #11:JSR OSWRCH

LDA #8:JSR OSWRCH

LDA #8:JSR OSWRCH

LDA #32:JSR OSWRCH

LDX DCount:INC CharX,X:INC CharY,X
JMP NextChar

.FallLeft

LDA #31:JSR OSWRCH

DEC Xpos:DEC Xpos

LDA Xpos:JSR OSWRCH

LDA Ypos:JSR OSWRCH

LDA #135:JSR OSBYTE

CPX #32:BNE NoFall

LDA #11:JSR OSWRCH

LDA #135:JSR OSBYTE

CPX #32:BNE NoFall

LDA #10:JSR OSWRCH

LDA CChar:JSR OSWRCH

LDA #11:JSR OSWRCH

LDA #32:JSR OSWRCH

LDX DCount:DEC CharX,X:INC CharY,X
JMP NextChar

.NoFall

DEC NotMoved:BEQ NoneMoved
.NextChar

INC DCount:LDA DCount

CMP Pointer:BNE StartAgain
JMP Drop

.StartAgain

JMP DLoop

.NoneMoved

RIS

.WTable

EQUB 80:EQUB 40:EQUB 20:EQUB 80
EQUB 40:EQUB 20:EQUB 40:EQUB 40
.HTable

EOUB 31:EQUB 31:EQUB 31:EQUB 24
EQUB 31:EQUB 31:EQUB 24:EQUB 24
.Height :EQUB 0

Clreotr

EQUB 23:EQUB 1:EQUD (0:EQUD 0

1740 .curson
1240 INC Ypos:LDA Ypos:JSR OSWRCH Continued on page 28
Beebug April 1991 9

Comprehensive
Magazine Database
for the BBC Micro and
the Master 128

Magscan

An updated version of Magscan, which contains the complete indexes to all BEEBUG magazines from
Volume 1 Issue 1 to the latest Volune 9 Issue 10

BEEBUG MAGSCAN VOLUMES 1-9
Magscan allows you to locate instantly all references
to any chosen subject mentioned anywhere in the 90

issues of BEEBUG magazine.

Enter Volume No. (1-9 or ¥> > <

Enter article type b2 34
- All types
General Article
Programming Article
Review
News
Hint
Points Arising
Application Program
Utility Program
Games Program
Miscellaneous

Just type in one or two descriptive words (using
AND/OR logic), and you can find any article or
program you need, together with a brief description
and reference to the volume, issue and page
numbers. You can also perform a search by article
type and/or volume number.

*
A
B
&
D
E
F
G
H
1
J

Enter String 1
Enter String 2
Logic OR/AND <O/A)

YBasic <
>Program <
>ANDL

The Magscan database can be easily updated to SNC

include future magazines. Annual updates are
available from BEEBUG for existing Magscan users.

Hard Copy (Y/N>

Specifying a Magscan search

BERRL hhotent e e Some of the features Magscan offers include:
Volune 123456789
Tupe All

String 1 : SIC
String 2 : PROGRAM
Logic : AND

Edikit (Part 5>

Basic Program Utility/Toolkit ROM
Programming Utilities

Yol 9 Ho 1 Page 30

full access to all BEEBUG magazines

@ rapid keyword search

@ flexible search by volume number, article type
and up to two keywords

@ keyword entry with selectable AND/OR logic
Thanks for the Memory - Basi28 (Part 1)
Main Memory Resident Version of Basic

Sideways RAM Program Storage
Vol 9 No 3 Page 20

Hint: Improved Move-Down Routine
Using Additional Program Lines
Basic/PAGE/Memory Restrictions
Yol 9 HNo 4 Page 61

extensive on-screen help

4 hard copy option

easily updatable to include future magazines
yearly updates available from BEEBUG

Entries retrieved from Magscan files

Phone your order now on (0727) 40303
or send your cheque/postal order to the address below. Please quote your name and membership number. When ordering by
Access, Visa or Connect, please quote your card number and the expiry date.

Magscan complete pack, contains disc, manual and release notes: £9.95+p&p
Stock codes: 0005b 5.25"disc 40 track DFS 1457b 3.5" ADFS disc
0006b 5.25"disc 80 track DFS
Magscan update, contains disc and release notes: £4.75 +p&p
(for update, please return old disc, label or evidence of purchase)
Stock codes: 0011a 5.25"disc 40 track DFS
0010a 5.25"disc 80 track DFS
Postage: a - 60p UK, £1 Europe + Eire, £2.40 Elswhere b - £1.50 UK, £2.50 Europe + Eire, £4.80 Elswhere

14582 35" ADFSdisc

BEEBUG Ltd, 117 Hatficld Road, St Albans, Herts AL1 4JS. Telephone (0727) 40303 Fax (0727) 860263

Instant Access to Magscan on a Master

Ronald Smith shows how BEEBUG's popular computerised magazine index can be mnl
speeded up using the Master's sideways RAM.

Soon we shall be reading the tenth volume of
BEEBUG and many readers, like myself will
treasure every issue of the magazine which has
guided us through the jungle of understanding
of the BBC micro. It will always be a source of
reference to those who are staying loyal to the
eight bit wonder which entered our lives in
1981. I had been working with computers for
twenty years previous to this and when I saw
the BBC specification, I did not believe that
anyone could make such a jump forward in
computer technology. But Acorn did it and I
still marvel at

VOLxx files. Put the ADFS disc in drive 0 and
enter *ADFS. Then use:

*MOVE-DISC-:1.$.VOLxx -ADFS-:0.$.VOLxx
to do the transfer. It is necessary to do this file
by file until you have all the Magscan files on
the ADFS Disc. The Magscan DFS disc can now
be removed.

Keep the list of all the VOLxx Magscan files you
have on the new disc. When you have all the
Magscan VOL files on your ADFS disc, it is
necessary to enter *ACCESS VOL* WR to make
them accessible.

what has and
what can still be
achieved at such
small cost.

Line 3 Additional info on item

Line 4 \(backslash) followed by issue number and page number

Line 1 A(up-arrow) followed by a classification letter
Line 2 Subject of magazine item

The format of
each item in a
Magscan file is

To be able to refer
to items in BEEBUG, the Beebug Bibliography
Magscan has been available, and with the
Magscan updates, has

shown in figure 1.

Figure 1. Format of Magscan entries

Figure 2 shows the first few lines of VOL1a of
Magscan. I decided to condense this into one
line for the database. View

grown into a large index |l g
system. I have recently
decided that my Master
could provide me with a
speedy method of look-up
by bringing into use the four
banks of sideways RAM. |l\; 4

This involves creating a | ay
database from the Magscan || 3D Surfaces

V15
AA

Brief Review of the BBC Micro
Hardware / Software OS 0.1 & OS 1.0

Machine Ordering and Supply
BBC Micro Deliveries

was employed to do this
using mode 131 (the
Master’s Edit program
would be an equally good
alternative - see Mastering
Edit in this and previous
issues). It is important to
cancel formatting by using
Ctrl-f2 whilst in the entry

index, and then loading this
into RAM for quick memory
searching. I will now take you through the
steps needed to achieve this.

First, format a new disc into ADFS format as
the larger capacity of this format will be
needed. Next transfer all Magscan files which
are named VOLxx from your DFS discs to the
new disc. To do this place a Magscan disc in
drive 1 (assuming dual drives) and enter DFS
by typing *DISC. Then list the directory of the
disc using *CAT 1. Make a note of all the

Beebug April 1991

Figure 2. Original Magscan file format

mode. Then enter command
mode and load the Magscan
file using READ (not LOAD) VOLxx. I used a
suffix of E before the file name to denoted an
edited Magscan file, so then entered NAME
EVOLXxx to be ready to save each file which will
eventually constitute the database.

As these are to be collected together, the first

requirement is to insert into each item the

volume number. To do this enter the command:
CHANGE/\/\BBx /

where ‘X’ is the volume number from the file,

11

Instant Access to Magscan on a Master

and I added BB purely for search purposes. Note
the space after the ‘BBx’. When this command is
executed, the number of strings changed will be
reported. If edit mode is entered, it will be seen
that the last line of each item reads \BB followed
by the volume number, the issue number and
the page. To convert the item into one line means
going back to command mode and making some
devious changes.

The first is:

CHANGE/~C/"~C:/
which places a colon at the beginning of each
line. The second command:

CHANGE/:~"""?/~C/
replaces the first line with a Carriage Return as
I did not require the classification letter. The
next command:

View is used to read each of the edited VOL
files in number order into memory. By adding
up the number of bytes in each file from the list
previously made, the files can be appended one
after the other until the 15K maximum is
reached. A terminator is entered as the last line
of the file with | BBMSx(File Name).

If you have used the abbreviation facility you
should be able to get nearly all the original files
into three full new files, and the remainder in
the last file. This leaves room for making
additions as new issues of BEEBUG come
along. I used the names - BBMSA, BBMSB,
BBMSC and BBMSD for the Database files.
(BBMS being BEEBUG MagScan). You have
now a mass of information at your fingertips.

CHANGE/"C:/,/
removes all the
Carriage Returns and
colons within an item
and so converts to
single lines. Next:

Brief Review of the BBC Micro,Hardware / Software OS 0.1 & OS 1.0\BB115
Machine Ordering and Supply,BBC Micro Deliveries \BB1 1 8

3D Surfaces, 16k Graphics Program \BB1 1 9

Sound,Using Sound and Envelope \BB1 1 10

The 10 Most Asked Questions,Hardware / Software Problems Answered \BB1 1 13
Screen Scrolling,Screen Handling Hint - Page Mode \BB1 1 15

CHANGE/,\/ \/
removes the comma
before the issue details. It is possible to cut
down the size of the file by abbreviating some
common words and phrases. For instance I
used:

CHANGE/Points Arising/P.A./
which saved a lot of space. Figure 3 shows the
single line conversion and some further items
for abridging can be seen. All that remains is to
go into edit mode and cancel some empty lines
at the top and bottom of the text.

The number of free bytes is shown at the top of
the screen in command mode, and this should
be deducted from 28926 to give the number of
bytes in the edited file. This should be recorded
against the list of Magscan files for later use.
Save the file and then proceed to edit further
volumes.

The four banks of sideways RAM hold 16K
bytes each, but the first &200 bytes will be used
by the database program so to be safe, only 15K
of information should be loaded into each bank.

12

Figure 3. Converted Magscan file format for SWR

To obtain access to this database, you should
enter the program given in listing 1 and save it
with the name BBUGDB onto the disc with the
other files. Run the program and it will make
four further files under names: HDBBGA,
HDBBGB, HDBBGC, HDBBGD.

The next task is to create a BOOT file for
loading your sideways RAM. Enter *BUILD
IBOOT and create a file with the lines:

1. *SRLOAD HDBBGA 8000 4
2. *SRLOAD HDBBGB 8000 5
3. *SRLOAD HDBBGC 8000 6
4., *SRLOAD HDBBGD 8000 7
5. *SRLOAD BBMSA 8200 4
6. *SRLOAD BBMSB 8200 5
7. *SRLOAD BBMSC 8200 6
8. *SRLOAD BBMSD 8200 7
9. ?&2A5=130
10. ?&2A6=130
11. ?&2A7=130
12. 2&2A8=130

Beebug April 1991

Instant Access to Magscan on a Master

Set the disc to read the BOOT file by using
*OPT4,3 To use the BEEBUG DATABASE, put
your DATABASE disc in drive 0, press Shift-
Break and the sideways RAM will be loaded
and be available until the computer is switched
off or the SWR is used for something else.

To look up an item in the Index, enter:

*BBGA Screen Scrolling
as an example. Almost instantly you will see
listed on the screen all the lines having Screen
Scrolling in the first file of the index. If you
don’t find what you want repeat with:

*BBGB Screen Scrolling
to look through the next file. You can go through
the four files in this way. You may find it easier
to put the screen in scroll mode (VDU 14).

There are some points to note. The command
line *BBGx etc. will accept any case, and the
search does not differentiate between upper
and lower case. The search looks for a sequence
of characters equalling the input string and so
*BBGA Print would give all items having
PRINT, Print, print, PRINTER, PRINTING and
so on. To confine the search to a specific string,
the “\’ (backslash) should terminate. Thus
*BBGA print\ will only give lines with PRINT,
Print etc. in them.

The ?’ (question mark) can be used for wild card
characters thus *BBGA P?int would bring up
POINT, PRINT, PAINT. The commas in a line are
replaced with a Returns so the information is
displayed as it would be in Magscan. Enclosing
text between < and > will cause any commas in
the text to be displayed as commas.
Unfortunately there can only be one search
argument whereas Magscan uses multiple
arguments. However, the speed of the search
makes up for this. It is useful to use the search as
a look-up for some of the contents of BEEBUG.
For instance - *BBGA BB1\ will list all titles
contained in the first Volume of BEEBUG.

10 REM Program BBUGData Base
20 REM Version B1.0

30 REM for BBC Master Only
40 REM Author Ronald Smith
50 REM BEEBUG April 1991

60

70
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

tabase™

260
270
280
290
300
310

el o

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

REM Program subject to copyright

MODE135
DATABBGA, BBGB, BBGC, BBGD , XXXX
0sasci=&FFE3:osnwl=&FFE7
wkspace=&70:chars=&71
key=&72:source=&74
thisitem=&76:ch=&78

work=&9F

FOR opt = 4 T0 7 STEP 3
P%=6&8000:0%=&4000

[OPT apt

JMP back:JMP entry

EQUB &82:EQUB copy:EQUB 0
.name

EQUS "DBBBGX":EQUB 13

.copy
EQUB 0:EQUS "(C) BEEBUG Magscan Da
EQUB
EQUS
EQUB
EQUB
.done
EQUS "E N D

0:EQUB 13

"Syntax:*BBGX etc"
13:EQUS "DB @&8200"
13:EQUS "=:":EQUB 0

:BBGX":EQUB 13

.entry

STA work:LDA &F3

PHA:LDA &F2:PHA
PHY:PHX:LDX #8
.savewkspace

LDA wkspace,X

PHA:DEX:BPL savewkspace
LDAwork:CMP #3:BEQ help
CMP #9:BEQ help

CMP #4:BEQ starl

.back LDX #0

.restorews

PLA:STA wkspace,X:INX:CPX #9
BNE restorews:PLX:PLY
PLA:STA &F2:PLA

STA &F3:LDA work:RTS
.starl BRA scom

.print

PHY:STZ ch:LDY #0

.ploop

LDA(thisitem),Y

CMP #44:BEQ nl

CMP #60:BEQ misa:CMP #62:BEQ misb
Pl

JSR osasci:CMP #13:BEQ dun

Beebug April 1991

13

Instant Access to Magscan on a Master

580 CMP #0:BEQ dun 1090 STY chars

590 .miss 1100 .another

600 INC thisitem:BNE ploop 1110 LDA source:STA thisitem

610 INC thisitem+l:BNE ploop 1120 LDA source+l:STA thisitem+l
620 .dun 1130 .compare

630 INC thisitem 1140 LDY #0:LDA (source),Y:CMP #124
640 BNE good:INC thisitem+l 1150 BEQ nomore:CMP #97

650 .good 1160 BMI cha:AND #223

660 LDA thisitem 1170 .cha

670

STA source:LDA thisitemt+l

1180

STAch:LDA (key) , Y

680 STA source+l:PLY:RTS 1190 CMP #97:BMI chb:AND #223
690 .nl LDX ch:BNE nll1:LDA #13 1200 .chb CMPch:BEQ right

700 .nll JSR osasci:BRA miss 1210 .nxchar

710 .misa INC ch:BRA miss 1220 CLC:INC source

720 .misb STZ ch:BRA miss 1230 BNE nocar:INC source+l

730 .help 1240 .nocar

740 CMP #3:BEQ ack 1250 LDA (source),Y:CMP #13:BNE compare
750 LDA (&F2),Y:CMP #13 1260 INC source:BNE another

760 BEQ ack:JMP back 1270 INC source+l:BNE another
770 ack 1280 .right LDY chars:DEY

780 PHA:LDA #(name MOD 256) 1290 .check

790 STA thisitem 1300 LDA(source),Y

800 LDA #(name DIV 256) 1310 CMP #97:BMIchc:AND #223
810 STA thisitemtl:JSR print 1320 .chc

820 PLA:CMP #3:BEQ nothelp 1330 STA ch:LDA(key),Y

830 LDX #6 1340 CMP #63:BEQ che:CMP #92
840 .more 1350 BNE chcc:LDA #32:BRA chd
850 JSR print:DEX:BNE more 1360 .chcc CMP #97:BMI chd:AND #223
860 .nothelp JSR osnwl:JMP back 1370 .chd

870 .command EQUS ("BBGX") 1380 CLC:CMP ch:BNE nxchar

880 .scom LDX #0 1390 CPY #0:BEQ hit

890 .comcheck 1400 .che DEY:CLC:BCC check

900 LDA (&F2),Y:AND #223:CMP command,X 1410 .hit JSR print:JMP compare

910
920
930
940

BNE nogood: INX:INY
LDA (&F2),Y:CMP #46
BEQ dot:CPX #4:BEQ yes
BNE comcheck

1420
1430
1440
1450

.nomore

LDA #(done MOD 256)

STA thisitem:LDA #(done DIV256)
STA thisitem+l:JSR print

950 .nogood JMP back 1460 JSR osnwl:LDA #0:STA work

960 .dot INY 1470 JMP back

970 .yes 1480]

980 .findtxt 1490 NEXT

990 LDA (&F2),Y:CMP #32:BNE rest:INY 1500 REPEAT:READcurr$

1000 CLC:BCC findtxt 1510 IF currS="XxXxX" THEN1570

1010 .rest 1520 C%=ASC(MIDS (currs,4,1)

1020 CLC:TYA:RDC &F2 1530 ?&400E=C%:?&4031=C%

1030 STA key:LDA &F3:ADC# 0 1540 ?&404E=C%:?&40FF=C%

1040 STA key+l:LDA #0:STA source 1550 A$="SAVE HD"+curr$+" 4000 +208 800
1050 LDA #&82:STA source+l:LDY #255 0 8000"

1060 .findchs 1560 OSCLI AS

1070 INY:LDA (key),Y 1570 UNTIL currs="xxxx"
1080 CMP #13:BNE findchs 1580 END B

14 Beebug April 1991

Recreational Mathematics
Fast Factorising for Fun

In the first of an occasional series Michael Taylor, author of our recent article
Continued Fractions, describes a program to find the prime factors of any number up to
a billion, and fast.

INTRODUCTION TO
RECREATIONAL MATHEMATICS
This is the first of a number of articles, with
programs, whieh will explore what is known as
Number Theory. You may have enjoyed the
program Continued Fractions (BEEBUG Vol.9
No.7) which was on the same theme. Each
article and program can be taken on its own or
as part of a sequence - as the reader chooses.

PRIME FACTORS

This program finds the prime factors
of numbers between 1 and 1000000000,
(pressing Return also allows the first
3402 prime numbers to be scanned using
the Up and Down cursor keus).

The prime factors of 1234567 are:
127 and 9721.

Its Euler Number.is 1224720.

What is the number to be factorised?

12345678

The prime factors of 12345678 are:
2, 3, 3, 47 and 14593.

Its Euler Humber is 4027392,

Finding the prime factors of numbers

On its own, each article is intended to provide
mathematical entertainment. However, they will
also form a collection which may be useful to
students of elementary number theory. There will
be just enough explanation for the reader to
relate them to formal texts on the subject, but
there is no intention to fill the pages of BEEBUG
with what is competently explained in textbooks
(see the references at the end of the article). The
main purpose is just to give pleasure in using the
micro to explore the world of numbers.

This month’s program quickly finds the prime
factors of any number up to 1,000,000,000 (and
its Euler Number too).

Future articles currently planned will deal with
Euclid’s (very ingenious and quick) algorithm

Beebug April 1991

for finding the GCD and LCM of two numbers.
It will do this much more quickly than can be
done by selecting factors with this month’s
program. There will also be a short program to
display addition, multiplication and power
tables for modular (finite) arithmetics.

Another article centres round a program for
doing modular arithmetic with relatively large
moduli (up to 1,000,000,000). For example, after
about 20 seconds it will show
that:

1234567897999999936
is congruent to 1 (mod 999999937) (illustrating
Fermat's ‘little’ theorem).

This will lead the way to a further article which
will include a simulation of the method of
encryption of Rivest, Shamir and Adleman. In a
recent article on Cryptology (BEEBUG Vol.9
No.8), Bernard Hill outlined several ciphers
including the RSA one. As he explained, the
RSA cipher is a remarkable invention of the last
decade which revolutionises ciphers by
allowing the encoding algorithm to be made
public while not even the world’s fastest
computers can find the deciphering algorithm.
It all depends on the difficulty of factorising
very large prime numbers. It will be possible to
explore more fully the mathematics that makes
the RSA cipher possible and also to offer a
program that simulates it.

FAST FACTORISING

Fast factorising? On a BBC micro? For most of
the numbers up to 1,000,000,000 this program
only takes a second or two to find the prime
factors. The slowest case is that of the number
999,999,937 - which (Wells, p.190) is the
50,847,534th prime number. The program takes
just over a quarter of a minute on a model B to
report that 999,999,937 is prime.

15

Recreational Mathematics

An early warning to the impatient: the program
will not run after typing it in. On the first
occasion it is necessary to generate a list of the
first 3402 prime numbers by calling the
procedure PROCGenerate and to save this list
as the file STORE2.

There is something fascinating about prime
numbers as part of the ‘fundamental structure’
of numbers. Any natural number from 2
onwards can be represented as the product of
prime numbers (unless it is itself prime) and
this can be done in only one way.

Prime numbers have recently gained a practical
importance in the new ‘trap-door’ ciphers such
as the RSA cipher mentioned above. They are
also of central importance in number theory.
This program can provide prime numbers for
testing and illustrating the theory of whole
numbers, and - as we shall see - for use in the
RSA method of encryption.

The program listed here is easily typed in and
saved, but before running it type:
PROCGenerate

and a two-column list will appear. The left-
hand column contains the numbers from 1 to
3402, and opposite each number is the
corresponding prime number. This procedure
takes about 16 minutes to run on a model B.
After a cup of coffee come back to press Return
so that the list of primes is stored as STORE2 for
the program’s future use.

The main program, Euler, can now be run.
Provided STORE2 is available, it will *LOAD it
at &3000 and then ask for numbers to be
factorised. Positive integers can be keyed in
directly or as expressions like 2219-1 (which
happens to be a prime).

As mentioned above, it takes longest to show
that 999,999,937 is prime. It takes almost as long
to factorise a number which is the square of a
prime and which is just less than 1,000,000,000 -
the biggest one is 316072 = 999,002,449.

Each natural number has an ‘Euler Number’
which is important in number theory and in

16

RSA encryption. It is the number of numbers
less than and relatively prime to the given
number. It is easily found once the prime
factors of a number are known and so it is
offered here - though the reader can always
ignore it.

PRIME FACTORS

This program finds the prime factors
of numbers between 1 and 1000000000 .
(pressing Return also allows the first
3402 prime numbers to be scanned using
the Up and Down cursor keys).

The prime factors of 13 are:
13 only (a prime number)

Its Euler Mumber is 12,

What is the number to be factorised?

123457

The prime factors of 123457 are:
123457 only ¢a prime number)

Its Euler Number is 123456.

Locating prime numbers

For a prime p the Euler Number is just p-1. In
the case of a composite number N with (non-
repeating) prime factors p, g, r ... (so that N =
p~a*q”b*r’c...), the Euler number can be found
as:
N*(1-1/p)* (1-1/q) *) 1-1/r)
or, with the integer variables used here and
taking care not to exceed the integer range, as:
Nyp* (p=1)/ig®i(g=1) ok (=1} . -

Since the program has to make use of the first
3402 prime numbers, advantage is taken of
their presence. They can be inspected with
PROCScan. If this is called (in immediate mode
if you need) further instructions are displayed
on-screen. Once in use, pressing Return will
exit from the procedure.

There are possible extensions. The program
could be modified to search for prime numbers
in a specified range or with chosen properties.
The range could be extended to the maximum
of 2/31-1 set by the BBC micro’s 4 byte integers
(PROCGenerate would have to be extended
too, at least to include the last prime before
SQR(2731-1)=46340 which is 46337). If more
storage space is needed, it is possible to modify

Beebug April 1991

Recreational Mathematics

the program to store the primes of STORE2 as
two-byte integers - though it would take a little
longer for the program to make use of them.
PROCGenerate could stand alone or be
incorporated into another program.

PROGRAM OUTLINE

To test for all the factors of a number it is only
necessary to divide it by prime numbers, from 2
onwards - and only necessary to do so until the
next prime number would be bigger than the
number’s square root. That is why it is only
necessary to use the first 3401 primes (up to
31607) for factorisation up to 1,000,000,000 since
the next prime, 31627, has a square of
1,000,267,129. 31627 is also included in the list
of primes for ease of programming so that it
can be detected as being greater than
SQR(1,000,000,000).

The procedure PROCGenerate is only run on
the first occasion to produce the file STORE2. It
‘bootstraps’ itself by storing primes as they are
found and then using them to test for further
primes. Of course, it only makes use of the ones
it has found which are not more than
SQR(31627).

When the main program is run it *LOADs
STORE2 at &3000. PROCFactorise then takes the
primes in turn, from 2 upwards - as far as 31627
if need be. If it finds one of them is a factor of the
number, it prints it out, divides the number by it
and then continues to try to divide the left-over
factor by the same prime factor, or if that fails by
higher prime factors. Once again, when a prime
factor is found, it is divided into the left-over
factor to leave an even smaller one. Once the
next prime to be tested exceeds the square root
of the left-over factor, then that remaining factor,
too, must be prime.

Some useful references on number theory and
the RSA cipher are:

1. The Higher Arithmetic, by H.Davenport (1952),
Cambridge University Press (a classic in the field
and used in the earlier program on Continued
Fractions in BEEBUG Vol.9, No.7.)

Beebug April 1991

2. Number Theory and Its History, by Oystein Ore
(1948), Dover Publications Inc. (very readable).

3. Think of a Number, by Malcolm E. Lines (1990),
Adam Hilger (discusses modular arithmetic, the
RSA system and much else of entertainment).

4. Numbers, Groups and Codes, by J.EHumphreys
and M.Y.Post (1989), Cambridge University Press
(this includes an account of the RSA cipher
system. It would also make excellent reading for a
6th former thinking of mathematics or computing
at university).

5. There is an article on two trap-door ciphers,
one of them the RSA one: The Mathematics of
Public-Key Cryptography, by Martin E. Hellman, in
Scientific American, Vol.241, No.2, August 1979,
pp-130 to 139 (the usual lucidity of a Scientific
American article).

6. Cryptology by Bernard Hill, in BEEBUG
(January/February 1991) Vol.9 No.8. (introduces
both traditional ciphers and the new RSA system).

7. The Penguin Dictionary of Curious and Interesting
Numbers, by David Wells (1986), Penguin Books
(fun to browse through).

10 REM Program Euler
20 REM Version B1.0
30 REM Author Michael Taylor
40 REM BEEBUG April 1991
50 REM Program subject to copyright
60 REM Execute PROCGenerate in immedi
ate before running this program.
e
100 ON ERROR PROCError:END
110 HIMEM=&3000:P%=HIMEM: *FX4, 0
120 MODE7:REM Only Mode 7 possible wit
hout sideways RAM.
130 DIM F%(32): DIM G%(32)
140 ON ERROR PROCFileError:END
150 *LOAD STORE2 3000
160 REM: The previous line should have
loaded 'STORE2' which has the first 340
2 primes, from 2 to 31627.
170 ON ERROR PROCError :END
180 CLS:PRINTSPC13;"PRIME FACTORS"
190 PRINT'" This program finds the pri

17

Recreational Mathematics

me factors"'"of numbers between 1 and 10
00000000.""'" (pressing Return also allows
the first"'"3402 prime numbers to be sc
anned using"'"the Up and Down cursor key
g
200 vpu28,0,24,39,8
210 REPEAT
220 PROCInput
230 PROCFactorise
240 REM PROCGenerate is not called by
the main program.
250 UNTIL FALSE
260 END
270
1000 DEF PROCInput
1010 D%=1:F%=0:6%=0:01d%=0
1020 REPEAT
1030 REPEAT
1040 PRINT''" What is the number to be
factorised?"'
1050:VbU10,10,11,11
1060 INPUT"™ "X$:X%=FNTest (X$,1000000000
)
1070 IFX%=-1 PROCScan:*Fx4,0
1080 UNTIL X%<>-1
1090 IF X%=0 PROCClear:VDU 11,11,11,11
1100 UNTIL X%<>0
1110 ENDPROC
120
1130 DEF PROCFactorise
1140 IF X%=1 PRINT'" Number 1 has no pr
oper factors, and is"'"™ not usually cons
idered as prime."''" Its Euler number is
defined to be 1.":ENDPROC
1150 IF X%=2 PRINT'" Number 2 is the fi
rst prime number and"'" the only even on
e.m'" Its Fuler Number dis 1.":ENDPROC
1160 C%=P%:Y%=X%:R%=INT (SQR (X%))
1170 PRINT!" The prime factors ef " X"
dre: " 'SpC4;
1180 REPEAT:REM The next line limits sp
eed
1190 REPEAT:C%=C%+4:D%=!C%:UNTIL Y%MODD
%=0 OR D%>R%
1200 IF D%<=R%PROCFound
1210 UNTIL D%>R%
1220 IF D%>R% F%=F%+1:F%(F%)=Y%:IF D%<>
Y% G%=G%+1:G%(G%)=Y%
1230 IF Y%<>X% VDUS8,8:PRINT" and ";STRS

(Y%);"." ELSE PRINT;STRS(Y%);" only (a p
rime number)"

1240 E%=X%

1250 FOR Z%=1 TO G%

1260 E%=E%/G%(2%) :E%=E%* (G%(2%)-1)

1270 NEXT

1280 PRINT'" Its Euler Number is ";E%".
1290 ENDPROC

13000

1310 DEF PROCFound

1320 C%=C%-4:PRINT STRS(D%):", ":

1330 IF POS>35 VDUL3:PRINT'SPC4;

1340 F%=F%+1:F% (F%)=D%:REM Array of fac
tors with repeats in case it is useful
1350 IF D%<>01d% 01d%=D%:G%=G%+1:G% (G%)
=D%:REM Array of factors without repeats
for finding the Euler Number.

1360 IF Y%<>D% Y%=Y%/D%:R%=INT (SQR(Y%))
1370 ENDPROC

1380 :

1390 DEF PROCScan

1400 PRINT'" Use the Up and Down cursor

keys to"'" scan prime numbers from 2 to
31627."'" Use Shift and the cursor keys
for the"'" beginning or ending of the 1
ist."''" Use Return for main program aga
"

1410 *FX4,1

1420 PRINT

1430 FOR Z%=1 TO 17

1440 M%=P%+4*Z%:PRINTTAB(8) !M%

1450 NEXT

1460 REPEAT

1470 H$=FALSE:K%=GET

1480 IF K%=138 AND INKEY-1 M%=P%+&3528:
CLS:PRINTTAB (8, 24) :H%=TRUE

1490 IF K%=139 AND INKEY-1 M%=P%+4:CLS:
H%=TRUE

1500 IF K%=138 AND M%<P%+&3528 M%=M%+4:
H%=TRUE

1510 IF K%=139 AND M%>P%+4 VDU1ll,11:M%=
M%-4 :H¥=TRUE

1520 IF H%=TRUE PRINTTAB(8) !M%;

1530 *EX2150

1540 UNTIL K%=&0D:CLS

1550 ENDPROC

1860

1570 DEF PROCClear:VDU1l,13:PRINTISPC79:

Continued on page 25

18

Beebug April 1991

New Products From Essential

Bernard Hill assesses the latest products for 512 users from Essential Software.

Product Fastboot
Price £10.95 on disc
£14.95 on EPROM

(upgrade cost £4.00, return your disc)

Product CPFS

Price £24.95 on EPROM with disc
Supplier Essential Software
PO Box 5,

Groby, Leicester LE6 0ZB.

Essential Software, the software house run by
Robin Burton, author of BEEBUG's 512 Forum,
has recently released two important software
packages for 512 co-processor owners. These
are Fastboot and CPFS which are described
separately below.

FASTBOOT

It always seems that a 512 system takes an
eternity to boot up DOS as it reads from the
ADFS-formatted boot disc. The procedure
involves loading a number of files including the
XIOS (the equivalent of the PC’s BIOS), DOS
itself (DOSPLUS.SYS), the code which resides
in the 6502 system (6502.SYS), to say nothing of
AUTOEXEC.BAT and any commands you've
put in there. Fastboot is a very simple idea
which keeps some of this code in sideways
RAM (or ROM) ready for instant use.

The package consists of just a disc containing a
ROM image of the system. In common with all
Essential Software packages the documentation
is in printable form on disc. For my money this
is the best way: after initial perusal I tend to put
manuals away in the cupboard and rarely refer
to them. Not having to bother with printing
and distribution costs enables Essential to keep
their prices low and their value high, probably
chopping about £10 off the cost of the package.

Once you have loaded your RAM image (or
blown an EPROM - Essential give you
permission to make one 8K EPROM for your
own use), you can create an 800K format disc
with DOSPLUS.SYS on it, and Fastboot will use
that to boot from. This combination of using

Beebug April 1991

ROM and the fastest disc format speeds up the
boot process quite considerably. On my model
B (without an AUTOEXEC.BAT) it reduced the
boot time from 31 seconds to 14. With an
AUTOEXEC the improvement will be
greater because of the faster disc access for
each operation in your AUTOEXEC.

Whether it's worth it to you to pay £11 for a
saving of just a few seconds must depend
on how often you boot up and how much
spare cash you have!

CPFS

This is a much more exciting product which has
been overdue for some time. The existence of a
half-megabyte of RAM (in my 512) sitting
alongside my Beeb and usually switched off
has always struck me as a complete waste.
Essential Software’s Co-Processor Filing System
turns this 512K into a complete functioning
RAM disc for use with your model B, B+ or
Master when working in BBC mode. It comes
supplied this time on a 16K EPROM and
(again) with the 24-page manual on disc ready
for printing or browsing through on screen.

It's important of course after installing the chip
(and it must go above the other filing systems
on a model B) to be able to start your machine
with the Tube off. On a Master you can
*CONFIGURE NOTUBE but on the model B the
chip provides the equivalent function
*NOTUBE to be followed by a Break. Then the
filing system can be started with the command
*CPFS,

The filing system allow up to 5 files open at a
time (as do the DFS and ADFS) and raises the
value of PAGE by &100. It allows file names up
to 10 characters in length and has a directory
structure similar to DFS’s, i.e. one-character
directories followed by a full stop. There is
room for 127 files in the CPFS totalling 503,808
bytes and the lack of a complete hierarchical
filing system like ADFS should be no loss in
what is after all a temporary system as it loses
the files when you power off.

19

New Products From Essential

How to review a filing system? There is really
no great excitement to what you see, the benefit
comes in the speed of access and capacity of the
system. The facilities available are very much
like those found in the DFS. The commands
with an identical purpose and syntax are:

*ACCESS *BUILD *CAT *DELETE
*DESTROY *DIR *DUMP *INFO
*LIB *LIST *0PT *PRINT
*RENAME *TYPE *WIPE

There is also *MTYPE to perform *TYPE in
Master-style, i.e. with an ASCII display of
control characters.

Some commands are borrowed from the ADFS:
*EX *FREE

However, *COMPACT has been modified. Since
CPFS performs automatic compaction when
required by the system (no more “Can’t
Extend”s) this command merely forces early
compaction when issued. It is also possible to
force a file to be last on the disc for faster
extension, with:

*COMPACT <filename>

Some commands are recognised by CPFS but
do nothing because they are not needed. These
are:

*BACK *CDIR =CORY, *DISMOUNT
*DRIVE *ENABLE *MAP *MOUNT
*TITLE

Commands omitted are:

*BACKUP *CLOSE
I suspect the latter is an omission easily
rectified but I wish the former had been
included (see below).

The CPFS will also work as a temporary filing
system with the Master (and Master Emulation
ROM for the model B) with all the advantages
that gives.

There is one new command in the system:
*TRANSFER, which will copy files or groups of
files between filing systems. It requires answers
to five questions: the target and source filing

20

system, the target and source directory and the
file specification. Wildcards are allowed
(although “* as a directory caused confusion). It
can even transfer files between DFS and ADFS
when CPFS is not active!

Its most common use must be, of course, the
transfer of a complete (A)DFS disc to CPFS at
the start of a session, and the transfer back at
the end. Beware, however, that CPFS holds
more than two complete DFS discs, or more
than one ADFS disc if you have a 512K
expansion fitted to your 512! Also, I found
*TRANSFER rather slow, presumably because it
uses byte access.

It was also annoying that having transferred a
program to CPFS and modified it, it caused a
“Can’t Extend” message from the DFS as it
tried to overwrite its shorter version on disc.
*TRANSFER also won’t replace locked files on
the target filing system, though I can
understand the reason for this, but the obvious
way to use this product is with a fast transfer
of all files from DFS to CPFS at the start of a
session, and an easy transfer of files back at the
end. I am finding I have to use a second blank
floppy disc for the target at the end of a work
period.

The product works very well and fills a much-
needed gap if you find floppy discs too slow or
too small. In operation it behaves perfectly and
gives a lightning response - saving a 64K file
with:

*SAVE TEST 0 10000

took 8 seconds on a DFS floppy disc, 0.01
seconds on CPFS!). I have already started to use
it for all development work as it is blindingly
fast and I can forget the dreaded “Can’t
Extend” message. It's also ideal for a time-
critical data-logging application I have where
the floppy disc’s slow BPUT makes for much
difficulty.

I also like the ‘O’ flag alongside the “Locked’
flag in catalogues to indicate files which are
open and I guess it’s a good practice anyway to
make me use a blank floppy disc to save onto at
the end of my sessions.

A must for every 512 owner who uses his Beeb
as a Beeb, and £25 very well spent. B

Beebug April 1991

Colour Blender and Screen Design Aid

by Peter Reis

This program was originally written as
an aid to blending colours for the
annual Trinidad Carnival festival. A
further development allows the user to
design unique screens which can be
used to introduce other programs. An
extensive and fascinating array of
colour combinations and effects is
available to the adventurous. The
program works by plotting alternate
pixels from two or more of the standard
colours to create up to 420 new colours.

USING THE PROGRAM

Type in the listing and save it as
Blender. On the model B, PAGE must
be set to &1200 for the program to
operate. When run, the program starts
off with a demonstration of the colours
available. You can cycle through all the
various combinations either manually, or
automatically with the colours changing
approximately every 3 seconds. An initial
screen prompts you for a choice between these
two modes, and also asks whether you want 6
or 7 colours on the screen at the same time.

The demonstration itself displays four of the
standard colours in the centre of the screen, in
the form of horizontal bars. The top and bottom
bars are then mixed to form a Base screen
around the edge of the display. All four colours
are mixed to produce a smaller rectangle inside
this called the Mid screen, and if you have
chosen the 7 colour mode, the two lower bars
are mixed to produce a Fore screen inside this.
The standard colours are then altered one at a
time, cycling through all the combinations of
the 7 non-flashing colours available in the
standard palette. At the bottom left of the centre
screen a four-digit number shows you which of
these colours are currently being used.

To quit the demonstration, you can either wait for
it to finish its natural course, or press Escape at
any point. You now have four options. Press Ctrl-Q

Beebug April 1991

A screen from the demonstration routine which shows

* COLOUR

BLEND PROGRAM =

4 standard and 3 blended colours

to quit the program, Space to run the demonstra-
tion again, Tab to input a code which will display
a screen in the colours of your choice, and S to
alter the co-ordinates of the Mid or Fore screens.
These latter two options will now be explained.

CREATING SCREENS

Pressing Tab displays an input screen with a
prompt to enter a colour/screen code. This
should contain 7 characters, the first 4 of which
are the colour codes as shown at the bottom of
the demonstration sequence screens, followed
by 3 characters which should be either Y’ or
‘N’ to select or deselect the Back, Mid and Fore
screens respectively. For example:

1027YYY would use the colours 1 (red), 0
(black), 2 (green) and 7 (white), and would
create all three screens.

1027YNY would use the same colours but
would not create the Mid screen.

The screen chosen will now be displayed,
whereupon pressing Space will show you the
actual programming lines needed to add the
display to your own program.

21

Colour Blender and Screen Design Aid

Pressing S from the mini-menu described above
allows you to alter the co-ordinates of the Mid
and/or Fore screens. The default values are
shown, and you may type in new values. The
values used for the Mid screen are standard OS
graphics co-ordinates, and are given in the 1160 PRINTTAB(17,18) :"Blengten Mg n »
usual order, i.e. x-min, y-min, x-max, y-max. 1170 ENDPROC
For the Fore screen, however, you must specify 1180 :
text character positions in the same order, not 1190 DEF PROCinsert:VDU24,75;100;1205;9
graphics co-ordinates. 30; :PROCcol

1200 IF N=1 VDU28,4,25,35,6:IF cls=0 CL
S:PROCforecol

1210 MOVE 75,100:GCOL 0,3:DRAW 1205,100
:DRAW 1205, 930:DRAW 75, 930:DRAW 75,100

1220 COLOUR 3:PRINTTAB(4,1);"* COLOUR B
LEND PROGRAM *"

1130 COLOUR 128:COLOUR k:PRINTTAB(1,18)
icl;clicdioly

1140 PRINTTAB(5, 18) " Tora] " .q.n n
1150 PRINTTAB(26,18) ;"No ";base;:VDU23,
1,0:0:0:0;

You can now try out various combinations of
screens and colours until you find the one you
need. Note that in extreme cases of screen size
selection, the text which prompts “Space bar to
continue” may be somewhat displaced but the

screens represented should not be affected.

10 REM >Blender
20 REM Program Colour blender
30 REM Version B1.0
40 REM Author Peter Reis
50 REM BEEBUG April 1991
60 REM Program subject to copyright
a0
100 ON ERROR PROCerr

110 yDU23 250,170, 85,1170,85, 170 85 170
,85:1inpt=0:1inpg=0

120 MODE1:PROCsetup:CLS:PROCinput

130 PROCinit:PROCstart :PROCendscr :END

40 ¢

1000 DEF PROCblend:IF N>1 ENDPROC

1010 VDU26,12:2&D0=2:FOR V=1 TO 10:PRIN
TSTRINGS (128, CHRSB1) ; :NEXT: ?2&D0=0

1020 base=base+l

1030 ENDPROC

1040 :

1050 DEF PROCbias:VDU19,0,c0;0;19,1,cl;
0:19,2,¢2:0:19,3,c3:0; :ENDEROC

1060 &

1070 DEF PROCendscr:VDU30:a=0:b=1:c=3:d
=7

1080 VIS, 0,a:0,19,1,b;0-18 9 el (=19 3
,d;0; :w=7:wl=3:w2=1:w3=0

1090 PROCinsert:c0=a:cl=b:c2=c:c3=d:PRO
Cann:G=GET

1100 ENDPROC

1110

1120 DEF PROCann:PROCcontrast

1230 COLOUR 131:COLOUR w3:PRINTTAB (5, 6)
;" Developed By P.Reis. "

1240 COLOUR 130:COLOUR w2:PRINTTAB(1,8)
;"Allows 28 Hybrid base colours."

1250 COLOUR 129:COLOUR wl:PRINTTAB(1,10
1. 420 Colour combinations | *®

1260 COLOUR 128:COLOUR w:PRINTTARB(5,12)
;" ®ingpl colours in mode 1 %

1270 ENDPROC

1280

1290 DEF PROCcol:IF N>1 ENDPROC

1300 GCOL 26,cl:CLG:GCOL 21,c] :CLG:GCOL
28,¢1:CLG:GCOL 26,cl:CLG

1310 ENDPROC

1320

1330 DEF PROCinp

1340 S%=1:B1=250:c1=129:N=1:PROCplotsc
1350 COLOUR 3:PRINTTAB(2,5) ;" Coloeur/Sc
reen code ~>";:PR0OCcls

1360 COLOUR 2:INPUT" "CSS:COLOUR 3:1IF I
ENCS$<>7 PROCerror:GOT01340

1370 IF VAL(LEFTS(CS$,4))<1 OR VAL(RIGH
T$(CS$,3))>0 PROCerror:GOT01340

1380 cO=VAL(MIDS (C8S$,1,1)):cl=VAL (MIDS(
€s$,2,1))

1390 c2=VAL(MIDS$ (CS$,3,1)) :c3=VAL (MIDS (
Css,4,1))

1400 IF MIDS(CSS,5,1)="¥Y" OR MIDS (€8S,5
,1)="y" S1=1 ELSE S1=0

1410 IF MIDS (CSS,6,1)="Y" OR MIDS5(CSS,6
,1)="y" S2-1 ELSE S52=0

1420 I8 MIDS (€55,7,1)="Y" OR MIDS (€S8, 7
,1)="y" S3=1 ELSE S3=0

1430 ENDPROC

22

" Beebug April 1991

Colour Blender and Screen Design Aid

1440 :

1450 DEF PROCscr:VDU26

1450 VDU19,0,¢0:0;19; 14c1:0:19,2,02;:0;:1
9,3,03)0; :PROCCEE :CLS

1470 IF inpg=1 a=a%:b=b%:c=c%:d=d% ELSE
a=75:b=100:¢c=1205:d=930

1480 IF inpt=1 p=p%:q=q%:r=r%:s=s% ELSE
p=4:9=25:r=35:5=6

1490 IF S1=1 N=1:PROCblend:N=0

1500 IF 82=1 N=1:VDU24,a:b;c:d; :PROCecol
:N=0

1510 IF 83=1 N=1:VDU28,p,q,,s:CLS:PROC
forecol2:N=0

1520 IF S2 MOVE a,b:GCOL 0,3:DRAW ¢,b:D
RAW c,d:DRAW a,d:DRAW a,b

1530 MOVE (a+205), (b+150) :VDU5:GCOL 0,2
1540 PRINT" Spacebar to continue ":VDU4
:PROCOff

1550 COLOUR 3:PRINTTAB(5,5):c0:cl;c2;c3
:inpt=0:inpg=0

1560 REPEAT UNTIL GET=32

1570 PROCdata

1580 ENDPROC

1590 ¢

1600 DEF PROCfind

1610 IF c0 BS$=LEFTS$ (AS$,c0)+MIDS (AS, (cO+
2) , (c3-(c0+1))) +MIDS (AS, (c3+42), (8-c3+2))
ELSE B$=MIDS$ (A$, (c0+2), (c3+2-(c0+3))) M
IDS (AS, (c3+2), (8-(c3+1)))

1620 ENDPROC

1630 ¢

1640 DEF PROCvariations

1650 FOR x%=1 TO 5:cl=VAL(MID$ (BS,x%,1)
)
1660 FOR y%=x%+1 TO 6:c2=VAL(MID$ (BS, y%
;1)) :N=2:T=T+1:v%=v%+l

1670 PROCbias:PROCinsert:PROCann

1680 IF aut$% REPEAT UNTIL GET=32 ELSE Z
=INKEY (250)

1690 NEXT y%:NEXT x%:base=base+l:v%=0
1700 ENDPROC

itgior

1720 DEF PROCstart

1730 FOR z%=num TO 7:c0=VAL (MIDS$ (A$, z%,
1))

1740 FOR j%=z%+1 TO 8:c3=VAL (MIDS (A$, 3%
,1)) :N=N+1

1750 PROCblend:PROCinsert:PROCfind:PROC
variations

1760 NEXT j%:NEXT z3%

1770 ENDPROC

1780 :

1790 DEF PROCinit

1800 c1=129:B1=250:A%$="01234567":v%=0:b
ase=0:T=0:N=0:num=1

1810 w=0:wl=1:w2=2:w3=3:VDU23,1,0;0;0;0

1820 ENDPROC

1830 :

1840 DEF PROCcontrast

1850 k=3:IF c0=3 AND c3=7 OR c0=2 AND c
3=6 OR c0=1 AND c3=5 OR c0=6 AND c3=7 k=
k-2

1860 IF c0=0 AND c3=4 OR c0=2 AND c3=3
k=k-2

1870 ENDPROC

1880 :

1890 DEF PROCinput:VDU23,1,0;0;0;0;

1900 ¢1=129:B1=250:N=1:PROCblend:PROCin
troscr:VDU28, 1,0:0:0:0%

1910 REPEAT UNTIL GET=32

1920 VDU20:ENDPROC

1930 :

1940 DEF PROCintroscr

1850 VDU19,0,0:;0:19,1,1;0:19,2,2:0:19,3
,7:0; :w=7:wl=2:w2=1:w3=0:PROCinsert

1960 MOVE 280,250:VDU5:GCOL 0,2 :PRINT"
Spacebar to continue ":VDU4

1970 ENDPROC

1980 :

1990 DEF PROCsetup:VDU23,1,0;0;0;0;
2000 VDU19,0,4;0:19,1,0:0;19,2,170:19,3
1 150

2010 VDU26,12:2&D0=2:FOR V=1 TO 10:PRIN
TSTRINGS (128, CHR$250) ; :NEXT: 2&D0=0

2020 vpU24,55;70:1230;960;

2030 6COL. 26,129:CLG:GCOL. 27,129:CLG:GC
OL 28,129:CLG:GCOL 26,129:CLG

2040 MOVE 55,70:GCOL 0,3:DRAW 1230,70:D
RAW 1230, 960:DRAW 55, 960:DRAW 55,70

2050 VDU28,3,27,36,4:CL8

2060 COLOUR 1:?&D0=2:FOR X1=1 TO 8:PRIN
T STRINGS (102,CHRS$250) ; :NEXT: ?&D0=0

2070 PROCsetuptext

2080 ENDPROC

2090

2100 DEF PROCforecol

2110 COLOUR 1:?&D0=2:FOR X1=1 TO 10:PRI
NT STRINGS (64,CHRS$B1) ; :NEXT:?&D0=0

2120 ENDPROC

Beebug April 1991

23

Colour Blender and Screen Design Aid

20301

2140 DEF PROCerr:IF ERR<>17 CLS:REPORT:
PRINT" at line ";ERL:END

2150 VDU20,22,3,14

2160 REPEAT PROCselect :G=GET

2170 IF G=9 VDU20,22,1,14:PROCinp:PROCs
cr

2180 IF G=32 RUN

2190 IF G=83 VDU22, 3:PROCscreenchg:IF G
<>113 VDU22,1:PROCinp:PROCscr

2200 UNTIL G=17

2210 CLS:VDU22,3,14:PROCOff:PRINTTAB (36
¢19):"E X I T":Z=INKEY(100) :CLS:VDU23,1,
1;0;0;0; :END

2220 ENDPROC

2230 &

2240 DEF PROCdata:VDU26,22,3:CLS:VDU23,
1,0:0:0:0;

2250 ERINT'" MODE1:VDU23,250,170,85,1
70,85,110,85,110, 85"

2260 PRINT" VDUL9,0,%:000; 0,19 1 ":al

":0:19,2,":c2M.0:10, 3 Hooqn (.0

2270 IF S1=1 PRINT'"Base Screen:"

2280 IF S1=1 PRINT" VDU26,12:2&D0=2:F
OR V=1 TO 10:PRINTSTRINGS (128,CHRS$250) ;:
NEXT: 26D0=0"

2290 IF S2=1 PRINT'"Mid Screen:"

2300 TF S2-1 PRINT" \\VDU24, " salts snin
e idipt

2310 IF 52=1 PRINT" GCOL 26,129:C16:C
COL 27,129:CLG:6GCOL 28,129:CLG:GCOL 26,1
29:CLG"

2320 IF S2=1 PRINT" MOVE";a",";b":GCO
L 0,3:DRAW";c", "b" :DRAW";c", "d" : DRAW" ; a"
«Id”DRAW":al, b

2330 IF S3=1 PRINT'"Fore Screen:"

2310 TE|(s3=1 PRINT" — VDU28,l;ph 2. qn, "
il s

2350 IF S3=1 PRINT? COLOUR 1:2&D0=2:F
OR X1=1 TO ";B%; :PRINT":PRINT STRINGS (";
A%;"%, CHR$250) ; :NEXT:?&D0=0"

2360 PRINT'"Text"

2370 PRINT" MOVE 280,250:VDU5:GCOL 0,
2:PRINT' Spacebar to continue ':VDU4"

2380 PRINT" COLOUR 128:COLOUR 1:PRINT
TAB(18,22) icll;cl,cl:c3"

2390 S1=0:52=0:53=0

2400 ENDPROC

2410

2420 DEF PROCselect

2430 PRINT'TAB(3);:COLOUR 131:COLOUR 0:
PRINT" PRESS CIRL (Q) TO QUIT ";:VDU20
2440 PRINTTAB(33); :COLOUR 131:COLOUR 0:
PRINT" PRESS SPACE BAR TO RUN ":VDU20
2450 PRINTTAB(3); :COLOUR 131:COLOUR 0:P
RINT" PRESS <TAB> NEW INPUT "::YDU20
2460 PRINTTAB(33); :COLOUR 131:COLOUR 0:
PRINT" PRESS (S) ALTER SCREEN ":VDU20
2470 COLOUR 128:COLOUR 131:ENDPROC

2480 :

2490 DEF PROCerror

2500 CLS:PROCOff:PRINTTAB(11,12);"INPUT
SELECTION ERROR !":Z=INKEY(150) :CLS
2510 PROCplotsc:ENDPROC

2520 :

2530 DEF PROCplotsc:cl=0:cl=1:c2=3:c3=17
:a=75:b=350:¢c=1205:d=675:p=2:9=21:r=37
2540 VDU19,0,¢0;0;19,1,¢c1:0:19,2,c2;0;1
9,3,03:0;:2- 11

2550 VDU28,p,q, I, s:CLS:PROCforecol

2560 MOVE a,b:GCOL 0,3:DRAW c,b:DRAW c,
d:DRAW a,d:DRAW a,b

2570 MOVE (a+105), (b-100) : :VDU5:GCOL 0,
2:PRINT" Enter Code -- Press <RET>":VD
U4:PROCoff: ENDPROC

2580

2590 DEF PROCcls

2600 FOR x%=24 TO 32:PRINTTAB(x%,5);" "
; :NEXT:PRINT"<":FOR y%=1 TO 12:VDU8:NEXT
2610 ENDPROC

2620 :

2630 DEF PROCforecol2

2640 ax=(39-p)-(39-(r+l)):ay=(31-s)-(31
-(qtl)) :kl=ax*ay

2650 X=10:REPEAT A=kl MOD X

2660 IF A=0 A%=kl DIV X:B%=X ELSE B%=ay
:A%=ax

2670 X=X-1:UNTIL A=0 OR X=5

2680 COLOUR 1:?&D0=2:FOR X1=1 TO B%:PRI
NTSTRINGS (A%, CHR$250) ; :NEXT: 2&D0=0

2690 ENDPROC

2700

2710 DEF PROCscreenchg:inpt=0:inpg=0
2720 REPEAT CLS:PRINTTAB(19);"WHICH SCR
EEN/S DO YOU WISH TO ALTER 2"

2730 PRINT'"PRESS (M) FOR MIDSCREEN";TA
B(31);"Default -=> 175,100,1205,930"
2740 PRINT"PRESS (F) FOR FORESCREEN";TA
B(31) ;"Default -—> 4,25,35,6"

2750 PRINT"PRESS (B) FOR BOTH"

24

Beebug April 1991

Colour Blender and Screen Design Aid

2760 PRINT"PRESS (Q) TO QUIT OPERATION"

2770 G=GET OR 32:UNTIL G=98 OR G=102 OR

G=109 OR G=113

2780 PRINT" (":CHRSG; ™M™

2790 IF G=98 OR G=102 INPUT'TAB(19);"FO
RESCREEN (a,b,c,d) > "p%,q%,r%,s%:inpt
=1

2800 IF G=98 OR G=109 INPUT'TAB(19);"MI
DSCREEN (a,b,c,d) > "a%,b%,c%,d%:inpg
=1

2810 IF G<>113 PROCtab

2820 ENDPROC

2830 .

2840 DEF PROCsetuptext

2850 MOVES1,843:VDUS:GCOL 0, 1:ERINT" -

* COLOUR BLEND PROGRAM * - "

2860 MOVE90,850:VDU5:GCOL 0,3:PRINT" -

* COLOUR BLEND PROGRAM * - "

2870 MOVE93,853:VDU5:GCOL 0,2:PRINT" -

* COLOUR BLEND PROGRAM * - "

2880 MOVE 220,700:VDU5:GCOL 0, 3:PRINT"S
elect mode of operation :"

2890 MOVE 320,630:GCOL 0,2:PRINT"Manual
(). =0

2900 MOVE 320,580:GCOL 0,2:PRINT"Auto
(@) >

2910 MOVE 220,415:GCOL 0,3:PRINT"Select
colour blend mode :"

2920 MOVE 320,345:GCOL 0,2:PRINT"(6) or
(1) > ":vDhu4

2930 COLOUR 130:COLOUR 3:PRINTTAB(25,10
VN = ypus

2940 VDU31,25,10:COLOUR 3:INPUT" "aut$%
2950 PRINTTAB(25,17)" <":VDuU8

2960 VDOUAL, 25,1 7:INRUT" "cls

2970 IF cls=6 cls=1:n%=6:ELSE cls=0:n%=
7]
2980 IF aut%<0 OR aut%>1 aut%=0

2990 vDU20,26,12:ENDPROC

3000 :

3010 DEF PROCtab:PRINTTAB (35,20);"PRESS
TAB" : ENDPROC

3020 :
3030 DEF PROCOff:VDU23,1,0;0;0;0; :ENDPR
oc B

Recreational Mathematics (continued from page 18)

Vvoulil,13

1580 ENDPROC

1590 -

1600 DEF PROCError

1610 ON ERROR OFF:VDU26,12:REPORT:PRINT
" at Line " JERL:Y S

1620 *FX4,0

1630 ENDPROC

1640 :

1650 DEF PROCFileError

1660 VDU26,12:0N ERROR PROCError

1670 PRINT'" The file 'STORE2' cannot b
e found."''" Type 'PROCGenerate' and a 1
ist of"'" the first 3402 prime numbers c
an be"'" saved as 'STORE2'."

1680 ENDPROC

1690 ¢

1700 DEF FNTest (T$,U%)

1710 IF Ts="": ==1

1720 IF VALTS$=0:PROCClear:=0 ELSE T=EVA
LTS

1730 IF T<0 OR T>Us: =0

1740 IF T<>INTT: =0

1750 =T

1760 :

1770 :REM******************************

1780 DEF PROCGenerate:REM Not called by

the main program

1790 VDU15

1800 P%=&3000:REM (Not redundant, since
PROCGenerate must run alone.)

1810 B%=P%+4:!B%=2

1820 ERINT!SPCH,"N";SPC3;"Nth Prime”

1830 PRINT'SEC9,"™1.":SPCE:"2"

1840 z%=1

1850 REPEAT

1860 Z%=Z%+2:S5%=INT (SQRZ%) :N%=P%

1870 REPEAT

1880 N%=N%+4:T%=!N%

1890 UNTIL Z% MOD T%=0 OR T%>=S%

1900 IF Z% MOD T%<>0 B%=B%+4:!B%=Z%:PRI
NT (B%-P%) /4;".";SPC6; 2%

1910 UNTIL Z%>=31627

1920 PRINT" Press Return to save the pr
ime numbers as 'STORE2'."

1930 REPEAT:UNTIL GET = &0D:*SAVE STORE
2 300043530

1940 ENDPROC B

Beebug April 1991

25

MS-DOS and DFS Compared

Kai S. Ng provides a useful comparison between the commands used by the PC operating
system MS-DOS and the Beeb's DFS filing system.

Very often, BBC microcomputer users are
having to use PCs at their workplaces. I hope
the following cross-reference tables will assist
anyone who is experiencing the inconvenience
of using the different filing systems
implemented on the two very different
machines.

Table 1 lists those commands for which there is
a DFS equivalent, Table 2 lists DOS commands
for which there is no DFS equivalent, and Table
3 lists the DFS commands which do not exist in
MS-DOS with suggested alternatives. The ‘4’ or
‘e’ in the leftmost column indicates whether the
DOS command is internal or external (i.e.
requiring access to disc).

MS-DOS (3.3) DFS (2.26) Purpose
i ab: . *DRIVE changes the disc drive
e append =L1B sets a search path for data files
e attribute *ACCESS displays or changes the attributes of selected files
i chdir (cd) *DIR changes the currently selected directory
e chkdsk IVERIEY scans the disc to check for legibility and errors
i dls CLS (from BASIC) clears the console screen
i copy “GOR Y copies a file from one disc to another
i del (erase) tDELETE erase a single file
i del (erase) *WIPE erase multiple files with individual prompts
i del (erase) *DESTROY erase a group of files with a single prompt
i diriw ICAT FOPTI1I0) displays the catalogue of current directory or disc
i dir *EX or *INFO reports detailed information on (*OPT1,1) files
i dir "EHEE displays the number of files and amount of
free memory on disc
e diskcopy *FORMAT then *BACKUP identically reproduce a normal disc
e format *FORM formats a disc
e label TITLE changes the volume title label of a disc
e more Ctrl-N to set up sends output to console one screen,Shift to scroll
i path LIB sets a search path for command files
i rename *RENAME changes the name of a file
e replace *LOAD then *SAVE updates a previous version of a file
i time (date) *TIME displays or changes the time and date
(on Master only)
i type TYPE or 'LIST displays a text file
i ver =l reports the system version number
i vol *CAT reports the disc’s volume title
Table 1. DOS commands for which there is a DFS equivalent
26 Beebug April 1991

MS-DOS and DFS Compared

MSDOS (3.3)

e assign
e backup

break
chep

- o

command
comp

ctty
diskcomp
exe2bin
exit

@ > — @ O

fastopen
fc

fdisk
find
graftabl
graphics
join
keyb
mkdir
mode
nisfunc
print
prompt
recover
rmdir
select

® T o o0 od® @O0 b o D Qb D

set

e share
sort

subst
sys
tree
verify
XCopy

0 " (G (D (D

Purpose

divert filing operations on drives x,y.. to z

produce a backup selected files on another disc, which

can only be recovered using the “restore” command

sets CTRL-C check for halting a program

changes the current (international) code page for the

command processor “command.com”

starts the “command.com” file

compares the content of 2 files

changes the device from which you issue commands

compares the content of two discs

converts .exe executable files to binary format

terminates the current “command.com” program and returns to a
previous level, if one exits

assigns the number of frequently used files to track

compares two sets of files and displays the differences between them
configures the hard disc partition for use with MSDOS

searches for a specific string of text in a file or files

enables an extended character set when using graphics display adaptors
prints a graphics display screen on a printer

joins a disc drive to a specified path

loads a keyboard program

makes a new directory

sets operation modes for peripheral ports

loads country-specific information

prints a text file in background mode

changes the MSDOS command prompt

attempts to recover a file or disc containing bad section

removes an empty directory

formats and installs MSDOS on a new floppy along with
country-specific information

sets one string of characters in the environment to be translated as
another string

installs file sharing and locking over a network

reads and sorts a source data file then writes the output to the screen,
file or peripheral

substitutes a path with a drive letter

updates the system files on a disc

displays the path of each directory and sub-directory

turns the data verify switch on and off when writing to a disc
copies files and lower level directories

Table 2. DOS commands for which there is no DFS equivalent

Beebug April 1991

27

MS-DOS and DFS Compared

DFS (2.26) What to do in MSDOS

*BUILD use the line editor program “edlin.com” to create text files

*COMPACT a similar facility is only available from utilities such as PCTools

*DUMP use the D command of debug.com

*EXEC this is identical to executing a .bat batch file

*LOAD simply loading a program into the memory is not available at MSDOS
command level, and it is rather hazardous too since the PC is a “virtual”
machine

SPOOL not available

*RUN this is identical to running a .exe or .com program

IBOOT file the autostart file is “autoexec.bat”

Table 3. DFS commands for which DOS has no direct equivalent B

Collapsing Screens (continued _from page 9)

1750 EQUB 23:EQUB 1:EQUD 1:EQUD 0 Listing 2

1760 .Width:EQUB 0:.0ldVec EQUW 0 000 DR

iy e o S, o

1790 .pos EQUB 0:.vpos EQUB 0 gggig ‘(;;T;ngliog A b sony

1800 .DCount:EQUB 0:.NotMoved:EQUB 0 e e

1810 .Xpos EQUB 0:.Ypos EQUB 0 LR

1820 .CharX:EQUS STRINGS (MaxChars%, CHR$ ki

0) :EQUBO 30060 FOR I%=1 TO 20

1830 .CharY:EQUS STRINGS (MaxChars%, CHR$ 30070 VDU 11

0) :EQUBO 30080 T%=TIME:REPEAT UNTIL TIME>TS+3
1840]:NEXT 30090 NEXT

1850 OSCLI ("SAVE Fall "+STR$~code$+" "+ 30100 CLS

STR$~0%+" "+STR$~exec+" "+STR$~execs) 30110 vpu 23,1,1,0,0,0,0,0,0,0

1860 END 30120 ENDPROC B

Points Arising....Points Arising....Points Arising....Points Arising....

CONTINUED FRACTIONS

(Vol.9 No.7)

Mr.].G.Scadding of Beaconsfield has found that
the program fails to correctly identify numbers
such as 7(1/3) as an irrational number. It is

. ELSE IF ERR=26 OR ERR=27
THEN PROCirrational:GOT0130

PLANET Z
(Vol.9 No.7 Disc Only)

very difficult to suggest a modification which
would reliably identify all irrational numbers,
but the following modification will cope with
this particular instance. Change line 250 to read:

28

The author has informed us that line 2850 in the
program PLZ should be changed to:
2850 PROCstop

B

Beebug April 1991

BEEBUG

by Stefano Spina

0 This month we present

further functions and procedures from the
library of Stefano Spina, again concentrating on
various string handling or related routines.
Note that some of these functions/procedures
call, in turn, other routines, including in some
cases FNmd listed last month.

The last procedure, PROCcomm, is quite
different and provides an organised way of
entering star commands from within any
program. It also allows some abbreviations,
such as just ‘$’ to select the $ (root) directory
rather than entering the full command DIR $.
Some of the abbreviations are applicable only to
the ADFS. Alternatives could easily be
incorporated for DFS users.

Function/Procedure Library (2)

This month’s routines are numbered to follow
on from those listed last month. To append the
new code you will need to type it in and then
spool it out to a file using the *SPOOL
<filename> command. Then load your existing
function/procedure library, use *EXEC to load
in the spooled additions and resave the
complete library as a whole.

Note that any procedure can be easily tested by
loading the library as a Basic program, and then
typing in function and procedure calls in
immediate mode. The examples quoted in the
documentation for each routine could be
explored and tested in this way.

THE FUNCTION/PROCEDURE LIBRARY (PART 2)

Routine 12: Format

Type: PROCEDURE

Syntax: PROCSrt(S$,C%,R%,W %,]%)
Purpose: Formats a given string into a

given width right justified.
Parameters: S$ String to be formatted

C% Column
R% Row
W% Width
1% Flag to set/reset output
layout
TRUE calls FNstyle to
modify the layout

FALSE doesn’t modify
the string’s layout

The string is formatted in several
rows of the required length and
the sub-strings are right justified.
If J% is set to TRUE then FNstyle
is called to put every word with
the first character in upper case
and the rest in lower case.
FNmd, FNspaces, FNstyle

Notes:

Related:

10 S$="this is a string that MUST be
formatted into TWENTY columns,

Beebug April 1991

starting at column 10, row 10"
20 PROCfrt(S$,10,1,20,TRUE) :
REM the string’s layout is changed

Thisswils: a. «.skring
that Must be
formatted into
Twenty columns,
starting at column
10, row 10
Routine 13: Length
Type: FUNCTION
Syntax: FNlength(5$,C$,D% M%)
Purpose: Formats a string to the required
length adding given characters
at the end or at the beginning
of the string.
Parameters: S$ String to be formatted

C$ Fill character
D% Required length
M% Flag to set fill mode
0 The fill character is
added at the beginning
1 The fill character is
added at the end

29

BEEBUG Function/Procedure Library

Notes: This function allows data items
to be all of the same length so
that tables are easier to display
or print.

Related: None

10 PRINT FNlength("String","*",10,1):
REM produces "String****"

20 num%=1500

30 PRINT FNlength (STR$num%,"0",6,0) :
REM produces "001500"

Routine 14: Spaces

Type: FUNCTION

Syntax: FNspaces(S$,W %)

Purpose: Formats a string to the required

width inserting dummy spaces.
This differs from FNlength
because spaces are inserted all
along the string.
Parameters: S$ String to be formatted
W% Width
This function can be used as a stand
alone routine or in conjunction
with PROCformat and FNstyle.
None

Notes:

Related:

10 str$="String 19 chrs long"
20 PRINT FNspaces (str$,24):
REM produces "String 19

chrs: long"

Routine 15:
Type:
Syntax:
Purpose:

StrBox
PROCEDURE
PROCstbx(A%,B%,C%,D%,M%)
Draw horizontal/vertical lines
or boxes at the given text co-
ordinates in any graphics mode.
A% Left text column
B% Left text row
C% Right text column
D% Right text row
M% Flag for output mode
0 Draws a box
1 Draws a horizontal line
2 Draws a vertical line
This procedure differs from
PROCbox because the co-ordinates
are given in text format; this

Parameters:

Notes:

30

makes it easier to create tables
on the screen. Lines are always
drawn at the centre of the text
line and, in high resolution
modes, vertical lines are drawn
twice with an offset of two
pixels to make them the same
width as horizontal ones.

Related: FNmd

10 MODE 129

20 PROCstbx(1,1,38,25,0):
REM box from col. 1, row 1 to col. 38,
row 25

30 PROCstbx(1,1,38,0,1):
REM horiz. line at row 1 from col.l
to col. 38

40 PROCEtbx{1,1,0,25;2)¢

REM vert. line at col. 1 from row 1

to row 25
Routine 16: String
Type: PROCEDURE
Syntax: PROCstr(C$,C%,R%,N%,H%)

Purpose: Prints graphic string in mode

7/135 at given col./row

Parameters: C$ Alphanumeric character
C% Column
R% Row
N% Number of characters
to be printed
H% Teletext graphics colour

code (145-151)

Notes: This simple procedure allows
graphic output on the screen in
mode 7/135 depending on the
selected alphanumeric char.

Related: None

10 PROCstr(",",2,8,38,141):
REM continuous red bar at col. 2, row 8

Routine 17: Style

Type: FUNCTION

Syntax: FNstyle(S$)

Purpose: Changes the given string’s lay-

out forcing every word to start
with an upper case letter while
the rest is forced to lower case.

Beebug April 1991

BEEBUG Function/Procedure Library

Parameters: S$
Notes:

String to be changed
The global logical variable
style% acts as a switch; if it is
set to FALSE before the function’s
call, no changes will be
performed.This variable is set
to TRUE on exit.

Related: FNswap

10 style%=TRUE

20 PRINT FNstyle ("CHANGE STRING’s layOUT"):
REM "Change String’s Layout"

30 style%=FALSE

40 PRINT FNstyle ("UNchaNGE stRing"):
REM "UNchaNGE stRing"

Routine 18: Swap
Type: FUNCTION
Syntax: FNswap(S$,M%)
Purpose: Swap cases in the given string
Parameters: S$ String to be swapped
M% Flag for output selection
0 Forces lower case
1 Forces upper case
2 Reverses case
Notes: None
Related: None

10 str$="123 @abcDEF, k1MN"
20 PRINT FNswap(str$,0):

REM produces "123 @abcdef, klmn"
30 PRINT FNswap (str$,1):

REM produces "123 @ABCDEF, KLMN"
40 PRINT FNswap (str$,2):

REM produces "123 @QABCdef, KLmn"

Routine 19:
Type:
Syntax:
Purpose:

Command
PROCEDURE
PROCcomm
Opens a “window” into the oper-
ating system allowing commands
to be executed without stopping
execution of the Basic program.
None
Some common commands are
shortened to a single character:
Performs a catalogue

0 Mounts drive :0

1 Mounts drive:1

A Sets the parent directory

$ Sets the root directory
The abbreviations ‘0", ‘1’ and ‘'
apply only to the ADFS. Similar
abbreviations could be pro-
grammed in for the DFS.
PROCcolour, PROCstbx

Parameters:
Notes:

Related:

10 IF me%=5 THEN PROCcomm

21040 :

21050 REM Format

21060 :

21070 DEF PROCfrt (S$,C%,R%,Ws,J%)

21080 LOCAL AS$,A%,B%,D%,F%,L%:L%=FNmd
21090 IF L%=2 OR L%=5 A%=19 ELSE IF L%=0

OR L%=3 A%=79 ELSE A%=39
21100 IF L$=3 OR L%=6 OR L%=7 B%=24 ELSE
B%=31
21110 VDU28,C%,B%,A%,R%:We=W%+1
21120 REPEAT
21130 L¥=LEN(SS)
21140 IF L$<=W%-1 F%=TRUE:A$=S$:GOTO 212
00
21150 A%=0:B%=1
21160 REPEAT
21170 D$=INSTR (MID$ (SS$,W%-A%
$+1
21180 UNTIL D%$>0 OR A%=W%
21190 A$=MIDS (S$,B%, W$-A%)

1)," ") :A%=

21200 style%=J%:A$=FNstyle (A$)

21210 IF F% PRINT A$ ELSE PRINT FNspaces
(AS,W-1)

21220 S$=RIGHTS$(S$,L%- (Ws-A%+l))
21230 UNTIL F%:VDU26

21240 ENDPROC

21250 :

21260 REM length

20090

21280 DEF FNlength(S$,C$,D%,M%)
21290 LOCAL L%:L%=LEN(SS):IF L%>=D%
TS (S$,D%)

21300 IF M%=0 =STRINGS (D%-L%,C$)+S$ ELSE
=S$+STRINGS (D%-L%,C$)

21310 ¢

21320 REM Spaces

21530 ¢

21340 DEF FNspaces (S$,Ws)

21350 LOCAL A$,A%,B%,C%,D%,E%,F$%

21360 A%=LEN(S$) :IF A%>=W$ =S$

=LEF

Beebug April 1991

31

BEEBUG Function/Procedure Library

21370 E%=W%-A%:B%=FALSE

21380 REPEAT

21390 F%=1:C%=FALSE

21400 REPEAT

21410 D%=INSTR(SS$," ",F$%)

21420 IF D%=0 THEN C%=TRUE ELSE AS$=AS$+MI
D$(SS,F%,D%-F%+1)+" ":E%=E%-1:IF E%=0 TH
EN B%=TRUE ELSE F%=D%+1

21430 UNTIL B% OR C%

21440 IF A$="" THEN B%=TRUE ELSE IF C% S
$=A$+MIDS (S$,F%) :AS=""

21450 UNTIL B%

21460 IF A$="" THEN =S$ ELSE =AS$+MIDS (S$
LD%4])

21410 ¢

21480 REM StrBox

21490 :

21500 DEF PROCstbx (A%,B%,C%,D%,M%)

21510 LOCAL S%,E%,F%

21520 S%=FNmd

21530 IF S%=3 OR S%=6 OR S%=7 ENDPROC
21540 IF S%=1 OR S%=4 E%=40 ELSE IF S%=2
OR S%=5 E%=20 ELSE E%=80

21550 F%=1280/E%:A%=(A%*F%)-1+(F%/2)
21560 B¥=(((31-B%)*32)-1)+16

21570 IF M%<2 C%=(C%*F%)-1+(F%/2)

21580 IF M%$<>1 D%=(((31-D%)*32)-1)+16
21590 MOVE A%,B%

21600 IF M%=0 DRAW C%,B%:DRAW C%,D%:DRAW
A%,D%:DRAW A%,B%:IF S%=0 MOVE A%+2,B%:D

RAW A%+2,D%:MOVE C%+2,B%:DRAW C%+2,D%

21610 IF M%=1 DRAW C%,B% ELSE DRAW A%,D%
:IF S%=0 MOVE A%+2,B%:DRAW A%+2,D%

21620 ENDPROC

21630 :

21640 REM String

21650 ¢

21660 DEF PROCstr (C$,C%,R%,N%,H%)

21670 LOCAL S$

21680 S$=CHRS$ (H%) +STRINGS (N%,C$)

21690 PRINTTAB(C%,R%)S$

21700 ENDPROC

217104

21720 REM Style

21730

21740 DEF FNstyle (S$)

21750 IF NOT style% style%=TRUE:=S$

21760 LOCAL A$,B$,C$,A%,B%,C%

21770 C%=LEN(SS$) :A%=1

21780 REPEAT:BS=""

21790 REPEAT

21800 AS$=MIDS (S$,A%,1) :B$=BS+A$:A%=A%+1

21810 UNTIL A$=" " OR A%>C%

21820 B%=LEN (BS)

21830 AS$=FNswap (LEFTS (BS,1),1)

21840 IF B%=1 B$=AS ELSE B$=A$+FNswap (MI

D$(BS,2),0)

21850 C$=CS$+BS

21860 UNTIL A%>C%

21870 =C$

21880 :

21890 REM Swap

21900 :

21910 DEF FNswap (S$,M%)

21920 IF s$="ll =llll

21930 LOCAL AS,F%,H%,1%,L%:L%=LEN(S$)

21940 FOR I%=1 TO L%

21950 H%=ASC (MIDS(S$,1%,1))

21960 IF H%<65 OR (H%>90 AND H%<97) OR H

%$>122 THEN GOT022000

21970 IF (H%>=65 AND H%<=90) F%=FALSE

21980 IF (H%>=97 AND H%<=122) F%=TRUE

21990 IF NOT(F%) AND (M%=0 OR M%=2) H%=H
%+32 ELSE IF F% AND (M%=1 OR M%=2) H%=H%

=47

22000 A$=AS$+CHRSHS

22010 NEXT I%

22020 =A$

22030

22040 :

22050 REM Command

22060 :

22070 DEF PROCcomm

22080 LOCAL A$:VDU22,128

22090 PROCstbx(0,0,79,5,0)

22100 PROCstbx (0,2, 719 0,1)

22110 PROCcalour(l) :ERINTTAB(20, 1) " 1% =
* Command P age = X& R

22120 PROCcolour (0) :PRINTTAB (11, 3) "Input
string to be executed by the MOS and pr

ess Return"

22130 PRINTTAB(20,4)"or Press Return wit

hout input to exit"

22140 vbu28 0,30,79,6:CLS

22150 REPEAT

22160 INPUTLINE TAB(4)"*"A$

22170 IF LEFTS (AS,3)="DIR" PRINT:OSCLI (A
$)20SCHT". ! ELSE TP AS="0" OR AS=U1% QSC
LI"MOUNT"+AS$:0SCLI" " ELSE IF AS="1% 0OsC

LI™DIR " :0SCLI"." ELSE IF AS-"5" OSCLI"D
TRS™ :0SCLI"." ELSE OSCLI (A%)

22180 PRINT

22190 UNTIL A$="":VDU26

22200 ENDPROC

27910

32

Beebug April 1991

Sideways RAM Commands for the Model B

Norman Smith describes a short routine to implement the Master’s *SRWRITE and

*SRSAVE commands on a model B with particular reference to the ROM Filing System.

GENERAL

In BEEBUG Vol.8 Nos 8 & 9 two articles by Jon
Keates were published on the ROM Filing
System for the Master 128. These programs, as
they stand cannot be used on the basic model B
as it lacks both the sideways RAM and more
particularly the *SRWRITE command for which
it has no direct equivalent. However, many
model B owners have fitted a sideways RAM or
RAM/ROM board, and in my case a successful
emulation was obtained with the Aries B12
board which has 1 bank of 16k RAM in slot 0.
Other boards with the RAM in a different slot(s)
should also work correctly.

The *SRWRITE command follows the format:
source address, length of data, destination
address and an optional RAM slot number
(there is also an alternative form in which
source start and end addresses are specified
rather than start address and length). This can
be emulated on a model B using a procedure:

PROCsrwrite (source$, length%,dest%,
ramslot%)

which together with a supporting assembler
routine is presented as listing 1. In principle,
the variables are the same as would be used in
the *SRWRITE command. The occasional
changes are where a base memory location may
have to be added to the source% or dest%
variables to establish the correct memory area
or be subtracted from the length variable to
indicate the true data length and these must be
ascertained from the program details. Examples
of the latter occur in the revised versions of
lines 280 in RFShead and 1530 in RFSload (see
Vol.8 No.8).

This procedure can be used as the basis for the
conversion of the *SRWRITE command in any
suitable Master 128 programs which are being
converted to the model B, and other versions

Beebug April 1991

have also been used successfully to emulate the
Master’s *SRREAD and *SRSAVE commands.

PROGRAM INFORMATION

The program listing contains the definition of
PROCsrwrite and a short piece of machine
code, PROCass1, with P% set at &A00 and
using zero page memory &72 to &78 (RFSload
uses &70/&71 and the &80 area). It saves the
original ROM pointer at &F4 and enters the
new value as set by ramblok%, uses a move
routine and finally resets &F4 to its original
value. This procedure may also be used for
moves between normal areas of RAM and a
dummy value used for ramblok%).

The new procedures should be typed in and
then *SPOOLed, before using *EXEC to add it
to RFShead. Line 280 should then be changed
as follows:

PROCass1:PRINT' '""PROCsrwrite (&6000,&";~ (0%
-&6000) ;",&8000,"; ramblok%;")"

after which RFShead can be re-saved,
preferably under another filename. It can then
be run, replying to the ‘/RAM Bank Number ?’
prompt with the RAM slot number appropriate
to the RAM board in use. At the end of the
program, the prompt in line 280 will appear
with the correct length of the data depending
on the length of the title and version number,
viz:

PROCsrwrite (46000, &12E,&8000,0)

If it is desirable to install the ROM header
image in sideways RAM (SRAM), the Copy key
should be used to duplicate this statement,
followed by Return. The Break key should then
be pressed to initialise the SRAM and ““H. RFS
should display the star commands accepted by
the ROM image.

33

Sideways RAM Commands for the Model B

If all is correct *EXEC the additional program to
RFSload (from Vol.8 No.9) and make changes as
shown in the following lines:

100 MODE7

2060 rm$=FNverchr (“*0000”,1)

1140 PROCsrwrite(ptr%,blen%,srload%,ram
blk%)

1190 PROCsrwrite(footer%,3,srload%, ramb
1k$%)

1530 PROCsrwrite(hblok%,P%-hblok%,srloa
d%, ramblk$%)

Add line 2075:

2075 PROCassl

Line 2060 is suitable for the Aries B12 with
RAM in slot 0, this should be changed to suit
other RAM boards. Save the program, again
preferably under a new name, and run it, when
it should respond as in the original program.

The program RFSload also contains the Master
*SRSAVE command, which is also not
implemented on the model B. In the past
several programs have appeared in BEEBUG
with details of programs to download
SRAM/ROM to disc automatically. Of these,
some of the machine code ones are rather
lengthy and some Basic ones very slow. With a
further small amendment to RFSload, a model
B “*SAVE’ may be used to perform this
function. This requires the following line
changes and additions:

110 HIMEM=§&3BFF

455 PROCsrwrite (&8000, (srload%+1-&8000
) ,&3C00, ramb1k%)

4700, PRINT'"™ *SivE ";titleS;™3C00+"+ST
R$~(srload%+1-&8000)+" 8000 8000"

This lowers HIMEM to make room for
PROCsrwrite to move the maximum contents
of a 16k RAM to &3C00/&7C00. The PRINT
statement in line 470 containing the correct
values appears at the end of the program from
where the RFS data image can be *SAVEd by
duplicating the statement using the Copy key
followed by Return. Users with shadow RAM
could leave HIMEM at &3FFF and change the
&3C00 references to &4000.

34

50 REM Programs RFShead and RFSload
60 REM Amended for BBC Model B

70 REM By Norman Smith

80 REM BEEBUG April 1991

90 REM Program subject to copyright
100 MODE7

3000 :

3010 DEF PROCsrwrite (source%,length%,de
st%, ramblok%)

3020 ?&72=source% MOD256:?&73=source$ D
IV256:?&74=1ength% MOD256:?2&75=1ength% D
IV256:?&76=dest% MOD256:2&77=dest% DIV25
6:?&78=ramblok$%

3030 CALL mcopy

3040 ENDPROC

3050 :

4000 DEF PROCassl

4010 FOR opt%=0TO2STEP2:P%=&A00

4020 [OPT opt$

4030 .mcopy

4040 LDA &F4:STA &79

4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190

LDA &78:STA &F4:STA &FE30

LDX #0:CPX &75:BEQ smallp
.pagelp LDY #0

.bytelpl LDA (&72),Y:STA (&76),Y
INY:BNE bytelpl

INX:INC &73:INC &77

CPX &75:BNE pagelp

.smallp LDY #0

CPY &74:BEQ fin

.bytelp2 LDA (&72),Y:STA (&76),Y
INY:CPY &74:BNE bytelp2

-fin

LDA &79:STA &F4:STA &FE30

RTS

INEXT : ENDPROC

CORPIAN
For serious work with Wordwise Plus

% Reviewed in BEEBUG Vol.9.No.8

“* Descriptive indexing for your letters & documents
% Your own library of layout forms, letterheads etc.

“* Automatic import of addresses, references, dates etc.
% CORPLAN does the layout, you just type the text!

% Resident utilities for mailmerge, label printing etc.

% For B, B+ & Master. Needs discs & Wordwise Plus

% Many special features - see free information sheet
% Pack contains disc, tutorial manual, keystrip etc.

% Price £19.50, post free UK, 14 day refund
CORPLAN Computer Systems
!:! VISA

Three Gables, 7a Talbots Drive, Maidenhead,
Berks, SL6 41.Z. Phone or Fax (0628) 24591

Beebug April 1991

Practical Assembler (Part 10)

by Bernard Hill

AUTOMATIC ENCRYPTION OF FILES
In the last article of this series we take a look at
the filing system calls from an opposite point of
view: that of intercepting the filing system calls
themselves rather than writing programs to use
them as we illustrated in the last two articles.

ENCRYPTION

There have been a number of programs in
BEEBUG recently which have created
encrypted (encoded) versions of files, and we
extend this idea here to include an assembler
program which will automatically and invisibly
encrypt every file written to disc and decrypt
every file read from disc. It is to be completely
transparent to the user so that he can use all the
normal filing system commands and not be
aware that the files are encrypted: that is until
someone attempts to.use the files with
encryption off! The routine is to be started with
the command:

XENC +

which will load into memory a section of
assembler and change the relevant filing system
vectors to point to this code so that it is called
whenever a *LOAD, *SAVE, BGET or BPUT is
issued. The facility will be turned off with:

XENC -

THE ENCRYPTION ALGORITHM

The EOR (exclusive OR) operation is
particularly convenient for this because the
same routine can be used to encrypt as to
decrypt. However, EORing a whole file with a
constant value is too easy to decode by prying
eyes, so we are going to EOR the bytes in the
file with a sequence of 256 ‘random’ bytes in
the style of the encryption algorithm in
BEEBUG Vol.9 No.8 Workshop. A table of
random bytes can be found in the Operating
System ROM where a random address in the
range &C000 to &D000 will be used for the start
of this table.

Beebug April 1991

IMPLEMENTATION

The calling program has a number of tasks to
perform:

1. It must change the required filing system
vectors to point to the new code when *ENC +
is called.

2. It must restore the old ones when *ENC - is
called.

3. It must provide the new routines as outlined
in the algorithms below.

There are thus five assembler calls which need
to be attended to, and these are:

1. BEUT

This routine writes the byte in the A register to
disc in the current file. We must therefore first
EOR it with the table value (EOR table,X) after
having found the offset within the table by
performing X=PTR#f MOD 256 first.

PTR# is called by the OSARGS routine with
A=0, Y set to the file handle, and X containing
the address of a 4-byte zero-page parameter
block where the value of PTR# will be placed:

STA §100:STX &101 \ temporary store
LDX #&A8 \&A8-&AF are generally usable
LDA #0

JSR &FFDA \ OSARGS

LDX &A8 \ get lowest byte of PTR# to X

Now we can encrypt the value to be sent to the
file with:

LDA &100 \ restore A
EOR table,X

and call the old value of BPUT with:

LDX &101 \ restore X
JMP (oldbputv)

This appears as lines 920-960 of the listing.
35

Practical Assembler

2. BGET
This is a very similar exercise, as follows:

Find the low byte of PTR#f to X

Call the old vector with an indirect
JSR (oldbgetv)

Decrypt the byte with EOR table,X
before returning.

See lines 840-880 of listing 1. Note that an
indirect JSR is not available in 6502 assembler,
so we perform a small trick to do the same
thing:

JSR temporary
.temporary JMP (address)

When the return is made from the routine
indicated, it will return to the line after the JSR,
as required. This trick is used for a call to
OSBGET and OSFILE in listing 1.

3. *SAVE (SAVE"”xx” in Basic, etc.)

This is performed when OSFILE is called with
A=0 on entry. We therefore test for this value
and also A=&FF (a *LOAD) and merely jump to
the old routine with JMP (oldosfilev) if A is
neither. Supposing A=0, however, then we
must:

Encrypt the whole of the data to be
*SAVEd

Perform the *SAVE

Decrypt the data so that you don’t
notice it’s been changed. No good
returning to your View edit screen
to see garbage!

Now, as indicated in last month’s article,
OSFILE is called with an 18-byte parameter
block, the start and end addresses being in
bytes 10-13 and 14-17. Since this is really only a
demonstration program we’re not making it
second-processor compatible and therefore only
considering the bottom 2 bytes of each of these.
The subroutine .xlate in lines 750-820 performs
this block encryption operation on a 2-byte
address range loaded into ‘start’ and ‘end” and
so this is called twice as indicated above. The
whole routine is in lines 630-710.

36

4.*LOAD

There are two forms of *LOAD depending on
whether the actual file address is being used
(*LOAD file) or forced to another value as in
*LOAD file 4000. This is indicated - as
mentioned last month - by the 6th byte of the
parameter block being zero. Should this be so
then we shall need to note the start address
from the parameter block BEFORE the load, or
else use the load address which will have
appeared in the parameter block after the actual
load. Lines 420-470 of the program perform this
choice.

Furthermore, we can use the same routine for
decryption as we used above (.xlate) provided
that we calculate the end address for the
translation routine by adding the start address
and the length in parameter block bytes 10-11
(Lines 510-530).

WEAKNESSES OF THE PROGRAM
There is another filing system call which saves
and loads which is more often used over a
network, and that is OSGPBP which gets or
puts a range of bytes to the disc. We’ve not
intercepted this as it is used less often, but it
ought to form part of any complete encryption
program.

The program as supplied works with Basic and
View; you are left to test it with your software.
It is interesting to save (in encrypted mode) a
word processor document and then view it
with *DUMP with encryption successively on
and off.

Since the program resides in pages 9 and &A
any interference with these will probably result
in a system crash on the next filing system
access. In a real situation the routine would live
in sideways ROM to protect it from such
interference.

A more serious problem with the supplied
program is that calling *ENC + twice in a row
results in the software losing the addresses of
the real filing system vectors causing the
system to hang when called. Ideally it should

Beebug April 1991

Practical Assembler

look at the contents of the vectors to see if it is 360 EQUS "Encryption on"+CHR$13:NOP
already installed and exit with a suitable 370 RTS
message on the second call to *ENC +. The 380 \
same is true for a call to *ENC - when the 390 .newfilev CMP #0:EQUS FNjeq(osfsav
system is not installed, and I leave this easy e)
enhancement to you. 400 CMP#&FF:BEQ osfload:JMP (oldfilev)
410 %
I hope you've enjoyed this Practical Assembler 420 .osfload STX zpg:STY zpg+l
series. We've ranged far and wide and I've tried to 430 LDY #6:LDA (zpg),Y \ forced addr?
keep on the practical side with the examples we've 440 PHP:BNE overl:JSR getstart \yes
used, and yet leave you with enough ideas and scope 450 .overl LDY zpg+l:LDA #&FF
to go it on your own. 460 JSR osfile:PLP:BEQ over2 \no
470 JSR getstart
10 REM Encrption program 480 .over2 \ get length
20 REM Version B2.0 490 LDY #&A:LDA (zpg),Y:STA len
30 REM Author Bernard Hill 500 INY:LDA (zpg),Y:STA len+l
40 REM BEEBUG April 1991 510 \ end=start+len
50 REM Program subject to copyright 520 CLC:IDA start:ADC len:STA end
60 530 LDA start+1:ADC len+l:STA end+l
100 MODE7 540 JSR xlate \ and encrypt
110 zpg=&A8:zp2=&AA 550 .fin LDA #&FF:LDX zpg:LDY zpg
120 table =&CO00+RND (&1000) 560 RTS
130 store=&900:code=&906 570\
140 oldfilev=store:oldbgetv=store+2 580 .getstart
150 oldbputv=store+4 590 LDY #2:LDA (zpg),Y:STA start
160 FOR opt=0 TO 3 STEP 3 600 INY:ILDA (zpg),Y:STA start+l
170 P%=code 810 RIS
180 [OPT opt 620)\
190 .strt LDA (&F2),Y:CMP #32:BNE go 630 .osfsave \ store pblock start add
200 INY:JMP strt:.go 640 PHA:STX zpg:STY zpg+l:LDY #&A
210 CMP #ASC"+":BEQ encon 650 LDA (zpg),Y:S8TA start:INY
220 CMP #ASC"-":BEQ encoff 660 LDA (zpg),Y:STA start+l:LDY #&E
230 EQUW 0:EQUS "ENCRYPT bad syntax: + 670 LDA (zpg),Y:STA end:INY
on ~IERK 680 LDA (zpg),Y:STA end+l
240 .encoff 690 JSR xlate:LDX zpg:LDY zpg+l:PLA
250 EQUS FNcopy?2 (oldfilev,&212) 700 JSR osfile
260 EQUS FNcopy2 (oldbgetv, &216) 710 JSR xlate:LDX zpg:LDY zpg+l:LDA #0
270 EQUS FNcopy?2 (oldbputv, &218) (RIS
280 JSR print 720 \
290 EQUS "Encryption off"+CHR$13:NOP 730 .osfile JMP (oldfilev)
300 RTS 740 N .
310 .encon \ set up vectors 750 .xlate LDA start:STA zp2
320 EQUS FNsetup(&212,0ldfilev,newfile 760 LDA start+1:STA zp2+1:LDY #0:LDX #
V) 0
330 EQUS FNsetup (&216,0ldbgetv, newbget 770 .loop LDA zp2:CMP end:BNE over
V) 780 LDA zp2+1:CMP end+1:BEQ finxlat
340 EQUS FNsetup (&218,0ldbputv,newbput 790 .over LDA (zp2),Y:EOR table,X
v) 800 STA (zp2),Y:INC zp2:BNE P%+4
350 JSR print Continued on page 44
Beebug April 1991 37

by Mike Williams
INTRODUCTION

Tucked away in your
User Guide, or in the appendices of your
Welcome Guide if you have a Master 128 or
Master Compact, you will find tables and some
explanation of the so-called VDU codes and FX
calls. Although accessible through Basic, these
elements are not part of Basic as such, but give
Basic programmers direct access to a whole
range of useful features within the operating
system.

course

The original User Guide for the BBC micro was
reasonably forthcoming about the nature and
use of VDU and FX calls where documented, but
the coverage was far less than complete. For the
Master 128 and Master Compact, the Welcome
Guide is much more thorough in listing virtually
all VDU and FX calls but provides much less
information on individual calls.

I thought it would therefore prove fruitful for
our First Course series to examine the nature of
VDU and FX calls, and to highlight some of the
more useful. This month we will be
concentrating our attention on VDU calls.

VDU CALLS

VDU calls are fewer in number and generally
easier to understand than FX calls so we shall
deal with these first. All VDU codes are
handled by a part of the micro’s operating
system referred to as the VDU driver. Normally
all output to the screen (and to a printer if
enabled) is handled by the VDU driver.

The VDU call itself is followed by one or more
numbers separated (followed) by either
commas or semicolons. At its very simplest, a
VDU call is much like a PRINT statement in its
effect. For example:

PRINT CHR$ (65)
and:

VDU 65
would both cause a single letter A (which has
ASCII code 65) to appear on the screen.
Generally where strings of characters are

38

VDU and FX Calls (Part 1)

concerned, PRINT is much the better choice
and easier to understand. For example:

vpuU 72,101,108,108,111
is more long-winded and more difficult to
follow than just writing:

PRINT"Hello"

There are two situations where the VDU
approach may be preferable. One is where a
single key response is being sought, which has
to be echoed to the screen. Consider:

PRINT"Select menu option (A-E):";

REPEAT:G=GET:UNTIL G>64 AND G<70:VDU G
The GET function does not automatically echo
the character entered on the screen. When an
appropriate key is pressed, the REPEAT-UNTIL
loop terminates, and the VDU call echoes the
character to the screen.

A second situation where the use of VDU is
preferable to PRINT, is in mode 7 when teletext
codes are being used. Generally using VDU
followed by one or more teletext codes is to be
preferred to using PRINT which also involves
the CHR$ function with each ASCII code.
Compare:

VBU 131,157,132
with:

PRINT CHR$ (131)CHR$ (157) CHRS (132)
to set yellow (131) background (157) with blue
(132) text.

For ASCII codes between 32 and 127 the VDU
function simply displays the corresponding
character; on a Master 128 or Master Compact
the same is true for codes 128 to 255, though
these are normally undefined on a model B
(except in mode 7, the teletext mode). The code
values which are most interesting are those in
the range 0 to 31. These codes are also referred
to as control codes, and can be entered from the
keyboard by pressing the Ctrl key together with
a corresponding letter key. Thus Ctrl-B has the
same effect as VDU2, Ctrl-C the same as VDU3
and so on. Indeed:

vDU14

Ctrl=-N

PRINT CHRS$ (14)

Beebug April 1991

First Course

all have the same result, to set the screen into
paged mode (not scrolling mode). Apart from
VDUO which has no effect whatsoever, all the
control codes have a particular function and it
is these which are listed in the appropriate User
or Welcome Guide.

Some of these are quite simple; I am sure most
readers are aware that VDU2 and VDU3 enable
and disable printer output (equivalent to Ctrl-B
and Ctrl-C). The full list of VDU codes which
are commonly entered as control codes is given
in table 1 (though note that all VDU codes can
be so entered).

VDU Code Ctrl Code Function

2 B Enable printer
3 Cc Disable printer
7 G Beep

10 J Linefeed

12 L Form Feed

13 M Return

14 N Paging on

15 (0} Paging off

Table 1. Commonly used control codes

Remember that whereas both VDU calls and
control codes can be entered directly from the
keyboard, only the VDU forms can be included
within Basic programs. Note too, that VDU12
(form feed) is equivalent to the CLS instruction
when applied to the screen display - form feed
as such can only apply to a printer, and then a
printer which can perform this function (most
of them nowadays).

You can also restate linefeed’s function with
respect to the screen as ‘cursor down’.
Although they are not normally used as control
codes, you should also note VDUT11 (cursor up),
VDUS (cursor left) and VDU9 (cursor right).
These functions can be quite useful in programs
which need to control the position of the cursor
on screen.

The majority of the other VDU calls perform
functions which require additional information
in the form of further parameters. For example
VDU31 moves the text cursor to a specified
position with the format:

VDU31,x,y

Beebug April 1991

where x indicates the position along a row of
text, and y indicates a particular text line on the
screen. Remember that for text, the top left-
hand corner is where x=0 and y=0. x counts
from left to right across the screen; y counts
from top to bottom down the screen. In fact,
writing VDUB3I1 is exactly equivalent to using
the TAB function in PRINT statements.

With this VDU call, as with some others, it is
important to know the screen mode in which
you are operating or you may begin to think
VDU doesn’t always work. Most screen modes
have 32 lines running from line 0 at the top to
line 31 at the foot, but modes 3, 6 and 7 have
only 25 lines with line 24 at the foot. Likewise,
screen displays can consist of 20 columns (0 to
19), 40 columns (0 to 39) or 80 columns (0 to 79).

Two calls which are useful in many programs
are VDU24 and VDU28. These enable a
program to define either a graphics window
(VDU24) or a text window (VDU28).
Subsequent graphics or text output will then be
confined to the window area defined. The order
of the parameters in defining a window is
always: ‘left boundary, bottom boundary, right
boundary, top boundary’. By default, both
windows are set to the full screen display and
coincide with one another 100 percent.

SCREEN WINDOWS
One simple use of VDU28 is to set a window
below a title at the head of the screen so that as
subsequent input and output causes the screen
to scroll, the title remains fixed and visible. The
same technique can be applied to instructions
(so that they always remain visible), and this is
used in the program Euler listed in our
Recreational Mathematics feature in this issue.
A typical example might be:

VDU28,0,31,79,5
which ensures that the five lines 0 to 4 are
preserved at the head of the screen; the window
extends to the full right and left margins of the
screen, and to the foot of the screen (assuming
an 80 column, 32 line mode, of which mode 0 is
the only example).

When you define a new text window, line 0
becomes the top line within the window, and
the leftmost character position becomes column

39

First Course

zero. Remember this if you use the TAB
instruction to position text within a window.
But if you choose to redefine the text window,
the parameters are always given relative to the
full default screen area, and not relative to any
currently defined window.

If we look as well at a similar graphics window,
then an important difference will begin to
emerge. Graphics windows are specified in the
same order, but the dimensions are given in
graphics units which range from 0 to 1279
horizontally and 0 to 1023 vertically. Moreover,
the graphics origin is always in the bottom left-
hand corner (for this purpose at least)
extending from there to the right and upwards.

GRAPHICS WINDOWS
Thus a typical graphics window might be
defined as:

VDU24,0;0;1279;863;
and (if I have calculated it correctly) this
graphics window coincides with the text
window defined previously. Note also the use
of semicolons rather than commas - this is dealt
with below. Unlike a text window, defining a
graphics window does not redefine the position
of the graphics origin. In the absence of any
other instructions, this will continue to be the
bottom left-hand corner of the screen by
default. A graphics window is much more like
a true window onto a graphics drawing area -
you can draw lines and curves wherever you
like, but only the parts that pass through the
window area will be visible. You can change the
position of the graphics origin, useful if it
makes the maths any easier, and this is done
with VDU29,x;y; where x and y are the graphics
co-ordinates of the new position of the origin.

For synchronising text and graphics windows it
is worth knowing that vertically the height of
one line of text is 32 graphics units (in all
modes). Horizontally, the width of a character is
64 graphics units (modes 2 and 5), 32 graphics
units (modes 1 and 4), or 16 graphics units
(mode 0). Modes 3, 6 and 7 are not graphics
modes anyway, so cannot cater for graphics.

SPECIFYING GRAPHICS CO-ORDINATES

Before we continue any further let me draw
your attention to the semicolons in the above

40

examples. The distinction is important, but
once understood we won’t need to refer to it
again.

Because the Beeb is an eight-bit micro, its basic
unit of information is an eight bit number with
a range therefore from 0 to 255. The numbers
following VDU calls must therefore conform
to the same range. However, when we are
dealing with graphics co-ordinates (as we have
seen) the numbers involved greatly exceed the
range for an eight bit number. At its simplest,
we can say that putting a semicolon after a
number in a VDU statement enables that
number to be interpreted correctly even when
it exceeds 255, but notice how the last number
in the list is also followed by a semicolon -
essential if that last value is to be correctly
identified as well.

To treat the subject in a little more detail, what
happens is this. A number followed in this
context by a semicolon is treated as a two-byte
number, and internally the number is broken
down in this way. You can do it yourself.
Simply divide the number by 256 using the
MOD and DIV functions of Basic, and put the
resulting two values as consecutive eight bit
numbers. Thus our VDU24 example above
could also have been written as:
vpu24,0,0,0,0,255,4,95,3

but then it’s hardly an easy task to relate this to
screen co-ordinates, and there’s no point to it
anyway, as Basic is quite happy to perform the
task for us unasked.

Incidentally, there is one further call to be used
in conjunction with VDU24 and VDU28, and
that is VDU26 which resets both text and
graphics windows to their default full-screen
settings. When this happens, the flashing cursor
is always moved to the top left-hand corner of
the screen. As a result it is often desirable to
follow with a screen clear function, most easily
achieved with:
vDU26,12
which performs both tasks.

That's about all we have space for this month. That
still leaves some quite important things to say about
VDU codes which we will deal with next time, and
we haven't touched upon FX calls at all as yet. [g

Beebug April 1991

by Robin Burton

In this month’s
Forum we’ll look at
another query which
has been raised by
several members, another matter which
previously has been avoided for reasons
mentioned last month.

However, there are other 512 topics which have
also been neglected, but for different reasons. I
have one or two points to make about future
Forum topics, in the hope that you’ll make your
views known to me in due course.

512 BBCBASIC

Many of you will by now have a copy of this
software which, nearly two years ago, I offered
free to members who sent a blank formatted
disc with return post and packing (in total I've
now supplied nearly 400 copies). This
particular ‘message’ therefore applies to the rest
of you - that is, those who for one reason or
another didn’t avail yourselves of the offer
before.

Some of you will no doubt have The 512
Technical Guide, published by Dabs Press last
September and reviewed recently in BEEBUG
by Bernard Hill. Accompanying the book is an
optional programs and examples disc
containing numerous items which should be of
interest to 512 users. One of the items on this
disc is a copy of 512BBCBASIC.

I'm therefore giving notice that my offer of a
free copy of 512BBCBASIC is finally closed. I've
continued to receive occasional requests for it
right up to the present, the latest only last week,
but it seems to me that the offer, held open for
two years, was surely long enough to be
considered fair by everyone.

When the original offer was made, the package
wasn’t generally available from any source -
but now it is. From now on, if you want a copy
of Richard Russel’s excellent BBCBASIC

Beebug April 1991

512 Forum

package for the 512 send your request for the
512 Technical Guide examples disc to Dabs
Press with the appropriate fee.

VALID TOPICS

That leads me on nicely to another package
supplied on the examples disc, the A86/D86
machine code assembler-debugger. Included on
the disc are numerous examples of source
machine code aimed at helping you to learn
how to write your own programs. Clearly
writing machine code isn’t everyone’s idea of
having fun with their 512, and that means it’s
also perhaps not the most obvious subject for
the Forum. However, the book and its disc do
allow you to have a look at what’s involved for
a very low cost and apparently a number of
you have been doing so. One result of this is
that I've received a few more queries.

The reason for mentioning this is not that I
think everyone should immediately take up
machine code programming. It might widen
the range of possible topics for the Forum, but
my purpose is to make the point that a certain
minimum amount of knowledge about the 512
and its internal workings is needed if you're
going to understand the answers to some of
your queries.

For those who have wondered why previous
suggestions for Forum topics haven’t appeared
I can only say two things. Firstly space is
limited, and secondly, as a consequence, the
appeal of items should therefore be as wide as
possible. This means that some subjects simply
won’t be covered unless there’s evidence that
enough of you are interested. To properly
understand this month’s main topic, for
example, you need at least a basic idea of how
the processor works. The technical guide and
disc are a source of this information, but the
Forum isn’t because there isn’t enough space.

I've had a few suggestions, virtually ever since
the Forum began, that more technical topics

41

512 Forum

should be included, at least some of the time.
Previously I have mainly discussed particular
but non-technical operational aspects of the
system, so this mild ‘complaint’ is
understandable. I hope therefore that the
following redresses the balance a little.
Naturally if you’d like more of this sort of thing
(or less) I need to know, so drop me a line; the
majority view will rule.

MYSTERIOUS MESSAGES?

I've had a few requests lately for a bit of
information about one display I've never before
mentioned in the Forum (but which
unfortunately virtually everyone sees from time
to time). It’s an error in the form shown in
figure 1. The questions are, what do all these
figures mean and what use is the information?

There are numerous possible reasons for this,
but a couple of the more obvious ones are that
the program is corrupt, or it might perhaps
have been written for a different processor. For
example, a program written specifically for a
‘286 (or ‘386 or ‘486) based machine, or for
those with a maths co-processor chip, will
produce this sort of display very shortly after
loading.

Another possibility, especially in your own code
during development when errors are virtually
unavoidable, is that your program has jumped
to an incorrect address or has somehow
corrupted its code. It might mean that the
program is attempting to execute data as
instructions, or perhaps that (originally) valid
instructions have been destroyed by being

Invalid Opcode Error from PROGRAM
Flags —I-Z-A-P-
Cs:IP DS £S

SS:Sp AL BX - CX

Program terminated

1724:01A7 1724 1724 1724:FFEE 0000 0000 0000 0000 0000 8D92 0000

overwritten in
memory, both of
which might give the
above result. To
illustrate this article,
for, . example, I

DX BP 81 DI

Figure 1. Fatal error message display

At the simplest level the meaning is obvious. A
program instruction has been encountered
which the 512 doesn’t like for one reason or
another, and the program has been abandoned.

The first point to make, perhaps, is that if this
sort of display appears when you're running a
program for which you have no information
except operating instructions there’s really not
much you can do. However, if you have details
about the program’s structure and what it’s
doing, which you will have if you wrote it
yourself, this display can often tell you exactly
what’s wrong and where it happened. Let’s
look at each part of the display in turn and
examine it in a bit more detail.

The first line is straightforward, though there
are other error messages I'll mention in a
moment. This one shows ‘Invalid Opcode’ (by
far the most common display) which defines
the error type. In this case it means an ‘illegal’
or perhaps a nonsensical instruction code has
been encountered.

42

produced the sample
display simply by
copying a text file to a file called
‘PROGRAM.COM’ and executing it.

The next part of the line, ‘Error from’ is pre-
coded, and the name of the program causing
the trouble of course follows it as the last item
on the line.

ERROR TYPES

I'll now try to explain (briefly) all the possible
error types in this part of the display without
getting too involved, but some of them will
necessarily be pretty meaningless unless you've
done a lot of serious ‘86 programming (and
made some pretty serious errors). The full
range of errors supported by the 512 in DOS
Plus is:

Divide Error: means register overflow after a
divide instruction. This error is most often
caused by division by zero.

Single Step Int Error: means the trap flag was
set. This is used by debuggers to trap certain
conditions they otherwise could not handle. It's
not a ‘real’ program error.

Beebug April 1991

512 Forum

NMI Error: means a Non-maskable interrupt
error has occurred. This is generally a hardware
failure and is not recoverable. It is not a
program error.

Break Point Error: an interrupt 3 was executed
which allows the system to return control to a
debugger in single step mode.

Overflow Error: an INTO’ instruction has been
executed, which causes an interrupt 4 if the
overflow flag was set.

Range Error: means a ‘bounds’ instruction has
failed.

Invalid Opcode Error: as explained above.

ESC Opcode Exception Error: in the 512 means
an unknown or unexpected error condition has
been passed from the host.

Register Dump Error: is the result of a
deliberate interrupt Off, which causes a register
dump.

Unsupported IBM XT ROS call Error: means a
call has been made to an IBM PC internal
function which isn’t supported by the 512.

Unexpected Interrupt Error: is the least helpful
of the lot because it covers anything that didn’t
crash the 512 and which isn’t dealt with by one
of the preceding messages.

FLAGS AND REGISTERS

The second line of the display, starting with
‘Flags’, indicates the contents of the processor’s
status register at the point of failure. In all
processors, one register is set aside to record the
resulting status from program operations. For
example, after a test for zero, the zero flag is set
if the condition was met. In our example
display, as shown by the letter “Z’ in the middle
of the flags, the zero-bit of the status register
was set.

The next part of the display, the third and

fourth lines, are read together and show the
most useful information. You’ll need to

Beebug April 1991

understand ‘86 memory addressing to
appreciate the information, but if you do, this
data tells you exactly where the problem
occurred and the contents of the processor
registers at the time.

I don’t intend reproducing extracts of the
technical guide here, so if you want to know
how memory is addressed and what the 81086
processor registers are used for I can only direct
you to chapter two of the book (it would in any
case occupy about 5 complete issues of 512
Forum). Suffice it to say that the figures under
CS:IP point to the failed instruction, where CS
is the code segment and IP is the instruction
pointer. Likewise, the figures under ‘SS:SP’
show the stack segment and stack pointer at the
time, while the remaining parts of the display
show the contents of the other registers at the
point of failure.

THE PURPOSE

Obviously, given the error type and the code
segment address of the failure, you will be able
to see immediately if it was within your
program. If so, you can tell precisely which
instruction caused it.

On the other hand, if the code address is clearly
outside your program area you can (usually)
deduce quite easily if the instruction was
within the operating system, in which case you
have probably made an invalid interrupt call or
have supplied incorrect parameters to one. If
this doesn’t seem likely the next thing to check
is if the address looks completely meaningless.
This usually indicates that corrupted code or
data has resulted in an effectively random
program jump, which could ‘land” almost
anywhere in memory. Whatever the case, one
way or another the display gives information
which helps a programmer to sort out what
went wrong and where.

For the less technically inclined, or if you didn’t
write the program yourself, probably all that
you need to know is that DOS Plus is telling
you that the program in question isn’t going to
work and that the system has protected itself
(and perhaps you and your data) by trapping

43

512 Forum

the problem and ending the program. So long
as you get a normal prompt back after the
display you should be able to continue using
the 512 without re-booting.

Of course, the 512’s error trapping isn’t perfect.
Sometimes the operating system itself can get
into knots, especially when an incorrect
segment register value in a program
accidentally changes some of DOS’s working
data or code by executing a mis-directed move
or arithmetic instruction.

In this case you might see a non-stop repeated
display, like the one above but continuously
scrolling up the screen with no way to break in.
Shift-Ctrl stops it temporarily, so you can note
the figures. Alternatively, you may not get any
prompt back after the display, but the other
option, which I'm sure you’ve all seen, is a
completely uninformative hang-up with no
display at all. In all these cases the only option
is to re-boot the system.

NEW IDEAS

Since the Forum started there has been a
considerable change in support for Acorn
micros. The 8-bit BBC micro continues to take
more and more of a ‘back-seat’ in Acorn
publications with the exception of BEEBUG.
512 users are a pretty independent bunch, they
have to be, but I'd like to keep the Forum true
to its title, so let me know the direction you’d
like the Forum to take in the future. Don’t just
think ‘It’s been OK so far, I won’t bother.’
because one day I might run out of ideas. If
you've ever thought, “Why doesn’t he...?” why
don’t YOU tell me about it.

I've had some ideas for future Forums. One
suggestion is a regular spot to investigate the
more obscure DOS error messages. Another is a
regular ‘machine code corner’, while another is
to publish addresses for those who’d like to
hear from other users. What do you think? If
these or other ideas appeal write to me (c/o
BEEBUG) saying what you’d like to see. B

Practical Assembler (continued from page 37)

810 INC zp2+1:INX:JMP loop

820 .finxlat RTS

830 \

840 .newbgetv \ first get PTR# to X
850 STX &100:LDA #0:LDX #zpg

860 JSR &FFDA \osargs

870 LDX zpg:JSR bget \ now decrypt
880 EOR table,X:LDX &100:RTS

890 \

900 .bget JMP (oldbgetv)

910

920 .newbputv \ first get PTR#

930 STA &100:STX &101:IDA #0:LDX #zpg
940 JSR &FFDA \ osargs , then encrypt
950 LDX zpg:LDA &100:EOR table,X

960 LDX &101:JMP (oldbputv)

970 \

980 .print PLA:STA zpg:PLA: STA zpg+l
990 LDY #0:.loop INC zpg:BNE P%+4
1000 INC zpg+l:LDA (zpg),Y:CMP #&EA
1010 BEQ prout:JSR &FFE3:JMP loop

1020 .prout JIMP (zpg)

1030 .start EQUW 0

1040 .end EQUW 0

1050 .len FEOUW O

1060] :NEXT

1070 c$="SAVE ENC "+STR$~code+" "+STRS~
P%

1080 PRINTc$:0SCLIcS

1090 END

) -

2000 DEF FNjeq(a)

2010 [OPT Opt:ENE P3+5:JMP a:]:=""

2000

3000 DEF FNsetup(vloc,storeat,replace)

3010 [OPL ept

3020 EQUS FNcopy2 (vloc, storeat)

3030 LDA #replace MOD 256:STA vloc

3040 LDA #replace DIV 256:STA vloc+l

3080 J:="v

3060 ;

4000 DEF FNcopy?2(a,b)

4010 [OPT opt:LDA a:STA b

4020 LDA a+l:STA bt1:]:=nM

|

44

Beebug April 1991

by Bernard Hill

The Huffman compression
algorithm given last month
was listed without the

corresponding decoding
algorithm. Listing 1 gives the
extra lines which need to be
added to last month’s
program to include the
decoding to prove that the
method is in fact working. In
practice, however, the tree
structure tables will need to
be included with the
compressed version of the file
making this algorithm only

really useful for long files

where the table is a small

fraction of the length of the

file.

Note that once the arrays

code% and len% are known,

the decoding of the tree is

very straightforward and
appears in PROCbuildtree,

PROCbuildbranch and

PROCdecode. The actual tree is

stored as a set of left and right

pointers:

DIM left (511), right(511)

which point to other nodes or

to ASCII characters when the

value is negative.

LEMPEL-ZIV-WELCH

COMPRESSION

Besides the need to transfer

the tables in Huffman

= compression, another impor-
tant disadvantage is that it

requires two passes through

the data in order to operate. In

some circumstances this is

impossible and an alternative

is needed. The Lempel-Ziv-
Beebug April 1991

Data Compression (Part 2)

Welch compression method is used (often in
modified form) in data transmission where its
single-pass nature means that the bytes arriving
in the algorithm can be translated in real time
and their compressed forms sent instead. It is
also partly used in the very fast shareware
compression programs for the PC from PK-ware.

000000
000008
000010
000018
000020
000028
000030
000038
000040
000048
000050
000058
000060
000068
000070
000078
000080

The text from the start of this article encoded
with LZW compression

Huffman encoding makes common letters
consume less bits than uncommon ones.
Lempel-Ziv-Welch uses constant-length codes
(often 12-bits) and builds a table of commonly-
used character sequences (‘strings’) based upon
what has gone before. For 12-bit codes a table of
4096 elements is created and initially “seeded”
so that the first 256 entries represent the bytes 0
to 255, i.e. single-character strings.

The operation of the algorithm is simple to
grasp. Bytes entering the algorithm are formed
into strings and the code for the longest match
found in the table is sent to the output. For
instance, if “A” and “AB” and “ABC” are
contained in our table, then reading “ABCD”
would result in the code for “ABC” being sent
when the D is read. In this way output is only
sent when a match fails, but the failure of the
match means that a new string (“ABCD”) will
be added to the table for possible future use.

45

Workshop - Data Compression

The seeding of the table ensures that the
operation of finding entries in the table can
start.

Suppose for example that the characters
ABACBABA are to be compressed. When the
first character is read it is not immediately sent
but the next character also read to form a
sequence: AB. At the beginning “AB” is not in
the table, but “A” is, so the code for this, 65, is
sent to the output. And the extension “AB”, is
added to the table at the current end, position
256. The same process occurs with the second
letter “B” and its successor, “BA” is added to
the table at position 257 and the “B” then
output when the match fails. We can summarise
this as follows:

READ IN SENT ADD TO TABLE
A
B 65 (A) AB (position 256)
A 66 (B) BA (position 257)
Cc 256 (AB) ABC (at 258)
B CB (at259)
A
B 257 (BA) BAB (at 260)
A
(eof) 257 (BA)

Now the storage of strings of uncertain length
in the table is less of a problem than might be
expected because each string is the extension by
one character of a previous table entry. Thus the
table is made up of entries which consist of an
entry number and an extension character. Each
element in the original seeding set would
probably have a zero entry and their own
ASCII character numbers, while the extensions
would be as follows:

The short program in listing 2 is a simple
program to perform Lempel-Ziv-Welch
compression. The 4096-entry table is held
internally as tab%, and an indirected array char
and each coded character results in 1.5 bytes
being sent to the output file. Thus the example
above required 5 x 1.5 bytes, or 8: no usable
compression since the input itself was 8 bytes,
but clearly a saving will be made on larger files.
Running listing 2 is excessively slow because of
the very crude method used to find whether an
entry exists in the table. A form of continual
sorting and binary search would be preferable,
but the program as given is reasonably simple
to follow.

The method of decomposition of the code is
very similar to the compression algorithm. The
same table will be built up as the data is
received and the seeding of the table with the
full ASCII set means that the process can start.
Just occasionally a problem occurs in that the
extension of a tabulated string by its own first
character forms a string not yet in the table, but
this can be simply deduced and added to the
table. The program in listing 3 decodes the file
produced by listing 2.

IMPROVEMENTS

This algorithm is capable of a great deal of
refinement. For instance, the version I have
given here is very wasteful of table space. As
the strings build up, most of them are unused
and so when the table becomes full some form
of clear-out of unused codes could be
performed and more space generated. Also,
commercial programs using this compression
method often allow themselves to alter the
limitation to 12 bits according to the nature of
the data, and the algorithm is still the subject of
much research and improvement.

STRING TABLE STRUCTURE: Listing 1
Position Represents Previous Extn byte 10 REM Program Huffman encoding
0 to 255 ASCII set 0 +0 to 255 20 REM additions to Huffman encoder
256 “AB" 65 (A) +66 (B) 30 REM in BEEBUG Vol.9 No.9
257 “BA” 66 (B) +65 (A) 40 :
258 “ABC” 256 (AB) +67 (C) 285 PROCprint
46 Beebug April 1991

Workshop - Data Compression

6000 DEF PROCprint

6010 PROCbuildtree

6020 PROCdecode

6030 ENDPROC

6040 :

7000 DEF PROCbuildtree

7010 DIM left (511),right(511)

7020 nnodes=0

7030 FOR asc=0 TO 255

7040 IF len%(asc)>0 THEN PROCbuildbranc
h(asc)

7050 NEXT

7060 ENDPROC

00

8000 DEF PROCbuildbranch(a)

8010 LOCAL node,d,b,next

8020 IF len%(a)=1 THEN 8100

8030 FOR d=len%(a)-1 TO 1 STEP -1

8040 b=FNbit (code%(a),d)

8050 IF b=0 THEN next=left (node) ELSE n
ext=right (node)

8060 IF next=0 THEN nnodes=nnodes+l:nex
t=nnodes

8070 IF b=0 THEN left (node)=next ELSE r
ight (node) =next

8080 node=next

8090 NEXT

8100 b=FNbit (code%(a),0)

8110 IF b=0 THEN left (node)=-a ELSE rig
ht (node) =-a

8120 ENDPROC

8130 :

9000 DEF PROCdecode

9010 PRINT"Decoded message:"

9020 f=OPENINm$

9030 node=0:1in=0

9040 REPEAT

9050 b=FNgetbit

9060 IF b=0 THEN node=left (node) ELSE n
ode=right (node)

9070 IF node<0 THEN PROCoutput (-node) :n
ode=0

9080 UNTIL in=T%

9090 CLOSE#f

9100 ENDPROC

3110

10000 DEF PROCoutput (val) :LOCAL @%

10010 IF val<>13 AND (val<32 OR val>126)

THEN PRINT"<";val;">"; :ENDPROC

10020 VDU val:IF val=13 THEN VDU10
10030 ENDPROC

10040 :

11000 DEF FNgetbit:LOCAL x

11010 IF in MOD 8=0 THEN buf=BGET#f
11020 x=(7-in MOD 8) :in=in+1:=FNbit (buf,
x)

11930 ¢

12000 DEF FNbit (val,bit)

12010 IF (val AND (2”bit))=0 THEN =0 ELS
E =1

Listing 2

10 REM Program ZLW Compression

20 REM Version B1.0

30 REM Author Bernard Hill

40 REM BEEBUG April 1991

50 REM Program subject to copyright
602

100 see=TRUE:REM to see input on scrn
110 maxtable=4095

120 DIM tab% (maxtable),char maxtable
130 INBUT"Input fille: "f%

140 f=OPENINf$

150 IF f=0 THEN PRINT"Not found":END
160 INPUT"Output file: "fs

170 g=OPENOUTE$

180 REM seed table

190 FOR i=1 TO 256:char?i=1-1:NEXT
200 tabsize=256

210 m=0:count=0:even=TRUE
220 REPEAT
230 b=BGET#f
240 IF see THEN VDUb:IF b=13 THEN VDUl

250 n=FNfind (m,Db)

260 IF n>0 THEN m=n ELSE PROCadd(m,Db) :
PROCoutput (m) : count=count+1:m=FNfind (0, b
)

270 UNTIL EOF#f

280 IF n>0 THEN PROCoutput (m) ELSE PRO
Coutput (FNfind (0,b))

281 PROCoutput (0)

300 IF NOT even THEN BPUT#g,0

310 PRINT'"Compression :"1.5* (count+l)
/EXTHE

320 CLOSE#f:CLOSE#g

Beebug April 1991

47

Workshop - Data Compression

330 END

340 :

1000 DEF FNfind(n,Db)

1010 LOCAL c%, found:c%=1

1020 REPEAT

1030 found=char?c%=b AND tab% (c%)=n
1040 c%=c%+1

1050 UNTIL found OR c%>tabsize

1060 IF found THEN =c%-1 ELSE =0
1070
2000 DEF PROCadd (n,b)
2010 IF tabsize=maxtable THEN ENDPROC
2020 tabsize=tabsize+l
2030 tab%(tabsize)=n
2040 char?tabsize=b
2050 ENDPROC
2060 -
3000 DEF PROCoutput (n)
3010 REM outputs 12 bits for one n
3020 even=NOT even

save=n DIV 256:ENDPROC

3040 BPUT#g,16*savetn DIV 256
3050 BPUT#g,n MOD 256

3060 ENDPROC

3030 IF NOT even THEN BPUT#g,n MOD 256:

Listing 3

10 REM Program UNLZW - LZW decompress
ion
20 REM Version 1.0
30 REM Author Bernard Hill
40 REM Beebug April 1991
50 REM Program subject to copyright
g0 ¢
100 see=TRUE
110 maxtable=4095
120 DIM tab% (maxtable),char maxtable
130 INPUT"Input file: "£$
140 f=QOPENINfS
150 IF f=0 THEN PRINT"Not found":END
160 INPUT"Output files "fS
170 g=OPENOUTE$
180 REM init table
190 FOR i=1 TO 256:char?i=i-1:NEXT
200 tabsize=256
210 m=0:even=TRUE

240 x=FNinput:IF x=0 THEN 320

250 IF x<=tabsize THEN out$="":PROCout
(x) ELSE out$=out$+LEFTS$ (out$,1) :PROCadd
(lastx,ASCLEFTS (out$,1))

260 FOR i=1 TO LENout$

270 b=ASCMIDS (out$,i,1)

280 BPUT#g,b

290 IF see THEN VDU b:IF b=13 THEN VDU
10

300 NEXT

310 lastx=x

320 UNTIL EOF#f OR x=0

330 CLOSE#f:CLOSE#g

340 END

380 -

1000 DEF PROCadd (n,b)

1010 IF tabsize=maxtable THEN ENDPROC
1020 tabsize=tabsize+l

1030 tab%(tabsize)=n

1040 char?tabsize=b

1050 ENDPROC

1060 :

2000 DEF FNinput

2010 REM 12-bit input

2020 LOCAL b,s

2030 even=NOT even

2040 IF even THEN =256*save+BGET#f
2050 b=BGET#f:s=BGET#f

2060 save=s MOD 16:=256*(s DIV 16)+b
2000 ¢

3000 DEF PROCout (x)

3010 LOCAL n,b

3020 n=tab% (x)

3030 IF n>0 THEN PROCout (n)

3040 b=char?x

3050 out$=out$+CHRSb

3060 n=FNfind(m,b)

3070 IF n>0 THEN m=n ELSE PROCadd(m,Db):
m=FNfind (0,b)
3080 ENDPROC
3080 :
4000 DEF FNfind(n,b)
4010 LOCAL c%,found:c%=
4020 REPEAT
4030 found=char?c%=b AND tab%(c%)=n
4040 c%=c%+1

220 : 4050 UNTIL found OR c%>tabsize
230 REPEAT 4060 IF found THEN =c%-1 ELSE =0
48 Beebug April 1991

B ___Ja

Mastering Edit (part 3)

0

by Mike Williams

I little expected when I started writing this
short series of articles that it would extend to
three instalments, and I am sure that there is
plenty more still to be said about other features
of Edit. I wanted to concentrate upon the search
and replace facilities, which I have done, and as
a result I have been roundly taken to task by
one reader for not giving adequate
acknowledgement to the format and layout
capabilities of Edit. Well, I have to plead guilty
here; this was not the focal point of the series
anyway, and I must confess that this aspect of
Edit is not one I happen to use myself (as some
may know I prefer View for genuine word
processing), but the facilities available are quite
comprehensive, as my correspondent pointed
out. Maybe this would form the subject of a
further series on Edit.

SINGLE CHARACTER SPECIFIERS

In dealing with Edit’s search and replace
commands, we have concentrated on single
characters, or on sequences of single characters.
For example:

fred/john

will replace all occurrences of fred by john
(remember that a search is initiated by pressing
f4 for a selective search (and optionally
replace), or f5 for a global search and replace).

It is when we start to investigate the use of
ambiguous character specifiers and variable
length strings that the true power and
flexibility of Edit is revealed. We have already
seen that ‘@ can be used to match any
alphabetic character, and ‘# any digit. In
addition, . will match any character in the
range 0-255.

Ranges of characters can also be specified. For
example:

A-7

would search for any character in the range
given, i.e. upper case characters. Searching for:

A-7%

Beebug April 1991

Note that in this month's examples of search and
replace strings, the space character (obtained by
pressing the space bar) will be represented as
before by <space>.

would search for any such letter followed by a
‘%’ symbol, useful to locate all occurrences of
the built-in variables A% to Z% in a Basic
program. Note the format of the search syntax.
You might have thought it should be:

A%-Z%

but this doesn’t make sense (Edit would look for
a string starting with a letter ‘A’ or ‘a’ - as Edit
is not case specific on single letters - followed by
a character in the range ‘%-Z’ - ASCII codes 37
to 90 - followed by a ‘%’). Using Edit to the full,
you need to develop the ability to analyse
correctly the syntax of a search string.

It is also possible to specify alternatives to be
searched for, any one of which is to be matched,
and it is here that Reference Manual Part 2 is
quite incorrect (at least in my copy).
Alternatives MUST be enclosed in square
brackets. To match any one of ‘1", ‘3’, or ‘c’ the
search string must be given as:

[13c]
and not as:

13c

as in the manual (the latter would search for the
three-character string ‘13c¢’. Thus to search a
program for A%, B% or C% we could specify:

[ABC] %

as the search string.

It is important to realise that when specifying a
range of characters, or alternative characters,
each match will be with just a single character;
in effect we can term these single character
elements in that they function like any specific
single character in a search string. Thus:

[A-Za-2]%

49

Mastering Edit

would match any two-character string
consisting of an upper case or a lower case
character followed by a ‘%’, i.e. it would match
A% to Z% or a% to z%.

One further useful feature with single character
elements is the negation symbol ‘~’. Thus to
search for a character in the range A to Z you
would specify:

A-Z

but to specify any character not in that range
you would write:

~R=7

MULTIPLE CHARACTER SPECIFIERS
Sometimes the string for which you are
searching will vary in length, for example the
line numbers in a Basic program. Some will be
two digits, some three, some four or more.
Suppose you want to search for all line
numbers with a space separating the line
number from the following instruction (in order
to remove the space as I suggested last time). If
we take two digit line numbers only then we
might specify:

##<space>

But then we have instructed Edit to search for
all occurrences of two digits followed by a
space. This will also pick up the last two digits
of all line numbers of three digits or more, and
probably many other numbers besides. First of
all let’s see how we can construct the search to
ensure we find all numbers regardless of
purpose or length, and then refine this to isolate
just line numbers and then just line numbers
followed by a space.

To do this we need to introduce the function of
two more special characters. Preceding a
character with a ‘" produces a search for as
many of that character as possible. Thus
specifying:

A

will find strings of digits of any length. The
other special character is “* which matches as
few of the following character as possible (more
of this in a moment). To try to distinguish line
numbers we can note that these appear always

50

at the start of a line, and are thus preceded by a
carriage return (represented by a ‘$’). So we can
refine our search string to:

S

In fact, in Edit, shorter line numbers are
preceded by one or more spaces so we need a
further refinement of the search string:

$*<space>"#

This can be interpreted as “Return, followed by
as few spaces as possible, followed by as many
digits as possible”. It is interesting to consider
too the difference between that and the search
specification:

$*<space>"#

This would read as “Return, followed by as
many spaces as possible, followed by as many
digits as possible”, superficially perhaps not
very different. Although in a sense this is quite
true, the difference can certainly be significant.
When searching for “as few as possible” of
some character, the minimal match is
“nothing”. Thus searching for as few spaces as
possible will match no spaces, one space, two
spaces and so on. On the other hand, searching
for “as many as possible” needs to find at least
one of the target characters to form a match.

Thus the first search specification given above
would match line numbers such as:

10
100
1000
10000

but the second would not match the last of
these. In the same context, it is important to
specify “as many digits as possible” so that at
least one digit is required for a match.

This all takes longer to explain than it does to
carry out, but even so the distinction between
the meanings of the two special characters '
and ' may still confuse you as it still does me
from time to time. If in doubt, as with all
searches, try just the search only (no replace)
and make it a selective rather than a global
search. Once you are confident you have
constructed the correct syntax, then trust
yourself to a global search and replace.

Beebug April 1991

E o B ® S B Rl el L e e o UL B R S e, s “a =l B

Mastering Edit

Despite all this discussion we have still not
completed the task we set ourselves. To search
reasonably for all line numbers followed by a
space you will need to specify:

$*<space>"#<space>

That’s fine, but how do we now set about
removing that last space. In effect what we
need to to is to replace the string found by the
same string less its final character the space.
This can be achieved by looking at two further
special characters, ‘&’ and ‘%’ this time in the
replacement specification. The ‘&’ character
represents the complete target string. Thus:

$*<space>"#<space>/&

would certainly find line numbers followed by
spaces, but would replace the target by itself,
not very useful, though in other contexts the ‘&’
character certainly has a part to play. For
example, if we are trying to achieve the
opposite of our original task, to insert a space
after every line number we could write:

$*<space>"#/&<space>

where the target string is replaced by the same
string followed by a space (but note that this
specification would apply that to all line
numbers including those already followed by a
space - for a refinement on this see later).

Now to return to our original task we need to
use the other special character ‘%’ to select just
part of the target string. The ‘%’ character, in
this context, is followed by a single digit. This is
used to identify the different ambiguous
elements of the search string - after all,
unambiguous elements are known and can
simply be repeated. In our example the first
ambiguous part is:

*<space>

and this is represented by %0 in the
replacement string. The second (in our case)
ambiguous element is:

4

and this would be represented by %1. Any
further ambiguous elements would be
represented by %2, %3 and so on. Thus the
replace string will consist of Return (indicated

Beebug April 1991

by a ‘¢’), followed by %0 followed by %1 (but
not including the space), thus:

$*<space>"#<space>/$%0%1

At this stage, I strongly advise you to try this
out for yourself by constructing a short if
artificial example. By the way, if you want to
insert a space following all line numbers where
such a space is missing use:

$*x<space>"#~<space>/$%0%1<space>%2

Here, we search for line numbers followed by
any character other than a ‘space’ (i.e. not a
space), but the replacement, as well as
including the extra space needed must also put
back the last character of the target string (using
%?2) as this will have been the first character
after the line number (in other words, the start
of an instruction).

The final examples which we have constructed
have become quite complex, but are in fact
quite useful in practice for tidying up
programs. They will either insert a space,
following a line number, where none existed
before, or remove a space following a line
number where one existed previously. Think
how you might modify that one to remove not
just a single following space, but as many
spaces as there might happen to be, very useful
for a program saved in a LISTO format.

One final point, to conclude this month’s
article: the last two examples in section ‘R’ of
the Reference Manual Part Two (pages R.15-5 and
R.15-6) both have pairs of square brackets
missing - see now if you can work out where
they should go.

Edit is a powerful editor, and in consequence
requires some study to use it to the full. As with
most things, practice does help, but either check
what you are attempting on some small
example constructed for the purpose, or be
cautious before using a full global search and
replace on live data. There is much, much more
to Edit (as indeed I have discovered in the
course of writing these three articles), and I
hope to return to the subject again in the not too
distant future. In the meantime any feedback or
comment from readers, particularly other
examples of useful search and replace strings,
will be most welcome.

51

ADFS/View Utility for the Master (part 2)

Jeff Gorman concludes his discussion on how to organise your word processing
with View on a BBC Master.

This final instalment of PreView detects errors,
offers opportunities to confirm decisions and
improves the on-screen presentation. A further
short program MultiPt, which prints multiple
copies of texts, is also included.

Before attempting to combine the two parts of
the program, it would be prudent to make sure
that the first instalment is working. If it is
certain that Preview_1 has been correctly
entered, it will be much easier to track down
possible errors in PreView_2. When entering
PreView_2, place a REM before each of the lines
containing “ON ERROR GOTO”, excepting line
300. When merged, any typing errors will then
be reported by Basic.

Enter and save this month’s listing, making
certain that the line numbers appear as listed.
Save as PreView_2 and also prepare one or two
backups. Likewise create backups of PreView_1.
It will not be possible, other than by line-by-line
comparison of the listings, to verify PreView_2
until the two parts are combined into a single
program (PreView) and run. A mix-up could be
disastrous if no backups were available.

To combine the two parts, load PreView_2 and
type the following, pressing Return at the end
of each line, of course:

LISTO1

WIDTHO

*SPOOL $.SpoolView

LIST
The listing will be saved to a file on disc as it
appears on the screen.

*SPOOL
This closes the file.

LOAD "§.PreView 1"

*EXEC $.SpoolView
This has the same effect as would line-by-line
typing of PreView_2 from Basic’s line editor
with PreView already loaded.

SAVE "$.PreView"
If all is well, the !Boot file described last month,

52

M

will run the complete version of PreView,
provided that:

CH.$.PreView 1
is changed to:

CH.$.PreView
When typing errors, if any, have been
remedied, remove the REMs from the ON
ERROR GOTO lines referred to previously to
check the working of the Escape routines.

Listing 2 is the MultiPt program, which should
also be typed in and saved in the $ directory
with this name.

MULTIPLE COPIES

The program $.MultiPt is called by f3 which first
surrenders View to Basic. There is a certain
amount of disc activity in setting up the routine,
and therefore some delay, so this utility is of
greatest value if more than just a few copies are
required. All that happens is that a file called
$.Multi, containing the word Print’ repeated the
requisite number of times, is spooled to disc, the
screen being meanwhile temporarily blanked by
*FX3,10. F9 is then loaded with a command
which re-loads the text file into View, taking the
file name from location &B00 et seq. where it
was temporarily stored by line 2030 of PreView.
The command *EXEC $.Multi has the effect of
simulating repeated inputs of the command
‘Print’ from the keyboard.

The *FX138,0,n calls simulate the effect of
depressing a function key, n being determined
by adding 128 to the required key number.
Although the *FX138 calls are issued before
control returns to View, they take effect only
after View takes over. Their effect is to load the
printer driver, issue the commands stored in 9,
and finally return to PreView.

MANAGING PREVIEW

Access to texts can be fairly swift since the list of
texts in the last-used folder is stored in sideways
RAM. If work frequently involves selecting
from a variety of folders, it might be advisable

Beebug April 1991

I

ADFS/View Utility for the Master

to use many folders, each containing less than a
full complement of texts, since changing folders
does involve, at each change, some little delay

Layouts are stored in a similar way, at intervals
of 78 bytes, but at a start address 500 bytes
higher in the same bank of SWR, by means of

if long lists are read from the disc. offset% set at 500. Text file names and their

extensions are stored higher still at a
: starting place indicated by an offset of
frticles Folder BeeBu
Booksales Christass 4200 bytes.
EmgtﬁFuIdr FullFoldr
Holi a*s House
Incomelax Insurances
Investants ayout
Miscellous Profssionl
Purchases RegPagnnts
Subscrptns
Hoodworker

FNfetch() reverses this operation by
using *SRREAD to take required
information from SWR and temporarily

aral
UiewSheet

Key index (1 to 28) & CRETURN}

List of available folders {ESCAPE} to go back

PreView showing choice of folders

PROGRAM OUTLINE

Lines 150, 160, 170 and 1080 control the storage
of PreView in sideways RAM. *SRData4 and
*SRData5 reserve two banks of RAM as a
continuous entity. *SRWrite simply copies the
area of program memory starting at &E00 plus
an allowance of &3500 bytes for the program,
into sideways RAM bank 5.

Function key f4 is loaded with the command:

"*Basic|M
OLD|M RUN|M"

*SRRead E00+3500 3FFF|M

which restores Basic, reads the code back into
memory, again starting at &E00, performs
‘OLD’ and runs the code (note that ‘I M’
simulates pressing the Return key).

At line 130, the instruction DIM txt% 78, fdr%
10 asks Basic to reserve 78 and 10 bytes of
memory at suitable locations which Basic itself
selects. Essentially, the program then puts, one
at a time, folder names and text or layout
names into these locations using the string
indirection operators $fdr% and $txt%.

Repeated use of *SRWRITE in PROCst() copies
the contents of these locations into sideways
RAM (SWR). The actual address in SWR of each
string is decided, in the case of folder names, by
starting at an address at the beginning of the
SWR area with the first file name and then
adding ten to this address for each file name
entered.

Beebug April 1991

pop it into the same locations ready to
be read by the program.

RdDirs() uses two OSGBPB (Operating
System Get Byte Put Byte) calls to
read both the disc title (A%=5) or
names of files and numbers of files in each
directory (A%=8), and to store the numbers
safely, using string indirection operators
$&D92,$&D9%4 and $&D94, in areas of memory
safe from corruption during the transfer of
control to the View program.

FNfixBox and PROCstretchBox are designed to
display the lists of file descriptions, whatever
their length, with their bases always just above
the rubric panel at the foot of the screen.

PROCseeFnme offers the option to check file
names of existing files prior to determining a
suitable name for the file about to be created.
This can be useful if file names are determined
with a view to classifying texts, perhaps by
some existing code number such as an order
number or membership number.

FNspaceUsed uses OSWORD &71 to read the
free space on the disc.

Listing 1

10 REM Program PreView_2
20 REM Version 1.2
30 REM Author Jeff Gorman
40 REM BEEBUG April 1991
50 REM Program subject to copyright
60 ¢
190 PROCrbrcBox
1070 PROCsetBox
1430 PROINT = 0,
1370 PROCmsg(28,2,"Establishing indexes

53

ADFS/View Utility for the Master

= Mgt S,0)

1650 IF ?&D98=0 p$="Preparing " ELSE p$
="Updating "

1660 PROCmsg (30,2,p$+a$+" index"+STRING
S ") 0)

1710 ON ERROR GOTO 1810

1720 ?&D98=0:LOCAL k$:PROCwnd:CLS:PROCs
howMnu :PROCmsg (28,2, "Disc Title:- "+$&B1
0,0)

1730 PROCdskStatus

1810 PROCwnd:CLS:PROCmsg (28,2, "Key f4 t
O re=start "'PreView""!, () :PROCmsqg (30,2,
i 0) :END

1811 :

1830 PROCwnd

1840 PROCstretchBx(22,3,-1,0

1850 :

1910 PROCseeFnme

1950 PROCmsg(28,2,"Layout routine"+STRI
NG$ (41," ")+"<ESCAPE> to go back",0)

2020 PROCchkFile (sln$)

2100 PROCmsg(28,2,"1ist of avallable fo
lders"+STRINGS (30," ")+"<ESCAPE> to go b
ack",0)

2120 IF NOT lyt% PROCmsg(30,2,"Opening
folder PUNHL PGENIUNESTRINGS (3, 2 1) 0)

2160 ¢

2180 PROCmsg (30,2,wt$,0)

2230 ON ERROR GOTO 2350

2260 IF NOT FNconfirm("selection of fol
der “ihidirStnunm soROCEIckFald

2290 IF useLyt% AND FNmistake("Folder "
"idir$+mnn is full",chkNo%>=47) :esc%=TR
UE :PROCpickFold:ENDPROC

2320 PROCmsg(30,2,wt$,0)

2350 PROCmenu :ENDPROC

2351 ¢

2430 ¢

2440 IF NOT reRun% PROCdrawBox

2510 ON ERROR GOTO 2570

2570 esc%=TRUE :PROCmenu : ENDPROC

2511

2620 IF FNmistake ("Bad key", (NOT seeFnm
e% AND (i$<>"M" AND VALi$=0 OR VALiS$>1mt
%)) OR 1$="" OR (seeFnme$% AND i$<>"F" AN
B iS<>UMM)- OR LENi$>2) :=FNindex (ky$, Imt$
)

2730 ON ERROR GOTO 2780

2750 PROCchkName (rep$)

2780 PROClytRtne :ENDPROC

2381 ¢

2850 PROCstretchBx(y%,n%,0,-1)

3010 PROCmsg (28,2, "Preparing VIEW Progr
am", 1)

3020 PROCmsg(30,2,"Use f4 from the VIEW
Command Screen to re-load ""PreView""",
1)

3080 OSCLI("Key3 *Basic|M CH.""$.MultiP
L

3350

3360 DEF FNyn:REPEAT

3370 key=GET AND &DF:key$=CHRS (key)
3380 UNTIL INSTR("YN",key$):*FX21,0
3390 =key$

3400 :

3410 DEF FNconfirm(action$)

3420 PROCmsg (30,2, "Confirm "+action$+"
[Y/Nl2 =.0)

3430 =(FNyn="Y")

3440

3450 DEF PROCchkFile (sln$)

3460 IF FNconfirm(sln$) ENDPROC

3470 reRun%=0

3480 IF lyt% PROClytRtne ELSE PROCtxtRt
ne

3490 ENDPROC

3500 :

3510 DEF PROCchkName (label$) :ovr$=""

3520 PROCmsg (30,2, "Checking for duplica
tion of MM lahe]l S4"Y" - Viyrs ()

3530 H%=OPENUP (label$) :CLOSE#H%

3540 IF FNmistake (""""+label$+""" alrea
dy exists",H%$>0) ovr$=FNover

3550 IF ovr$="N" PROCmakeFnme

3560 ENDPROC

35710

3580 DEF FNover:CLS

3590 PROCmsg (30,2, "Overwrite the file [
Y/N]2 " 0)

3600 =FNyn

3610 .

3620 DEF FNmistake (mistake$,test)

3630 IF NOT test:=0

3640 IF test PROCmsg(30,2,"",0)

3650 VDU7:PROCcont (mistake$+" - ") :=tes
T
3660 :

3670 DEF PROCdskStatus:used%=FNspaceUse
d
3680 used$="Disc "+LEFTS (STRS$ (used%),2)

54

Beebug April 1991

P . e s s I o el e . . e . o

B T T e S

ADFS/View Utility for the Master

+"$ used - Approx. "+STR$pages$+" A4 pag
es free"

3690 PRINT TAB(33,0) used$;

3700 check%=FNmistake ("File managment o
r new disc advised - ",used%¥>=95)

3710 ENDPROC

37120 :

3730 DEF FNspaceUsed

3740 A%=671:X%=670:Y%=0

3750 CALL &FFF1:free%='&70:full%=655360
3760 pages%=free%/4000

3770 =((full%-free%)/full%) *100

3780 :

3790 DEF PROCseeFnme

3810 ON ERROR GOTO 3870

3820 IF nTxt%=0 PROCmakeFnme :ENDPROC
3830 PROCmsg (30,2, "Check existing filen
ames in """+dir$+""" [Y/N] 2 ",0)

3840 IF FNyn="Y" PROCshowFiles:ENDPROC
3850 PROCmakeFnme :ENDPROC

3860 :

3870 PROClytRtne:ENDPROC

3811

3880 DEF PROCshowFiles

3890 seeFnme%=TRUE

3900 IF NOT inRam% PROCsize

391() PROCmMSG (28,2, """"+dirS+""" texts 1
isted - For reference only ",0)

3920 PROCmsg(30,2,"Loading """+dir$+"""
" 0)

3930 PROCgetTxts:ENDPROC

3940 ¢

3950 DEF PROCrbrcBox:vDU28,0,31,79,27,1
2
3960 PRINT top$'side$'bar$'side$'botms$;
3970 ENDPROC

3980,

3990 DEF PROCsetBox

4000 voidS =STRINGS(77," ")

4010 horz$ =STRINGS (77,CHRS$166)

4020 top$ = CHR$163+horz$+CHR$165

4030 side$= CHR$169+void$+CHR$169

4040 bar$= CHR$171+horz$+CHR$173

4050 botm$= CHR$170+horz$+CHR$172

4060 ENDPROC

4070 :

4080 DEF PROCdrawBox

4090 PROCcsr (0) :y$=FNfixTxtBox (stp%+1)
4100 PROCstretchBx (y%,stp%,0,-1) :ENDPRO
C

4110

4120 DEF PROCstretchBx (y%,stop%,heading
,clr)

4130 PROCcsr (0) :PROCwnd:IF clr CLS

4140 PRINT TAB(0,y%) top$

4150 FOR box%=1 TO stop%:PRINT side$:NE
XT

4160 PRINT botm$; :VDU28,1,y%+stop%,79,y
%$+1

4170 ENDPROC J
G

Listing 2
10 REM Program MultiPt
20 REM Version Bl.1
30 REM Author Jeff Gorman
40 REM BEEBUG April 1991
50 Program subject to copyright
6U ¢
100 ON ERROR GOTO 150
110 PROCquant :PROCspool :PROCprint
120 *WORD
130 END
140 :
150 REPORT:PRINT" at line "ERL:END
160 ¢
1000 DEF PROCquant
1010 CLS:PRINT TAB(10,10)"Enter number
of copies required ...,. L
1020 INPUT""quant%:IF quant$<=0 PROCqua
nt
1030 CLS:PRINT TAB(10,12) "Preparing to
print ";quant%;" copies - Please wait."
1040 ENDPROC
1050
1060 DEF PROCspool
1070 *SPOOL "$.Multi"
1080 *EX3,2
1090 FOR loop%=1 TO quant$%
1100 PRINT "Print":NEXT
1110 *SPOOL
1120 *FX3,0
1130 ENDPROC
1140 ¢
1150 DEF PROCprint
1160 OSCLI("KEY9 Load "+$&B00+" |[M*Exec
$.Multi|M")
1170 *FX138,0,130
1180 *Ex138,0,137
1190 *Fx138, 0,132
1200 ENDPROC

Beebug April 1991

55

RISC USER

The Archimedes Magazine & Support Group

Now in its fourth year of publication, Risc User continues to enjoy the largest circulation of any subscription magazine
devoted solely to the Archimedes range of computers. It provides support for all Archimedes users at work (schools, colleges,
universities, industry, government establishments) and at home.

Existing Beebug members, interested in the new range of Acorn micros, may either transfer their membership to the new
magazine or extend their subscription to include both magazines.

A joint subscription will enable you to keep completely up-to-date with all innovations and the latest information from Acorn
and other suppliers on the complete range of BBC micros. RISC User has a massive amount to offer to enthusiasts and
professionals at all levels.

And here are some items covered in the most recent issues of RISC User:

STICKY BACKDROP

icons onto the Desktop
for quick access. The
disc includes the C
source file, and a sprite
which can be used as a
backdrop.

QUITE A REVELATION
A review of Revelation,
the sophisticated image
processing application
from Longman Logotron.

ARCHWAY 2 i
A look into Simtron's Llped
Wimp program
development tool.
WP/DTP

A regular column which offers advice on
using different DTP and WP packages.
FIRST LOOK AT BEZIER CURVES
Two-part series on this mathematical
method for drawing smooth curves and
surfaces.

MULTI-TASKING WIMP DEBUGGER

A multi-tasking application which allows you

=)
{PrinterPs

!FornEd

running them.
MAGPIE

Longman Logotron.
PROGRAMMER'S WORKSHOP

to debug Wimp based programs while testing and

A very versatile implementation of the sticky backdrop
concept, which allows you to stick file and directory

“tonts

DXF - A DATA INTERCHANGE FILE FORMAT

An article about

converting graphic images to Arc

formats, and importing DXF files into Draw.

A%
Ioysten [R

P tBoot

A review of this excellent information organiser from

A major series covering all advanced aspects of the
Archimedes and incorporating the Assembler
Workshop. This month: an ADFS disc examiner.

1i
[IeonClass [Z] Key
1) Pointers

| E Filisprite ET] LineSprite
1l MenuSprite E1] PtrSprites
& ARM_A d

INTRODUCING C
A wide ranging series on the C
programming language.

MASTERING THE WIMP

A major and very popular series on
the Wimp programming environment.
The most recent installment is
devoted to accessing printer drivers.

INTO THE ARC

or beginners
currently unveiling

7 tSprites | the basic features

{7t tArchTools of the RISC
i 1Gallery i
#TeolsLib operating system.
ARCADE

A round-up of the
latest games for the
Archimedes:

Iron Lord, Twin
World and

EP] Ustrings
i} i

Sprites

As a member of BEEBUG you may extend your subscription to include RISC

User for only £9.10 (overseas see table).

Phone your instructions in, or send a cheque/postal order to the address
below. Please quote your name and membership number. When ordering by
Access, Visa or Connect, please quote your card number and the expiry date.

SUBSCRIPTION DETAILS

Destination Additional Cost
UK,BFPO &Ch Is £9.10
Rest of Europe and Eire £14.00
Middle East £17.00
Americas and Africa £19.00
Elsewhere £20.00

RISC User, 117 Hatfield Road, St Albans, Herts AL1 4JS, Telephone (0727) 40303, FAX (0727) 860263

HIB;/I'%

EXTENDED SEARCHES IN VIEW

Andrew Benham

An apparently undocumented feature of the View
word processor is that it is perfectly possible to
search for certain ‘special’ characters when using
a SEARCH, CHANGE or REPLACE command by
prefixing the appropriate letter with a ‘*’. The
combinations available are:

4y single character ‘wild card’
AT Tab

AC Return

65 Space

AZ Soft space

A- Highlight 1

ot Highlight 2

AL Left margin marker

In the above, a ‘soft” space is one inserted by View
when justifying text. For example:
CHANGE "~§"C ~C
will remove any trailing spaces from lines (and
tell you how many substitutions have been
made). Repeating the command until no further
substitutions are made will ensure that ALL
trailing spaces have been removed.

CHANGE "~S"S "S
will replace two consecutive space characters by a
single space. Again this can be repeated until no
further occurrences of double spaces remain.

CHANGE "Z S
will replace all of View’s soft spaces with normal
hard spaces. This can be useful when exporting a
View file to a PC as View uses Ctrl-Z for soft
spaces, but to a PC Ctrl-Z means ‘End-of-file’
marker.

BASIC PROGRAM QUICK SAVE
M.F.Park
To provide a quick means of saving any Basic
program, program function key fn as follows:
*KEYn SA.$ (PA.+5) |[M
Start the first line of each program with a REM
followed by the filename which may be enclosed
between double quotes or spaces. Other
information can follow the second space (if used)
in the same REM statement, for example:
10 REM MyFile Trials of *Key4

Then just press the programmed function key to
save a program. Programs with overlong names

Beebug April 1991

generate a “Bad name” error and fail to save.
Include the key definition in your !Boot files, and
you will find it easy to save your work regularly.

BBC V MASTER PRINTOUT

J.R.Barker

There are some subtle and overlooked differences
between the ways in which a model B and a
Master 128 control the sending of characters to a
printer.

*FX6 can be used to specify an ASCII character
which will never be sent to a printer. With auto-
linefeed on the printer ‘off’, a program must
execute *FX6,0 to ensure that a linefeed character
is sent to the printer when required. The
consequence is that any zero bytes in the data
stream sent to the printer will be ignored, causing
incorrect output. This is most likely to occur
when printing graphics.

The Master 128 can be configured for ‘No Ignore’
and in consequence all characters will be sent to
the printer. However, if the printer is set to auto-
linefeed, then the Master must be configured to
ignore ASCII 10, and then every ‘10" occurring in
data sent to the printer will be ignored.

NEW MASTER ROM UPDATE

Andrew Benham

Acorn’s new MOS for the Master contains a new
version of Basic. This means that ROMs which
directly access routines in Basic will need
updating. Users of BEEBUG’s EXMON will need
to obtain version 2.02, for example (by returning
the old ROM together with payment of £5.00 plus
60p p&p quoting stock code 6666).

The new ROM includes an ADFS verifier, but the
hard disc verifier assumes an Adaptec hard disc
controller. On some hard disc systems which use
a different controller the screen fills with zeros
and has to be reset if the *VERIFY command is
used.

The ADFS commands *BACKUP, *COMPACT
and *COPY no longer use conventional
workspace, and can thus be used from within
programs, opening up the opportunity for a file-
by-file hard disc backup program.

57

File Handling for All

on the BBC Micro and Acorn Archimedes

by David Spencer and Mike Williams

Computers are often used for file handling
applications yet this is a subject which
computer users find difficult when it comes
to developing their own programs. File
Handling for All aims to change that by
providing an extensive and comprehensive
introduction to the writing of file handling
programs with particular reference to Basic.

File Handling for All, written by highly
experienced authors and programmers
David Spencer and Mike Williams, offers 144
pages of text supported by many useful
program listings. It is aimed at Basic
programmers, beginners and advanced
users, and anybody interested in File
Handling and Databases on the Beeb and the
Arc. However, all the file handling concepts
discussed are relevant to most computer
systems, making this a suitable introduction
to file handling for all.

The book starts with an introduction to the
basic principles of file handling, and in the

following chapters develops an in-depth
look at the handling of different types of files
e.g. serial files, indexed files, direct access
files, and searching and sorting. A separate
chapter is devoted to hierarchical and
relational database design, and the book
concludes with a chapter of practical advice
on how best to develop file handling
programs.

The topics covered by the book include:

Card Index Files Serial Files
File Headers Disc and Record Buffering
Using Pointers Indexing Files
Searching Techniques ~ Hashing Functions
Sorting Methods Testing and Debugging
Networking Conflicts File System Calls

The associated disc contains complete
working programs based on the routines
described in the book and a copy of Filer, a
full-feature Database program originally
published in BEEBUG magazine.

File Handling for All Book

The disc supporting the book is
Special offer to BEEBUG members
Stock Codes

BKO04b (5.25" DFS 40/80T disc)
Please add £ 1.50 for p&p

£995 Stock Code BKO02b
£4.75 Stock Code BKO05a (5.25"DFS40/80T) or BK07a (3.5" ADFS)
File Handling for All book and disc £11.95

or BKO6b (3.5" ADFS disc)

BEEBUG Ltd, 117 Hatfleld Rd, St.Albans, Herts AL1 4JS. Tel (0727) 40303 Fax (0727) 860263

HELP SOUGHT
I am writing to you in the hope you will be able
to help me in a frustrating search for a suitable
utility program I can use with my video
camera. I am not competent to write my own. I
need some text scrolling programs for adding
credits, descriptions, headings etc. to home
videos. If you can suggest any discs suitable for
a BBC micro I would be eternally grateful.
A.PMcDougall

We are unable to help directly, but if any other
readers are able to assist then please write to
Mr.McDougall c/o BEEBUG and we will forward
your letter to him.

DISC ERRORS
I have a Master with Dumpmaster fitted, and
have been running the Mandelbrot program
from BEEBUG Vol.5 No.1. It works well, but
when I ask it to save, however, it returns
“ERROR 214”. I have searched diligently for
this error in the Welcome Guide, and in the two
Reference Manuals, but without success. So,
what is the meaning of ‘Error 214’, what can I
do about it, and can you refer me to a source
which lists ALL errors with their corresponding
numbers?

Edmund Jupp

In fact error 214 is “File not found”. The program
referred to saves to directory ‘P" which implies that
Mr.Jupp is running his Master using the ADFS.
With this filing system, any directories must be
created (with the *CDIR command) before they can
be used, or the error which Mr.Jupp describes is
likely to occur. With the DFS this should cause no
problems.

We do not know of a comprehensive list of ALL error
numbers, but the information on disc errors to
which we referred came from The BBC
Microcomputer Disk Companion by Tony
Latham, published by Prentice Hall in 1983 at
£7.95, but it is unlikely to be still in print.
Nevertheless some computer shops or book shops
may still have copies, or it may be available
secondhand (via BEEBUG members’ ads - see
below).

Beebug April 1991

EB
Q;‘/(’—--G‘

it

MEMBERS’ ADS PAY OFF
I am writing to express my thanks to you for
placing my advertisement in the Jan/Feb 1991
issue of BEEBUG (Vol.9 No.8). The response in
comparison with my paid Micro User ad was
quite amazing, and the majority of the large
items have now been sold. I could have sold at
least 20 Spellmaster ROMs - the phone never
stopped.

David Saunders

This confirms other feedback which we have received
regarding members’ free ads in BEEBUG (and the
same facility is now available in RISC User, our
magazine for Archimedes users). However, if you do
wish to avail yourself of this facility, please try to
keep your ad reasonably short so that we can
accommodate as many as possible each month.

LITHUANIAN APPEAL
I am a student of Vilnius University,
Department of Astrophysics. It is difficult to
imagine astrophysics without a computer.
Regrettably, personal computers are not
available in this country, and it is impossible to
buy them directly from abroad because of
currency control regulations. Fortunately, a
friend of mine from Canada donated me a BBC
model B. Now I have a lot of problems dealing
with the information on hardware and software
for the BBC micro. Occasionally I got an Acorn
User magazine where I found an ad for
BEEBUG. I am eager to read it, but it is
impossible for me because of currency control.
Maybe somebody would be willing to exchange
several issues of BEEBUG (or even
subscription) in return for books etc available in
Lithuania. Your help in any way would be
much appreciated.

Kriukelis Saulius

We have received letters from many parts of the
world over the lifetime of BEEBUG, but I do believe
this is the first we have received one from Lithuania.
We have sent Kriukelis Saulius some back issue
copies of BEEBUG magazine, and some indexes, to
help him. If any other readers feel that they may be
able to help, the address to write to is P.O.Box 1172,
232001 Vilnius, Lithuania, USSR.

59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'wants’) in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although we
will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which cannot be
accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do this. We will

accept adverts for software, but prospective purchasers should ensure that they always receive original copies
including documentation to avoid any abuse of this facility.

We also accept members' Business Ads at the rate of 40p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 5th of each month.

BBC B issue 7, Acorn DFS, 80T
Watford DD with PSU, Watford 13
ROM expansion board, Acorn 6502
second processor with DNFS and Hi-
Basic ROMs and manual, Integra B
ROM/RAM expansion board with
ROM and manual, Microvitec 1441 hi.
res. colour monitor, Morley teletext
adaptor with ats+ ROM and manual,
Acorn cassette data recorder, pair BBC
joysticks, pair Voltmace joysticks with
splitter box and driver program,
Sinclair ZX80, Sinclair ZX Spectrum
issue 2 in Dk'tronics case with
keyboard, ZX Spectrum thermal
printer and paper, Watford speech
synthesiser ROM and manual. Lots
and lots of software. Please phone for
details. Tel. (0277) 654343.

WANTED: Back issues BEEBUG
magazine Vol. 1. Nos. 1-8 & index,
Vol. 6. Nos. 9,10 & index, Vol. 7. Nos.
1-10 & index, Vol. 8. Nos. 1-10 &
index, Vol.9. Nos. 1,2,3,4. WANTED:
Back issue Micro User magazine, Vol.
7 No. 8 (Oct'89). Name your price and
add postage on please. Write to
Graham Badcock, 45 James Street,
Kellerberrin, Western Australia 6410.
Tel. 0011 61 90 454010.

WANTED: Circuit diagram or manual
for the BBC Master Compact colour
monitor. Tel. (0222) 490766 eves.

BBC Master Compact (3.5" DD), plus
PAL TV adaptor, 4 Viglen cartridges
fitted with Overview (View, Viewsheet,
Viewstore, Viewspell, Viewplot, Index,
Drivers) Dumpout and Command
ROMs, printer lead, 20 discs inc.
originals of Fairy Tales, Typing Tutor,
Funschool, Little Red Riding Hood,
Numbercopter, Nursery Rhymes,
manuals, some BEEBUG's and books
£225 o.n.0. Tel. (0622) 858476.

Archimedes 310 with colour monitor
and twin DD, plus serial link for

60

connection to Beeb, also lots of
original software including: PC
Emulator, First Word+, System Delta+,
Reporter, Home Accounts, Hearsay,
Interdictor II, Holed Out, Terramex,
Ibix the Viking and Manchester
United, plus lots of PC and Archie PD
programs and shareware £550 the lot.
Tel. (0344) 53272.

WANTED: Plotter for the BBC or
Master. Tel. 021-565 3580.

Archimedes 410 upgraded to 420
(Watford's) I/O Podule, Multipod
Professional (sound sampler, video
digitiser, serial port, joystick port, 3 BBC
compatible ROM sockets), serial lead +
s/w for BBC to ARC transfer, 5.25" disc
buffer MKII, DFS Reader, Original s/w
including; Atelier, Interdictor, E Type,
EMR Rhythm Box, EMR Creations
disc's 1-6, Archive shareware discs 1-23,
plus Archive & RISC User magazines
£1,000. Tel. 081-751 5441.

Must sell BBC B items - need shelf
space! Acorn CP/M Z80 adaptor
comprising processor, 7 discs and
manuals including File, Memo, Graph
Plan, Nucleus, Accountant, CIS
COBOL, Z80 user guides, all above for
£35. AMT-2 Tx/Rx decoder for RTTY,
ASCI & CW £35. Lots and lots of
ROMs including manuals, also lots of
books, please contact for further
information too many items to list. Tel.
(0273) 729506 eves, (0273) 200448 day.

Brother thermal transfer printer HR5
serial BBC lead, paper ribbons £50,
Acorn teletext adaptor with ATS £30,
View 2.1 ROM £5, Swift 2.2 BBC B
Spreadsheet ROM/ tape £5, Mini Office
II BBC B, B+ tape £5, all boxed with
manuals. Post extra. Tel. (0760) 23244
eves.

WANTED: Tandy TRS.80 plotter/printer
or similar (plots A4 width but any
length). Tel. 021-565 3580.

Master 512, mouse, GEM software,
joystick, 40/80T twin drive, Sony RGB
colour monitor/TV, TT adaptor, Star
LC10 printer, Terminal, View,
Viewsheet, Interword, Spellmaster,
Interbase and other software ROMs, 2
quad cartridges, Shibumi Soft Problem
Solver, many other original BBC and
PC software discs, with all manuals,
plus Dabs M512 User Guide and
BEEBUG magazines. All in excellent
condition £675 complete. Tel. (0483)
272947.

Cumana 40/80T DD with PSU £65,
Cumana 40T DD £35, 5.25" floppies
50p each, Panasonic KX-P1124 printer
£140, Linnet V21/23 modem £70,
Thorn EMI modems £20, Acorn golf
umbrella £15, Basic User Guide £5, in
addition, Archimedes hardware and
software. Tel. (04867) 80632.

Modem: BEEBUG Magic modem
complete with Command ROM £40,
BEEBUG internal modem complete
with Command ROM £35, Pace
Commstar II communication ROM
(Hayes compatible) £10, BEEBUG
Masterfile II Database £20. Tel. (0772)
612680.

BBC Master 512 with DOS mouse and
GEM software, Wordwise, View,
Viewsheet, Viewstore, Torch RGB
colour monitor, dual disc drive 40/80T
PSU, modem, misc ROMs, all
manuals, leads and manu extras £450,
Juki 600 daisywheel printer plus
additional fonts £150, complete
package £550. Tel. (0603) 485924 eves.

Epson MXS80/III friction, tractor
printer with lead, spare ribbon,
maintenance and data sheets £75,
1200/75 1200/1200 OEL Telemod 2
modem, ROM, disc, data £45, BBC B
spare case £12, Watford EPROM
Programmer, ROM, data £35, EPROM
eraser for 3 EPROMs £14, Watford

Beebug April 1991

R R s S | N R e S o =

plinths (2) can be joined for BBC B £11
each. Tel. (0366) 385174.

BEEBUG ROMIT for the BBC micro
£6, Chocks Away £6, AMX mouse,
ROM etc. boxed £14, dead Z88 £25.
Tel. (0535) 609965 anytime.

Dual 80T drive with PSU £75, two
Master cartridges with Interword,
Command, Master, Advanced Disc
Investigator, Exmon II and Lisp ROMs
£50, Master Reference manuals £10,
Dabs Master 512 Shareware collection
No.1 £10, EMR MT32 Editor for use
with MIDI interface £10, Solidisk 128K
Sideways RAM board with 10 discs of
software £15. Tel. (0462) 686818.

BBC B issue 7 (mint cond.) 1770 DFS,
View A2.1, Microvitec colour monitor,
Discs, leads, books etc. £225 o.n.o.
Cumana CS400 disc drive available if
required, for full details Tel. (0202)
742142,

BBC B with DDFS, speech chips,
Viewstore, Prestel adaptor, Teletext
adaptor, dual 3.5" drives with many
discs. £200 o.n.o. Tel. 071-249 1482.

WANTED: 3.5" DD to daisy chain
with existing 3.5" single drive. Tel.
(0395) 263638.

Overview package for Master £40,
Master MOS upgrade £20, the
following books also, Master reference
manuals 1&2, Dabhand Guides to
View and Viewsheet/store, (including
discs), all £8 each, postage included.
Tel. (0788) 521189.

Designer Castles complete only £15.
Tel. 081-854 6656 extn.27 office hours
only.

WANTED: Viglen PC console kit for
BBC B. Tel. (0872) 52653 weekdays.

Archimedes 310 with Philips colour
monitor, also 20Mb SCSI hard disc,

odule and software. Offers! Tel.
(0366) 501001.

Master 128, hardware & software for
sale, modem, BEEBUG Command,
Desktop Publishing, Genie, many
other items available, phone for list.
Tel. (0202) 303926 eves & wk/ends.

Free to collectors: Prism 2000 modem,
Watford Comms (Apollo) ROM,
Philips EL3302 tape recorder, BEEBUG
Masterfile, BEEBUG Wordease both

Beebug April 1991

5.25", 'Acorn User' issue No.1 to date,
sundry BBC cassettes. Tel. (058283)
3937.

Z80 second processor, twin 400K disc
drives, cpm software (w/p,
spreadsheet), Utilities £120 or will
swap for twin Watford disc drives
(5.25") or similar. BBC software;
Wordwise £5, Watford Dumpout 3
(new) £10, Elite £5, Paintbox 2 £5,
Various educational software, twin
joysticks £5, BBC User Guide £5,
beyond basic manual £5 all swaps
considered. Tel. (0462) 895342.

BBC B issue 7, Watford DFS, Opus
40/80 drive, datacorder, manuals and
games £175, Mini Office II - disc, book,
minidriver ROM £20, Office Master
and Mate £15, Fileplus ROM £15,
Integrated Accounting pack £10, User
and Advanced guides £5 each, all in
good condition with manuals. All
o.n.0's. Tel. (0978) 780584.

BBC B issue 7, Acorn DFS, Basic II,
good working order, ARIES B32
Shadow/Sideways RAM, Watford
double plinth (steel) any offers? Tel.
(0438) 354177 anytime after 2pm.

BBC B 1.2 with Opus Challenger 3 in 1
5.25" DD including 275k hard disc,
Mannesman Tally MT80+ printer,
ATPL Sidewise ROM board, 16k
sideways RAM, BBC tape recorder,
View 2.1, Viewshee, Viewchart,
Sharemaster Investment Analyst,
BEEBUG Masterfile II database,
Contex Bank Manager Home
Accounts, Multi-font NLQ, Mini Office
II, Replay tape to disc transfer,
BEEBUG Dumpmaster, BEEBUG
magazines & discs May '86 - Feb '91,
games galore, all relevant manuals
and many other books. Owner
upgraded to PC. Phone for full list.
Tel. (0454) 612671 eves after 6pm. No
reasonable offers refused.

32k Shadow RAM/printer buffer
board from Watford Electronics £49,
hardly used, disagrees with my
Slogger DFS. Tel. (0223) 861842.

Free to a good home A&B computing
magazine, complete set (must be
collected from London area), Speed
read course (tapes) £3. Tel. 081-698
3772.

Star Gemini 10x works but hasn't got
print head, will sell for £10 plus
postage or buy working print head for

et B e e

same price. 100k 5.25" drive for BBC
£20. Tel. (0671) 2201.

Master 128, Reference manuals 1&2,
dual Viglen 40/80 single sided drives,
Microvitec medium res. monitor with
RGB PAL and audio inputs, complete
set of BEEBUG mags in binders, several
games of varying vintage inc. Elite
£350. Care dual ROM cartridges £5,
Peartree quad ROM cartrdige £5,
BEEBUG Master ROM £18, BEEBUG
Command ROM £18, BEEBUG
Dumpmaster II (multi printer screen
dump) ROM £15, Viewstore ROM £18,
Spellmaster ROM £18, VASM disc to
disc assembler ROM £12, EMR Midi
interface inc. Miditrack performer
(sequencer), Editor and composer
software £50, EMR Scorewriter (music
composing and printing) ROM with
conversion utility for making
Performer versions from Scorewriter
files £20, BBC disc companion book £3,
Viewstore/Viewsheet guide from
Dabs Press £5, Bruce Smith's View
Guide £5, (all postage extra or buyer
collects - Dunstable). Tel. (0582)
601013.

BBC B issue 4, Cumana 40/80T drive,
Watford DFS green screen monitor
(cassette recorder), Wordwise,
Spellmaster, Toolkit help ROMs,
Masterfile, Quick Calc discs, all
manuals £200 o.n.o. Offers for
BEEBUG magazines Vol.1-1 to 8-5. Tel.
(0923) 243955 eves.

Mannesman Tally MT80 printer £90
o.v.n.o. 512 co-processor Gem
Software and mouse £90 o.v.n.o. Tel.
081-994 3205.

Magic Modem complete with
Commsoft ROM and manual and all
fittings ready to go on model B or
Master £60, Cumana twin 5.25" DD
80T single sided with PSU's just
overhauled at Cumana workshop £60.
Tel. (0844) 52547.

BBC B issue 4, Basic II, double DD,
ATPL ROM/RAM board (16k
sideways RAM), ROMs include Disc
Doctor, Toolkit+, Printmaster,
Graphics, Forth, ATS, Teletext
adaptor, joystick, cover and carrying
case, lots of software; Utilities,
Masterfile II, adventures, games and
in-depth educational programs,
BEEBUG Vols.1-9 complete, plus
blank discs £250. Tel. (0249) 782271
after 6pm.

61

membership queries and orders for pack issues 10 the
rseas should be in pqunds sterling drawn (tor

rship renewals,
address below. Al membership tees, including ove
reduced rate.

cheques) ona UK bank. Mermbers may also subscribe 10 Rléc Userata special

BEEBUG SUBSCR\PT\ON RATES BEEBUG & RISC USER
£18.40 1 year (10 issues) UK, BFPO, chl £27.50

£27.50 Rest of Europe & Eire £41.50
£33.50 Middle East £50.50
£36.50 Americas & Africa £55.50
£39.50 Elsewhere £59.50

All overseas jtems aré sent
airmail. We will accept official UK
orders for subscriptions and back
t ase note that there

an invoice. Note that there is no
VAT in magazines.

pOST AND P Destination
please add the cost of p&P
when ordering individual items.

UK, BFPO + chl 60p

See table opposite. Europe + E® £1
BEEBUG
117 Hatfleld R Herts AL1 4Js

oad, gSt.Albans,

ans (0727) 40303, FAX: (0727) 860263
Manned Mon-Fri gam-5pmM
(24hr Answerphone for COndeAcoess/\l\sa orders and

Tel. SLAID

subscﬂpﬂons)

BEEBUG MAGAZINE i ptoduoed by BEEBUG Ltd. i%mggﬂNG 70 BEEBUG PROGRAMS AND

Editor: Mike Williams : o
Assistant Editor: Kristina Lucas We are always §69th good quality articles gnd
Technical Editor: Alan Wrig\ey' p blication I BEEBUG. All contributions
Technical Assistant: Glynn Clements ; g r page, but please gV
Production Assistant: Sheila Stoneman . anythin substantial that gl
Advertising: Sarah Shrive write. Contributors’ IS available on
Managing Editor: gheridan Williams e ;

mit yo n disc of
All rights reserved. No part of this publication may be ' ng "View",
reproduoed without priof written perm'\ssion of the Publisher.
The Publis cept any responsibilty whatsoever
for errors in articles, prograrms, of advertisements pub\ished.
The opinions expressed on the pages of this ‘\ouma\ are 7
those of the authors and do not necessarily represent those membership number.
of the Publisher, BEEBUG Limited. BEEBU G Ltd (o)1 991

Printed by Arlon Printers (0923) 268328 ISSN - 0263 - 7561

April 1 991
pisCC

NTENTS R o
#las NFaudixe
esd. asd. @l
J L Hecdo:\e*s)Ku
. q pancatheeil bythevi.
nam\ng program Wh\d'\ ndi cisot?
collapse, and which

Tepa\lsan\or ilinsloway, 0V

COLLAPS\NG SCREENS an entel
causes toxt xt dis! p\ay n your screen 1
can be used 85 a\way o dearing §Creens.

INSTANT ACC
program en s you 0 U Mag
onihe Master for quick memory searching. :
g Screens
RECREAT\ONAL MATHE! EMATICS: S: FAST FACTOR\S\NG e EE FACTORS
FOR FUN- a program m which quickly finds the prime (aclors e : L - o
of any f\Un’be(up 10 , (XX) and its EU\S(nu r';;,,.‘éiﬁ’“" e o‘ a?p\moo {goo:\o .
(p urn 2 S ows rs
COLOUR BLENDER This progr am for blending colours 3402 B DUL‘?\ELerarb?ei:? -
allows you 10 © create up 10 420 new colours and design 1ne prive factors of 1234567 2r€
unique screens. ap s 5721
BEEBUG FUNCT\O OCEDURE L\BRARY (PART 2) 14s Euter Nunber 12 1224720
a Basic program containing al the functions and procedures s e 9 L
from this month's i et {3 the rusber 0
123:15678
S‘DEWAYS RA“ MMANDS FO H “ DELB wo The prime factors of \?_3456?8 are:
programs RFShead an nd RFSload, pub\ hed prewous\y in 5. 3, 3 47 o0 14593
BEEBUG Vol.8 Nos 839, ypdated 10 et Facl ey
0
CRACTICAL ASSEMBLER (0 assembler program ':;n':u.-‘as -
which will aut jy and in any flewiten {8 gl \
{odisc and d ryph every file read from disc. i 1238 sene
ving 1 ¢ BASIC
BEEBUGWORKSHg’Q FILE COMPRESSION (PART2) The %L‘;&n% 2l P
oon’p\e(e\-\uﬁnane ing for compressing data with added
lines v}or secoding, and two P Sermonstating LePer %ii'ig‘c‘p“’ ': J{ux\ ptyTeatkit o
v elch compression decompression. rogrant ™ e
i VLY FOR THE W0 (PART 2 i, o e N e G
complete PreView P ogram ext nded to detect err sidey* o gl slerh
with improveg o creen presemat'\on; an e | pove-Doun Reutine
5 é mprov!
rogram M 1Pt for printing ™ copies O Usmg oA r g " ines
Ba /PN‘E/Nemorg e (rxchons
MAGSCANDATArbib\'\ographyionhis'\ssue (Vol9No10) ot

UK ONLY
225 50
stage as apphcabl

£50
ve of VAT and po:

Prices aré inclusive

ASTAAD3 - 5* Disc (DFS) PAGla Arcade Games (5.25" 40/80T)
ASTAAD3 - 3.5' Disc (ADFS) 5.95 PAG2a Arcade Games (3.5")
Beebug Applics | - 5* Disc 400 PBGla Board Games (5.25" 40/80T)
Beebug Applics | - 3.5'Disc 4.00 PBG2a Board Games (3.5

Beebug Applics Il - 5° Disc 4.00 0077b C - Stand Alone Generator
Beebug Applics Il - 3.5" Disc 4.00 0081b Masterfile ADFSM128 80 T
Beebug magazine disc 4.75 0024b Masterfile DFS40T

Beebug Utilities - 5* Disc 400 0025b Masterfile DFS80T

Beebug Utilities - 3.5 Disc 4.00 0074b Beebug C 40 Track

EdiKit 40/80 Track 575 0075b Beebug C 80 Track

EdiKit EPROM 7.75 0084b Command

EdiKit 3.5" 875 0073b Command(Hayes compatible)
Magscan Vol.1 - 8 40 Track 12.50 0053b Dumpmaster Il

Magscan Vol.1 - 8 80 Track 12.50 0004b Exmonll

Magscan Update 40 track 4.75 0087b Master ROM

Magscan Update 80 track 475 1421b Beebug Binder

Please add p&p. UK : a - 60p. b - £1.50, Europe: a- £1.00, b - £1.50,

ViewStore
£2.99 (inc VAT) + £0.60 p&p £13.80 (inc VAT) + £1.50 p&p
Normal Members price £20.00 (inc VAT) I Normal Members price £42.49 (inc VAT)

LISP language on ROM (no manual). ViewStore is Acorn's database manager program. It offers 40 and
80 column display, multiple indexes, detailed report generation,
fogh cude 100 5a variable field lengths and much more. Excellent value for money.

Stock code 1019b

OverView
for the Master 128

£29.95 (inc VAT) + $4.50 p&p ViewSheet
Normal Members price £93.60 (inc VAT) £12.50 (inc VAT) + 5150 p&p

OverView combines all View family programs into Normal Members price £42.49 (inc VAT)

one package, and complements View and ViewSheet Excellent spreadsheet for the BBC micro and Master,

|| supplied with the Master 128. supplied on a 16K ROM. A very powerful and extremely
OverView adds ViewStore, ViewSpell, ViewPlot, useable product which will produce results ready to
ViewIndex and the Printer Driver Generator. print or for direct merging into View text files.

4 The ROMs are supplied in an Acorn ROM cartridge. Stock code 1001b

Switch between packages without having to save files.

® The postage cost reflects the size/weight of the package.

Stock code 1020e ViewSpell
S £7.00 (inc VAT) + £1.50 p&p

| FORTH . Normal Members price £28.75 (inc VAT)

. L An automatic spelling checker with a built-in 75 000 word
i(z’r?l?;;r;c(\c’ﬁl :2.60";;235 Wt Lol || dictionary. Supplied on ROM with full manual, examples disc
b . and reference card. Ideal for View or ASCII text files, and can

FORTH language on ROM (no manual). use updateable user dictionaries.

Stock code 1041a Stock code 1043b

