[\ =——% [13 2027 J
= = S 6 13[20[27

FEATURES

Dynamic Footnotes
Star Commands for Printers
from DisC 10
A Perpetual Calendar 13
Structured Listings 18
More Memory on @ 20
Mastering Edit (Part 1) 25
Workshop: Cryptology 28
A PC DisC Formatter A
First Course:
Data Storage, Data Dictionaries 35
512 Forum 3
MikroTe! (Part 2)
Practical Assembler (Part 8)
Word Processor Input (Part 3)

PROGRA
M INFORM
A
All listings published in BEEBUG =
magazine are

produced direct]
formatted y from workin
followi:: ;l::“lil LISTO 1 and vgllg_‘;%;::‘& They are
and may be Omi“t:e:“mber is'to aid readab The space
However, the rest when the program e ility only,
exactly as printed of each line shoiild be typed in.
entering a listin , and checked careful entered
5/ PAY spacial lﬂentionlz:) mhen

3

“‘[B“n V\.9 No.BJaa

REVIEWS

Corplan - GO

47

rrespondence Plan for
Wordwise Plus 21

REGULAR ITEMS

Editor's Jottings 4

News 5
57

Hints and Tips
RISC User 58
Postbagd 59
personal Ads 60
gubscriptions & Back Issues 62
Magazine Disc 63
HINTS & TIPS
Quick and Easy File Save
Date Stamping Viewstore Reports

difference b
etw
(). Also note that the digit one and a lo
is reproduced at the vertical bar ch wer case |
in listings as |. aracter (Shift \)

All program
e migcrm y:ilt;: :EEBUG magazine will
bl asic II or later, unless o::n 0'3 g
el ers with Basic I are ref dik
ge 44 of BEEBUG Vol.7 No ;l'(ﬁd i
A .2 (reprints

m ng!
¢ edited wi
s, or his datacards

\

=JUST\CE=
with software,

who can prog! al

*default
*nlq
*super
*sub
*under
*enl
*emph
*cond
*dbl
#talic
*elite
*yert
*\feed8

#2 defchar

The last should be used bef

\t
redefine some <N
your oWR character’

defining

#:2 char! » char#

most of the 1ip ts
e fastest: (o]
riginal idea was no

*niqoff
*supoff

*suboff
*undoff
senloff

vemphoff

»condoff

*doloff

#jtaloff Set/Reset

*pica Get/Reset Elite pitch

yertoff Get/Reset deub!eheighl text (C‘n'\zen)
*|feed12 Get/Reset ')o'med lines.

‘Modify these o line+half spacing etc:

+ defoff Get/Reset ROM/RAM character set
ore the following commands, which
printer manual for

snacters (see REM Ine0 and your
® onangvertical X11 ‘horizontal grid:

» char$ ».2.char% ».2 char& *2 char>

encrupt ion/Decrgpi ion

KEY NUNBER-.&S:»’
6-9 figures please fo
HBER:153364

KEY NU

File encrgptian o

r securi’(g

¢ trial message FM N

gncrupt or decrupt (e/D):E
i jumped 1azil

Hessad

qmck prown fox

@
y over ihe stile

UVGHDCQ\JGDRQYUSVGKUZXG

UREETCBKS\JZSTEFKFP

CTS‘HEIG

pecodi

THE

QUICK BROWN FOX JUMPED LAzl

ng for testing. - -
Ly OVER T

HE ST ILE

Cryptology

available on re
e ceipt of an A5 SA
it lc; :gg:de to Basic IL A:i\)’ :':e‘:.:’n“e a4
puter should be h’:med mfifpmmr
off before the

programs are run.

Where a
program
this is indica i e
e ;:::Inby symbols at lhenbcemlmsurmon’
koo e olpposile). Any otheflznhs it
plicitly in the text of theq:ri:'mlnems
icle.

& No r s re
title: ndex entries
DEMO DQCUﬂEHT INDEX 674790
MATN MENU

. SQUI'C.

Cchange d-hul\ doc. gource
Cat prcnnt n:o.s.pm
for xcommand

6.

gelect option or ¥

.4 fun
Program will not ction on a cassette-

based system.

sideways RAM.

P
E rogram needs at least one bank of
] °

Program i ;
only. s for Master 128 and Compact

Laltors Jottings

Welcome to 1991, the year which will see the start of
volume 10 of BEEBUG. Remember that this is one of our
two month issues (for both January and February), and so
the next issue will be that for March 1991, which we
expect to send out towards the end of February.

BBC MIEROE, THE MASTER SERIES AND
THE ARCHIMEDES

From time to time I receive comments to the effect that
‘these days BEEBUG seems to be all about the Master and
the Archimedes’, or ‘BEEBUG has far too many games’,
and similar statements. So what does BEEBUG stand for?

First of all, BEEBUG is devoted to users of the BBC micro
(model B etc.) and the Master series (Master 128, Master
Compact and so on). Even so, it seems entirely reasonable
that we should publish the occasional item about major
events in the Archimedes world (such as the review of the
A540 in the November issue - Vol.9 No.6), and smaller
news items about the Archimedes where appropriate. After
all, these are still Acorn machines (the A3000 is
designated a BBC micro), and many current Archimedes
owners have migrated from an earlier BBC micro (and no
doubt there are many more who may choose to do so).
Furthermore, the Archimedes is a significant part of the
Acorn world these days, and news of Acorn and its
products is likely to be of interest to all BBC micro users.

Now let's consider content. BEEBUG is intended to be a
magazine with a relatively serious and informed approach
to the use of BBC micros. Some readers who have been
subscribers from the early days may recall that there was
a time when we regularly published TWO games programs
in every issue. Over the years that has diminished, and a
game program is no longer a regular feature of the
magazine. In any case, I prefer to think in terms of ‘leisure’
software, programs which entertain, inform, fascinate etc,
though they may not be games as such. I feel that in this
broader sense there is a good argument for publishing
software in this category.

4

As far as the Master is concerned, our own surveys show
that probably some 50% of readers nowadays have a
Master series machine, and this proportion is likely to be
growing, as the Master 128 is still manufactured by Acorn
and sold as a new machine. In fact, when the Master 128
was first launched, we had a regular eight-page section
entirely devoted to that model. That was dropped some
time ago, but I feel that one or two items per month which
are specifically for the Master range is fully justified.

We try to devote a major part of each issue to useful and
worthwhile applications and utilities, and it is in these
programs that I believe the strength of BEEBUG lies. Some
readers ask, ‘why can we not have more pages of reviews?'
Well I for one agree, but the number of new products for
the Beeb is now comparatively small. We aim to cover what
does appear (see the Corplan review in this issue), but we
have also tackled this area via the surveys which we have
started and which we shall be continuing to publish.

The readers of any magazine no doubt have a wide variety
of interests and tastes. It is unlikely that any publication
can always satisfy fully the requirements of all readers all
the time. We try to provide a variety of material in each
issue which we believe will broadly appeal to most
BEEBUG readers. If you feel that the magazine does not
reflect your needs then do let us know - we might be able
to do something about it - but also take an objective look
at two or three issues and consider whether your
criticisms really are justified. After all there are other
readers to consider.

FILE HANDLING

We are very pleased with our first venture into book
publishing, File Handling for All - see advertisement in this
issue. This book provides information and examples
suitable for all BBC micro owners from near beginners to
more advanced programmers. The special offer price on
the combined book and disc is available only to BEEBUG
(and RISC User) members.

M.W.

Beebug January/February 1991

News News News

News News News

ADVANCED RISC MACHINES

In a move which saw Acorn’s share price (not usually noted
for its interest) rocket up by over 100% in a matter of days,
the company announced on 27th November a new joint
venture with Apple Computer (producers of the highly-
regarded Macintosh) and VLSI (the manufacturers of Acorn’s
ARM chip set). A new company called Advanced RISC
Machines Ltd (or ARM Ltd.), to be based in Cambridge, has
been set up with equal shares owned by Apple and Acorn,
and a smaller proportion by VLSL The new company will be
responsible for all future design and development of Acorn’s
RISC technology, and it is expected that most of the design
team at Acorn will transfer to the new enterprise.

The VL86C020 Acorn RISC Microcomputer (ARM3),
manufactured and marketed by VLSI Technology

The aim is intended to provide much better opportunities for
Acorn’s RISC chip set to compete in world markets, where
Acorn (via VLSI) is already equal top in the league for RISC
chip deliveries, alongside SPARC. Acorn itself will henceforth
concentrate on systems design and manufacture (i.e. by
developing its Archimedes range), leaving further
development of the ARM processor to the new company.
Apple refused to comment about its own future potential use
of RISC, but it would appear that the company is looking at
the market for embedded control devices, and mobile
communications where the high performance and low power
consumption of RISC is ideally suited.

Beebug January/February 1991

The new company has already stated that its first new
product will be the ARM600, to be released this year, though
no further details were given. However, despite its growing
importance, this latest in the ARM series seems unlikely to
feature an on-board floating point processor, an area in
which Acorn acknowledges the current ARM3 is weak.

Until ARM Ltd moves to new premises, all enquiries
should be directed to Acorn Computers, Fulbourn Road,
Cherry Hinton, Cambridge CB1 4]N, tel. (0223) 245200.

MUSIC FOR SPECIAL NEEDS AND PRIMARY

The Beeb continues to be widely used for music
applications, and no small part of this must be due to
Hybrid Technology which continues to support the BBC
micro with its Music 5000 and associated software.

Hybrid has now published two new packages to support
music education for young and handicapped children.
Soundshow provides over an hour of pre-recorded music for
listening exercises, and is particularly aimed at users whose
handicaps prevent ready access to non-computerised music
(such as a record collection). The package uses the concept
of a musical slide show to represent each item of music
pictorially, allowing it to be selected, played, stopped, or
repeated under control of a single switch or touch screen.
The package can be customised by the teacher to build up
pop-music style charts of individual children’s selections as
an album of personal favourites.

The second new package, Soundscore, helps all children to
compose music using a ‘graphics score’, a visual
representation of the pitch and length of each note without
the complexities of the customary musical staff. Music
played on a musical keyboard is recorded as a scrolling
colour graphics score on the computer, where it can then be
stored, edited and replayed as required. Scores can also be
printed out for reference and display.

Soundshow and Soundscore, for the model B or Master with a
Music 5000 Synthesizer, each cost £29.00 plus VAT from
Hybrid Technology Ltd, 273 The Science Park, Cambridge
CB4 4WE, tel. (0223) 420360.

PROGRAMS FOR THE BBC MICRO

Micro-Aid is a company which still provides strong support
for the BBC micro. Its various business programs
(Cashbook, Account, Taxman etc. are well established as
good-quality low-cost software. There is also a Family
History System, Stockmarket and Cribbage games, plus
multi-lingual Hangman and other educational software. For
a copy of its latest catalogue contact Micro-Aid at 1
Kildonan Courtyard, Barrhill, S.Ayrshire, KA26 OPS,
Scotland, tel. (0465) 82288. B

5

File Handling for All

on the BBC Micro and Acorn Archimedes

File Handling for All

‘the BBC Micro and Acora Archimedes

by David Spencer and Mike Williams

Computers are often used for file handling applications
yet this is a subject which computer users find difficult
when it comes to developing their own programs. This book File Handling for All aims to
change that by providing an extensive and comprehensive introduction to the writing of file
handling programs with particular reference to Basic.

File Handling for All, written by highly experienced authors and programmers David Spencer
and Mike Williams, offers 144 pages of text supported by many useful program listings. It is
aimed at Basic programmers, beginners and advanced users, and anybody interested in File
handling and Databases on the Beeb and the Arc. However, all the file handling concepts
discussed are relevant to most computer systems, making this a suitable introduction to the file
handling for all.

The book starts with an introduction to the basic principles of file handling, and in the
following chapters develops an in-depth look at the handling of different types of files e.g.
serial files, indexed files, direct access files, and searching and sorting. A separate chapter is
devoted to hierarchical and relational database design, and the book concludes with a chapter
of practical advice on how best to develop file handling programs.

The topics covered by the book include:

Card Index Files Serial Files

File Headers Disc and Record Buffering
Using Pointers Indexing Files

Searching Techniques Hashing Functions
Sorting Methods File System Calls
Networking Conflicts Testing and Debugging

The associated disc contains complete working programs based on the routines described in
the book and a copy of Filer, a full-feature Database program originally published in BEEBUG
magazine.

File Handling for All Book £9.95 Stock Code BKO02b
The disc supporting the bookis £4.75 Stock Code BKO5a (5.25" DFS 40/80T disc) or
BK07a (3.5" ADFS disc)

SPECIAL OFFER to BEEBUG members File Handling for All book and disc £ 11.95
Stock Codes BKO04b (5.25" DFS 40/80T disc) or BK06b (3.5" ADFS disc)

BEEBUG ILtd, 117 Hatfleld Rd, St.Albans, Heris AL1 4JS. Tel (0727) 40303 Fax (0727) 860263

Dynamic Footnotes

Give added interest to text displays with Stephen Sexton’s dynamic footnote system.

The purpose of the system described here is to
enable keywords to be highlighted within a text
display, such that selecting a keyword will result
in a further display of text related to the chosen
word. The system is quite powerful yet flexible,
allowing footnotes to reference further footnotes,
and so on, while different keyword labels can
relate to the same footnote if required. As such
the system has many applications from simple
footnoting of articles, through appendices, diary
systems, adventure games and much more.

The program given here as Listing 1 (fNOTES)
uses simple ASCII text files (created with a word
processor or text editor) as source - along with an
index file for the keywords. By necessity, it
requires disc files, as it uses

label text text text text *keyword3* label
text text text text text text text \ \
text text text etc etc

until the end of the text area, then

I
=NEXT KEYWORD=

and so on. Each definition of a keyword area is
marked in the text by a prefix and suffix of ‘=" for
a normal text area; or ‘==" for the start text area,
and the title. The start text area can be anywhere
within the main text area, but for ease of text
creation, I usually put it at the start.

random access techniques, or
possibly a RAM disc for instant
access (the best of all options).

=PORTER=

Text needs to be entered in a
special format (described
below), such that when viewed, |
certain words are highlighted. =JUSTICE=
Selecting a keyword then
reveals a further text display
which may itself have further
keywords embedded in it. The | code.
program acts like a card index, ||

It was *ME* ME that showed Ports how to use *PTR* PTR# to get his
program working! Typical! No *JUSTICE"* justice in the world! His data
cannot be edited with a text editor, either! Neither can his program totally
random-access, or his datacards be of any size!

With software, most of the ripoffs occur in the ideas, then it's a race to see
who can program the fastest. On average, it can be said that the person
who had the original idea was not the person who got the royalties for the

with each card having pointers
to other cards.

The fNOTES program requires each text file to
have an index, and this is created by the program
CREATE - see Listing 2.

CREATING FOOTNOTE FILES

This can be done with any word processor or text
editor, but do make sure you do not include any
embedded commands or other special characters.
The text file structure is as follows (see figure 1
for part of a sample text file layout):

First line: Filename of the index file (to be created
with Create and used as the index when fNOTES
is run.

Then, the following format is used (pressing
Return at the end of each line):

=KEYWORD=

text text text text text text *keyword2*

Beebug January/February 1991

Sample text showing title format

No linefeeds will be issued during text output,

owing to the way the program works, so the

character “\’ should be used to force a new line.

To put a blank line between paragraphs, ‘\ \ /, or:
\<Return>\<Return>

can be used. Spaces and Returns are not seen as

different.

A reference to a keyword area is indicated by
putting a single “* character at the beginning
and end of the keyword, (e.g. *keyword*), and
the next word in the text will then also be
highlighted. The keyword itself is not displayed.
This means that keyword areas can be referenced
by names different from the keyword itself, and
that different highlights can point to the same
keyword area of text. In this way, a great deal of
control can be exercised over the selectable
areas.

7

Dynamic Footnotes

When keywords are highlighted, there is a
potential problem if the keyword is followed by a
punctuation symbol (e.g. a comma, full stop, etc.),
as this punctuation will also be highlighted if it is
included with the word. Punctuation can be
treated as the next word by separating it from the
preceding (highlighted) word with a space, and it
won’t then be highlighted. For example:

As an *INTRO* introduction, blah blah etc.

will result in the word “introduction,” (including
the comma) being highlighted. However, using:

As an *INTRO* introduction , blah blah etc.

will result in “introduction” only being
highlighted.

Note: keywords and titles must not contain
spaces (i.e. they must be single words). However,
in the title, the character @ will act as a space - for
example:

==1990@-@A@New@Decade==

will read as “1990 - A New Decade” in the title
window.

CREATING AN INDEX

Once the text file has been created and saved, it
needs to be indexed using the CREATE program.
When this is run it simply prompts for the name
of your text file.

USING THE FOOTNOTES PROGRAM
Once you have created an index to your footnotes
file, you are ready to use fNOTES to browse
through the text. The program prompts for the
name of the text file to use. The start of the text
will then be displayed in a three-window format
described below, with any keyword labels
highlighted.

The program is based around three windows: the
top one is the title window, centred on the screen
according to the length of the data title. The
bottom one is the keyword selection window, and
the main window is the text display window. Text
is left-justified when displayed.

When a file is being interrogated, Space flips
through the current keyword areas available for
reading, Return selects a keyword and displays
the related text, and Tab goes back to the start text
area, (i.e. it quits a scan and begins a new one).

8

Note that each time a data file is changed, or
edited, a new index file must be created for it, or
the fNOTES program will start outputting text
from the wrong position, and maybe even
keyword labels and other garbage.

As listed, the program allows for a maximum of
100 keywords, and 20 keyword markers per
keyword area. However, moving the program
down in memory on a model B, or running it on a
Master, would allow these limits to be expanded
because more memory is then available. These
limits can be changed in the DIM statements near
the start of the listing.

Listing 1

10 REM Program footNOTES

20 REM Version B1.8

30 REM Author Stephen Sexton

40 REM BEEBUG Jan/Feb 1991

50 REM Program subject to copyright

100 MODEO:VDU23,1,0:0:0:0;

110 hS$=CHRS$17+CHR$129+CHR$174+CHRS0
120 hE$=CHR$17+CHR$128+CHR$17+CHRS1
130 ON ERROR GOT01580

140 DIM mark%(100),mark$(100),cm$ (1,20

150 INPUTYFile;"fS:CLS
160 A%=OPENIN(f$) :B%=OPENIN (FNgetword)
170 mark%(0)=-1:E%=FALSE:Z%=0:REPEAT
180 IF EOF#B% E%=TRUE
190 IF NOT E% Z%=2%+1:INPUT#B%,mark$ (Z
%) ,mark% (Z2%)
200 UNTIL E%:N%=2%:CLOSE#B%:A%=0OPENIN (
£35)
210 PROCheadings:area%=1:PROCwindow (5,
5,75,26) :PROCwindow (3,28,23,30)
220 REPEAT PTR#A%=mark% (area%)
230 PROClayout :PROCselect :UNTIL FALSE
240 END
250 ¢
1000 DEF FNgetword:Zz$=""
1010 REPEAT
1020 Q%=BGET#A%:Z$=2$+CHRS (Q%)
1030 UNTIL Q%=13 OR Q%=32
1040 =LEFTS$(Z2$,LEN(Z$)-1)
1050
1060 DEF PROClayout
1070 VDU28,5,26,75,5:CLS :M%=0
1080 REPEAT:key%=FALSE
1090 test$=FNgetword
1100 IF FNkeyword("*",test$) THEN M%=M%
+1:cm$ (0,M%)=test$:test$=FNgetword:cm$ (1

/M%) =test$:key%=TRUE

Beebug January/February 1991

Dynamic Footnotes

1110 IF NOT FNkeyword("=",test$) AND NO
T FNkeyword("==",test$) AND test$<>"|" T
HEN PROCoutput (test$)

1120 UNTIL test$="|"

1130 PRINT':ENDPROC

1148 ¢

1150 DEF FNkeyword(Q$,Z$)=(LEFT$ (2$, LEN
(Q$))=Q$ AND RIGHTS (Z$, LEN (Q$))=0$)

1160

1170 DEF PROCselect:VDU28,3,30,23,28

1180 L%=M%:E%=FALSE

1190 REPEAT

1200 IF M%=0 L%=0 ELSE L%=L%MODM%+1

1210 CLS:PRINT:IF M%=0 THEN L%=0:PROCce
ntre ("New Scan",20) ELSE PROCcentre (hS$+
cm$ (1,L%) +hES, 20)

1220 g%=GET:IF g%=13 OR g%=9 E%=TRUE

1230 UNTIL E%

1240 IF L%=0 area%=1 ELSE area%=FNgetar
ea(cm$(0,L%))

1250 IF g%=9 OR (g%=13 AND M%=0) area%=
1

1260 ENDPROC

120y

1280 DEF PROCcentre (Z$,Z%) :PRINT TAB((2Z
%-LEN (Z$) - (L%<>0) *8) /2) ; Z$: ENDPROC

1200 :

1300 DEF PROCheadings:L%=0

1310 REPEAT:L%=L%+1

1320 UNTIL FNkeyword ("==",mark$ (L%)

1330 title$=MIDS (mark$ (L%), 3, LEN (marks$ (
L%))-4) :St%=(79-LEN(title$))/2

1340 PROCwindow (St%,1,LEN(title$)+1+5t%
,3) ‘PRINT " ";%itle$:VDU26:ENDPROC

1350

1360 DEF FNgetarea (Z$) :Q%=0

1370 REPEAT:(Q%=Q%+1

1380 UNTIL MIDS (marks$ (Q%),2,LEN (mark$ (Q
%)) -2)=MID$ (Z$, 2, LEN (Z$) -2)

1390 =Q%

14005

1410 DEF FNpunct (Z$) :Q%=ASC(2$)

1420 IF ((Q%>32 AND Q%<48) OR (Q%>57 AN
D Q%<64)) IF LEN(Z$)<3 =TRUE

1430 =FALSE

1440 :

1450 DEF PROCwindow(1%,t%,r%,b%)

1460 L=1%*16-2:R=(r%+1) *16

1470 B=1020- (b%+1) *32:T=1024-t%*32

1480 GCOLO,129:VDU24,1;B;R;T; :CLG

1490 VDU28,1%,b%,r%,t%:CLS:ENDPROC

LS00

1510 DEF PROCoutput (Z$)

1520 IF ENpunct(Z5) THEN PRINT ZS5:" "::
ENDPROC ELSE PRINT" ";

1540 IF POS+LEN(Z$)>70 PRINT

1550 IF key%=TRUE Z$=hS$+Z$+hES

1560 PRINT Z$;:ENDPROC

15700

1580 CLOSE#0:L%=0

1590 vDU28,5,26,75,5:CLS;PRINTTAB (0, 10)

1600 IF ERR=222 PROCcentre (hS$+"File no
t found - check datafiles!"+hES$,80) :IF G
ET :RUN

1610 IF ERR=19 OR ERR=15 PROCcentre (hS$
+"Datafile is not correct - check wordin
g and markers!"+hES$,80) : IF GET:RUN

1620 MODE7:IF ERR<>17 REPORT:PRINT" at
line ";ERL

1630 END

Listing 2

10 REM Index creator

20 REM Version B1.0

30 REM Author Stephen Sexton

40 REM BEEBUG Jan/Feb 1991

50 REM Program subject to copyright

100 MODE7:INPUT"File:"f$

110 PRINT'"Defined Labels"'

120 A%=OPENIN(f$) :B%=OPENOUT (FNgetword
(A%))

130 E%=FALSE:REPEAT

140 IF EOF#A% THEN E%=TRUE

150 IF NOT E% THEN PROCcheck

160 UNTIL E%:CLOSE#0:END

im

1000 DEF FNgetword(in$%)

1010 2$="":REPEAT

1020 Q%=BGET#in%:2$=2$+CHRS$ (Q%)

1030 UNTIL Q%=13 OR Q%=32:=LEFT$(Z$,LEN
(2%)-1)

1040 :

1050 DEF PROCoutput

1060 a$=FNscrub(a$) :PRINT a$

1070 PRINT#B%,a$,P%:ENDPROC

10807

1090 DEF PROCcheck

1100 a$=FNgetword (A%)

1110\ TF \1ERTS (a5,1)="="AND RIGHTS (a$,1
)="=" THEN P%=(PTR#A%)-LEN (a$)~1:PROCout
put

1120 ENDPROC

11301

1140 DEF FNscrub (2$) :Q35=""

1150 FOR Z%=1 TO LEN(ZS$)

1160 IF MIDS (2$,2%,1)="@" THEN Q$=Q$+"
" ELSE Q$=Q$+MIDS$ (2$,2%,1)

1530 IF LEFTS(ZS,1)="\" PRINT:ENDPROC 1170 NEXT:=Q$ EB
Beebug January/February 1991 9

Star Commands for Printers from Disc

Derek Baron explains how you can create a series of star commands on disc
to control all the features of your printer.

Not all owners of BBC micros have invested in
sideways RAM, and cannot therefore use the
Enhanced Printer Buffer (BEEBUG Vol.6 No.10)
with its set of commands to control printer
output. I was asked by one such owner who
had invested in Interword how could he
include these commands on his system. My
answer was to write a short program which
generated as many star commands as he
wanted and saved them onto disc. This way he
was able to look up in his printer manual, just
once, the relevant codes for different effects,
and can now call them by name at the
appropriate points in his Interword text. I have
modified the program slightly to automatically
generate several useful star commands for
BEEBUG readers.

CREATING THE STAR COMMANDS
Since you may decide to use a large number of
commands, start with a blank disc if possible.
Type in the program, and save it before running
it. The commands will be saved to disc
automatically. Should you exceed the number
of files that will fit on one side of the disc (as
does the present program) include “:2." before
the extra command names (as here), both in the
program and when you use them, and bracket
the name in the DATA statement between
quotes (assuming the use of double-sided
drives).

The first instructions (lines 150 - 160) check
whether your machine is currently printing,
setting a flag if it is. If not, then after enabling
the printer and sending the commands, printer
output will be disabled (line 240).

The data statements from line 410 onwards are
paired; the first statement includes the
command name and the number of printer
codes that will be sent; the second statement

10

gives the actual codes in decimal. Printer
manuals are often a bit obscure here,
sometimes giving characters rather than
numbers, or supplying hexadecimal numbers.
To find the decimal ASCII number of a
character e.g. @ use:

PRINT ASC"@"
This example gives the value 64. Note that
Escape has a code of 27, thus ‘ESC @ which is
the code to restore an Epson compatible printer
to its default state is ‘27,64’ in decimal. These
numbers are sometimes given in hexadecimal
(as 1B, 40), so use the computer to do the
conversion to decimal:

PRINT &1B, &40
Delete any paired lines you do not want and
add others as required.

The commands created by the program (see
Table 1) are for a Citizen 120D or 180E printer,
but most will work with Epson compatibles. If
you have a different printer remember you
only have to look up the codes in your manual
once!

The commands given in Table 1 are only a start.
Add your own DATA lines for a backspace
character (decimal 8) allowing you to put that
acute accent ‘ over the ‘e’ just like the French
do. Combine the defined characters given into
one command (the program will accept up to
200 printer codes in one command). Set up your
own defined characters or use printer graphics
for fancy borders.

USING THE COMMANDS

All the printer star commands created can be
used at any time that it is appropriate to enter
such a command. They can be used from the
keyboard in immediate mode, or in the
command mode of software like View,
Interword, etc., or within your own programs.

Beebug January/February 1991

Star Commands for Printers from Disc

effect to appear, or where
you wish to cancel an effect,
press f1 again and enter the
appropriate command e.g.

supoff

Make sure that the disc
with all your star

%9 char! *2.char# *:2.char$ *:2.char%

*2.char&

*default Restores default printer condition
*nlq *nlqoff Set/Reset Near Letter Quality
*super *supoff Set/Reset Superscript printing
*sub *suboff Set/Reset Subscript printing
*under *undoff Set/Reset Underline
*enl *enloff Set/Reset Enlarged text
*emph *emphoff Set/Reset Emphasised text
*cond *condoff Set/Reset Condensed text
*dbl *dbloff Set/Reset Doublestrike text
*jtalic *italoff Set/Reset Italic text
*elite *pica Set/Reset Elite pitch
*vert *vertoff Set/Reset doubleheight text (Citizen)
*Ifeed8 *Ifeed12 Set/Reset joined lines
Modify these for line+half spacing etc.
*2.defchar *:2.defoff Set/Reset ROM/RAM character set

The last should be used before the following commands, which
redefine some characters (see REM lines and your printer manual for
defining your own characters on an 8 vertical x 11 horizontal grid.

*2.char>

commands is present in the
currently selected drive and
use Print text (option 6)
from the main menu.

The commands may also be
used from the Interword
menu screen before
printing, as can all star
commands. Finally, do
check your Epson

Table 1. Star commands provided by the program

for printer control

For example, ViewStore and ViewSheet
owners can use *elite and *cond together (with
a Citizen printer) from the command screen
to give reports with a printer width of 160
characters, enabling much more information
to be printed than the restrictive 80
characters.

Interword does have a facility for entering
printer codes directly in the text, but it does
mean having the printer manual handy at all
times. Using star commands like *nlq or *elite is
much friendlier. Type in some text (in
Interword) and then move the cursor to the
point at which the printer effect is to start. Press
f1 and an ‘Embedded commands’ Menu
appears. Two presses of the cursor down key
moves to a line starting with a star **’: type in
just the name of the command e.g. super

Press the Escape key to return to the Edit
screen, and you should see that the character
position is now in inverse video. Move the
cursor to the next position where you wish an

Beebug January/February 1991

compatible printer for
Epson compatibility!

10 REM Program StarCode

20 REM Version B1.0

30 REM Author Derek Baron
40 REM BEEBUG Jan/Feb 1991
50 REM Program subject to copyright
60 :
100 CLS:start=&900

110 REPEAT
120 FOR pass=0 TO 2 STEP 2
130 P%=start

140 [OPTpass
150 LDA #117:JSR §FFFA4

160 TXA:AND #1:STA onflag
170 LDA #2:JSR &FFEE

180 LDX #1

190 (loop
200 LDA #1:JSR &FFEE
210 LDA data,X:JSR &FFEE
220 INX:CPX data:BNE loop
230 LDA onflag:BNE end
240 LDA #3:JSR &FFEE
250 .end RTS
260 .onflag BRK
270 .data L

Star Commands for Printers from Disc

290 NEXTpass

300 RERD [5,totsl

310 IF f£S$="END" GOTO380

320 ?P%=total+l

330 FOR I%=1 TO total

340 READ numbers:I%?P%=numbers

350 NEXT

360/ PRINT"Saving "£$

370 OSCLI("*SAVE: "+fS4" " STRS~start "
"+STRS~ (P%+1%))

| 380 UNTIL f£$="END"

390 END

400 REM Command name, Number of number

410 DATA default,?2
420 REM Numbers to send to Printer
430 DATA 27,64

440 DATA nlq,3
ABUNUDRTA 21, 1.20,1
460 DATA nlqgoff,3
470 DATA 27,120,0
480 DATA super,3
490 DATA 27,83,48
500 DATA supoff,2
510 DATA 27,84

520 DATA sub, 3

530 DATA 27,83,49
540 DATA suboff,?2
550 DATA 27,84

560 DATA under, 3
57.0: DATA; 27,45, 49
580 DATA undoff, 3
590 DATA 27,45, 48
600 DATA enl,3

610 DATA 27,87,49
620 DATA enloff,3
630 DATA 27,87,48
| 640 DATA emph, 2

| 650 DATA 27,69

| 660 DATA emphoff, 2
670 DATA 27,70

680 DATA cond, 1
690 DATA 15

700 DATA condoff, 1
|- ‘710 DATA 18

| 720 DATA dbl,2

| 730 DATA 27,71

12

oR0 I i

740 DATA dbloff, 2
150 DATA 27572
760 DATA italic,2
700 DRTA 27,52
180 DATA italoft,2
190 DATR 27,53
800 DATA elite,2
810 DATA 27,117
820 DATA pica,?2
830 DATA 27,80
840 DATA vert,2
850 DATA 27,104
860 DATA vertoff,2
870, DATA 21,117
880 DATA 1feed8,3
890 DATA 27,65,8
900 DATA 1feedl2,3
910 DATA 27,65,12
920 DATA ":2.defchar", 9
g30 pamA o3 58.0,0,0,27,37,1,0
940 DATA %:2 . defoff",;d
950 DATA 27,37,0,0
960 REM Redefine ! CHR33 to full line
970 DAPR Mo 9 char! ¥, 1.7
930 DAtz 21 38.0,33,33, 139, 0,0,0,.0,0,2
55,0,0,0,0,0
990 REM Redefine & to alpha
1000-DATA ¥ -2 chars™, 17
1010 DATA-27,38,0,38,388,139,0,24,36,66,
36,24,36,66,36,0,0
1020 REM Redefine $ to beta
1030 DATA ":2.chars" 17
1049 ' DATA 27,38,0,36 36,129, 0, 0,258, 255
,168,168,168,168,80,80,0
1050 REM Redefine # to Capital Delta
1060 DATA ®:2.chaif!;17
1070 DATA 27 138 6, 85 35, 1399304 9. 16,83
7 64,33,16.9. 473 ‘
1080 REM Redefine % to reversible react
ion sign
1090 DATA ":2.chars",17
100 BRER (2 53850, 37,317,189, 20,2 21050, 2
0;10;20,:0,:84, 82 20
1110 REM Redefine > to forward arrow
1120 DATA ":2 charn®, 11
140:30 . DATA 1277,38,0,62,62,139,24,0,24,0,2
4:0,24,129,90,36,24
1140 DATA END, 0 B}

Beebug January/February 1991

A Perpetual Calendar

by Peter Brown

Although the subject of calendars has been
touched on before in BEEBUG I've never really
found a program which meets my needs. This
one, hopefully, meets all requirements.

The internal calendar in the Master 128 is very
accurate and useful in its own right as an
instant-access calendar. However, it does not
allow you to look at other dates or whole
months at a time, and cannot cope with dates
before 1900 or after 1999. The program listed
here can display or print the calendar month by
month for any year between 1753 and 5000 A.D.
in the United Kingdom, or even earlier in other
countries.

HOW TO USE THE PROGRAM

Type in the program as in the listing and then
save it - the program is written entirely in Basic,
so there should be no real problems, but watch
out for the abbreviation of ‘September” in line
1550 to ‘Septemb.”. When the program is
running, if you are using a Master 128 you will
be faced with the calendar for the current
month and year. If you are using a Model B or
Compact then see later in this article for details
of how to change the program for use with
these models. From then on the program is the

same for all machines - pressing the right cursor
key will step up a month, the left key down a
month - the calendar changing accordingly.
Pressing the up and down keys will alter the
years in exactly the same way.

Pressing ‘D’ will let you enter the date you wish
to display from the keyboard, P’ will print the
calendar for the current year in either planner
format, or in monthly blocks. The ‘QY key will
let you quit the program.

USING THE CALENDAR

The program assumes that you will be using
calendars for this country. Although there is no
actual difference between the calendars for
various countries, the date when the Gregorian
calendar was adopted differs from country to
country, so you will need to change the variable
called gregyear in line 120 according to table 1.

TECHNICAL NOTES
To adapt the program for use with the Model B
or Compact you should change line 180 to
PROCenterdate to make the program ask for a
starting date rather than try to extract the date
from the Master’s TIME$.

M I BB P by 8 I RIN F
January 3 R den bl BB 0] Lt
February b 7. %3-4. 5B 4 B
March i1 15458 B 3
Aprii -2 3o 5
Hay £ 72 2 L o g 1B 5
June {2 8 8 hel R
July el R
August R T R
Septemo. £ . 3 g EF
Jctaper 1234 0. 4.1 8 1101 1
November L adls L |
December ST D

O T W et BB W Tyl F

0 g E

Beebug January/February 1991

Perpetual Calendar

1583 Most of Western Europe

1587 Poland

1588 Hungary

1700 Denmark, the protestant states
of Germany and Holland

1741 Sweden

1753 Great Britain and
the American Colonies

1873 Japan

1913 China

1916 Bulgaria

1919 Russia and Turkey

1920 Yugoslavia and Romania

1924 Greece and the Eastern Church

positions should be 2 apart if they are to appear
in double height, or 3 apart if they are to appear
in triple height.

EXTENDING THE PROGRAM

If your printer supports quadruple height
printing then you could adapt the printing
procedures to print only a whole month’s
calendar at a time, or you could print the dates
in a long strip - leaving spaces for reminders
etc. There are many other possibilities for
extending the printing routines in this program.

Table 1

For the model B only you will also need to
remove the REM from line 160 to activate
PROCdefchars, and because of space
considerations, add the following move-down
routine to the start of the program:

0 IF PAGE<&E01 THEN 100

1 *KEYO
*T, IMFORA%=0TO (TOP-PAGE) STEP4:A%!&4E00=A%!P
AGE :NEXT | MPAGE=&E00 |MOLD | MRUN | M

2 *FX138,0,128

A corollary of this is that Compact and model B
users can omit PROCgettoday (lines 3310 to
3400), Compact owners can omit PROCdefchars
(lines 3400 to 3520), and Master owners can
omit both PROCdefchars and PROCenterdate
(lines 2070 to 2260).

There are also several procedures which you
might like to use in your own programs:

PROCbox(leftxtab)leftytab,rightxtab,rightytab)
draws a box using ASCII codes 166, 169 and
176-179 (which must be defined first on a
Model B - see PROCdefchars). The parameters
are the same as used in the Basic VDU 28 (text
windowing) command.
PROClarge(xtab,ytab,text$,dt) is a combination
of previous double and triple procedures - the
parameters xtab and ytab are the x and y co-
ordinates where the text is to be displayed,
text$ is the text to be displayed, and lastly dt,
which should be 0 if the text is to be displayed
in double height or 1 if the text is to appear in
triple height. Bear in mind though that if the
text is to appear on consecutive lines the y tab

14

January
M1 W Tin .5 on
Ttz e e Rl e
B o ahag il 1514
15 .16.1% 48 1920 21
P2-23 24 28 26 27 28
29 30 31

10 REM Program PerpCal

20 REM Version B1.20

30 REM Author Peter Brown

40 REM BEEBUG Jan/Feb 1991

50 REM Program subject to copyright

60" :

100 MODE 129

110 ON ERROR GOTO 5010

120 gregyear=1753:REM First year of Gr
egorian calendar system

130 DIM L 9:DIM monthlen%(11),monthnam
e$(11),monthno%(11)

140 X%=L MOD 256:Y%=L DIV 256:A%=10:A=
10

150 viu23, 1,0:0:0;0;

160 PROCread:REM PROCdefchars

170 PROCsetscreen

180 PROCgettoday:REM PROCenterdate

190 PROCnewdate (month%, year$)

200 PROCprint (month%,year$)

210 PROCcalendar

220 END

230=¢

Beebug January/February 1991

Perpetual Calendar

1000 DEF PROCcalendar

1010 IF INKEY (-26)PROCchangemonth (0)
1020 IF INKEY (-122)PROCchangemonth (1)
1030 IF INKEY (-58)PROCchangeyear (0)
1040 IF INKEY (-42)PROCchangeyear (1)
1050 IF INKEY(-51)PROCenterdate

1060 IF INKEY(-17)PROCquit

1070 IF INKEY (-56)PROCprintcal

1080 GOTO 1010

1090 ENDPROC

1100

1110 DEF PROCsetscreen

1120 COLOUR 3

1130 PROCbox(0,4,27,0)

1140 PROCbox(28,4,39,0)

1150 PROCbox(0,25,27,5)

1160 PROCbox(28,25,389,5)

1170 PROCbox (30,22,37,18)

1180 PROCbox(29,14,38,10)

1190 COLOUR 1

1200 PROClarge(5,1,"Perpetual Calendar"
/1)

1210 PROClarge(31,8,"Month",0)

1220 PROClarge(32,16,"Year",0)

1230 PHINT TAB(31,1)"By?

1240 PRINT TAB(31,2)"Peter"

1250 PRINT TAB(31,3)"Brown."

1260 PROClarge(19,8,"™ S Su",0)

1270 COLOUR 3

1280 PROCbanner

1290 PROClarge(4,8,"M T WTh F",0)
1300 ENDPROC

1310

1320 DEF PROCbox (1x%,ly%, rx%,ry%)

1330 FOR A-lx%+l TO rx8-1

1340 vDU31,A,1y%,166,31,R,ry%,166

1350 NEXT A

1360 FOR A=ry%+1 TO ly%-1

1370 vpu31,1x%,A,169,31,rx%,A,169

1380 NEXT A

1390 VDU31,1x%,ry%,176,31,rx%,ry%,177
1400 VvDU31,1x%,1y%,178,31,rx%,1y%,179
1410 ENDPROC

1420

1430 DEF PROClarge (xtab%,ytab%,texts$,dt
)
1440 FOR i%=1 TO LEN (text$)

1450 ?L=ASC(MIDS (text$,1%,1))

1460 CALL &FFF1

1470 IF dt=0 THEN VDU23,224,L?1,L?1,L?2
,122,123,123,1,24,124:VDU23, 225,175, 1.25, L
26,126,127,L27,128,L28:VDU31, xtab%+i%-1,

ytab%,224,8,10,225 :NEXT

1480 IF dt=1 THEN VDU23,224,171,1L7%1,L71
22,022,172, 1,23 1.23:VDU23, 225,128,174, 1,
24,1,74,1.25,0175,1.78,1L26:VDU23,226,1.76,126
,L27,077,1727,1:28,128,1.28:VDU31 , xtabt+i%-
1,ytab%,224,8,10,225,8,10,226:NEXT

1490 ENDPROC

1500 :

1510 DEF PROCread

1520 FOR Z%=0TO11:READmonthlen% (Z%) ,mon
thname$ (Z%) ,monthno% (Z2%) :NEXT

1530 DATA 31,January,1,28,February,4,31
,March, 4,30,April, 0

1540 DATA 31,May,2,30,June,5,31,July,0,
31,Auqust, 3

1550 DATA 30, Septemb.,6,31,0ctober,1,30
,November, 4,31,December, 6

1560 FOR H=0 TO 11

1570 monthname$ (H) =monthname$ (H) +STRING
$ (8~LEN (monthname$ (H)) ," ")

1580 NEXT H

1590 ENDPROC

1600 :

1610 DEF PROCnewdate (month%, year%)
1620 daysS$=STRINGS(20," "yt 2 34
Bl g 93011 12 13 14 15716 17 1
81920021 22 23.74 25 2627 28 29 30 31%
1630 Q%=year%DIV100:R%=year$MOD100:S%=R
$DIV12:T%=R$MOD12 :U%=T%DIV4

1640 yearno%=(S%+T%+U%+(19-0%) *2-(Q%>19
))MOD7

1650 leapflag%=TRUE

1660 IF year3%MOD400=0 GOTO 1700

1670 IF year3%MOD100=0 leapflag%$=FALSE:G
0TO 1700

1680 IF year3¥MOD4=0 GOT01700

1690 leapflag%=FALSE

1700 dayno%=yearno%+monthno% (month%)+6

1710 dayno%=(dayno%+ ((month%=00Rmonth%=
1)ANDleapflag$)) MOD7

1720 monthprint$=LEFTS$ (days$+STRINGS (10
," "),18+monthlen% (month%) *3- (month%=1AN
Dleapflag$) *3)

1730 monthprint$=MID$ (monthprint$+STRIN
G$(30," "),19-dayno%*3) :ENDPROC

1740 :

1750 DEF PROCprint (month%,year%)

1760 midd=-20

1770 FOR taby=12 TO 22 STEP 2

1780 midd=midd+21

1790 PRINT TAB (3,taby)MID$ (monthprint$,
midd, 21)

Beebug January/February 1991

15

Perpetual Calendar

1800 NEXT taby

1810 PROClarge (30+((8~LEN (monthname$ (mo
nth%)))DIV2),11,monthname$ (month%),1)
1820 PROClarge (32,19, STRS (year%),1)
1830 ENDPROC

1840 :

1850 DEF PROCchangemonth (direct%)

1860 IF direct%=0 AND month%=0 AND year
%=gregyear THEN ENDPROC

1870 IF direct%=1 AND month%=11 AND yea
r%$=5000 THEN ENDPROC

1880 IF direct%=0 AND month%=0 THEN mon
th%=11:PROCchangeyear (1)

1890 IF direct%=1 AND month%=11 THEN mo
nth%=0:PROCchangeyear (0)

1900 IF direct%=0 THEN month%=month%-1:
PROCreturn

1910 IF direct%=1 THEN month%=month%+1:
PROCreturn

1920 ENDPROC

1930 :

1940 DEF PROCreturn

1950 PROCnewdate (month%,year$)

1960 PROCprint (month%, year$)

1970 PROCcalendar

1980 ENDPROC

1990 :

2000 DEF PROCchangeyear (direct$%)

2010 IF direct$=0 AND year%=5000 THEN E
NDPROC

2020 IF direct%=1 AND year%=gregyear-1
THEN ENDPROC

2030 IF direct%$=0 THEN year%=year%+1:PR
OCreturn

2040 IF direct%=1 THEN year%=year%-1:PR
OCreturn

2050 ENDPROC

2060 :

2070 DEF PROCenterdate

2080 FOR G=27 TO 29:PRINT TAB(1,G)STRIN
GS(38," ") :NEXT

2090 REPEAT

2100 PRINT TAB(9,27)"Year 2"

2110 PRINT TAB(9,29)STRINGS (29," ")
2120 *FX 15,0

2130 INPUT TAB(9,29)year$%

2140 UNTIL year%<5001 AND year%>gregyea
r-1

2150 REPEAT

2160 PRINT TAB(23,27)"Month 2"

2170 PRINT TAB(23,29)STRINGS(16;™ ")
2180 INPUT TAB(23,29)month%

2190 UNTIL month%>0 AND month%<13
2200 month%=month%-1

2210 PROCbanner

2220 PROCnewdate (month$%, year$)

2230 PROCprint (month%, year$)

2240 PROCcalendar

2250 ENDPROC

2260 :

2270 DEF PROCbanner

2280 FOR K=26 TO 29:PRINT TAB(0,K)STRIN
GS$(40,™ ") :NEXT

2290 PROCbox(0,30,39, 26)

2300 vBU31,3,27,136,9,137

2310 VBU31,22,27,139,9,138

2320 VDus1,23,28,81,31,4,28,68,31,8,29,
80

2330 COLOUR 1

2340 PRINT TAB(7,27)"Change month"
2350 PRINT TAB(26,27)"Change year"
2360 PRINT TAB(7,28)"Enter new date"
2370 PRINT TAB(26,28)"Quit program"
2380 PRINT TAB(11,29)"Print Calendar"
2390 COLOUR 3

2400 ENDPROC

2410

2420 DEF PROCquit

2430 FOR K=27 TO 29:PRINT TAB(1,K)STRIN
G5(38," ") :NEXT K

2440 PRINT TAB(2,27)"Are you sure that
you want to quit 2"

2450 *FX 15,0

2460 G$=GET$

2470 IF G$="Y" OR G$="y" THEN CLS:END
2480 PROCbanner

2490 PROCcalendar

2500 ENDPROC

2510 :

2520 DEF PROCprinter (min)

2530 FOR line%=0 TO 105 STEP 21

2540 FOR monthnm=min TO min+2

2550 PROCnewdate (monthnm, year$)

2560 PRINT ,MIDS (monthprint$,line%+1,21
) STRINGS (5," ") ;

2570 NEXT monthnm

2580 PRINT

2590 NEXT line%

2600 ENDPROC

2610 :

2620 DEF PROCprintcalblock

2630 PROCprintmessage

2640 @%=27

2650 vDU2:VDU21

16

Beebug January/February 1991

Perpetual Calendar

2660 VDU1,27,1,120,1,49:REM Switch NLQ

on
2670 PROCprintyear

2680 FOR print=0 TO 9 STEP 3

2690 VDul,217,1, 69

2700 PRINT

2710 PRINT STRINGS(14," ")+monthname$ (p
rint)+STRINGS (14," ")+monthname$ (print+1l
) +STRINGS (14, " ") +monthname$ (print+2)
2720 PRINT

2730 PRINT STRINGS(3 % M T W Th | F

|S Su"+STRINGS (6," ")) ;

2740 NpUl, 27, 1,70

2750 PRINT

2760 PROCprinter (print)

2770 NEXT print

2780 vDU1,27,1,120,1,48:REM Switch NLQ
off

2790 VDU6

2800 vDU3

2810 PROCbanner

2820 ENDPROC

2830

2840 DEF PROCprintmessage

2850 FOR P=27 TO 29:PRINT TAB(1,P)STRIN
G5(38," 1) :NEXT. P

2860 PRINT TAB(5,27)"Printing Calendar
for ";years

2870 PRINT TAB(5,29)"Be Patient 1L1t"
2880 ENDPROC

2890

2900 DEF PROCprintyear

2910 Vbul,27,1,87,1,49:VDUl,27,1,69
2920 PRINT' STRINGS (18," ™)+STRS (year$)
2980 VDul,;27,1,87,1,48:V0Ul,27, 1,70
2940 PRINT''

2950 ENDPROC

2960 :

2970 DEF PROCprintcalplan

2980 PROCprintmessage

2990 VDU2:VDU21

3000 PROCprintyear

3010 PROCprintdows

3020 FOR print=0 TO 11

3030 Vpul,217,1,69

3040 PRINT monthname$ (print)+STRINGS (3,
ey

3050 vDul,27, 1,10

3060 vDU1,15

3100 PROCprintdows

3110 VDUl,;17

3120 VDU6:VDU3

3130 PROCbanner

3140 ENDPROC

3150,

3160 DEF PROCprintcal

3170 FOR J=27 TO 29:PRINT TAB(1,J)STRIN
GS$ (38, ") :NEXT J

3180 PRINT TAB(5,27)"Print Calendar"

3190 PRINT TAB(5,28)"Plan or Block 2"

3200 *FX 15,0

3210 G$=GETS$

3220 IF G$="P" OR G$="p" THEN PROCprint
calplan

3230 IF G$="B" OR G$="b" THEN PROCprint
calblock

3240 ENDPROC

3250 :

3260 DEF PROCprintdows

3270 VDU1,15:PRINT STRINGS (12," ™)+STRI
NGS5," M. T W'Th F S Su M)+" M Ty
DU1,17

3280 PRINT

3290 ENDPROC

3300 :

3310 DEF PROCgettoday

3320 month$=MIDS$ (TIMES, 8, 3)

3330 year%=VAL(MIDS (TIMES, 12, 4)

3340 num=-1

3350 REPEAT

3360 num=num+l

3370 UNTIL MID$ (monthname$ (num),0,3)=mo
nth$

3380 month%=num

3390 ENDPROC

3400 :

3410 DEF PROCdefchars

3420 vpu23,136,0,24,56,127,56,24,0,0

3430 vDU23,137,0,24,28,254,28,24,0,0

3440 VDU23,138,24,24,24,24,126,60,24,0

3450 vDU23,139,0,24,60,126,24,24,24,24

3460 VDU23,166,0,0,0,255,0,0,0,0

3470 VDU23,169,24,24,24,24,24,24,24,24

3480 VDU23,176,040,0,7,12,24,24524

3490 vDU23,177,0,0,0,192,48,24,24,24

3500 VDu23,178,24,24,12,7,0,0,0,0

3510 ypu23,179, 24 24,48,192,0,0,0,0

3520 ENDPROC

3070 PROCnewdate (print,year%) 5000 :
3080 PRINT LEFTS (monthprint$,111) 5010 MODE7:REPORT:PRINT" at line ";ERL
3090 NEXT print 5020 END -0 B

Beebug January/February 1991 17

Structured Listings

by Peter Hayes

This program was originally published in BEEBUG
Vol.3 No.9. We have decided to repeat it for the
benefit of newer readers, as the functions it provides
are very useful. It has been updated to work with the
Master.

One of the features of BBC Basic is the extent to
which it allows the programmer to write well
structured programs, more so than most other
versions of Basic. However, the Beeb’s limited
memory often forces a program to be written in
a style which obscures this structure, resulting
in programs which are difficult to read.
Although the LISTO7 command can be used
when listing programs to provide a more
structured result, it is quite limited in what it
can achieve. The program given here, PRList, is
a useful utility for producing much better
structured listings than LISTO? alone, and will
enhance the appearance of your programs
considerably.

The features of this program are:

1. Indentation of statements in the same way
as LISTO7.

2. Splitting of multi-statement lines.

3. Splitting of IF-THEN-ELSE onto separate
lines.

4. Displaying the hex codes of non-printable
characters.

To start with, you will need to type in the
program and save it (be careful when typing in
the machine code section from lines 1430 to
1710). The PRList program can sit anywhere in
memory, but for simplicity we shall refer to one
method of using this program. Load the Basic
program to be listed, and then type:

PRINT ~PAGE

PAGE=TOP+&100

LOAD "PRList"
and then run the program PRList. This will ask
you four questions. The first question is about
the PAGE value of your Basic program. This
can be obtained from the first command that
you typed above (normally &E00 for the Master
and Compact, &1900 for the Model B).

18

The computer will then ask you for a start line.
This is the line number from which you wish to
start the formatted listing. You are then asked if
you wish to output codes as numbers. This
refers to all teletext control codes and VDU
codes below 32. If you wish to display (or print)
the codes as spaces then answer ‘N’ to this
question. If you wish to print the codes as
condensed characters (Epson based printers) or
display them as 2 digit hex bytes on the screen
then answer Y.

The final question will ask if you require output
to the printer or to the screen alone. If you wish
to display the program only on the screen, then
the computer enters ‘paged mode’ which
requires you to press the Shift key to continue
listing the program.

Using this utility will enable you to produce
program listings with a well structured format
even though your working version may be
highly condensed. It won't, of course, put back
spaces that may have been ‘compacted” out, but
it will make your programs much easier to read
and understand.

PROGRAM NOTES

The program is designed to produce a printout
to an Epson (or compatible) printer, using
condensed mode for any control characters as
described above. The printer control codes for
this are contained in lines 1210 and 1260. They
can be readily changed to suit other printers (or
omitted altogether, though this may well
produce a slightly less readable program).

The outer loop of the main program runs from
line 130 to 300 and controls the processing of a
full line. The second loop, starting at line 160,
scans each character of a line and takes
appropriate action.

The procedures called are:

PROCassemble. This sets up the machine
code to deal with tokenised Basic keywords.
This procedure searches the Basic keyword

Beebug January/February 1991

Structured Listings

table for a token to match the number stored 270 I%=1%+1
in A% and then prints the keyword. 280 UNTIL I$>P%+?(P%+3)-1

PROCinit. This sets up the global variables. comER R B
300 UNTIL ?(P%+1)=&FF

PROCnum. This prints out the line number. 310 PRINT:VDU3
PROCstr. This copies strings allowing for ggg e

special characters.
1000 DEF PROCnum

PROCcode. This outputs the hexadecimal 1010 LOCAL n%

value of any special codes. If you have 1020 n%=(2(I%+3) AND &3F)*256+ (2 (I%+2)
answered yes to both the printer and display | aND &3F)

code options it will set condensed printing 1030 IF (?(I%+1) AND &20)=620 THEN n%=n
to print the codes. $+128

1040 IF (?(I%+1l) AND &10)=0 THEN n%=n%+
The program accesses the Basic ROM in order |64

to read the token table, and will recognise 1050 IF (?(I%+1) AND &4)=0 THEN n%=n%+l
versions of Basic supplied with the model B, |6384

B+, Master 128 (including those fitted with the 1060 PRINT STR$ (n%);

new MOS) and Compact. An error is generated 1070 I%=I%+3

if an unrecognised version of Basic is 1080 ENDPROC
encountered eg BASIC 1. 1090 :
1100 DEF PROCstr
1110 REPEAT
10 REM Program PRLIST 1120 IF (C%<=&1F) OR (C%>=&7F) THEN PRO
20 REM Version Bl1.4 Ccode ELSE PRINT CHRS (C%) ;
30 REM Author Peter Hayes 1130 I$=T%+1:C%=71%
40 REM BEEBUG Jan/Feb 1991 1140 UNTIL (C%=&22 BAND 2 (I%+1)<>&22) OR
50 REM Program subject to copyright C%=50D
60 : 1150 IF C%=&22 THEN PRINT """n;
100 CLs:VDU15 1160 ENDPROC
110 ON ERROR GOTO 1730 1170
120 PROCassemble:PROCinit 1180 DEF PROCcode
130 REPEAT 1190 IF OC%=0 VDU32:ENDPROC
140 @%=5:PRINT ' 256*? (P%+1)+? (P%+2);: 1200 LOCAL i%,c%,c$,h%:c%=C%:cs=""
FOR J%=1 TO S%:PRINT" ";:NEXT J%:@%=10 1210 PRINT CHRS (1)CHRS$(15) ;
150 I%=P%+4 1220 HOR i%=1 T0 2
160 REPEAT 1230 h%=48+c% MOD 16:IF h%>57 THEN h%=h
170 C%=?1% 247
180 IF C%<=&1F THEN PROCcode:GOTO 270 1240 c%=c% DIV 16:c$=CHRS (h%)+c$
190 IF C%=&22 THEN PROCstr:GOTO 270 1250 NEXT
200 IF C%=&3A THEN PRINT'" :"; tFOR 1260 PRINT c$;CHRS (1) CHRS (18);
Ji=] TO S%:PRINT" ". NEXT J%:G0T0 270 1270 ENDPROC
210 IF C%<&80 THEN PRINT CHRS (C%);:GOT 1280 :
0270 1290 DEF PROCinit
220 IF (C%=&8B) OR (C%=&8C) THEN PRINT 1300 LoeAL 1%, 1%
v %; :FOR J%=1 TQ S%:PRINT" "::NEXT 1310 S%=1
J%:GOTO 260 1320 INPUT'"PAGE value of program =&"PG
230 IF C%=&8D THEN PROCnum:GOTO 270 S
240 IF (C%=&E3) OR (C%=&F5) THEN S%=S% 1330 P%=EVAL ("&"+PG$)
+2 1340 INPUT'"Start line: "f%
250 IF (C%=&ED) OR (C%=&FD) THEN S%=S% 1350 1%=256*? (P%+1)+? (P%+2)
=2 i 1360 IF 1%<f% THEN P%=P%+? (P%+3) :GOTO 1
260 A%=C%:CALL token Continued on page 24

Beebug January/February 1991 19

More Memory on a BEEB

Use this short function by Al Harwood to recapture user memory from the high
resolution screen modes.

On the BBC micro much of the available
program memory is taken up by the screen,
especially in the large memory modes 0, 1, and
2 which use 20k). But by sacrificing a few
screen lines, quite large amounts of memory
can be regained - over 0.5K per line in these
memory hungry modes.

This can be done by altering the 6845 CRTC
registers to make the screen smaller and
reposition the smaller screen in memory.

In more detail, this is done by decreasing the
CRTC vertical displayed register (line 1090 in
the demo program) by a specific number of
lines, and moving the now smaller screen up in
memory in order to position the regained
memory to the top of the program memory
(lines 1070, 1080). Set the text and graphic
windows to the smaller size (lines 1050, 1060),
and finally set HIMEM to the higher value (line
1100). The data at the end of the listing (lines
1110 - 1140) is used to set constants which vary
with the screen mode in use.

The short listing following is basically a
function which can do this. This function
returns the new value of HIMEM, and so
should be called by:

HIMEM=FNlose (n)
where ‘n’ is the number of lines to be lost. The
function is self-contained, and works in all
modes except mode 7.

10 REM Program MORE MEMORY

20 REM Version B1.2

30 REM Author Al Harwood

40 REM BEEBUG Jan/Feb 1991

50 REM Program subject to copyright

100 MODE2
110 HIMEM=FNlose (5)
120 END

1000 DEF FNlose (n%)

1010 LOCALa%,1%,w%,h%,b%, m%,s%,A%

1020 A%=132:5%=((USR&FFF4)DIV256) AND&FF
FF

1030 A%=135:m%=((USR&FFF4)AND&FF0000)DI
Vv&10000

1040 FORa%=0TOmS:READ1%,w%,h%,b%:NEXT

1050 vDU28,0,1%-1,w%,n%

1060 VDU24,0;0;1280;1024-h%*n%;

1070 VDU23;12, (s%+b%*n%)DIV2048;0;0;0

1080 VDU23;13, ((s%+b%*n%)M0OD2048)DIV8; 0
2070

1090 VDU23;6,1%-n%;0;0;0

1100 =s%+&280*n%

1110 DATA32,79,32,5280,32,39,32,6280

1120 DATA32,19,32,&280,25,79,40,&280

1130 DATA32,39,32,5140,32,19,32,&140

1140 DATA25,39,40,&140 B

SAMOYED
Programmers. Do you have good
game and educational game ideas

can you write good animation,
graphics, sound and music. Then
if so send an Electron or BBC B
version on tape to SAMOYED.
Please include a listing if you can.
Teachers. Do you programme
or have good educational game

ideas, then if so send your ideas
or programmes to SAMOYED.
Top rates will be payed if we
use your idea or programme.
NO copyright worskAwiII be

MOYED

accepted. 64 TOLPATH

Please send S.A.E. COEDEVA3
if you want your = CWMBRAN

work returned. GWENT
NP44 6UE

Beebug January/February 1991

Corplan - Correspondence Plan for Wordwise Plus

Reviewed by Ian Waugh

Product
Supplier

Corplan
Corplan Computer Systems,
Three Gables, 7A Talbots Drive,
Maidenhead, Berkshire SL6 4LZ.
Tel. (0628) 24591
£19.50 UK post free

In spite of its age - or perhaps because of its
heritage - Wordwise Plus continues to be one of
the most popular word processors for the range
of BBC computers. It has spawned an entire
army of support ROMs, and its in-built
programming language - WPPL (Wordwise
Plus Programming Language) - has led to the
development of countless utility programs to
perform every text-manipulatory function you
can think of from mail-merge to random
sentence generation.

After a quiet period on the support program
front, Corplan appears. It describes itself as a
Correspondence Planner and consists of a suite
of disc-based programs (almost entirely written
in WPPL) which provide document indexing,
mail-merge and form selection facilities. It will
run on virtually any BBC micro and with any
filing system (including Watford and Opus),
and makes use of the special features of the
Master such as date stamping.

The full complement of Corplan programs
numbers 18 (there are also additional demo
files) although, depending on your application,
you may not need all these. However, they are
fully integrated and you’d be advised to keep
them together. As there are so many files, twin
drives are recommended although you could
get by at a pinch with a single double-sided
drive, but the manual advises against it and so
would I. The current version isn’t configured
for use with a hard disc.

The first step is to produce a working disc from
the distribution disc. 10 pages in the manual

Beebug January/February 1991

give detailed instructions and cover every
possible variation of machine, disc drives and
filing system. Later on you may want to alter
some of the system’s default settings. For
example, the Setup program, which is chained
by the !BOOT file, includes *TVO0,1 while I use
*TV255,1. It also includes function key
definitions containing printer codes. A function
key strip listing the definitions is supplied.
However, the !BOOT file is arranged so that
you can insert overriding definitions after
Setup has been executed, so inexperienced
users and non-programmers don’t have to alter
the file. The printer settings are for Epson
compatibles but you can alter these, too. There
is also provision for loading a SpellMaster
dictionary.

Index entries-7

DEMO DOCUMENT INDEX 674,90
DEMO1 README - CORPLAN Information
DEMO4 Letter to Dr O'Crikey
DEMO3 Railway Catering re study
DEMO2 Letter to Carpet Store
DEMOS Document for testing CORMERG
/IWDEMO An Inter-Word Example

First entry above
Corplan Corplan Review for BEEBUG

S=Select yellow item, X=eXit to menu
Use other keys to scroll the list.

Scanning an Index to select a document

When you boot your work disc, the system
runs through some initialising procedures,
clears WW+ memory and presents you with the
main menu which has six options. The BOOT
file will terminate if you try to boot from within
WW+ which prevents losing text through a
reboot should you hit Shift and Break. You can
call the menu at any time by pressing Shift and
f9, a process the manual calls recycling. When
you enter the main text area, all ancillary
programs are deleted from the segments to
conserve memory.

21

Corplan - Correspondence Plan For Wordwise Plus

The first menu option lets you scan a list of
filenames and load one. Each entry can have a
30-character description - a boon when using
DEFS - although the maximum filename size is
limited to seven characters even when using
ADFS to maintain file compatibility. You can
scroll through the indexed files, one way only,
by pressing any key. The selected file can be
loaded into the text area or into segments 0 or 1.
You are warned if you are about to delete
existing text.

C =
o ree
Index t Index entries-7

enbe
itle:
DEMO- DOCUMENT INDEX 6,490

MAIN MENU
. Scanvselect index entries
. Write new index entry
. Go to text entry mode
. CORPLAN utilities
. Change current doc. source

. Change default doc. source
Cat present A:0.8.AW)

Select option or ¥ for ¥command

Corplan Main Menu

The second option allows you to add a new
filename and description to the Index. A
warning is given if a file of the same name
exists either in the Index or on the disc.

Option three takes you to text entry mode. You
can go there directly, or via the Forms menu.
The use of forms is one of Corplan’s most
interesting features. Forms are simply templates
which define the layout of a letter or a report.
They are especially useful in WW+ as the text
entry screen is not WYSIWYG. The Forms menu
can show up to 22 forms. Each option is lettered
and followed by a description of the form.

The simplest type of form will only contain
embedded commands for line length, page
length, margin settings and so on. However,
some forms can take you to an address file to
load the address of the recipient. This includes
search options (through an address file) with
wildcards, and the ability to edit the address

22

file. If you are preparing a business letter, some
forms will prompt for ‘Your’ and ‘Our’
References. One really nice feature is the
inclusion of the date. I'm lazy and use the PD
command which is fine for the printout but the
file itself doesn’t tell you when it was written.
Corplan actually inserts the date in words into
the document. Finally, after loading an address
into a form, pressing f9 will send the address to
the printer (preferably to an envelope).

Option 4 accesses the Corplan Utilities Menu
which contains eight options. The first one
handles mail-merging. Obviously, the main text
has to be formatted in a certain way and many
of the demo files are already suitably formatted.
The address file can include a salutation. The
greeting is selected automatically according to
the salutation. A Sir, Sirs or Madam results in
“faithfully”, anything else produces “sincerely”.

You may have several address files on your
work disc, and Corplan’s mail-merge lets you
select an individual address from a number of
address files, so all the addresses need not be in
the same file. Some checks are made to ensure
that the document is suitable for merging.
When all is well the Mailmerge menu appears.
There is a preview mode which lets you run
through all the options without wasting any
paper - useful! There are also options for
selecting single sheet and continuous stationery.

The next thing you need to do is print
envelopes or labels for all the letters. The
Address Label Printer handles this. It will
format the addresses in one or two columns,
optionally remove associated telephone
numbers and let you set various margins. The
Address List Compiler lets you make a new
address list by copying addresses from one or
more other address lists.

If you often load spooled ASCII text into WW+
for further editing you'll know that you usually
have to remove a number of multiple spaces,
Carriage Returns and pad characters - | - which
WW+ substitutes for any ‘illegal’ characters
which it does not recognise. The Text

Beebug January/February 1991

Corplan - Correspondence Plan For Wordwise Plus

Deformatting Utility will do this for you. It’s
not guaranteed to fully correct any errant text
but it’s a good start and you can tailor the
routine to specific functions and use it in
conjunction with formatting or deformatting
routines of your own.

compi

ilespec
Source title:-

Record shown:
“tel:" lines: Salutations:
MENU

. Change source file

. Change compiling options

. Compile list

. Preview compiled list

. Exit, (to save list etc)

Select option or 'X' for 0S call

Address Compiler Menu

The Index to a group of files is held in a
segment and as a file on disc. After you have
been using the system for a while you may
want to remove documents which are no longer
required. The Index & Document Weeder
Utility helps you do this. During the first part
of the process it is simply taking instructions
and it’s not until you give it a final confirmation
that it will make the changes. This should
minimise the possibility of accidental deletions.

There are two utilities for initialising new
document sources in DFS and ADFS formats. A
document source is simply a directory in which
documents are stored. Under DFS this is W.
Under ADFS, 10 directories are created from
AW to JW. It establishes INDX (sic) and
ADDRESS files, and will copy the addresses in
an existing file to it. INDX holds the names of
the documents and the name of the Index. For
example, you may call the AW directory
Business Letters, BW may be Aunt Harriet, CW
may be Begging Letters and so on. You must
retain the two-character directory names so that
the program can identify them and the Index
titles must be changed in the INDX file
manually and resaved to the disc. '

Beebug January/February 1991

The final utility is a Form Planner. It produces
grids which help you identify character positions
on a sheet of paper to make it easier to work
out the correct formatting commands when
designing your own forms. You can preview
the grid before printing it. After designing your
own forms, you can insert their names in the
FMENU file in the root directory so that they
appear when you select the forms option.

Corplan also has a limited degree of support for
InterWord. In particular, you can enter it and
load a form into it. You can select an address
from an address file which is saved under the
name of LABEL and can be loaded into InterWord
by normal means. There is no facility to re-enter
WW+, however, which is natural enough.

Source filespec
Source title:- Record shown:
"tel:" lines: Salutations:
Mr Colin W Robertson

CORPLAN Computer Systems

Three Gables

7A Talbots Drive

MAIDENHEAD

SL6 4L2
tel: <0628> 24591
Colin

Add above record to list? (Y/N)
RET to confirm, @=7again X=eXit

Compiling Addresses

Corplan is completely menu-driven - although
you have to save the files yourself - and
generally one keypress is all that is required to
move around. There are prompts and
confirmations all over the system and you
would have to be very careless indeed to
perform a destructive act by mistake.

The 120-page manual covers each of Corplan’s
functions in detail. On a purely cosmetic note, a
few more diagrams - essential or not - would
break up the manual’s layout and make it less
daunting and less tiring on the eye. If you need
further help, Corplan Computer offers user
support should it be required. There are several
demonstration forms and documents to help

23

Corplan - Correspondence Plan For Wordwise Plus

you gain experience of the system as quickly as
possible.

Plan for Wor
Qu:,t.:m Mans

Index titl Index entrxes ;3
DEMO DUCUHENT INDEX 6/4/90

UTILITIES MENU
Mailmerge printer (CORMERG)>
Address label printer (CORLABL>
Address ' list compiler (CORLIST>
ASCII text de-formatter (CORUNDO)
Index & document weeder (CORWEED)
DFS disc initialiser ¢CORDISC)
ADFS disc initialiser (CORADFS)
Form planner (CORGRID>

A
B
c
D
E
F
G
H

Select option Cor X to eXit)

Utilities Menu

So is Corplan for you? If you already have a
system of your own which works, you will
need to weigh Corplan’s advantages against the
disadvantages of restructuring your system. I
use ADFS with a different directory name for
each individual or company I write to and
WW+ II's cursor-driven menu selection system

takes care of movement around the disc. I hold
templates for all my standard letters and
documents within each directory. These, of
course, were constructed before Corplan came
onto the scene.

But if you have numerous files scattered over
several discs and just never got around to
getting yourself organised then Corplan could
be the incentive you need. You will have to
spend a little time reading the manual and
setting up the system to suit your application,
but once that’s done the hard work is over. If
you need to produce several slightly different
types of letter you’ll find the forms options
particularly useful. Corplan would also work
well as the centre of a word processing/mailing
system for a small club or business.

Corplan is a very clever set of programs, well
detailed and well thought out. In fact, there’s
virtually nothing serious I can think of in the
package to criticise (I even wrote this review
under Corplan!). It’s very reasonably priced and
comes with a 14-day money-back guarantee. [g]

Structured Listings (continued from page 19) ‘

| 350
1370 INPUT'"Output codes as numbers: "C
$
| 1380 IF LEFT$(C$,1)="Y" OR LEFT$(C$,1)=
| "y" 0C%=1 ELSE 0C%=0
1390 INPUT'"Output to printer: "P$
1400. IF LEFTS (P5,1)="Y" OR LEFTS(PS,1)=
"y" VDU2 ELSE VDU14
1410 ENDPROC
1420
1430 DEF PROCassemble
1440 REPEAT READ ver$%,add$% [
1450 UNTIL ver%=?&8008 OR ver%=256 |
1460 IF ver%=256 PRINT"Unknown version |
of Basic"'"Cannot continue with listing"
:END
1470 DIM SP 100:FORZ=0 TO2 STEP2
1480 P%=SP: [OPTZ
1490 .token
1500 STA &70:LDA#add$MOD256:STA&71
1510 LDA#add$DIV256:STA&72
1520 LDY#0:.loop:LDA(&71),Y
1530 CMP&70:BEQ found j
1540 CLC:LDA&71:ADC#1:STA&71

24

1550 LDA&72:ADC#0:STA&72:CLC
1560 JMP loop

1570 .found:SEC:LDA&71:SBC#1
1580 STA&71:LDA&72:SBC#0:STA&72
1590 CMP#add%DIV256:BNE notbeg
1600 LDA&71:CMP#add%MOD256

1610 BNE notbeg

1620 DEY:JMP print

1630 .notbeg LDA(&71),Y

1640 CLC:CMP#&80:BCC found

1650 INY

1660 .print:INY:LDA(&71),Y

1670 CLC:CMP#&7F:BCS end

1680 JSR&FFEE:JMP print

1690 .end:RTS:]

1700 NEXT

1710 ENDPROC

1720

1730 ON ERROR OFF

1740 IF ERR<>17 THEN MODE 7

1750 REPORT:PRINT" at line ";ERL
1760 END

1770 DATA 0,&806D,1,&8071,4,&8456,7,&85
13,64, &842F,256,0 B3]

Beebug January/February 1991

Mastering Edit (Part 1)

11

by Mike Williams

If you own a Master 128 then you have access
to Edit, one of the most underrated programs
for your machine. The Master 128 is well
provided with built-in software, and you may
already be familiar with View, the word
processor, and Viewsheet its spreadsheet
complement. View is an excellent word
processor, and if you are dealing with letters,
reports and the like then it is ideally suited to
this task. However, there are many situations in
which View is less helpful, and some where the
power and flexibility of Edit has no equal.

Edit is ideal for entering and editing programs,
even programs in Basic. The EDIT keyword will
quickly transform the current Basic program in
memory into a format suitable for Edit, while
Shift-f4 followed by ‘B.” (for Basic) will leave
you with the edited program ready to run.
Extensive editing is then much easier as you no
longer have to copy in its entirety any line
being modified. There is one disadvantage -
Edit has no knowledge of Basic, so if you make
any mistake Edit will be unaware - and so will
you until you try to run the program.

For example, Edit allows you to alter line
numbers, but it won’t automatically alter any
other reference to the same line number.
Changing line numbers can be useful. If you
want to change the order of two lines in a Basic
program just edit their line numbers to reflect
correctly their desired positions, and when you
return to Basic the two lines will be correctly
ordered as specified.

Edit can also supplement View. There is
nothing to stop you loading a View format file
directly into Edit using function key f2 to select
the Load option. Some of the file may look a
little weird because of the ASCII codes (or
characters) used by View to represent things
like highlight markers, rulers, etc. But have you
ever tried searching a View file for, say, two

Beebug January/February 1991

spaces to replace them by a single space? It
won’t work. In Edit this is no problem, and thus
provides an easy way to search for all
occurrences of two spaces, and to replace each
found with a single space. There are other
situations where Edit supplements the facilities
of View.

Another example of Edit’s use is in converting a
file from one format to another, say Interword
to View, or similar. For example, Wordwise
represents Tab by the code for the Tab character
(ASCII 9) but with 128 added (i.e. ASCII 137).
View uses the standard Tab character (Ctrl-I). If
you use Wordwise’s spool option, then every
Tab will be replaced by the corresponding
number of spaces, which is not really the best
solution. Read the Wordwise file into Edit, and
you can easily replace Wordwise’s Tab
character with that used by View.

Other similar problems arise - for example,
View Professional terminates every line with a
space followed by a Carriage Return (ASCII 13).
Leaving the space in can cause havoc when
such a file is edited and reformatted within
View. The solution is to use Edit to search for
each occurrence of <space><Return> and
replace by just <Return>. All this is trivial stuff
as far as Edit is concerned, and it is capable of a
whole lot more. This month I propose to
examine the main features and characteristics of
Edit, and then follow this next month with a
look at some of its more advanced (and more
powerful) features.

UNDERSTANDING EDIT

Edit treats every file simply as a sequence of
bytes (as an ASCII file). Each byte is
represented on screen by a single character,
with the non-printing characters (ASCII codes 0
to 31) represented as inverse-video control
characters. For example, the Return character
(ASCII code 13) already referred to can also be

25

Mastering Edit

entered from the keyboard by pressing Ctrl-M
(where the ASCII code for ‘M’ is 77, i.e. 13 + 64).
In Edit the Return character appears as an
inverse-video ‘M’ (i.e. a black ‘M’ on a white
background). Codes in the range 128 to 255 will
be displayed as the characters of the Master’s
extended character, set as listed in the Master’s
User Guide.

The important thing to remember is that Edit
works with ASCII files (or treats all files as
ASCII). That’s why you can’t edit a Basic
program by simply loading it directly into Edit.
A Basic program is tokenised, with each keyword
being replaced by a single token (or coded value).
If loaded into Edit in this form, each token would
appear as a corresponding character. To edit a
Basic program properly it must be converted first
from its more normal tokenised form into a
simple ASCII format. That’s what the EDIT
keyword does. The alternative (which would
work just as well, but which is more long
winded) would be to spool the Basic program out
to a file (this process saves the program as an
ASCII text file), and then load this into Edit with
the f2 function key command.

Let’s suppose you have loaded a Basic program
into memory. Type EDIT (followed by Return)
and notice what happens. The screen should
clear and be replaced by the ‘long’ form of the
Edit display (with help information at the head
of the screen), and a window below that in
which the start of your program will appear.

The help display at the head of the screen should
show the meanings of the function keys as used
by Edit, and this serves as a useful reminder if
you have lost or forgotten the supplied key-strip.
If this is not visible on screen, press Shift-f5 (for
SET MODE), and in response to the prompt at
the foot of the screen enter ‘D’. The screen
display should then change to the format
described above. You can also use SET MODE to
select the screen mode - I usually use 131
(shadow mode 3). One useful feature of Edit is
that it remembers such settings from one time to
the next, so decide what your preferences are,
and Edit will remember them.

26

USING EDIT

Once in Edit, with your program (or whatever)
displayed, you can check out the basic editing
features. Many controls are very similar to
View: Ctrl- and Ctrl- to move to the start or end
of the file, Shift- and Shift- to move up or down
one screenful, and so on. If you use the cursor
keys to scroll continuously up or down you will
notice that you can never reach the very top or
very bottom of the Edit window (unless at the
very start or very end of the file respectively).
Thus you can always see a few lines both above
and below the current cursor position.

I normally find that having the details of the
function keys displayed at the head of the
screen more than compensates for the reduced
size of the edit window, but that is personal
preference. Although cursor movement is very
much as for View there are some differences in
the way in which things are controlled. The
Delete key operates as normal, deleting the
character to the left of the current cursor
position, but in Edit it is the Copy key which
deletes the character at the cursor, not f9 as in
View.

The other difference is that of dealing with
blocks of characters. In View you mark the start
and end of a block. This is not always true in
Edit. To delete a block move to the start and
press f6 (MARK PLACE), then move to the end
of the block and press Shift-f8 (without placing
another marker). To copy or move blocks of
characters, you mark both start and finish with
f6 before pressing {7 (MARKED COPY) or Shift-
f7 (MARKED MOVE).

Another useful key is Shift-f1 (INSERT/OVER)
which toggles between insert mode and
overwrite mode. Again, whatever setting is
current at the end of a session is remembered
by Edit for the next one. There is, unfortunately,
no case change key, so if you do need to change
from upper to lower case, or vice versa, the best
solution is to select overwrite mode and
carefully type over the top of what is already
there.

Beebug January/February 1991

Mastering Edit

As far as loading and saving of files is
concerned, I have already described how a
Basic program in memory can be transferred
into Edit, and a return to Basic made at the end.
If you are dealing with ASCII files to start with,
then 2 and {3 will prompt for the name of a file
to load or to save respectively. Note the use of
Shift-f2 to load and insert a file at the current
cursor position (setting a marker will not work,
and will prevent the Insert command from
having effect).

Finally, before getting to the heart of Edit, note
too the use of f1. This gives a star prompt ready
for any star command to be typed in, useful for
cataloguing a disc or whatever without leaving
Edit. Escape will always cancel command
mode. You can also use command mode to
leave Edit by typing Basic (or just B.) in
response to the prompt, but do remember that
any Basic program you have been editing (or
any other file) will be immediately lost unless
saved in ASCII format first. Incidentally, one of
the few irritating traits I have found in Edit, is
that using this method to exit from Edit leaves a
screen window set unless you subsequently
change mode.

SEARCH AND REPLACE

Amongst the most powerful features of any
editor are those to search for, and optionally
replace, any specified character string. And it is
in this area that Edit is particularly versatile
and powerful.

Two function keys only do all the work, f4
which performs a selective search and replace,
and f5 which performs a global search and
replace. Using f4, Edit will search from the
current cursor position for the first occurrence
of the specified string and pause when this has
been found. It will then prompt you to continue
(to search for the next occurrence) or replace
(the target string with a new string). The keys
with which to respond are ‘R’ for replace and
‘C’ for continue (not View’s ‘Y’ or ‘N’). The
selective search may or may not specify a
replacement string at the outset.

Beebug January/February 1991

However, the global search and replace is only
valid if both target and replacement are
specified, and all occurrences will be replaced
(very quickly) without any further response
from the user. This makes the use of {5 very
powerful, and you should be cautious about
using it unless you are quite sure what you are
doing. It can be fatally easy to change one thing
for another throughout a file only to find the
wrong string has been replaced. And trying to
change back to the original state may be
impossible.

For example, if you decide, when editing a
program, to change the name of a variable, do a
search first to establish that you haven’t already
used the new name for something else. If you
have, and you make all the changes you will
have used the same name for two different
purposes, but at this stage you will be quite
unable to separate one from the other, except by
individual inspection.

It is often preferable, particularly with more
complex search strings, to use the selective
search first to ensure that you have got it right,
and only then use the global search and replace.

In both cases, a replacement string is specified
by following the search string by a ’/ and then
the replacement string. Putting /" followed by
nothing (except Return) will result in the target
string being deleted (replaced by nothing’).

Escape can be used to terminate a selective
search prematurely, and once a search has been
made, a further press of f4 immediately
followed by Return will use the same search
string as the last time.

So far we have really only scratched the surface
of the search and replace facilities. To cover this
in some detail will require a further article in its
own right, and that must wait for the next
issue. In the meantime, if you have not used
Edit before, or only a little, I suggest you give it
try - you might be surprised at just how much
you can achieve.

27

28

Cryptology

by Bernard Hill

When we were small children
I suspect that we all enjoyed
making secret messages
which we could send to our
friends and have them
decode them. This children’s
pursuit clearly has a very
important military value and
is the subject of much
classified research, but I
propose in this article to
introduce the elements of this
subject and to produce a
simple code-making program.

CAESAR'’S
ALGORITHM

Our alphabet has 26
characters, plus a space.
When a message was
required to be relayed, Caesar
(using the Latin alphabet!)
reputedly shifted all letters
cyclically three places to the
right (counting space as the
first letter of the alphabet) so
that:

BUY BEEBUG
becomes:
EXACEHHEXJ

This is not very profound,
and very easy to break even
if you don’t know the shift
distance: you merely need to
try all the 26 possible shifts!

SUBSTITUTION
CODES

The obvious step onwards
from this is to employ a code
whereby every letter of the

alphabet is obtained from another by a unique
letter, so that A,B,C,etc might be replaced by
B,E,U, etc. It is common for this sequence to be
obtained from the first by a code-word or
phrase: such as “READ BEEBUG WORKSHOPS”
which might be embedded in the substitution
list as:

READ BUGWOKSHPCFIJLMNQTVX

(using each letter once only, and then following
the (if necessary truncated) code-word with the
rest of the alphabet) giving a substitution table
of:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
READ BUGWOKSHPCFIJLMNQTVXYZ

and remembering to provide a substitution for
‘space’. The message:

BUY BEEBUG
when encoded then becomes:
AQYRABBAQG

Sadly any decent code-breaker can handle a
simple substitution scheme by looking at the
frequency of letters and diagrams (two-letter
combinations). Certain diagrams occur
commonly in English (ER), some are impossible
(QT), and repetitive ones can only be possible
for a handful of combinations (EE, LL etc.).
Provided the message is long enough, it’s easy

to crack. g

VIGNERE CIPHERS

An improved coding method is based on
shifting letters within the alphabet. Here the
key word gives a distance through which we
move a letter (rather like the Caesar cipher).
Suppose our key word is BBC (normally a
longer key is used), then counting B as the
second letter of the alphabet we would move
the letters alternately 2,2 and 3 places and
repeat:

Beebug January/February 1991

Workshop - Cryptology

BBCBBCBBCB. .
BUY BEEBUG then becomes:

DWABDHGDXI

This method of coding is called a Vignere cipher,
and the key to the encoding and decoding is the
keyword “BBC”. The longer the word the
better, of course, and we can even extend the
key to phrases such as “READ BEEBUG
WORKSHOPS” giving letter shift distances of
19,5,1,4,0,2 etc. Now when the key phrase is the
same size as the message (or longer) then the
code is provably unbreakable, in the sense that
a code-breaker would have to attempt all
possible keys of the length of the message - a
process just as long as trying all possible
messages and guessing the right one! This type
of cipher is called a ‘one-time pad’ or Vernam
cipher and is (was?) reportedly used for the
Moscow-Washington hot line.

We have considered that all possible messages
can be represented with the characters upper-
case A to Z and space, but for the more efficient
coding of binary data we can obviously extend
this to the full ASCII set, or all byte values 0 to
255. In this case, the shift distances (as in
“READ BEEBUG WORKSHOPS”) could be the
ASCII values of the characters: 82,69,65,68,32
etc. But instead of this addition algorithm, we
can use the exclusive-OR operation on the
source data so that the key using the 82 would
make an ASCII 233 into 233 EOR 82, or 187.
This also has the advantage that the decryption
algorithm is identical to the encryption
algorithm (187 EOR 82=233), and the interesting
by-product that the EOR of the source and
answer is the key! (233 EOR 187=82).

Clearly the security of any such system is
completely dependent on the security of the
key, and the longer the key the better the
security. But sadly, long keys are less
memorable and tend therefore to be written
down: less security again! What we want is a
memorable way of generating a long sequence
of random-looking numbers from a short key
(which we will call a proto-key), and we would
use the new sequence as our actual key.

Beebug January/February 1991

A suitable random sequence is actually a good
random number generator: and the Beeb
contains precisely that. Recall from last month
that starting the RND function with a negative
argument gives a repeatable random sequence,
so we can use a proto-key of a (say) 9-figure
number N, and successive calls to RND(256) to
produce a binary sequence or calls of RND(27)
to produce an alphabetic rotation key. The key
thus produced is thus a true Vernam cipher, and
the only decryption method open to the code
breaker is the testing of each of the possible 9-
figure proto-keys in turn. If we also keep the
details of the random-number generator secret
then even this method breaks down.

Listing 1, at the end of this article, is a program
which allows the encoding and decoding of
simple messages (converting to upper case)
with alphabetic source, or the coding of
complete binary files (program, data, text etc.)
by use of a particular numeric proto-key. In the
case of a message the shift method is used, but
in the case of file encryption the source is
EORed with the data.

PUBLIC-KEY ENCRYPTION

The secrecy of any message is only as good as
the secrecy of the key, and long keys are
vulnerable to mistakes and short keys are
vulnerable to guessing. It has been a goal since
the 1970s to produce an encryption system in
which the encryption key was specific to each
user and yet publicly known, so that messages
to X could be encoded by anyone by looking up
X’s (public) encryption key. The decoding
however would be private to X as it would
require a decryption key quite unique to him
and known by no-one else.

Such a system was devised in 1976 by Rivest,
Shamir and Adleman and so is called the RSA
public-key cryptosystem. The encryption key is
essentially a pair of integers N and P. The
decryption key consists of N and a further
number S, kept secret. N, P and S must satisfy
certain conditions:

(i) N=XY where X and Y are primes
(ii) Sis prime
(iii) P is a solution of the equation:

29

Workshop - Cryptology

PS MOD ((X-1)*(Y-1))=1

Now with these conditions satisfied, it can be
mathematically proved that for any number M
(essentially our message):

M*(PS) MOD N = M
or, equivalently:
(M*P)~S MOD N = M.

To illustrate this we will consider X=47, Y=79
and S=97 so that N=3713 and P=37 (found by
trial and error - see algorithm below).

Now to encode “BUY BEEBUG” we can break it
into two-digit sized pieces using the alphabetic
position again:

0221 2500 0205 0502 2107

BiU ¥ B.E E.B. UG
Now each of these numbers, x, will be less than
3713 so we encode one each as:

x*37 MOD' 3713

3872 1277 2265 3621 0702

(221737 MOD 3713=3372 etc.).

Note that we don’t need to work out 221737 -
it’s too large for BBC Basic - we can perform
the MOD 3713 at every calculation:

ANS=1
FOR i=1 TO 37:ANS=(ANS*221) MOD 3713:NEXT

To decode the message, the secret number S is
used, and each section is raised to the Sth
power MOD 3713 in an exactly similar way:
3372797=221 etc.

Now this whole method of encryption depends
on the fact that it must be difficult or impossible
to deduce S from P. Now of course finding S
from P is the same problem as finding P from S,
the algorithm we used above to find an S, and
here is one simple possibility:

30

10 INPUT X,Y,S

20 D=(X-1)*(Y-1)

30 N=1

40 REPEAT

50 N=N+D

60 UNTIL N MOD S=0

70 PRINT "P=";N DIV S

so that it would appear that we have no chance
of keeping S secret, knowing P.

But this algorithm depends upon the knowledge
of X and Y, and here is the crux of the matter:
rather than the 2-figure example we used, X and
Y are chosen to be 100 (or so)-digit prime
numbers and kept quite secret. N is thus a 200-
digit number and it is thought that a 200-digit
number would take millions of years to factorise
into two 100-digit primes by current machines.
So publish N and a P for each user, keep your
factorisation into X and Y secret and you have a
workable public-key encryption system.

All you have to do is to implement a 100-digit
integer arithmetic system for the Beeb. It’s
actually quite feasible but I leave that to you
and your back copies of BEEBUG (see Vol.3
No.1 and Vol.6 Nos. 5 & 6).

Listing 1

10 REM Program Encoding

20 REM Version B1.0

30 REM Author Bernard Hill

40 REM Beebug Jan/Feb 1990

50 REM Program subject to copyright
60

100 DIM alf 27,0 255 ,M 255

110 $alf=" ABCDEFGHIJKLMNOPQRSTUVWXYZ"

120 INPUT "KEY NUMBER:" K%

130 dummy=RND (-K%)

140 IF NOT FNin(1E5,K$%,1E9) THEN PRINT
"6-9 figures please for security":GOTO 1
20

150 PRINT "File encryption or trial me
ssage (F/M):";

160 ans$=GET$

170 IF INSTR("FfMm",ans$)=0 THEN 160

180 PRINTans$

190 file=INSTR("FfMm",ans$)<3

Continued on page 34

Beebug January/February 1991

A PC Disc Formatter

by Kate Crennell

Here is a program which will format a PC
compatible disc on a BBC micro. It is most
useful for those who have no access to a PC and
who wish to send out files on a PC disc, or for
people like me who want to take files from a
BBC at home to a PC at work and forget to
bring home a PC formatted disc.

In either case the excellent programs of Bernard
Hill (BEEBUG Vol6 No.10 & Vol.7 No.1) must
be used to transfer files between Beeb and PC,
but these are of no use if you have no PC
formatted disc.

PC discs are recorded in double density with 9
sectors of 512 bytes on each track, and hence
require the 1770 series disc interface to access
them in your micro. The B+ and Master series
computers have this as standard; if you have a
BBC micro fitted with the older 8271 disc
controller it will not be able to access PC discs
(though you can upgrade your machine quite
simply).

There are two standard PC formats (see ref.1)
which can be written with this program: a
version for 5.25” disc which uses 40 tracks on
both sides (the 360K format), and a version
standard on 3.5” discs which again uses both
sides, but with 80 tracks (720K format). Hence
you must also have a double sided drive. If you
are using a 5.25” 80 (or 40/80 switchable) track
drive, it is definitely best to format a completely
blank disc so that there is nothing written on
the intermediate tracks.

When you have typed in the program, there are
two options coded in which you might wish to
change:

1. If you have a 40 (only) track 5.25” drive,
change line 230 to read U%=1, otherwise the
program will expect an 80 track drive and
use only every other track.

2. If your drive has trouble moving from track
to track at the highest speed, change line 810
to give a larger value of V%: V%=&51 allows
an additional 6ms for a track step, &52 and
&53 give progressively longer times.

Beebug January/February 1991

PROGRAM STRUCTURE

The main program calls PROCinit and
PROCmenu which initialise your micro to
access the 1770 disc controller, and control
program flow. PROCmenu calls PROCdisktype,
PROCdrive and PROCtitle to perform their
simple and obvious functions.

The real work is done in PROCformat. Here the
first ten lines set up an image of a complete PC
disk track with its preamble, nine sectors with
their ID fields, and the trailing gap. The PC
format differs in several important ways from the
BBC ADFS format described by David Spencer in
the last of his Spin-a-Disc articles (see BEEBUG
Vol.7 No.10 to Vol.8 No.3). The most obvious
difference is that here there are 9x512 byte sectors
whereas the ADFS has 16x256 byte ones. Other
differences are a more complex preamble and 80
bytes inter-sector spacing on the PC disc. The
track image is set up in the array buf% using
PROCword and PROCbyte.

There follow nested loops over the two sides
and the tracks to write the initial sectors to the
disc. Here the 1770 controller is asked to
perform tasks by storing commands in ?2ecmd%,
and then PROCwait checks for a successful
completion. Details of the commands, and how
to access the 1770 have been described in David
Spencer’s articles and are not repeated here.

Finally, PROCformat writes fixed information
into the first few sectors of the disc. The first
sector contains 11 identifying bytes followed by
19 bytes describing how the disc is laid out
(number of tracks, sectors/track etc.). Usually
this would be followed by a boot program to
load the PC system, but because there is ro
system on the disc, the rest of this sector is set
to zero. Then follow two copies of the File
Allocation Table (FAT) which will describe
which sectors belong to each file, but are now
zero (except for the first two special entries)
because there are no files on the disc. A FAT is 2
(3) sectors long for 360K (720K) discs. Finally,
the program writes 7 sectors of blank top
directory. The optional title is put into the first
pseudo-directory entry.

31

A PC Disc Formatter

PROCverify simply reads all the sectors on
both sides of the disc for all the tracks using
PROCchk to read and check each sector.

PROCq terminates the program nicely,
returning control of the 1770 to the original disc
filing system. It is also called if the program
finds an error or Escape condition.

RUNNING THE PROGRAM

After loading the formatter, take your program
disc out (at least the first time you run!) and
insert the blank disc to be formatted in drive 0 or
1. From the menu page select the type of disc and
drive number using the cursor keys. The next
item on the menu is the disc title. This is not
displayed by Bernard Hill’s programs, but will
be shown on the PC when you ask for a
directory. It is optional (carry on down the menu
if you don’t want one) but must not be longer
than 11 characters terminated with Return. The
last three lines control the action of the program:
select the required line and press Return. The
“Verify” function just checks that all sectors can
be read; it does not check their contents.

REFERENCE

Details of the format of PC discs are given in the
“MS-DOS Encyclopedia” Article 3; published by
Microsoft Press; ISBN 1-55615-049-0.

10 REM Program PCFormat
20 REM Version Bl1.0
30 REM Authors K.M. & D.J. Crennell
40 REM BEEBUG Jan/Feb 1991
50 REM Program subject to copyright
60 :
70 MODE7:PROCinit
80 ONERROR REPORT:PRINT" at line ";ER
L:PROCq
90 PROCmenu
100
110 DEF PROCbyte (I%,N%):REM add N% byt
es of I% to buf%
120 FORJ%=1TON%:?B%=1%:B%=B%+1:NEXT:EN
DPROC
15
140 DEF PROCchk:REM check sector
150 cmd%?2=5%:?cmd%=&88: REPEATUNTIL (?C
md%AND1) =0: IF (?cmd$AND24)=0 ENDPROC
160 PRINTTAB(0,16) "Error &";~?cmd%", t

rack ":3%", side ":F%", sector ":S%
170 E%=E%+1:ENDPROC
180

190 DEF PROCdisktype:REM select and se

t'up for 3.5 or 5.25"discs
200 U%=T%DIV40-1:REPEAT:PRINTTAB (14* (1
-U%),4)n$; TAB (U%*14,4)i$; : K%=GET
210 IF K%=136 OR K%=137 U%=1-U%
220 UNTIL K%=138:T%=40* (U%+1) :H%=2*T3D
Iv3
230 REM set U%=1 here for 40-track dri
ve *kk
240 ENDPROC
250 ¢
260 DEF PROCdrive:REM select disc driv
e- D%=0 or 1
270 REPEAT:PRINTTAB (5* (1-D%),7)n$; TAB(
5*D%,7)1$; :K$=GET
280 IF K%=136 OR K%=137 D%=1-D%
290 UNTIL K%=138 OR K%=139
300 FOR I%=0TO1:fc%(I%)=(fc%(I%)AND&FC
) +D%+1 :NEXT
310 ENDPROC
324
330 DEF PROCformat:REM formats disc
340 PRINTTAB(0,24)r$"One moment please
LS
350 B%=buf%:C%=44E4E4E4E:REM first set
up track data
360 PROCword (C%,19) :PROCword (0, 3) :PROC
word (§FCF6F6F6,1)
370 PROCword (C%,12) :PROCbyte (C%,2) :int
ro%=B%
380 FOR $%=1T09:PROCword (0, 3)
390 PROCword (&FEFSFSFS5, 1) :PROCword ((S%
+512) *65536,1) : PROCbyte (&F7,1)
400 PROCbyte (C%,2) : PROCword (C%, 5) :PROC
word (0, 3) : PROCword (&FBFSF5F5, 1)
410 PROCword (&5A5A5A5A,128) :PROCbyte (&
F7,1) :PROCword (C%, 20) : NEXT
420 slen%=(B%-intro%)DIV9:PROCword (C%,
256)
430 FOR F%=0TO0l:?ctrl%=fc% (F%) : 2cmd%=V
$AND3:REM reset to track 0
440 PROCsetbyte(17,F%) :REM set side no
. in buts
450 PROCwait
460 PRINTTAB(3,24)"5ide ";F%", track
";n$;
470 FOR J%=0TOT%-1:PRINTTAB(17,24);J%;
480 PROCsetbyte(16,J%) :REM set track n
umber in buf$%
490 PROCnmi:IFJ%$>H% ?cmd%=&F0 ELSE ?cm
d%=&F2:REM format track
500 PROCwait
510 REM move in to next track (twice o
n 80-track 5.25" drive)
520 IF J%<T%-1 ?cmd%=V%:PROCwait:IFU%=
0 ?cmd%=V%:PROCwait

32

Beebug January/February 1991

Rl

A PC Disc Formatter

530 NEXT,

540 PRINTTAB(3,24)"Writing fixed secto
rs;ng;

550 ?ctrl%=fc%(0):?cmd%=V%AND3:REM see
k track 0 side 0

560 REM meanwhile, set up OEM id and B
I0S parameter block

570 !'buf%=&9034EB:K%=buf%+3:$K%="BEEBU
G01" :K%=K%+8

580 !'K%=512:K%?2=2:K%!3=1:K%?5=2:K%!6=
112

590 IF T%=40 K%!8=720:K%?10=&FD:K%!11=
2 ELSE K%!8=1440:K%?10=&F9:K%!11=3

600 K%!13=9:K%!15=2:FORI%=28T0508STEP4
:buf%!I%=0:NEXT

610 PROCwait:PROCwrite (1) :REM header s
ector

620 N%=K%?11:REM # sectors/fat

630 !'buf%=&FFFF00+K%$?10:REM first 2 en
tries are reserved

640 FOR I%=4T024STEP4:buf%!I%=0:NEXT

650 PROCwrite (2) :PROCwrite (N%+2):!buf$%
=0

660 FORJ%=3TON%+1:PROCwrite (J%) :PROCWr
ite (J%+N%) :NEXT

670 REM and now the blank top director

¥

680 K%=2*N%+2

690 FOR J%=K%+1TOK%+6:PROCwrite (J%) :NE
XT

700 REM insert title (if any)

710 IF title$<>"" Sbuf%=title$+STRINGS
(11-LENtitle$," ") :buf%?11=8

720 PROCwrite (K%)

730 ENDPROC

740 :

750 DEF PROCinit:REM initialize run co
nstants

760 DIMfc% (1) ,buf% &1C00:D%=0:T%=40:M%
=INKEY (-256)

770 IF M%=251 ORM%<1 cmd%=&FE84:ctrl
%$=6FE80 :M%=FALSE: fc% (0)=33:fc% (1) =37

780 IF M%=245 ORM%=253 cmd%=&FE28:ctrl
%=6FE24 :M%=FALSE: fc% (0)=5 :fc%(1)=21

790 IF M% PRINT"sorry, no set up for t
his computer":END

800 osbyte=&FFF4

810 V%=&50:REM set V% to &51, &52, or
&53 for slower drives.

820 c$=CHR$131+CHRS$157+CHR$129:1i$=CHRS
129+CHR$1574+CHRS$134

830 r$=CHR$135+CHR$157+CHR$132:n$=" "+
CHR$156+CHR$135

840 A%=143:X%=12:Y%=(USR(osbyte)DIV655
36) :REM request NMI

850 ENDPROC

860 :

870 DEF PROCmenu:REM control actions w
ith menu

880 FOR I%=0TO1

890 PRINTTAB (0, I%)CHR$132+CHR$157+CHRS

131+CHR$141+" Formatting PC Disc"

900 NEXT:*FX4,1

910 PRINTEN | Dide type!'nS'v — 5{tn 3¢
0K "hs' 3\"" 920K "nS

920 BRINT'" DBiao driveini'" ' ("ns*
1 'ng

930 PRINT'" Title:"ns-titj]eSetn

940 PRINT' 'Y iFormat tnSll(r . Verify

nn$| ren Quit nns

950 PRINTTAB (6,22)c$"Select with curso
r keys "n$

960 L%=3:REPEAT:PRINTTAB(0,L%)r$;
970 IF L%=3 PROCdisktype
980 IF L%=6 PROCdrive
990 IF L%=9 PROCtitle
1000 IF L%>9 PRINTTAB(0,24)cS$"Press RET
URN for action "n$; :K%=GET
1010 IF K%=13 AND L%=12 PROCformat
1020 IF K%=13 AND L%=15 PROCverify
1030 IF K%=13 AND L%=18 PROCq
1040 PRINTTAB (0, 24) SPC(38) ; TAB(0,L%)n$;
1050 IF K%=138 AND L%<18 L%=L%+3
1060 IF K%=139 AND L%>3 L%=L%-3
1070 UNTIL FALSE
1080 :
1090 DEF PROCnmi:REM initialise NMI to
write from buf$%
1100 FOR I%=0TO2STEP2:P%=&D00
1110 [OPTI%
1120 PHA: LDAcmd% : AND#31 : CMP#3: BNEa2
1130 .al LDAbuf%:STAcmd%+3:INCal+l:BNEa
2:INCal+2
1140 .a2 PLA:RTI
1150] :NEXT
1160 ENDPROC
1170
1180 DEF PROCq:REM. return NMI to BBC fi
ling system and end.
1190 ?&D00=64:X%=11:CALL osbyte
1200 *FX4,0
1210 END
1220
1230 DEF PROCsetbyte (K%,J%) :REM set byt
e K% in each sector to J%
1240 FOR I%=1T09:intro%?K%=J%:K%=K%+sle
n%:NEXT
1250 ENDPROC
1260 .:
1270 DEF PROCtitle:REM get optional tit

Beebug January/February 1991

33

A PC Disc Formatter

le for disc

1280 PRINTTAB(0,24)c$;"Enter optional t
itle <12 chars";

1290 a$=title$+STRINGS (11-LENtitle$," "
)
1300 PRINTTAB (6,10)i$;a$;CHR$156;TAB(9,
10);

1310 K%=GET:IFK%>127 AND title$="" PRIN
TTAB (6,10)n$

1320 IF K%>127 ENDPROC

1330 OSCLI"FX138,0,"+STRSK%

1340 INPUT""a$:IFLENa$<12 title$=a$:K%=
138 ELSE VDU7

1350 PRINTTAB(9,10)SPC(29);TAB(9,10)tit
leS+" "4n$

1360 ENDPROC

1370

1380 DEF PROCverify:REM verify all sect
ors can be read

1390 E%=0:?cmd%=V%AND3:?&D00=64:PROCwai
L

1400 PRINTTAB(0,24)r$"track 'nd:spC(1
5)i

1410 FOR J%=0TOT%-1:cmd%?1=J%:PRINTTAB (
9,24);J%;

1420 FOR F%=0TO1:?ctrl%=fc% (F%)
1430 FOR S%=1TO9STEP2:PROCChk:NEXT
1440 FOR S%=2TO8STEP2:PROCchk:NEXT

1450 NEXT

1460 IF J%<T%-1 ?cmd%=V%:PROCwait:IFU%=
0 ?cmd%=V%:PROCwait

1470 NEXT:?cmd%=V%AND3

1480 PRINTTAB (0,16)SPC (38);TAB(3,16)1$;
1490 IF E%=0 PRINT"No"; ELSE PRINT;E%;

1500 PRINT" errors";n$:PROCwait

1510 K%=GET:PRINTTAB (0,16) SPC(39)

1520 ENDPROC

1530 :

1540 DEF PROCwait:REM wait for end of d
isc access

1550 REPEATUNTIL (?cmd% AND1)=0:IF (?cmd%
AND24) =0ENDPROC

1560 PRINT"Error ";Zecmd3'''Track ";J3"

Sector ";S%:PROCq

1570" ¢

1580 DEF PROCword (I%,N%):REM add N% wor
ds of I% to buf%

1590 FOR J%=1TON%: !B%=I1%:B%=B%+4:NEXT:E
NDPROC

1600 :

1610 DEF PROCwrite (S%) :REM write to sec
tor S%

1620 IF S%>9 cmd%?2=S%-9:?ctrl%=fc%(1)
ELSE cmd%?2=S%:?ctrl%=£fc% (0)

1630 PROCnmi: ?cmd%$=6&A6:PROCwait

1640 ENDPROC

BEEBUG Workshop - Cryptology (continued from page 30)

200 IF file THEN PROCfile ELSE PROCmsg

210 END

220 :

1000 DEF PROCfile

1010 INPUT" Input file name:"in$

1020 f=OPENINin$:IF f=0 THEN PRINT"Not
found":GOTO 1010

1030 INPUT"Output file name:"out$

1040 g=OPENOUTout$:PRINT"Encoding file.
1050 REPEAT

1060 X%=BGET#f:BPUT#g,X% EOR RND (256)
1070 UNTIL EOF#f:CLOSE#0

1080 PRINT"The same key value will deco
de the file"

1090 ENDPROC

1100

2000 DEF PROCmsg

2010 PRINT "Encrypt or decrypt (E/D):";
2020 ans$=GET$

2030 IF INSTR("EeDd",ans$)=0 THEN 2020
2040 PRINTans$

2050 IF INSTR("EeDd",ans$)<3 THEN sign=
1 ELSE sign=-1

2060 INPUT LINE "Message:"$M

2070 $M=FNuppercase ($M)

2080 PROCencode:PRINT $M

2090 PRINT"Decoding for testing..."
2100 sign=-sign:dummy=RND (-K%)

2110 PROCencode:PRINTSM

2120 ENDPROC

2180

3000 DEF PROCencode

3010 FOR i=0 TO LENS$M-1

3020 p=(INSTR(alf,CHRM?1) +26+sign*RND
27y Moh 29 + 1

3030 M?i=ASCMIDS ($alf,p,1)

3040 NEXT:ENDPROC

3050 ¢

4000 DEF FNuppercase ($&A00)

4010 LOCAL i,P:P=§A00

4020 FOR i=0 TO LENS$P-1

4030 IF FNin(97,P?2i,122) P?i=P?i-32
4040 IF NOT FNin(65,P?i,90) AND P?i<>32
THEN P?i=32 : REM other symbols=space
4050 NEXT:=$P

4060 :

5000 DEF FNin(a,b,c)=a<=b AND b<=c [3

34

Beebug January/February 1991

By Mike Williams

course

Many programs (I might
almost claim all
programs) store and process data. In many
cases too, data used when a program is run is
often needed again the next time the program is
used. Sometimes the data will remain
unchanged; sometimes the data will need to be
modified. What I want to do in this article is to
consider some of the ways in which data can be
stored (and modified) so that it can be used by
a program whenever it is run.

USING DATA STATEMENTS

One of the most obvious and widely used ways
of supplying data to a program is through the
use of Basic’s DATA statement. This is ideal for
relatively small amounts of data, particularly
where that data is constant and not subject to
possible amendment. For example, a program
might need to know the names and lengths (in
terms of days) of each month in the year. This
could be easily accommodated by writing:

DIM Mname$ (12) ,Mlen(12)
FOR I=1 TO 12

READ Mname$ (I),Mlen(I)
NEXT I

DATA January, 31

DATA February,28

DATA March, 31

DATA April, 30

DATA May, 31

DATA June, 30

ete.

Even here there is a small problem, because the
number of days in February is not fixed.
Provided the program using this information
knows the year number, it can calculate
whether or not a leap year is involved and add
one on to the number of days in the DATA
statement for this month if necessary.

It is often in the use of small amounts of
constant data like this that the DATA statement
is most useful. Notice, though I am sure you are
already aware of this, that it is READ which is
used to read the data, not INPUT which
specifically refers to keyboard input.

Beebug January/February 1991

Data Storage, Data Dictionaries

USING RESTORE

In any program using DATA, there is a data
pointer, which is always initialised to point to
the very first item in the complete set of DATA
statements. As the data is read so this pointer is
moved through the data items.

Sometimes you may need to move this data
pointer yourself to a specific item. This is
accomplished with the RESTORE statement
which specifies a new line number for the
pointer. Personally, I have found little use for
this. Since the constant data of my example is
only intended to be read once by the program,
there is no need for any RESTORE instruction,
to tell Basic where to start reading the DATA.

Of course, if the data is to be read more than
once in the course of running a program, then
RESTORE will be needed each time to move the
data pointer back to the startof the data, but
such an occurrence would seem unlikely.

A circumstance where RESTORE might be
useful would be a program which contained,
say, three alternative sets of similar data, one set
being chosen for use each time the program is
run depending on other information supplied
at the time by the user. For example, you could
write:

IF Set=1 THEN RESTORE 3000 ELSE
IF Set=2 THEN RESTORE 4000 ELSE
IF Set=3 THEN RESTORE 5000

assuming that equivalent sets of DATA
statements begin at lines 3000, 4000, and 5000
respectively. For example, a program might
work in either imperial or metric units, and
need to read a corresponding set of constants at
the outset.

There is an alternative way of handling this
requirement, but one which is not without its
dangers, and this is the computed RESTORE.
For example, the IF statement given above
could be replaced by:

RESTORE 1000* (Set+2)

35

First Course

This is much shorter, but the danger with all
computed RESTORE:s is that if you renumber
the program at all, Basic cannot cope with
changing the expression following RESTORE. If

ou reference a single line number after a
RESTORE then renumbering will adjust this
correctly. My recommendation would be to
avoid using RESTORE in the first place, unless
really essential, and to think very carefully
indeed before using a computed RESTORE. If
you do, remember that every time you
renumber your program you must manually
adjust any computed RESTORESs to compensate
or the program will fail (as we have sometimes
found when editing programs for the
magazine).

What if your data requirements are not
constant? What if you do need to modify the
data from time to time? Well to some extent you
can still cope with this using DATA, though it is
not my ideal way of doing it. A problem which
often arises with storing data for use by a
program, is how you cope with updating that
data. Although it is not too difficult to write a
program to create a data file, it is a much more
demanding task to write a program which will
update a data file (see our new book File
Handling for All for a more detailed discussion
of this and other problems with file handling).

One of the apparent beauties of using DATA
statements in a program, is that they can be
edited and the data changed just as easily as
with the program itself. Indeed I have seen a
data handling application, where all the data
records were kept as DATA statements at the
end of the program, adding, amending and
deleting data records as required. It works, but
once again it does have its dangers.

Editing data in this way is quite unstructured.
The facilities which you are taking advantage
of, i.e. the Basic line editor, has no knowledge of
your data. If you make any mistake this will
only come to light when the program is run.
There is also the danger that other data might
be accidentally modified at the same time, or
even that the program itself might become
corrupted.

In general, DATA statements are ideal for
constant data which is needed every time a

36

program is run. They are also best suited to
relatively small amounts of data, because there
is another disadvantage. The data included
with a program in the form of DATA statements
clearly uses up some of the computer’s memory
when the program is loaded. That is to be
expected. However, when the program is run,
and the data is read from the DATA statements
into variables or arrays, even more memory is
then required. In effect, any data supplied in
DATA statements and read into a program then
uses up double the amount of memory space it
really needs. For small amounts of data the
convenience outweighs any other
consideration, but with large amounts of data,
this is really quite wasteful.

For example, suppose you are writing a game
program and want to display the instructions
on screen. Such instructions could be quite
extensive (think of adventure games for
example). It is true, of course, that you are only
likely to read a section at a time, in order to
display it on the screen, so you won’t be
doubling up on all the text data as far as storage
is concerned. Indeed, you might not choose to
use DATA statements at all, but simply include
the text in a lengthy sequence of PRINT
statements. Often this will work, and if it does,
fair enough. But the model B, in particular, has
only a limited amount of memory, particularly
in the higher resolution screen modes. Apart
from potentially doubling memory
requirements when held as DATA statements,
extensive displays of text may simply occupy
more memory space than you can afford if
included with the program.

The solution, of course, is to save such text
separately from the main program. With many
simpler games, one program can display the
instructions on the screen before chaining to a
second program which plays the game. This is
also useful with things like character
definitions, because the BBC micro has a
reserved area of memory in which to store such
definitions. This does not detract in any way
from user memory, but the program to create
the definitions can need quite a lot of space.
Once again, include these definitions in a first
program which chains the main program after
the required characters have been defined.

Beebug January/February 1991

First Course

However, incorporating text in a separate
program which is run first is not always a
feasible answer to the problem. One solution to
consider is to use one of the many word
processors or editors available for the BBC
micro. Most users have such an application on
their machine, and this provides an ideal way
to create and update a data file which can then
be read by your own program. Indeed some
commercial database programs adopt this
approach, to create templates for screen
displays and printed reports where the concept
is called a data dictionary.

DATA DICTIONARIES

This approach can be excellent for ‘constant’
data which will be needed by your program.
The contents can be updated as required with
the word processor or editor with which it was
created, but it is normally less satisfactory for
the application program to attempt to update
this file itself. As far as this is concerned the
data file is ‘read only’.

All you need to do is to decide upon a suitable
and simple format for your data file, and make
sure that when you create it (or edit it) you
don’t insert any embedded commands or other
information. You also need to remember that
such files are really text files, so any numeric
data will have to be read as character strings
initially and then converted to numbers inside
your own program.

The simplest format is to have just one data
item per line, terminated by a Carriage Return
(ASCII code 13). This does mean that a Return
character cannot be included as part of any
data, but since you know this, you can easily
cope with any consequential problems.

You will need to include a statement in your
program to open the file ready to be read, for
example:

F1=OPENUP ("MyData")

You could then use the following function to
read the next data item from the file:

1000 DEF FNread data(F)

1010 LOCAL char$, string$:string$=""
1020 REPEAT

Beebug January/February 1991

1030 char$=BGET#F

1040 string$=string$+char$
1050 UNTIL char$=CHR$(13)
1060 =string$

In a program you could then write:
text$=FNread data(F1)

for reading text (character strings), and:
number=VAL (FNread data(F1))

for reading numeric data.

What I have written here is just by way of
example. You determine the format of the data
file, so you can write your program to fit in
with this and handle the data as you wish. My
routine includes the last character, the Return
itself in the string

- you might not wish to do this, in which case
replace line 1040 with:

1040 IF char$<>CHR$(13) string$=string$+c
har$

In the system I have described, our data pointer
again starts at the beginning of the text data
file, and moves through the file as the data is
read. There is no direct equivalent of the
RESTORE instruction to use here, though there
are ways of moving to any particular location in
the file (using the instruction PTR#). However,
we do not have the space to discuss this for
now. Incidentally, the Dynamic Footnotes
program published in this issue is a good
example of the technique described here, and
uses an index to locate individual sections of
text.

One final point needs to be made. Most word
processors and editors, like Wordwise, View
and Master Edit, are suitable tools for this
purpose. If in doubt, create a short sample data
file and then use the *DUMP command to
examine the layout of its contents.

Overall, a text data file created with your
familiar word processor is an ideal solution to
the problems of limited memory space coupled
with ease of editing, and is a technique which is
often overlooked by many users. B

37

512

by Robin Burton

I thought this month
I'd deal with a
number of points
which, according to
my mail, have
caused a bit of trouble for quite a few of you
from time to time.

Dos+

FILE ATTRIBUTES

Most of us know what file attributes mean in
the 512, but even so it appears that there are a
few common misunderstandings for new users,
particularly when they are carrying out certain
operations.

File attributes in most operating systems share
common ideas, but there are of course also
differences. For example, in the Beeb’s DFS a
file can be locked or not, and that’s it. In ADFS
this idea is extended, so a file can be set to read
only, write only, read and write or execute. In
addition the first three can also have the lock
attribute set too. (I've never quite been able to
work out what use a locked write-only file is!
Does anyone have any ideas?)

DOS too uses file attributes, again with
similarities but also with differences of its own.
Before I go on let me say that I know that most
of these facts will be known to many of you,
but as I've said before they’re not all obvious to
new users of the 512.

SYSTEM FILES

The first attribute which can cause some
consternation is the ‘system’ attribute, because
in DOS it makes a file invisible on the normal
directory display and it also prevents it from
being copied in the usual manner.

The problem for new 512 users is of course that
there’s nothing like it in BBC micro filing
systems so it’s a completely new idea. Strictly
speaking, the system bit doesn’t actually
prevent files from being copied, so this is where
the confusion arises.

The system attribute actually prevents any file

with this bit set from being included in normal
directory searches, hence a straightforward

38

512 Forum

‘COPY’ command for a file set to ‘system’
produces a simple ‘file not found’ instead of
something more helpful.

One occasion when this can be particularly
annoying is when you use wild cards in a copy
command. DOS will copy all the normal files,
omitting the system files, but it won’t report
anything amiss because there’s no error. Only
later might you realise that some of the files
have been missed, particularly because they’'re
not displayed normally anyway. Of course it's
easy to avoid the problem by using a modifier
with the copy command, so if you thought you
had to set all the system files to ‘DIR’ before
they could be copied (and perhaps set back to
‘system’ later on the new disc) you'll be pleased
to know there’s a much easier way.

If you want to copy all the system files from
one disc to another, the copy command can
have a ‘/S’ modifier added onto the end, just
like the directory command, so that, assuming
drive A: is the current drive:

COPY *,* /S B

will copy all the system files in the current
directory to the current directory of drive B,
and there’s no need to change the file attributes
at all. However, bear in mind that this modified
command will copy only system files, so you'll
still need a normal ‘COPY *.* B:" as well.

ESET

Another attribute which has frustrated some
users is the read-only setting, shown as RO for
short in DOS. There’s nothing mysterious about
it, it means exactly the same as ‘locked’ in DFS
or ADFS. However, whereas these filing
systems will helpfully report ‘File locked” when
you try to overwrite a locked file, DOS is less
informative. DOS reports instead ‘Access
denied’, which means exactly the same as ‘File
locked’, but which is by no means as clear
about the precise situation as it could be.

Suffice it to say that if you get the “Access
denied’ message it always means that you're
trying to modify a file (or disc) which is set to
read only; there is no other cause. There’s only

Beebug January/February 1991

512 Forum

one course of action to take and that is to set the
target file to read-write. This sounds simple
enough, but it has caused a bit of hair-pulling
for a few users. ‘FSET.CMD’ is the utility you
need and it's quite simple to use so long as you
are aware of its peculiarities.

I have to admit that until a few months ago I
hadn’t thought about one of FSET’s oddities. It
had never bothered me simply because of the
way my system is set up, so perhaps quite a
number of you are in the same situation
without knowing it. I always have FSET in a
current PATH setting, so it can always be called
from any directory on any drive in my system,
and normally it's within the current working
directory that I wish to amend file attributes.

However, if this isn’t the case FSET simply will
not work. Suppose you're in a directory called
‘SPRDSHT’ and you want to copy your
updated masterpieces to a directory called
‘SHEETBAK’, but all the files in the backup
directory are set to read-only. Obviously they
must be set to read-write before the copy can
take place. You'll find however, that in this
situation you cannot enter, for example:

FSET B:SHEETBAK*.*
COPY *.* SHEETBAK
FSET B:SHEETBAK*.* [RO]

[RW]

because FSET doesn’t allow directory names to
be included in a file specification. This looks
like a bug, but it’s not. It's caused by the fact
that CMD files, (including FSET.CMD) are
CP/M utilities, and CP/M simply does not
have subdirectories. The problem for DOS Plus
users is that the program wasn’t updated for
DOS use and it still doesn’t understand
directories, so you can only run it on files in the
current directory. To carry out the above
operation, therefore, the commands needed are
actually:-

B:

CD \SHEETBAK

FSET *.* [RW]
COPY A:SPRDSHT*.*
ESET *.* [RO]

A

assuming that you want to finish up in the
original directory on the original drive, hardly
convenient! Unfortunately this time there’s no
simple solution, you must just be aware of and
allow for FSET’s limited intelligence.

Beebug Janu_ary/February 1991

While we’re looking at FSET there’s one more
point of which I've realised many people are
not aware. Given FSET’s limitations anything
that makes life a bit easier is welcome, so I hope
this saves one or two of you a bit of typing from
time to time.

FSET can be used to change a file to read-only
from read-write (or vice-versa) or from system to
directory and back. The read-only attribute can
be set on a file along with the read-only attribute
at the same time, so when you want to copy such
files to a different disc which already contains
old versions of the same files with these
attributes set you might think that you have two
attributes to alter before starting the copy.

I heard from a member a while back about this
very subject, and it was obvious from his letter
that to perform this sort of operation he was
issuing two separate FSET commands, when
one can be used. To set a read-only-system file
to read-write and directory the two changes can
be specified together in one command, so using
COMMAND.COM as an example the entry
would be:

FSET COMMAND.COM [RW/DIR]
or changing it back again:
FSET COMMAND.COM [RO/SYS]

There’s no need to issue separate commands for
two changes, just separate the attributes by a */’
and FSET will apply them both in the one
operation.

One more point frequently not realised is that
‘5YS’ and ‘RO’ do not need to be set together,
nor do ‘DIR and ‘RW’. It’s quite possible to
have a ‘RO/DIR’ or a '/RW/SYS’ file. Use ‘SDIR’
if you want to see all the different types of file
attributes used in any directory.

By the way, have you noticed that you can miss
off the trailing bracket from FSET commands? It
seems that, having found a valid set of
parameters preceded by a left square bracket
FSET isn’t bothered whether a right square
bracket or a RETURN follows.

MOVE

MOVE.EXE is another command which seems
to cause more than its fair share of problems for
some people. The command is actually quite
simple if you understand it, though it must be

39

512 Forum

acknowledged that it can require a pretty
lengthy command line at times.

From what I hear of users’ problems with
MOVE it seems again that several particular
problems crop up more often than others. The
first of these we’ve indirectly covered, that is
that no matter which filing systems are
involved and in which direction the transfer is
to be, the target files must not be locked or
read-only. That's pretty obvious, but it’s also
very easy to overlook, it seems.

The second most common difficulty is also self-
inflicted, but this time there’s more of an
excuse. From my experiences it appears that
some of you try to make the command more
complicated than it needs to be, and not
surprisingly you get problems.

For illustration let’s suppose that you want to
transfer a DFS file called ‘LETTER’ to DOS so
you can import it into a DOS text file. The first
point is that MOVE.EXE itself must be available
in a current path. Again this is simple enough,
but I frequently hear of users trying to copy
files from DFS or ADFS drive :0 when the
currently selected DOS drive is A: (think about
it!)

While I remember it I’ll mention another
situation which has foxed a few. A problem for
floppy disc only systems is copies between DFS
and ADFS, when of course there isn’t a ‘spare’
drive for DOS. Well actually there is, but you
need to set up a RAM disc in this case, then
select that as your current DOS drive, ensuring
that both MOVE.EXE and COMMAND.COM
have been copied to it. You can then use both
floppy drives for BBC micro filing system
transfers with no trouble.

Back to the unnecessary complexities. By far the
most frequent is that users include the root
directory in a file specification. MOVE
frequently doesn’t like it!

OK, this is less obvious, but with a bit of
thought it’s clear that in DFS, ADFS or DOS
everything is subordinate to the root directory,
whether it’s a file or another directory. Once
you’ve accepted that point it's obvious that
there’s no need to specify the root directory in
the command unless it is the only parameter.

40

Remember in MOVE the source specification
can be either a list or a file, so if you MOVE a
list of files from the root or the current
directory, only the file list spec. is needed, “* or
** as appropriate.

Using our example file, to copy it to the current
directory of drive A: in DOS the source disc
must obviously be drive :1 (or perhaps :3 for
DFS), so assuming that the file is in the root
directory of the BBC ADFS disc, the command
would be:

MOVE :1.LETTER -ADFS A: -DOS
or, even shorter:
MOVE :1.LETTER -ADFS . -DOS

so the command can be extremely simple (if
you're not familiar with the use of the " in the
above command look back over the last few
Forums for an explanation). If we had a list of
files called ‘LETTERY1’, ‘LETTER2’ and so on the
command simply changes to:-
MOVE :1.LETTER* -ADFS . -DOS

If there is a need to supply a directory path in
either part of the command just specify it in the
usual way for the filing system concerned, for
example:

MOVE :1.LETTER -ADFS \DOCS -DOS

will move all the ‘LETTER’ files to directory
‘DOCS’ on the current DOS drive, instead of
using the current directory. Likewise:
MOVE :1.TEXT.LETTER -ADFS A: -DOS

would move all the ‘LETTER’ files from
directory “TEXT’ of ADFS drive 1 to our current
DOS directory in drive A:. There’s one other
item which I must mention, since it has tripped
up a surprisingly large number of people, and
that is the filing system should always be
specified in both the source and the target
portion of the command, there are no defaults.

The final problem I'll mention with MOVE is
really trivial, but it is certainly one of the most
frequent mistakes I hear about. Please note, the
filing system identifier for transfers to or from
DFS is *-DISC’. It is NOT ‘-DFS’!

Beebug January/February 1991

R =y & - =
MU (GESTOMURWANGE!

Applicatioms U Dise
| MoNTHLY DESK DIARY - a month-to-view calendar which can also be printed
| CrOSsWORD EDITOR - for designing, editing and solving crosswords
REAL TIME CLOCK - a real time digital alarm clock displayed on the screen
| RUNNING FOUR TEMPERATURES - calibrates and plots up to four temperatures
| LABEL PROCESSOR - for designing and printing labels on Epson compatible printers
| 8D LANDSCAPES - generates three dimensional landscapes.
FOREIGN LANGUAGE TESTER - foreign character definer and language tester
JULIA SETS - fascinating extensions of the Mandelbrot set
SHARE INVESTOR - assists decision making when buying and selling shares.

Applications I Dise

BUSINESS GRAPHICS - for producing graphs, charts and diagrams

VIDEO CATALOGUER - catalogue and print labels for your video casscttes

WORLD BY NIGHT AND DAY - a display of the world showing night and day for any time and date
PHONE BOOK - an on-screen telephone book which can be easily edited and updated
PAGE DESIGNER - a self contained page-making package for Epson compatible printers
PERSONALISED LETTER-HEADINGS - design a stylish logo for your letter heads
APPOINTMENTS DIARY - a computerised appointments diary

MAPPING THE BRITISH ISLES - draw a map of the British Isles at any size

SELECTIVE BREEDING - a superb graphical display of selective breeding of insects

THE EARTH FROM SPACE - draw a picture of the Earth as seen from any point in space
PERSONALISED ADDRESS BOOK - on-screen address and phone book

22 DECEMBER RYEw¥°R'Ba%* 4.00 PM GMI

/.&:‘3‘" \/i) /A “) WOUE Text Line Edge Outl 5 Fore Fix_ Recl Rbs = 17878 y= 686.8
S U AND File nane? SOONE Staler LoBtines bector:’ 15,7

Enhanced ASTAAD CAD program for the Master,
offering the following features:

% full mouse and joystick control
% built-in printer dump
% speed improvement
¥ STEAMS image manipulator
* Keystrips for ASTAAD and STEAMS O TESPERTIRE, ELSHRLE SURFACE TNSULATION (4RSD)
* Comprehensive user guide T S S
¥ Sample picture files IR0 S oo
i BT RO CGeneral Utilities Dise
2 An indispensible utility ROM for all Basic programmers, ¥ PRINTER BUFFER * ¥ SPRITE EDITOR/ANIMATOR
| containing the following commands: % MODE 7 SCREEN EDITOR
g *FTEXT (find text) *FBASIC (find Basic) *FPROCFN (find procedure/function) % EpSON CHARACTER DEFINER
% *LPROC (list procedure) °*LFN (list function) *LFROM (list 8 lines of a program) % ROM FILING SYSTEM G_ENERATOR

*RTEXT (replace text) *RBASIC (replace Basic) *SYSINF (system information) % MuLTI-COLUMN PRINTING

*VARLIST (list program variables) *FKDEFS (function key definitions)

Incorporating the updated Basic Booster utilities: % auaE IR DRI TR

SUPER SQUEEZE PARTIAL RENUMBER PROGRAM LISTER % ROM CoNTROLLER % BEEBUG MmWinp +

RESEQUENCER ~ SMART RENUMBER TEXTLOAD AND TEXTSAVE * Master series only. 1 Requires sideways RAM.
Stock Code Price Stock Code Price

ASTAAD (80 track DFS) 1407A 50 ASTAAD (3.5" ADFS) 1408A £5.95

EDIKIT (EPROM) 1451A £7.75

EDIKIT (40/80T DFS) 1450A £5.75 EDIKIT (3.5" ADFS) 1452A £5.756

Applications II (80 track DFS) 1411A £4.00 Applications II (3.5" ADFS) 1412A £4.00

Applications I Disc (40/80T DFS) 1404A £4.00 Applications I Disc (3.5" ADFS) 1409A £4.00

General Utilities Disc (40/80T DFS) 1405A £4.00 General Utilities Disc (3.5" ADFS) 1413A £4.00

Please add p&p - 60p for the first item and 30p for every additional item.

BEEBUG Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS. Tel. (0727) 40303 Fax (0727) 860268

MikroTel (Part 2)

Mike Bryant describes the remaining features of his powerful and versatile
telephone database.

The last issue presented the main program and
the basic features of MikroTel. In this issue we
cover some of the more detailed features that
make MikroTel complete.

You will need to enter Listing 1 and append this
to last month’s program. The best way to do
this is to type the new coding in and save it
separately. Now create a spooled version (using
the *SPOOL command), load in the original
program and *EXEC in this month’s additions.
In all of this keep strictly to the line numbers as
printed. Save the completed version as
MikroTel. You will also need to type in Listing 2.
Save this before running it to assemble a
machine code routine called Compact which is
needed by MikroTel

THE NEW OPTIONS - FIND

All the options displayed in the main menu are
now available. The FIND option can be run
from either the main menu or from BROWSE,
and enables you to locate a particular record,
provided you know one of the fields. When you
run Find, you will be asked for the surname of
the record that you want to find. Either enter
this directly, or, if you don’t know the surname,
press Return and you will be asked if you know
the next field. Just keep pressing Return until
you come to the field you want. As with
everything in this program, if you make a
mistake that you can’t see how to correct, just
press Escape and try again. Note: due to the
storage of surnames in memory and all other
data on disc, it is far quicker to find a record by
surname than by any other field.

THE SEARCH COMMAND

MikroTel also incorporates a wildcard search,
called SEARCH. This, too, can be run from
either the main menu or via BROWSE. The
SEARCH option searches through the entire
hash table and data file to try and find,
anywhere, a match to the entered string. It is
thus quite a lot slower than the FIND option,
which will search only the specified field. Note
also that the SEARCH option will, if you're

42

searching for ‘"HIGH’ for example, consider ‘48
HIGH ST.” a match, whereas FIND would not.

COMPRESSING DATA

COMPACT, quite simply, compresses the data
file so that it takes up less disc space. It does this
by ensuring that all records follow each other
consecutively on disc, eliminating any gaps
between that may have been caused by deletion.
Due to the slowness of Basic in handling this
kind of operation, most of this option is
performed in assembler, but it is still fairly slow
because of the disc access time involved.

PRINTING/SPOOLING

By far the largest option is the PRINT/SPOOL
option, and if you don’t intend to use it,
MikroTel has been designed such that it will
run without it. If you choose not to type in this
option, then you will not require
PROCselectorder or PROCselectrecords either.
This option is, by necessity, intricate due to the
large number of different ways you may
require your data to be printed, and when
running it you will be asked a number of
questions. These are explained below.

Firstly, you are asked whether to spool (create a
text file for loading into a word processor, etc.)
or print. This should be fairly straightforward.
Next you will be asked which records you want
printed (or spooled). If you want them all, then
all well and good, else you will then have to go
through each record one by one (using the
cursor keys in much the same way as for the
BROWSE option), and press P’ (or ‘S’) to select
the record displayed in the box at the top of the
screen. If you make a mistake, just go back and
press ‘D’ to de-select.

Once this is over, you next need to define which
fields you want to be printed, and in what
order. Thus, if all that you wanted were first
names and then surnames, you would type 21,
and then press Return. If you want all of the
fields to be printed in their normal order, then
you do not have to deal with this. Lastly come

Beebug January/February 1991

MikroTel

the questions on spacing. You have two choices:
to print records with a certain number of spaces
between them (e.g. for a telephone address
book), or to print blank lines between them
such that each record takes up a certain number
of lines (e.g. for address labels). Only after all
questions have been answered does any
printing commence, so that if you enter
something incorrectly you have only to press
Escape and try again.

SORTING RECORDS

The SORT option will sort the file into
alphabetical order using whichever field you
specify (note, though, that the positions of the
data on disc do not change, merely the order of
the surnames in the hash table - this takes far
less time). Note that if you sort into order of
surnames, then it will take about a second or so
to complete, but if you sort by any other field, it
may take in excess of an hour, with around 100
records or so, due to the different ways in
which surnames are stored compared with all
other fields. Also note that, normally, records
are automatically sorted into surname order
whenever they become out of order, because of
the auto-sort flag (see STATUS for more
information). This happens so quickly that it is
barely noticeable. As such, there is little value
in sorting records via this option, but it is
included anyway for the sake of completeness.

CHECKING STATUS

Lastly, the STATUS option tells you about some
of the more technical parts of your current data
file, and enables you to turn on/off (by the
cursor keys) the ‘Duplicate warning’ operation,
which will warn you if you try to ADD a record
with the same surname as one already stored in
the file. The other information shown is how
many records are stored on disc at the moment,
how much disc space this takes up, and how
much memory is still free within the computer.

Listing 1
10 REM Program Mikrotel2

1290 DEF PROCcompact

1300 LOCAL A%,1%,J%,0%,A$

1310 !'&70=0:"'674=0

1320 PROChead ("COMPACT DATA FILE")
1330 PRINT''"This option tidies up the
stored record data so that it takes up

less disc"'"space."'"This may take a 1i
ttle while."

1340 PRINTTAB(0,9)"Press C to compact,
or R to return to the main menu."

1350 AS$=FNget ("CR")

1360 IF AS="R"THENENDPROC

1370 PRINT''"Compacting"STRINGS (NR%,"."
)i

1380 0%=! (FNh (NR%+1) +14) AND&FFFF

1390 X%=NR%MOD256:Y%=NR%DIV256

1400 A%=X:*FX200 1

1410 CALL &900

1420 REM Update freespace pointer

1430 ? (FNh (NR%+1)+14)=2&74

1440 ? (FNh(NR%+1)+15)=2&75

1450 *FX200 0

1460 PRINTCHR$11'"Bytes saved :"O0%-(!&7
4) AND&FFFF

1470 PROCsavehash

1480 ENDPROC

1490 :

1540 DEF PROCprint

1550 LOCAL I%,J%,P%,rl%,rlt%,bl%,B$

1560 PROChead ("PRINT / SPOOL RECORDS")

1570 PRINT''CHR$130"Do you want to dump

records to a"'CHR$130"printer or to an
ASCII file? (B/F)"CHRS135;

1580 A$=FNget ("PF")

1590 PRINTAS

1600 IF AS$="P"THENP%=TRUE:B$="Print"ELS
EB$="Spool" :PRINT'CHR$130"Enter filename

:"CHR$135; : INPUT""CS

1610 PRINT'CHR$130B$;" every record? (
Y/N) "CHR5135;

1620 A$=FNyn

1630 IF AS="Y"THENFORI%=&5A00TO&5BFCSTE
P4: ! I$=TRUE :NEXTELSEPROCselectrecords (B$
)

1640 PRINT'CHR$130BS$;" every field? (
Y/N) "CHRS$135;

1650 A$=FNyn

1660 IF AS$="Y"THENPRINT'CHR$130BS$;" in
normal field order? (Y/N)"CHR$135; :A$=F
Nyn:IF A$="Y"THEN FORI%$=0TO11:fo%(I%)=I%
:NEXT ELSE PROCselectorder (B$)

1670 PRINT'TAB(2)CHR$130"Fixed number o
f "B$"ed lines per"'TAB(2)CHR$130"record
7 (Y/N)"CHR$135;

1680 A$=FNyn

1690 IF AS="Y"THENPRINT'CHR$130"How man
y lines per record? "CHR$135;:INPUT""b
1$ELSEPRINT'CHR$130"How many blank lines
between records?":INPUT""bl%

1700 PRINT'CHR$129CHR$136BS$"ing."

Beebug January/February 1991

43

MikroTel

1710 IF P$%THENVDU2ELSEOSCLI ("SPOOL "+LE
FT$(CS$,7))

1720 FORI%=1TONR%

1730 IF I%?&5A00<255THEN1790

1740 rlt%=rl%:PROCload(I%)

1750 FOR J%=0TO11

1760 IF fo%(J%)<0THEN1770ELSEIForig$ (fo
% (J%)) >""THENPRINTorig$ (fo% (J%)) :rlt%=rl
t%-1

1770 NEXT

1780 IF bl%>0THENFORJ%=1TObl%:PRINT:NEX
TELSEIFrlt$>0THENFORJ%=1TOr1t%:PRINT:NEX
3

1790 NEXT

1800 VDU3:*SPOOL

1810 PRINT''"Press any key to return to

menu, . "

1820 IF INKEY350:ENDPROC

1830

1940 DEF PROCsearch(quiet%)

1950 LOCAL I%,F%,start%,A%

1960 PROCbotf ("Search")

1970 PRINTTAB(3,15) "Search for what str
ing?"

1980 PROCbig cur

1990 INPUTTAB(3,17)""S$T%

2000 PROCno_cur

2010 REM Search first the surnames...

2020 FOR I%=1TONR%

2030 IF INSTR($FNh(I%),$T%)=0THEN2040 E
LSE IF NOTF$THENPROCshow (I%) :PROCbotf ("S
earch") :F$=TRUE ELSEPROCanytab:IFGET=9TH
EN2220 ELSEPROCshow (I%) :PROCbotf ("Search
n

)

2040 NEXT

2050 REM Then search the rest...

2060 REM $T% has to be reversed, due to

internal format of data on disc...

2070 $us=""

2080 FOR I%=1TOLENST%

2090 $U%=SU%+MIDS ($T%, LENST$-I%+1,1)

2100 NEXT

2110 $T%=5U%:PTR#X=0

2120 FOR I%=1TONR%

2130 REPEAT:A%=BGET#X:UNTILA%=60

2140 start%=PTR#X-1:SU%=""

2150 REPEAT

2160 A%=BGET#X:S$U%=SU%+CHRS$A%

2170 UNTIL A%=620RLENS$U%=255

2180 IF INSTR($U%,$T%)=0THEN2190 ELSE I
F NOTF$THENPROCshow (FNrecno (start%)) :PRO
Cbotf ("Search") :F$=TRUE ELSE PROCanytab:
IFGET=9THEN2220 ELSE PROCshow (FNrecno (st
Wart%)):PROCbotf(“Search"}

2190

2200
2210
2220

"Search for another string?"SPCATAB (3,21
)SPC17:IF FNget ("YN")="Y"THEN I%=0:F%=0:
GOT01960

2230
2240
2250
2260
22170
2280
2290
sort
2300
2310
2320
2330
2340
2350
2360
2370
2380

hash :ENDPROC

2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510

R K$=0TO12STEP4: !temp%=! (FNh (J%) +K%) : ! (F
N (J%) +K%) =! (FNh (J%+1) +K%) : | (FNh (J%+1) +K
%) =!temp% :NEXT: *FX200 0

2520
2530
2540

2550 ¢

2560
2570
2580
2590

on/off, or RETURN to return to main men

u‘ll
2600
2610
2620

'IF A%=62THENNEXTELSEGOT02150

REM Then print messages...
IF NOTF$THENPROCnomatch:IFINKEY350
IF NOTquiet%THENPRINTTAB (3,20) SPC3

ENDPROC

DEF PROCsort

LOCAL I%,J%,K%,temp%,A$

temp%=&70

PROChead ("SORT RECORDS")

PRINT' '"Which field do you want to
under?"

FOR I%=0TO11
PRINT~(I1%+1);",
NEXT
PRINT'"Selection - ";

PROCbig_cur

A$=FNget ("123456789ABCH")
PROCno_cur

PRINTAS

IF AS="1"THENPROCsorthash:PROCsave

";field$ (I%)

A%=EVAL ("&"+A$) -1

PTR#X=0

FOR I%=1TONR%

FOR J%=1TONR%-I%
PTR#X=1+! (FNh (J%) +14) AND&FFFF
FORK%=1TOA%

INPUT#X, $T%

NEXT
PTR#X=1+! (FNh (J%+1) +14) AND&FFFF
FORK$=1TOA%

INPUT#X, $U%

NEXT

IF T>$SUSTHEN OSCLI ("FX200 1"):FO

NEXT :NEXT
PROCsavehash
ENDPROC

DEF PROCstatus

LOCAL I%,G%,J%,Q@%

PROChead ("CURRENT STATUS")

PRINT' '"Press arrow keys to toggle

PRINT'''"Duplicate warning"
@%=6

PRINT'''CHR$134,NR%;" records on

44

Beebug January/February 1991

. I

MikroTel

file"

2630 PRINTCHRS$134,FNfilesize;"K record
data on disc"

2640 PRINTCHR$134, INT (FNdiskfree/1024);
"K disc space left"

2650 PRINTCHRS$134,FNmemfree;"K free mem
oryll

2660 REPEAT

2670 PRINTTAB (28, 8) CHR$157CHR$132; : IFD%
THENPRINT"ON ";ELSEPRINT"OFF";

2680 PRINTSPC2CHR$156CHR$132

2690 G%=GET

2700 IF G%=136THEND%=FALSE

2710 IF G%=137THEND%=TRUE

2720 UNTILG%=13

2730 ENDPROC

2740 ¢

3070 DEF PROCselectf (BS)

3080 LOCAL I%

3090 PROCbotf ("Select records to "+BS)
3100 PRINTTAB(3,15)"Press ";LEFTS$(BS,1)
;" to ";BS:" this record”

3110 PRINTTAB(9,16)"D to de-select"
3120 PRINTTAB(9,17)"[for previous reco
rdll

3130 PRINTTAB(9,18)"] for next record"
3140 PRINTTAB(9,19)"F to finish selecti
on."

3150 ENDPROC

3160 :

3490 DEF PROCexists

3500 vDU7

3510 PRINTTAB(5,11) "WARNING! A record a
lready exists"'TAB(10)"with this ";field
s (0) " n ‘ L

3520 IF INKEY500

3530 PRINTTAB(0,11)SPC79

3540 ENDPROC

3550

4100 *LOAD MCCMPCT

4510 DEF PROCfind(quiet$%)

4520 LOCALS%,F%,R%

4530 IF NOTquiet%THENREPEAT

4540 F%=0

4550 PROCbotf ("Find")

4560 S%=-1

4570 REPEAT

4580 S%=5%+1

4590 PRINTTAB(3,15)"Find record with wh
ich ";:IFLEN(field$ (S%))<12THENPRINTfiel
d$ (S%) ;"2?";SPC(38-P0S) :PRINTTAB (3,16) SPC
14ELSEPRINTSPC12 :PRINTTAB (3, 16) field$ (S%
) 2tSEca

4600 PROCbig_cur

Beebug January/February 1991

4610 INPUTTAB(3,18)""$T%

4620 UNTILST$>""ORS%=11

4630 PROCno_cur

4640 IF S%>0THEN PROCfindother ($T%,S$%):
GOT04700

4650 R¥=FNfindsurname ($T%)

4660 IF LEFTS$ ($(FNh(R%)),LEN(ST%))<>$T%
THEN4680ELSE IFNOTF $THENPROCshow (R%) : PROC
botf ("Find") :F%=TRUE ELSEPROCanytab:IFGE
T=9THENGOT04700 ELSEPROCshow (R%) :PROCbot
f("Final)

4670 R%=R%+1:IFR%<=NR$THENGOT04660

4680 IF NOTF$%THENR%=0:PROCnomatch:IFINK
EY350

4690 R%=R%-1

4700 IF NOTquiet%THENPRINTTAB(7,20)"Fin
d another record? (Y/N)";:UNTILFNyn="N"

4710 ENDPROC

4720 =

4730 DEF FNfindsurname ($T%)

4740 LOCALJ%,R%,I%

4750 REM To find a surname is quick...

4760 T=LEFTS ($T%,13)

4770 J%=INT((NR%+1)/2) :R%=INT ((NR%+1)/2
)

4780 FOR I%=1TOINT(SQR(NR%))+1

4790 J%=INT((J%-1)/2)+1

4800 IF LEFTS ($ (FNh(R%)),LEN($T%))<STST
HEN R%=R%+J% ELSE IF LEFTS ($ (FNh(R$%)),LE
N ($T%)) >ST$THENR%=R%-J%

4810 NEXT

4820 REPEAT

4830 R%=R%-1

4840 UNTIL LEFTS$ ($(FNh(R%)),LEN ($T%))<$
T%

4850 R%=R%+1

4860 IF LEFTS ($(FNh(R%)),LEN($T%))<>$T%
THENR%=0

4870 =R%

4880 :

4890 DEF PROCfindother ($T%,S$%)

4900 LOCALI%,J%,F%

4910 REM (Variables: S%=field no.;F%=fo
und flag;$T%=search string)

4920 FOR I%=1TONR%

4930 PTR#X=(! (FNh(I%)+14)AND&FFFF)+1

4940 FOR J%=1T0S%

4950 INPUT#X,SU%

4960 NEXT

4970 IF LEFTS (SU%,LEN ($T%))<>$T$THEN498

- |0 ELSE IF NOTF$THEN PROCshow (I%) :PROCbot

£ ("Find") :F#=TRUE ELSE PROCanytab:IFGET=
9THEN ENDPROC ELSE PROCshow (I%) :PROCbot £
("Find")

45

MikroTel

4980 NEXT

4990 IF NOTF%THEN PROCnomatch:IFINKEY35
0

5000 ENDPROC

5010 ¢

5020 DEF FNmemfree:=INT((HIMEM-(!2 AND
&FFFF)) /1024)

5030 -

5080 DEF PROCselectorder (BS)

5090 LOCAL I%,A%,AS$,C$

5100 PROChead ("SELECT FIELDS")

5110 FOR I%=0TO011

5120 PRINTTAB (pos% (I%,0)-4,pos%(I%,1)+2
) CHR$135;~I1%+1" ."CHRS134field$ (1%);

5130 NEXT

5140 PRINTTAB(0,14)CHR$130"Enter whiche
ver field numbers / letters"CHR$130"you
want, in the order you want them,"'CHRS$1
30"then press RETURN."

5150 INPUT""C$

5160 FOR I%=0TOLENCS-1

5170 fo%(I%)=EVAL("&"+MIDS(C$,I%+1,1))-
1

5180 NEXT

5190 FOR I%=LENCS$TO11

5200 fo%(I%)=TRUE

5210 NEXT

5220 PROChead (B$+" Records")

5230 FRIND'

5240 ENDPROC

5250 ¢

5260 DEF PROCselectrecords (B$)

5270 LOCAL I%,A$

5280 PROCselectf (BS)

5290 FOR I%=&5A00TO&5BFC: !I%=0:NEXT

5300 I%=1

5310 REPEAT

5320 PROCshow (I%)

5330 IF I%?&5A00=255 THENPRINTTAB (23,9
CHR$129BS$" selected";

5340 AS$=FNget ("PDSF"+CHRS$136+CHRS$137)

5350 IF AS=LEFTS$(BS,1) THEN I%?&5A00=TRU
E:PRINTTAB (23, 9) CHR$129BS$" selected";:I%
=I%+1

5360 IF AS$="D"THENI%?&5A00=FALSE:PRINTT
AB(23,9)SPC15;

5370 IF AS$S=CHR$136THENI%=I%-1:IFI%<1THE
NIA%=1

5380 IF A$=CHR$137THENI%=I%+1

5390 UNTIL I%>NR%ORAS="F"

5400 PROChead (B$+" Records")

5410 PRINT''

5420 ENDPROC

5430 ¢

Listing 2

10 REM Program Data Compacter

20 REM Version B1.0

30 REM Author Mike Bryant

40 REM BEEBUG Jan/Feb 1991

50 REM Program subject to copyright

100 read%=&70

110 write%=674

120 compare=&78

130 jump=&7A

140 returnH=&7C

150 buffer length=&7D

160 last char=&7E

1970 buffer start=67F

180 loop count=&80

190 channel=&82

200 t=&5B00

210 ¢

220 osargs=&FFDA:osbget=&4FFD7

230 osbput=&FFD4:addr%$=&900

240 FOR pass%=0 TO 3 STEP 3:P%=addr%

250 [OPTpass$%

260 <

270 STX loop count:STY loop count+l

280 STA channel:TAY

290 .next record

300 LDX #read%:LDA #1:JSR osargs

310 .find a less than sign

320 JSR osbget:CMP #60

330 BNE find a_less_than sign

340 LDA #0:JSR osargs

350 LDA read%:SEC:SBC #1:STA compare

360 LDA read%+1:SBC #0:STA compare+l

370 BCS dont DEC compareH

380 DEC compare+l

390 .dont DEC compareH

400 CMP write%:BNE end:LDA compare+l

410 CMP write%+1:BNE end

420 .find a greater than sign

430 JSR osbget:CMP #62

450 BNE find a greater than sign

460 LDA #0:JSR osargs

470 LDX #write%:JSR osargs

480 JMP end of main loop

490 .end

500 LDA #&5C:STA jump+l

510 LDA #14:STA jump

520 LDX #0:STX returnH

530 .next pointer

540 INX:TXA:BNE not big

550 LDA returnH:CLC:ADC #1

560 CMP #2:BNE not too big yet
Continued on page 55

46

Beebug January/February 1991

.

Practical Assembler (Part 8)

by Bernard Hill

Last month we looked at the assembler
equivalent of the *FX command, the OSBYTE
call. In common with a large number of
assembler routines (including those you write
yourself) the parameters which it requires are
loaded into the A, X and Y registers before the
JSR into the routine. All well and good, but
when more than three one-byte parameters are
needed, then 6502 assembler subprograms have
to find another means of passing parameters.

The most popular of these is to pass them in a
parameter block. Sometimes these are at a fixed
address (rather like the CALL-with-parameters
which we explored in BEEBUG Vol.9 Nos.4-6),
but in order to maintain flexibility the system
routines use a variable address. The location of
this parameter block is passed to the routine by
using the X and Y registers to hold the low and
high bytes of its address. That leaves the A
register free to hold a ‘function number’, and
this is how the system OSWORD routine works.

OSWORD is used for a few functions (by no
means as many as OSBYTE) such as reading the
Master’s real-time clock or reading a character
definition (a sort of inverse of VDU23). The
simplest example of an OSWORD command is
perhaps the assembler equivalent of the SOUND
command, OSWORD function number 7.

Let’s suppose we want to issue the instruction:
SOUND 1,-15,100,20

from assembler. This is the fragment of code
which would do the trick:

LDX #pblock MOD 256 \ pass address of
LDY #pblock DIV 256 \ parameter block
LDA #7 \ SOUND is function 7,
JSR &FFF1 \ call OSWORD

.pblock EQUW 1
EQUW -15
EQUW 100
EQUW 20

It's that easy. The parameter block in this case is
eight bytes (or four “words”) long, one for each
of the four parameters. Incidentally, do

Beebug January/February 1991

remember the ‘#’ characters in the first two
lines: omission of these causes a large fraction
of beginners’ bugs - I know from experience! If
you're interested in following up any of the
other OSWORD calls then you can look in any
of the Advanced User Guides or even the
standard User Guide for the Model B. This will
tell you clearly the function number and the
parameter block structure.

Basic Assembler Name Function No
(A, Y are

registers)

A=OPENIN A=8&40
A=OPENOUT OSFIND A=&80
A=OPENUP (&FFCE) A=8&CO
CLOSE#Y A=0
*SAVE A=0
*LOAD OSFILE A=&FF
*DELETE (&FFDD) A=6
A=BGET#Y OSBGET(&FFD7)
BPUT#Y,A OSBPUT (&FFD4)

x=PTR#Y 16 A=0
PTR#Y=x OSARGS . A=1
x=EXT#Y (&FFDA) A=2

Table 1. Assembler equivalents of Basic filing
system calls

FILING SYSTEM CALLS

Many people have a lot of trepidation about
handling filing system calls from assembler, but
the process is remarkably easy. The key to the
problem is to have a clear view of the filing
system routines in Basic, as most (not INPUT#
and PRINT#) have equivalents in assembler.
These equivalents are to be found in the
Advanced User Guide where the full details are
listed, and Table 1 contains some of the
commoner calls. Of the other calls not listed in
this table, some have Basic equivalents (such as
EOF#) and some do not (such as writing a load
address onto an existing file), but once the
principle of the parameter block is understood
then a perusal of one of the Advanced User
Guides shows the correct call, function number
and parameter block structure.

47

Practical Assembler

*FCOPY

In order to illustrate the simplicity of these
filing system calls I am going to introduce a
program which copies a file. Those readers who
have used other filing systems (such as MS-
DOS) will have been frustrated by the Beeb’s
inability to make another identical copy of a file
but under another name. The *COPY command
only transfers the file to another disc, and I
have had to resort to:

*COPY 0 2 oldname
*RENAME :2.o0ldname newname
*COPY 2 0 newname
*DELETE :2.newname

in order to duplicate a data file on drive 0.

Before getting into assembler, let’s look at the
Basic program which would do the job for us:

10 DIM old 20, new 20

20 INPUT "0ld name:" $old
30 INPUT "New name:" S$new
40 handlel=OPENIN ($01d)

50 IF handlel=0 THEN STOP
60 handle2=0PENOUT ($new)
70 REPEAT

80 A=BGET#handlel

90 BPUT#handle2, A

100 UNTIL EOF#handlel

110 CLOSE#handlel:CLOSE#handle2

I'm using static strings - $old - rather than
dynamic - old$ - for reasons which will be
apparent later. The 20 bytes allocated for the
name may need to be increased for full path
names if the ADFS is to be used).

Note that if the input file does not exist then
handlel will be set to 0 at line 40, and line 50
will stop the program. As it stands, this
program will duplicate the contents of the file,
but will not copy the execution and load
address of the new file to be the same as the
old. For this we need to use an OSFILE call with
values of A which are not contained in Table 1
as they have no Basic equivalent. These are A=5
to read the file load/execution addresses, and
A=1 to write the same to an existing file. The
actual parameter block is 18 bytes long
(numbered 0 to 17) and is listed in Table 2, but
in fact we shan’t be using the parameter block
beyond byte 9 for these two functions.

48

OSFILE has an 18-byte parameter block as follows:

Bytes 0,1 : address of the characters of
the filename, ending in &0D

Bytes2-5 : load address of the file

Bytes 6 -9 : execution address of the file

Bytes 10-13 : length of file or start address
Bytes 14-17 : end address of file if saving.

OSARGS has a 4-byte zero-page parameter block
(address in X) to contain the 4-byte integer
variable x. Y contains the handle as usual.

Table 2. OSFILE and OSARGS parameter

Luckily we can use the same parameter block
for both reading the old exec/load addresses
and writing the new. But let’s first allocate the
parameter block, set up the filename pointer
(this is why we used fixed strings - $old - and
they always end in &0D as required) and read
the addresses from the source file:

110 DIM pblock 17

120 ?pblock=o0ld MOD 256
130 pblock?1=0ld DIV 256
140 X%=pblock MOD 256
150 Y%=pblock DIV 256
160 A%=5

170 CALL &FFDD

We don’t even need to look at these load and
execution addresses, we can just copy them to
the target file by replacing the filename pointer
and changing A to 1. The X and Y registers
were not changed by the call:

180 ?pblock=new MOD 256
190 pblock?1l=new DIV 256
200 A%=1

210 CALL &FFDD

And that’s it.

ASSEMBLER IMPLEMENTATION

This is printed at the end of this article as Listing
1. If we agree that the syntax of the command to
be executed by the assembler program is:

*FCOPY oldfile newfile

then we can obtain the source and target file
names as we did in last month’s article when
we saw that (&F2),Y points to the command
string tail (though this is only valid for the DFS,
not the ADFS). Lines 130-310 of Listing 1 are
concerned with copying both filenames to their

Beebug January/February 1991

O

Practical Assembler

places and putting the terminating &0D on the
end of each. An error (see BEEBUG Vol.9 No.2)
is of course generated if either filename is
missing from the command.

Now to open the input and output files
(OPENIN/OUT) we use the OSFILE function as
in Table 1. The only “parameter block’ the OSFILE
uses is the filename, and X and Y must be set up
to point to this, and the correct value of A set up
for OPENIN or OPENOUT (&40 and &80
respectively). After the call to open the file the A
register contains the file handle, and as in Basic, if
it is zero the file could not be opened. Lines 330-
450 cover the opening of these two files.

Then it is simply a matter of copying the bytes
of the file one by one until the end of file 1 is
reached. For reading, the OSBGET function is
used, and here the Y register contains the
handle. On return from OSBGET, the A register
contains the byte, and if the carry flag is set
then the end of file has been reached and the
byte returned is invalid. OSBPUT performs the
BPUT# function, A is the byte to write, Y
contains the handle, and so lines 460-490
perform this simple process. With a final call to
OSFIND with A=0 (and Y having the file
handle) to close each file (lines 510-520), we can
allocate the load and execution addresses as in
the Basic program above (lines 540-630).

CONCLUSION

Although this byte-by-byte copying doesn’t
disturb any programs in RAM, it is very slow,
but it does illustrates many assembler filing
system functions very well. But a faster method
would be to *LOAD and *SAVE the file if it will
fit in the available RAM. Next month we will
produce a program to perform this and at the
same time show how this sort of routine can be
run from sideways RAM.

Listing 1

10 REM Program FCOPY

20 REM Version B1.0

30 REM Author Bernard Hill

40 REM BEEBUG Jan/Feb 1991

50 REM Program subject to copyright

FOR opt=0 TO 3 STEP 3
P%=&900:0Q%=P%

[OPT opt

DEY \ first find file names
.skipsp INY:1DA (&F2) .Y

140

CMP #32:BEQ skipsp:LDX #0
filel STR £ilein X
INX:INY:IDA (&F2),Y

CMP #13:BEQ nofile2

CMP #32:BEQ endfilel:BNE filel
.nofile2 BRK:EQUB 67

EQUS "Filename missing":EQUB 0
\ place &0D on end of name
.endfilel IDA #13:STA filein,X
\ second file

.loop INY:LDA (&F2),Y

CMP #32:BEQ loop:LDX #0

.file2 STK fileout X
INX:INY:LDA (&F2),Y

CMP #13:BEQ endfile2

CMP #32:BNE file2

.endfile2 LDA #13:STA fileout,X
\ now open both files

IDX #filein MOD 256

IDY #filein DIV 256

LDA #&40:JSR &FFCE \ osfind
CMP #0: BNE okfilel

BRK:EQUS "File 1 not found":EQUB 0

.okfilel STA handlel \save handle
LDX #fileout MOD 256

IDY #fileout DIV 256

LDA #&80:JSR &FFCE \ osfind

CMP #0: BNE okfile2

BRK:EQUS "Cannot open file 2"

EQUB 0

.okfile2 STA handle2

.rp LDY handlel:JSR &FFD7 \ osbget
BCS eof \end of file,byte no good
IDY handle2:JSR &FFD4 \ osbput

JMP rp

.eof \close all files

LDA #0:LDY handlel:JSR &FFCE

LDY handle2:JSR &FFCE

\ now set the exec/load addrs

LDA #filein MOD 256:STA pblock
LDA #filein DIV 256:STA pblock+l
LDX #pblock MOD 256

1DY #pblock DIV 256

IDA #5 \ read cat info

JSR &FFDD \ osfile

LDA #fileout MOD 256:STA pblock
IDA #fileont DIV 256:STA pblock+l
LDA #1 \ write .cat info

JSR &FFDD \ osfile

RTS \ finished

\ data aream....

.handlel EQUB 0

.handle2 EQUB 0

.pblock EQUS STRINGS (18,CHRS0
.filein EQUS STRINGS (20,CHRS0
.fileout EQUS STRINGS$ (20, CHRS$0

] :NEXT

c$="SAVE FCOPY "+STR$~Q%+" "+STRS~
PRINTc$:0SCLIc$ B

Beebug January/February 1991

49

Word Processor Input (Part 3)

by Andrew Rowland

In this article, the last of the present series, we
will put the character string editor introduced
in Part 1 to serious uses - a function key editor
for the Master, and a Basic line editor. Neither
of these is a new idea, but the brevity of the
code required and their uniformity with the
input routine make them very attractive.

Before I start, I will mention that the utilities
presented here use all or part of the area &900
to &CFF. Master users on Econet should be
aware of this, as must model B owners, who
will lose their user definable characters when
using Edlin.

MASTER FUNCTION KEYS

The Master has 1K of memory set aside for the
function keys, compared with 256 bytes in the
Model B. While there have been function key
editors for the Model B (e.g. Vol.3 No.1), none
has been published for the Master, despite the
greater scope that this machine gives you.

In listings 1 and 2 we have two utilities,
FSHOW and FEDIT, with WPinput providing
the editor for the latter.

A NEW *SHOW

The first utility prints the contents of a function
key, rather as *SHOW does, or the recent
*FKDEFS in Bill Hine’s EdiKit ROM (Vol.8
No.10), but differs in the way it displays the key
definition.

Firstly, both these commands use a format
where the whole string is enclosed in quotes,
quotes within the string are preceded by a
vertical bar and codes above 127 are shown as a
combination of vertical bars, exclamation marks
and printable characters. Personally, I prefer to
see it displayed as I would type it in: only
surrounded by quotes if necessary and only
control codes (less than 32) preceded by a
vertical bar. Codes above 128 are shown
normally using the Master’s extended font or as
teletext control codes in mode 7. If this isn’t
your cup of tea, I refer you to the above
alternatives, but I find it less cluttered and more

50

readable. In any case, the routine is a useful
half-way house to FEDIT.

Secondly, you may either specify a particular
key number or type *FSHOW without a
parameter and see all 16 keys displayed.

Type in and run Listing 1, adhering to the line
numbers. The assembled version, FSHOW, will
be saved to disc, and can be called by typing
*FSHOW <number> or just *FSHOW for all the
keys. Unlike *SHOW, the key is displayed
complete with *KEY so that the current function
key definitions can be spooled to disc. To save
them type:

*SPOOL Keys

*F SHOW

*SPOOL

To redefine the function keys, type:

*EXEC Keys.

THE FUNCTION KEY EDITOR

Now we can display the key definitions, the
next stage is to edit them. Firstly, we must store
the characters as displayed (control codes, you
will recall, have been expanded by preceding a
printable character with a vertical bar). This is
achieved by the subroutine writechar (line 2660)
which has a different function in FEDIT to
FSHOW. Secondly, we will use the technique
described in last month’s issue to edit the
buffer. And thirdly, we will issue a *KEY
command to redefine the key in question.

Listing 2 shows all the changes you need to
make to Listing 1 in order to create FEDIT.
Enter the instructions exactly as printed, taking
care with line numbers. If you have the
monthly disc, you will find the program
complete on disc. If you are using InputROM
remember to modify line 2860 as shown. When
run, FEDIT is assembled and saved to disc; it is
called with *FEDIT <key number>. Full details
of how to use the string editor are in Part 1 of
the series. You will find you can alter the key
number if you want to copy one key definition
(possibly modified) to another function key
without losing the original.

Beebug January/February 1991

- e

Word Processor Input

The new key definition is programmed when
you press Return, or aborted if you press
Escape.

BASIC LINE EDITOR

With WPinput you are able to enter lines of
Basic with great ease and comfort. What has
been lacking is the ability to edit lines later
without copying them entire from the screen.
Basic line editors have been published before,
the most recent being Paul Pibworth’s (Vol.8
No.2). This was an excellent utility, but the
approach adopted here results in a very short
program, always an important consideration
with the memory constraints of the Beeb, and
offers powerful editing facilities which are
utterly consistent with the environment used to
enter the line in the first place.

Enter and run Listing 3. Edlin will be
assembled and saved to disc, and should be
used by entering *EDLIN <line number> from
Basic’s command mode (not from within a
program). If you give a non-existent line
number, by the way, you will find yourself
editing a blank line - just press Escape. You may
rename Edlin to something shorter if you wish,
or program Key 0 “*EDLIN “ as an aid. It is
useful as a debugging tool too. Make the last
line in your error handler:
OSCLI "EDLIN "+STR$ (ERL) :END
Remove it when the program is complete.

HOW EDLIN WORKS

The great economy of code is achieved by an
interesting technique which involves no calls
into the Basic ROM, so it can be used on any
machine. Consider what happens when you
want to change a line of Basic in the normal
way. First, the > prompt appears and you type
LIST 10 or some such. The line concerned is
listed on your screen. Then the > prompt
reappears and you enter a new line 10 using
screen copying and typing. You press Return
and it becomes part of the program.

This is stating the obvious, but Edlin uses this
sequence of events in a special way. The ‘main’
part of Edlin is from line 1040 to 1290. Let us
simplify and say it does nothing and exits. We
now start the sequence described above - >’
appears and Basic calls Osword 0 for its next

Beebug January/February 1991

line of input. When Osword 0 exits, Basic will
expect to find a string in its input buffer (which
is memory page 7). And it will! Edlin has
actually copied “L.” and the line number you
specified into page 7, and altered the Osword
vector to a dummy routine, newWORD]1 (line
1350). Basic now dutifully lists the line. But
nothing appears on the screen - Edlin has also
altered the OSWRCH vector to redirect screen
output to a buffer. This is handled by vduentry
(line 1550), which stores each character in page
&C instead of displaying it.

When it realises the end of a line has been
reached (Basic sends a line feed (ASCII 10) at
the end of each line), it calls WPinput to let you
edit it - this is the first time something visible
happens. The final stage is when the > prompt
appears again. You would normally enter your
modified line here, but again, Edlin has
diverted the Osword vector, this time to
newWORD?2 (line 1430), which copies the string
from page &C to page 7 and exits. Basic accepts
this and inserts the line in its program. By now,
all vectors have been restored to their original
state and we are back to normal.

If you got lost in all that, don’t worry. Edlin is
far simpler to use than to describe. One hint: if
you want to repeat a line in a program, say if
line 240 is the same as line 20, type *EDLIN 20
and change the line number to 240. A copy of
the line is produced, leaving line 20 unchanged.

ROM BONUS

The three utilities presented this month are all
disc based, which slows down their operation.
As a bonus, on this month’s disc, you will find
a ROM image called InputRom, which includes
WPinput, an enhanced *HELP and the three
new star commands, all of which work on the
Model B as well as the Master. A number of
additional editing functions are included, such
as delete to end of line, and delete word, and there
is a feature which lets you recall a specific
string by typing a few of the letters it contains,
then pressing Ctrl-H. Together, these features
make a comfortable and powerful environment
for your work.

1 gratefully acknowledge the use of David Spencer’s
routine to print decimal numbers (BEEBUG Vol.7
No4).

51

Word Processor Input

Listing 1 el 2 1340 .readparamliam ? 7
10 REM Program .>FSHOWbas 1350 LDA (zp),Y
20 REM Version B1.00 (M) 1360 CMP #13:BEQ readall
30 REM Author Andrew Rowland 1370 CMP #32:BEQ readall
40 REM BEEBUG Jan/Feb 1991 1380 INY:PHA:BRA readparamlp
50 REM Program subject to copyright 1390 \ ¥ = length of string
60 1400 .readall \ retrieve backwards
100 mc%=&900:2zp=&70: fn=&F2 1410 LDX #0:STX accum
110 oswrch=&FFEE:osnewl=&FFE7 1420 .numlp
120 oscli=&FFF7:0sword=&FFF1:osbyte=&F 1430/ PLA
FF4 1440 CMP #ASC"(0":BCC paramerror
130 buffer=&C00:transfer=&134B 1450 CMP #ASC"9"+1:BCS paramerror
140 PROCass 1460 SEC:SBC #ASC"0"
150 a$="SAVE FSHOW "+STRS$~mc%+" "+STR$ 1470 CPX #0:BEQ numover
~P% 1480 STX count
160 PRINT a$:0SCLI a$ 1490 .nlpl STA byte
170 END 1500 LDA #10:STA multiplicand
180 1510 STZ multiplicanctl
1000 DEF PROCass 1520 JSR mult
1010 FOR pass=0 TO 3 STEP 3 1530 LDA zp+l:BNE paramerror
1020 P%=mc$% 1540 LDA zp
1030 [OPT pass 1550 'DEC count:BNE nlpl
1040 LDA &F4:0RA #&80 1560 .numover
1050 \ access private RAM 1570 CLC:ADC accum:BCS paramerror
1060 STA &F4:STA &FE30 1580 STA accum
LOW0E: 1590 INX:DEY:BNE numlp
1080 LDY #0 \ decode parameter 1600 LDX accum:CPX #16:BCS paramerror
1090 .param INY 1610 JSR show:RTS
1100 LDA (fn),Y:CMP #13:BEQ noparam 1620 :
1110 CMP #32:BNE param 1630 .paramerror
1120 .space 1640 BRK:EQUB 251
1130 INY:1DA (fn) ¥ 1650 EQUS "Bad key":BRK
1140 CMP #32:BEQ space 1660 1
1150 CMP #13:BEQ noparam 1670 .error BRK:EQUB 251
1160 JSR showkey:BRA end 1680 EQUS "String too long”:BRK
12470 1690
1180 .noparam \ show all Fkeys 1700 .show STX key:LDY #0
1190 LDX #0 1740k dpl
1200 .lp JSR show 1720 LDA string,Y:BEQ over
1210 CPX #16:BNE lp 1730 JSR writechar
1220 ¢ 1740 INY:BRA 1pl
1230 .end \ page out private ram 1750 .over
1240 LDA &F4:AND #&7F 1760 LDY #0:JSR prdec
1250 STA &F4:STA &FE30 1770 LDA #32:JSR writechar
1260 RTS 1780 LDX key
1270 1790 LDA &8000,X:STA zp
1280 .showkey 1800 LDA &8011,X:STA zp+l
1290 \ return rest command line in zp 1810 INX
1300 TYA:CLC:ADC fn:STA zp 1820 SEC:LDA &8000,X
1310 LDA #0:ADC fn+1:STA zpfl 1830 SBC zp:STA length
1320 .numeric 1840 LDA &8011,X:SBC zp+l
1330 LDY #0 \ push decimal param 1850 BNE error
52 Beebug January/February 1991

- e

v—————

Word Processor Iﬁput

1860 LDA length:BEQ nul 2380 EQUB &E8:EQUB &10

1870 TDY #0:8TY flag 2390 4

1880 LDA (zp),Y:CMP #2SC™ " 2400 .mult

1890 BNE loop:INC flag 2410 812 #p:STH zptl

1900 JSR quote 2420 .mull

1910 ,loop 2430 LDA byte:BEQ mulend
1920 LpA (zp),Y:USR prat 2440 LSR A:BCC notadd

1930 INY:CPY length 2450 LDA multiplicand:CLC
1940 BNE loop 2460 ADC zp:STA zp

1950 LDA flag:BNE exit 2470 LDA multiplicand+1:ADC zp+l
1960 JMP osnewl \ RTS 2480 STA zp+l

19940 - I 2490 .notadd

1840 .prch 2500 ASL multiplicand

1990 GMP f#AasSctavdBCS notebrl 2510 ROL multiplicand+1
2000 ORA #&40:BCC ctrl 2520 LSR byte:BRA mull

2010 .notctrl 2530 .mulend

2020 CMP #ASCUMIT BNE ot 2540 RTS

2030 LDX flag:BEQ out 2880 ¢

2040 .ctrl 2560 .multiplicand EQUW 0
2050 PHA:LDA #ASC"|":JSR writechar 2570 .byte EQUB 0

2060 PLA 2580 .count EQUB 0

2070 .out JMP writechar 2590 .accum EQUB 0

2080 2600 .length EQUB 0

2090 .nul JSR quote 2610 .num EQUW 0

2100 .exit 2620 .key EQUB 0

2110 JSR quote:JMP osnewl 2680 .flag ' EQUB .0

2120 .quote 2640 .string EQUS "*KEY ":BRK
2130 LDA #ASC"""":JMP writechar 2650 :

21405 2660 .writechar JMP oswrch
2150 .prdec 2670]NEXT

2160 STX nuom:sTY numdl 2680 ENDPROC

2170 .nprt . I
2180 CLC:PHP:LDY #4 Listing 2

2190 .nprtl LDX #&30 10 REM Program .>FEDITbas
2200 .nprt2 SEC:LDA num 150 a$="SAVE FEDIT "+STRS~mc%+" "+STRS~
2210 SBC tenlo,Y:PHA:LDA num+l P%

2220 SBC tenhi,Y:BCC nprt3 1080 LDY #0:STY index

2230 STA num+l:PLA:STA num 1160 JSR showkey:JSR edit
2240 INX:BCS nprt2 1165 JSR star:BRA end

2250 .nprt3 PLA:TXA 1180 .noparam

2260 CMP #&30:BEQ nprt4 1190 BRK:EQUB 251

22770 PLP:SEC:BCS nprtd 1200 BEQUS "Syntax: FEDIT <key no.>"
2280 .nprtd PLP:BCS nprth i 1210 BRK

2290 PHP:CPY #0:BNE nprté6 1730 JSR writechar:JSR oswrch
2300 PLP 1960 RTS

2310 .nprt5 PHP:JSR writechar 2650 .index EQUB 0

2320 .nprt6 DEY:EPL nprtl 2660 .block EQUD 0:EQUW 0
2330 PLP:RTS 2670

2344 2680 .writechar PHX

2350 .tenhi EQUW 0:EQUB 0 2690 LDX index:STA buffer, X
2360 EQUB 3:EQUB &27 2700 INC index:PLX:RTS

2370 .tenlo EQUB 1:EQUB 10:EQUB 100 2710

Beebug January/February 1991 53

Word Processor Input

2720 .edit 1040 LDY #0:STY index

2730 LDA # (buffer+5) MOD &100:STA block 1050 .param INY

2740 LDA #(buffer+5) DIV &100:STA 1060 LDA (fn),Y:CMP #13:BEQ noparam
block+1 1070 CMP #32:BNE param

2750 LDA #240:STA block+2 1080 .space

2760 LDA #32 :STA block+3 1090 INY:LDA (fn),Y

2770 LDA #255:STA block+4 1100 CMP #32:BEQ space

2780 LDA index:SEC:SBC #5 1110 CMP #13:BEQ noparam

2790 CMP #240:BCC edover 1120 \ return rest command line in zp
2800 LDA #244 1130 TYA:CLC:ADC fn:STA zp

2810 .edover STA block+5 1140 LDA #0:ADC fn+1:STA zp+l

2820 LDX #block MOD &100 1150 \ set VDU vector

2830 LDY #block DIV &100 1160 OPT FNcopyl (wrchv,oldwrchv)
2840 \ for ROM vs, following line is 1170 OPT FNcopy?2 (vduentry,wrchv)
2850 \ LDA #16:\JSR osword 1180 \ set WORDV

2860 LDA block+5:JSR transfer 1190 OPT FNcopyl (wordv, oldwordv)
2870 BCS escape:RTS 1200 OPT FNcopy2 (newWORD1,wordv)
2880 : 1210 \ poke "L." into buffer

2890 .escape LDA #126:JSR osbyte 1220 LDX #0:LDA #ASC"L":STA buffer,X
2900 BRK:EQUB 17:EQUS "Escape":BRK 1230 INX :LDA #ASC".":STA buffer, X
290 B 1240 \ poke command tail into buffer
2920 .star 1250 LDY #0

2930 LDX #buffer MOD &100 1260 .taillp

2940 LDY #buffer DIV &100 1270 LDA (zp),Y:INX:STA buffer,X
2950 JMP oscli 1280 INY:CMP #&O0D:BNE taillp

2960]NEXT 1290 STX length:RTS

2970 ENDPROC 1300

Sl 1310 .noparam BRK:BRK
Listing 3 1320 EQUS "Syntax: EDLIN <line no.>"
10 REM Program .>EDLINbas 1328 BRE

20 REM Version 1.00

30 REM Author Andrew Rowland 1350 .newWORD1

40 REM BEEBUG Jan/Feb 1991 1360 CMP #0:BEQ forme
50 REM Program subject to copyright 1370 JMP (oldwordv)
60 . 1380 .forme
100 mc%=&900 1390 \ restore WORD vector
110 zp=&70:fn=&F2:block=&70 1400 OPT FNcopyl (oldwordv, wordv)
120 oswrch=&FFEE:0scli=§FFF7 1410 LDY length:CLC:RTS
130 osword=&FFF1:osbyte=&FFF4 1420
140 wrchv=&20E:wordv=&20C 1430 .newWORD2
150 buffer=6700:store=&C00:transfer=sl 1440 CMP #0:BEQ forme2
34B 1450 JMP (oldwordv)
160 PROCass 1460 .forme2
170 a$="SAVE EDLIN "+STRS$~mc%+" "+STRS 1470 \ restore WORD vector
~P% 1480 OPT FNcopyl (oldwordv, wordv)
180 PRINT a$:0SCLI a$ 1490 LDA #127:JSR oswrch \ delete '>'
190 END 1500 LDY #0
200 ¢ 1510 .loop LDA (block),Y:STA buffer,Y
1000 DEF PROCass 1520 INY:CPY length:BEQ loop:BCC loop
1010 FOR pass=0 TO 2 STEP 2 1530 LDY length:CLC:RTS
1020 P%=mc% 1540
1030 [OPT pass 1550 .vduentry
54 Beebug January/February 1991

Word Processor Input

1560 CMP #10:BEQ end:STX temp
1570 LDX index:STA store,X

1580 INC index:BEQ end:LDX temp
1590 .vduout RTS

1600 ¢

1610 .end PHA:TXA:PHA:TYA:PHA
1620 \ restore VDU vector

1630 OPT FNcopyl (oldwrchv,wrchv)
1640 LDY #0

1650 .loop INY:LDA store,Y

1660 CMP #32:BEQ loop

1670 STY length:LDA index:CLC
1680 SBC length:STA block+5

1690 TYA:CLC:ADC #store MOD &100
1700 STA block

1710 LDA #store DIV &100:STA block+l
1720 LDA #238:STA block+2

1730 1DA #32 :STA block+3

1740 LDA #255:STA block+4

1750 LDX #block MOD &100

1760 LDY #block DIV &100

1770 \ for RCM vs, following line is
1780 \LDA #16:\JSR osword

1790 LDA block+5:JSR transfer
1800 BCS escape:STY length

1810
1820
1830
1840
1850

1860 :

1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050

OPT FNcopy2 (newWORD2, wordv)
PLA:TAY:PLA:TAX:PLA:RTS

.escape LDA #126:JSR osbyte
BRK:EQUB 17:EQUS "Escape":BRK

.temp EQUB 0
.index EQUB 0
.length EQUB 0
.0ldwrchv EQUW 0
.oldwordv EQUW 0
JNEXT

ENDPROC

DEF FNcopyl (A%,B%)
[OPT pass

LDA A%:STA B%

LDA A%+1:STA B%+1
]=pass

DEF FNcopy?2 (A%,B%)

[OPT pass

LDA #A% MOD &100:STA B%
LDA #A% DIV &100:STA B%+1

]=pass

MikroTel (continued from page 46)

570 BRK

580 EQUB 200

590 EQUS "Can't match pointer with Sur
name"

600 BRK

610 .not too big yet

620 STA returnH

630 .not_big

640 LDA jump:CLC:ADC #16:STA jump

650 BCC no_carry:INC jump+l

660 .no_carry

670 LDY #0:LDA (jump),Y

680 CMP compare:BNE next pointer

690 INY:LDA (jump),Y

700 CMP compare+l:BNE next pointer

710 LDY #0:LDA write%:STA (jump),Y

720 INY:LDA write$+1:STA (jump),Y

730 LDY channel

740 LDX #read%:LDA #0:JSR osargs

750 LDA #60:STA t

760 LDA #0:STA buffer start

770 .over_ 255 characters long

780 LDX #read%:LDA #1:JSR osargs

790 LDX buffer start

800 .read byte

810 INX:JSR osbget:STA t,X

820 CMP #62:BEQ finish reading

B30 GEX #255:BNE read byte

840 .finish reading

850
860
870
880
890
900
910
920
930
940
950
960
ng
970
980
990
1000
1010

ump
1020

P
1030
1040
1050
1060
1070
1080
1090

STX buffer length

LDX #read%:LDA #0:JSR osargs

LDX #write%:LDA #1:JSR osargs
LDX #&FF

.write byte

INX:LDA t,X:JSR osbput

CPX buffer length:BNE write byte
STA last char

LDX #write%:LDA #0:JSR osargs
LDA #&FF:STA buffer start

LDA last char

CMP #62:BNE over 255 characters lo

.end of main loop

LDA loop_count:SEC:SBC #1

STA loop_count

LDA loop count+1:SBC #0

STA loop_count+l:BNE next record j

LDA loop count :BNE next record jum

RTS

.next_record jump

LDA #127:JSR &FFEE

JMP next_record

JNEXT

*SAVE M.COMPACT 900 AFF
END

Beebug January/February 1991

55

Arcade Games

George and the Dragon - Rescue 'Hideous Hilda' from the flames
of the dragon, but beware the flying arrows and the moving holes
on the floor.

Ebony Castle - You, the leader of a secret band, have been
captured and thrown in the dungeons of the infamous Ebony Castle.
Can you escape back to the countryside, fighting off the deadly
spiders on the way and collecting the keys necessary to unlock the
coloured doors?

Pitfall Pete - Collect all the diamonds on the screen, but try not to
trap yourself when you dislodge the many boulders on your way.

Knight Quest - You are a Knight on a quest to find the lost crown,
hidden deep in the ruins of a weird castle inhabited by dangerous
monsters and protected by a greedy guardian.

Builder Bob - Bob is trapped on the bottom of a building that's’
being demolished. Can you help him build his way out?

Minefield - Find your way through this grid and try to defuse the
mines before they explode, but beware the monsters which
increasingly hinder your progress.

Manic Mechanic - Try to collect all the spanners and reach the
broken-down generator, before the factory freezes up.

Quad - You will have hours of entertainment trying to get all these
different shapes to fit.

Beebug Arcade Games Disc £5.95 + 60p p&p
Stock Codes PAG1 (525" DFS 40/80T disc) PAG2 (3.5" ADFS disc)

Board Games

Solitaire - an elegant implementation of this ancient and
fascinating one player game, and a complete solution for those
who are unable to find it for themselves.

Roll of Honour - Score as many points as possible by throwing
the five dice in this on-screen version of 'Yahtze'.

Patience - a very addictive version of one of the oldest and most
popular games of Patience.

Elevenses - another popular version of Patience - lay down cards
on the table in three by three grid and start turning them over until
they add up to eleven.

Cribbage - an authentic implementation of this very traditional
card game for two, where the object is to score points for various
combinations and sequences of cards.

Twiddle - a close relative of Sam Lloyd's sliding block puzzle and
Rubik's cube, where you have to move numbers round a grid to
match a pattern.

Chinese Chequers - a traditional board game for two players,
where the object is to move your counters, following a pattern, and
occupy the opponent's field.

Aces High - another addictive game of Patience, where the object
is to remove the cards from the table and finish with the aces at the
head of each column.

Beebug Board Games Disc £5.95 + 60p p&p
Stock Codes PBG1 (5.25" DFS 40/80T disc) PBG2 (3.5" ADFS disc)

Hlﬂ,l% HIB{I%

HINT

5. HITS, HITS,

Hints and tips on almost any subject relating to
the BBC micro and Master series are always
welcome, and we pay £5 for each one
published.

QUICK AND EASY FILE SAVE
J.M.Shepherd

Here is an easy method of saving a file with the
correct name, assuming that you start your
program with a REM statement consisting of
the file name.

Enter and save the program QSAVE listed
below. Turn on the computer and type:

*LOAD QSAVE 900
*KEY9 T%=TOP |[MPAGE=&900 | MRUN | MPAGE=&E
00|M

(changing the &E00 to &1900 (or whatever is
appropriate), for a model B). For regular usage,
this can be included in a !BOOT file. The use of
function key 9 is not essential - any function
key will do.

Saving the current program is carried out by
pressing f9 only. This assigns T% to TOP, sets
PAGE to &900 and runs QSAVE, before
resetting PAGE to return to the current
program.

In QSAVE, line 10 assigns a start address (N)
and length (L) of the file to be saved. The
occurrence of the first REM (token 244) is then
found. Line 20 skips any possible spaces and
line 30 builds up the file name. Line 40 saves
the file as a Basic program and line 50 confirms
the action taken.

5 REM QSAVE

10 N=&E00:L=T%-N:F$="":name=FALSE:REPE
AT:N=N+ 1:UNTIL ?N=244

20 REPEAT:N=N+1:UNTIL ?N<>32

30 REPEAT:IF?N=130 OR?N=32 name=TRUE E
LSE FS$=FS$+CHR$?N:N=N+1

40 UNTIL name=TRUE:0SCLI"SAVE
E00+"+STRSL+" 802B"

50 PRINT"Saved as ";CHR$34;F$;CHR$34:END

"+F$+ll

Again, note that “E00” above should be changed
to ‘1900" for the model B (see previous
comment), and that ‘802B" should be changed
as appropriate for your version of BBC Basic
(use the *EX command to catalogue a disc of

Beebug January/February 1991

programs and use the four or eight digit hex
value which appears in the penultimate
column).

DATE STAMPING VIEWSTORE REPORTS
Ashley Allerton

There is no immediate facility in ViewStore for
dating reports by taking the date from the
internal clock on the Master. The date register
exists in View (‘ID’ on any line with an ‘RJ’,
1], ‘CE’; “DH’, or ‘DF’ icommand), but
apparently not in ViewStore.

There is a way round this using the Comment
facility, whereby a comment can be included in
a report file, which can be different each time a
report is printed. First include the following
procedure near the beginning of your menu
program, to fix ‘today’s date” in DATE$:

20 th$="th"

30 IF MIDS(TIMES,6,1)="1" th$="st"

40 IF MIDS (TIMES, 6,1)="2" th$="nd"

500 IF MIDS (TIMES,6,1)="3" th$="rd"

60 IF MIDS(TIMES,5,1)="0" PROCone ELSE
PROCtwo

70 DEF PROCone:DATES$=MIDS (TIMES,6,1)+
th$+MIDS (TIM ES$,7,10) :ENDPROC

80 DEF PROCtwo:DATES$=MID$(TIMES,5,2)+
th$+MIDS (TIM E$,7,10) :ENDPROC

Then, in your report file, include something
like:

(Date prepared:@RQREQREQRQA)

in the header, and ~C1 in the field list. Then,
somewhere in the report (ViewStore allows you
to put it anywhere, as it searches for comments
before starting work on the report file) put in a
comment line, with a brief reminder like
‘DATE?". :

When work starts on the report file, a reminder
will come up, and you can insert the date, or it
can be done automatically by modifying line
995 of the menu program (see Hints & Tips,
BEEBUG Vol.8 No.7) to:

995 OSCLI("KEY9 LOAD ADDRESSES|MMODE131
|MUTILITY SELECT |MF |M|MSURNAME |MCHRISTIAN
NAME [M|M|MUTILITY REPORT |MY |MP |MY|MPHONE
DI R|M|M|M|M "4+DATES$+" |[M*KEY9 |M") B

57

RISC USER

The Archimedes Magazine & Support Group

Now in its fourth year of publication, Risc User continues to enjoy the largest circulation of any magazine
devoted solely to the Archimedes range of computers. It provides support for all Archimedes users at
work (schools, colleges, universities, industry, government establishments) and home.

Existing Beebug members, interested in the new range of Acorn micros, may either transfer their
membership to the new magazine or extend their subscription to include both magazines.

A joint subscription will enable you to keep completely
up-to-date with all innovations and the latest information

from Acorn and other suppliers on the complete range of 36 ST

BBC micros. RISC User has a massive amount to offer to Thu

enthusiasts and professionals at all levels.

And here are some items covered in the most recent issues

of RISC User:

' 1 Outs O
Hod @1:(2xt)0$2xz)<<>>13m4)<><>%
Size: G 640x312 > 12001026680)x[3
Centres [0),("0] Camera: [0] Lens: [9
Shadows: <>0n > 0ff :
Depth: (6 | Simplicity: urse:

FIRST LOOK AT BEZIER CURVES
New short series starting with using different
mathematical methods for drawing curves.

PRINTER AND SERIAL BUFFER FOR THE ARC
A variable sized buffer which can be configured
either as a printer buffer, or a serial buffer.

A MULTI-TASKING WIMP DEBUGGER
A multi-tasking application which allows you to
debug Wimp based programs while testing and
running them.

ARCLIGHT RAY TRACER
A review of the new ray-tracing package from Ace
Computing.

IRLAM'S COLOUR SCANNER
A look into the first colour scanner for the Arc.

WP/DTP
A regular column which offers hints on using
different DTP and WP packages.

; Slormal ODelta
Last Frame: & Yes ORo [frelig)
Save choices: o

Materials

Quit

PROGRAMMER'S WORKSHOP
A major new series covering all advanced aspects
of the Archimedes and incorporating the Assembler
Workshop. This month: understanding E-format
discs.

MASTERING THE WIMP
A major and very popular series on the Wimp
programming environment. The most recent
instalment is devoted to Using Templates.

INTO THE ARC
A regular series for beginners. The latest article
explores some aspects of using colour on the
Archimedes.

INTRODUCING C
A wide ranging series on the major programming
language C.

ARCADE
A round-up of the latest games for the Archimedes:
ArcPinball, Interdictor Il, The Wimp Game, Professor
Mariarti, Bughunter in Space.

Phone your instructions in, or send a cheque/postal order to the
address below. Please quote your name and membership
number. When ordering by Access, Visa or Connect, please

quote your card number and the expiry date.

As a member of BEEBUG you may extend your subscription
to include RISC User for only £9.10 (overseas see table).

SUBSCRIPTION DETAILS
Destination Additional Cost
UK,BFPO &Ch Is £910
Rest of Europe and Eire £14.00
Middle East £17.00
Americas and Africa £19.00
Elsewhere £20.00

RISC User, 117 Hatfield Road, St Albans, Herts AL1 4]S, Telephone (0727) 40303, FAX (0727) 860263

GOTO FAR

Please allow me to exclaim ‘tut tut’ on observing
the juxtaposition of your article on Better
Programming (First Course, Vol.9 No.6), and the
cover montage which shows, believe it or not a
listing with no fewer than ... wait for it ... EIGHT
‘GOTO’s in about 20 lines! Actually I do not agree
with your statement that “A GOTO can never tell
you what function within the program is being
jumped to.” In my (very) early days of
programming, I used to put a ‘REM
<indication>” after GOTO just to do this. I soon
discovered the joys of functions and procedures,
and hence find the use of GOTO a very rare
necessity indeed. I enjoyed your article and found
it helpful, not only to me but various younger
members of the family, two at least of whom are
also subscribers.

I would also welcome (through your pages) to
make an appeal for contact with any other
English speaking subscribers to BEEBUG near
here (Switzerland).

P.L.Stavenhagen

The contrast of style which Mr.Stavenhagen cites in a
sense makes the point I was trying to promote, that of
encouraging better programming style for BEEBUG
readers (and potential contributors?). Putting a REM
statement after a GOTO is an excellent method of in-
program documentation, but the fact that an
additional statement is needed, I think, proves the
validity of my own comment, that GOTOs are not self
documenting. Readers will find that good Assembler
programs are also well commented for the same
reason, the cryptic nature of assembler instructions
being insufficiently self-documenting.

To some extent, style may be a personal thing anyway,
but most experienced programmers agree that there
are certain ground rules which should be followed,
and that is what I tried to illustrate.

If any readers in (south-west) Switzerland or nearby
would like to contact Mr.Stavenhagen his address is
14 Ch. de la Chavanne, 1196 Gland, Vaud,
Switzerland.

Beebug January/February 1991

PROGRAMMING FUNCTION KEYS

Using the *KEYn command to program the
function keys works well, but I believe these keys
can also be operated in conjunction with Shift,
Ctrl, and even Ctrl-Shift, thus greatly extending
their use. Some time ago I recall that BEEBUG
magazine described how to do this, but I have
searched through all my back copies and can find
no trace.

Can you therefore please refer me to the
appropriate article, or tell me how to program
these keys for use with Shift and Ctrl.

Edmund Jupp

To program the function keys as you describe requires
you to issue an appropriate FX call first:

*FX226,1 Shift + fn
*FX227,1 (505 ofl B O
*FX228,1 Ctrl:+ Shift 4+ En

One article covering this topic with regard to its use
with View appeared in Vol.4 No.10, and this also
contains some information relevant to Wordwise. See
also First Course in Vol.5 No.10.

WORDWISE AND THE NEW MASTER OS

With regard to the article by Derek Gibbons in
BEEBUG Vol.9 No.6, I would like to re-assure
readers that whatever may be the case in View,
the new OS ROM for the Master 128 makes no
difference at all to the use of Ctrl-Shift-fkeys in
Wordwise and Wordwise Plus 2.

It is still possible to include in a function key
definition, codes which have a particular meaning
in Wordwise Plus, and to implement these with
Ctrl-Shift-fkey. Thus, for example, if key 0 is
defined with | [/LM7 !, the use of Ctrl-Shift-f0 in
edit mode will cause the green command LM7 to
be embedded in the text. The sequence | |!
generates code 161, simulating the ‘normal’ f1
(“green’) key press as configured in Wordwise
Plus, and the sequence || generates code 162,
equivalent to a normal ‘f2’ (‘white’). A list of
relevant codes is given in Paul Beverley’s book
The Complete Wordwise Plus.

C.W.Robertson

59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'‘wants’) in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which cannot
be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do this. We
will accept adverts for software, but prospective purchasers should ensure that they always receive original
copies including documentation to avoid any abuse of this facility.

We also accept members' Business Ads at the rate of 40p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 15th of each month.

Master 65C102 Turbo board with
manual and support disc, £55.
Acornseft BCPL ROM with
manual and support disc, boxed
£20. Originals of Elite, Exile,
Holed out, UIM £6 each. Tel.
(0752) 896077.

Master Compact entry system,
twin disc drives with PSU's,
ROM boards, lots of cheap
ROMs, stacks of software,
Citizen printer, Tandy printer,
Joysticks etc. suitable for BBC B.
Send a SAE for list to: 9 The
Acres, Downley, High Wycombe,
Bucks, HP13 5NR. Tel. (0494)
452106.

BEEBUG Magazines Vol. 1 Nos.
8-10, Vol. 2 Nos. 1-8, Vol. 3 Nos.
8-9, Vols. 4 to 7 inclusive, Vol. 8
Nos. 9-10 Vol. 9 Nos. 1-6; £1.20
per issue o.n.o. plus postage (or
buyer collects - Gloucestershire).
Tel. (0242) 677321 after 6pm.

View Professional £35.
Overview £40. ADI ROM £12.
Repton II, Repton III, Citadel,
Barbarian, Play It Again Sam 13,
Graphic Adventure Creator, all
discs at £6. HCR EPROM
programmer including software,
modified for 21/12.5v £20.
Scarab RTTY decoder and
software £30. Tel. (0263 78) 488.

WANTED: StarBASE Database
utilities disc for BBC/Master,
mine got lost in moving house,
can anyone help?

WANTED: Digital Research's
Dos Plus User Guide for Master
512 plus 512 compatible

60

software. FOR SALE: Commstar
II ROM and manual £10. Tel. 081-
684 9340 after 6pm.

Master 128 with manual £270,
dual drives 40/80T switchable
£70, EPROM Programmer £40.
Tel. 021-472 4544 eves.

Disc drive Watford DP35-800S
double 40/80T 5.25" and 3.5"
drives in plinth unit. As new
£100. Tel. (0707) 54311.

BBC Master compact (including
3.5" disc drive and colour
monitor), welcome disc, AMX
mouse (£70 when new), lots of
games and original manuals plus
BASIC manual. Make me an
offer. Tel. 081-995 2400 after
5.50pm, or w/ends.

BBC Issue 7, Watford DFS
40/80T Watford Single Drive.
Microvitec CUB colour monitor.
Interword and Dumpmaster
ROMs. Watford 32k Shadow
RAM board plus lots of disc
based software £350. Tel. 081-207
1679 after 6pm.

Printmaster ROM, Pascal ROM,
2xCP ROMs, 2x NTQ font
extensions, 2x NTQ drivers &
instruction plus 2 discs. Offers
accepted. Tel. (0935) 812 682 eves.

BBC B, Shadow RAM, BASIC 2,
EPROM board and Sideways
RAM, EPROM ZIF Socket, one
owner since mnew £150.
Challenger 3 80T floppy disc
drive with 512k RAM disc, plus
advanced disc investigator £120,
monochrome green screen

monitor, long persistence,
composite and video + sync. £30,
or computer with disc drive and
monitor for £250. Morley teletext
adaptor with ATS ROM £55,
Epson FX80+ printer with serial
port and NLQ, as new, little use
£95, Toshiba P351SX dot matrix
printer, new & unused £400,
BEEBUG cassette tapes Vols. 1-10
to 8-7 £50, Watford NLQ ROM
for Epson £10, Interbase £35,
Interword £30, Clares BROM
Plus £15, Pen Friend 2 £15, Clares
Fontwise Plus and Editor £15,
Clares Graphdisk £5, Gemini
Database + Beebcalc Spreadsheet
+ Beebplot £7, Psion Vufile +
Vucalc £5, Design 7 Screen
Designer £5, Genius Serial Mouse
for IBM PC £15. Tel. (0276) 35228.

BBC B issue 7, 40/80T disc drive,
Toolkit ROM, joysticks, over 60
disc and tape games inc. Repton,
Mini Office II, Elite, Revs, White
Knight etc. Micro User from Feb
'84 inc. disc, BEEBUG from July '82
Offers to: Mr P Fuller, 110 Lydgate,
Burnley, Lancs, BB10 2DU.

BBC B 1.2 with Wordwise Plus,
40/80T disc drive, various games
and ed. programmes on tape and
disc, computer tape recorder and
all leads, software books,
monitor (colour) & joystick, all
for £375. Tel. 081-883 3271.

2nd Processor 6502 with DNFS
and HiBasic ROMs with
instruction manual £50, also
solderless Sideways ROM socket
board £25. Tel. 081-876 4367.

Model B issue 7, software &
books £125, Watford 13 ROM

Beebug January/February 1991

R (TS DPU= D B = L e -

board inc 16k SWR £15, PMS B2P
6502 2nd Processor inc HIBasic &
HIWW+ great for WP £45,
Replay for Watford Mk1 DDFS
£15, Cumana 40/80 drive with
PSU, hardly used £50, Prism
modem £15, Viglen PC' case for
model B £10, Cumana Touchpad
£7.50. Tel. (0707) 276761 (home)
or 081-441 6951 (day).

Archimedes A310, colour
monitor and various software,
excellent condition £500. Tel.
(0256) 782619 eves.

BBC B issue 7, Acorn DFS,
Acorn single drive, Wordwise
Plus and Word Ex, Scythe
manager plus lots of other
software £210 or any sensible
offer. Will deliver reasonable
distance (Bury St Edmunds). Tel.
(0359) 70942.

FOR SALE: Individually or as
job lot:- BBC B issue 7, PC type
Watford cabinet complete with
Integra B RAM/ROM expansion
board with Gem mouse &
software (Equates to Master), ZIF
socket, cooling fan, twin double
sided 40/80 Opus disc drives,
c/w ADFS, DNFS & Advanced
DFS ROMs £335. Solidisk DFDC
inc 8271 £40, Cumana 20Mb
model CAB20 hard disc £350,
cased Acorn 512k co-processor
£100, with full Gem software and
mouse. ROMs:- Hyperdriver £25,
CP-ROM £25, Word-Ex £20,
Printmaster £10, Wordwise Plus
I £20, Spellmaster £25, Pen
Friend £15, Genie-in-Box £45,
ADE £10, ADI £10, AMX Stop
Press £30, Acorn Teletext
Adaptor c/w ATS+ ROM £35,
Miracle WS2000 modem &
Commstar II ROM £60, autodial
card. Marconi trackerball £30,
MEP Bar code reader project £35,
Acorn CP/M 2nd processor with
Acorn software and manuals £55,
Acorn Data Recorder £15,
joysticks and games inc. Elite
£15, Diagnostics ‘disc £12.
Package price £800 including
manuals and books. Upgrading
to a PC and need shelf space! Tel.

(0273) 729506 (eves) or (0273)
200817 (days).

Viglen dual disc drive PSU £20,
Vine Micros Replay (for Watford
DDFS) £20, Watford File-Plus
database, boxed with manual
and utilities disc £10, BEEBUG
Basic Toolkit ROM & manual
£10, Watford DFS ROM £10. All
originals. Tel. (0727) 30264.

BBC B with Acorn DFS and 1.2
OS & Basic II +2 Acorn joysticks,
Floppy-wise-Plus ROM £120
o.n.0o. New Aries B12 ROM board
unused with ROMs Sleuth,
Toolkit and Dump Out 3
complete with instructions and
manuals £30, Seikosha printer
GP100A complete with manual &
ribbon connector £40 o.n.o. Tel.
(074) 488 2643.

ATPL ROM board £10, Watford
32k RAM board £15, Z80 second
processor £40, Hybrid Music 500,
Island Music System & other
music software £50. Tel. (0245)
468707.

Master 128 with 512 co-
processor, mouse and Gem
software, 40/80T double disc
drive, colour monitor, Taxan
printer, Master ROM, Wordwise
Plus, Master File, Spellcheck III,
Wordease, Fontaid, all manuals
and heaps of other software. For
quick sale only £575. Tel. (0442)
862484.

Cumana 40T DS drive with PSU
£30. Interbase £35. Tel. (0525)
715013 after 6pm or weekends.

Single 40/80 DS 5.25" disc drive
less PSU-Watford £50, View
Printer Driver Generator disc
and manual-Acorn £3. Tel. (0227)
711138.

BEEBUG DiscMaster £7, Print
Wise £8, Hershey Characters £8,
(80T) CC Speech ROM £9,
Watford Dumpout III ROM £9,
14 assorted MU 80T discs (inc.
Mini Office and classic games)
£6. HCR External ROM/RAM

Beebug January/February 1991

system, self powered, holds up to
24 ROMs or 32k RAM (cost £87)
£20 o.n.o. plus postage. Canon
PW1080-A printer as new with
cable (cost £270) £90 plus
carriage. Tel. (0275) 462979.

WANTED: Brother 9-pin printer.
Tel. (0730) 816786.

All boxed with original
manuals, Watford 32k RAM
board £20, ATPL ROM board
with battery backup £20, STL
RTC £15, Cheetah Speech Synth
£5, STL. DDES!8271./1770 £20,
Basic Extensions ROM £10,
ROMIT £10, Iconmaster £10,
ROMmanager (WE) £5, or £100
the lot. Tel. (0332) 662955.

BBC B issue 4 OS 1.2, Basic 2,
Watford DFS, Teac 40T disc drive,
ROM board, ROM programmmer,
Voltmace 14B joystick, approx 160
good games around 20 bought
recently, also handbooks, around
30 MU magazines and almost a
complete set of BEEBUG
magazines £230 the lot. Tel. 081-
894 2926.

Kaga Taxan Super Vision 625 hi.
res. colour monitor £195,
excellent condition. Also Holed
Out golf game on 5.25" disc £6,
Advanced User Guide £5, Kaga
KP810 printer still on 1st ribbon
£95. Tel. (0268) 693770 eves.

Master series reference manuals
parts 1&2, as new £18. Tel. (0442)
64003.

WANTED: Hobbit on disc for
M128. Tel. (0628) 482623.

BBC B issue 7 OS 1.2, Watford
DDFS dual 40/80T double sided
Cumana PSU drive, 14" med. res.
colour TV/monitor, 2Mb 128k
SWR Shadow RAM, teletext
adaptor, Watford ZIF, joystick,
EPROM programmer and eraser
and blank EPROMs, ISO-Pascal,
BCPL, ROMIT, and various disc
games (including Exile, Lancelot,
Enthar Seven and others) £600
the lot (may split) Tel. (0473)
748300 eves.

61

Send applications for membership renewals, me rders 10
address Delow. Al membership fees, including erseas, Sho S
cheques) ona UK bank. Mermbers may also subscrioe 10 RISC User ata special reduced rate
BEEBUG SUBSCRIPTION RATES BEEBUG & RISC USER
£18.40 1 year (10 issues) UK, BFPO, chl £27.50
£27.50 t Europe & Eire £41.50
£33.50 Middie East £50.50
£36.50 mericas & Africa £55.50
£39.50 Elsewhere £59.50
BACK \SSUE PRICES (pef issue)
= All overseas jtems areé sent
35"Disc | aimal We will accept official UK
5 1.20 g4, £4.50 orders for sU cripti back
£1.30 £4.75 £4.75 issues, but 1o that there
£1.30 475 ¢A.75 will be a £1 handling chargé for
d £4.75 rders und which requiré
an invoice. that there is no

B UG
117 Hatfield Road,
ns (0727) 403

INE is p\'odueed by BEEBUG Ltd.

Editor: Mike Williams
Kristina Lucas

Assistant Editor:
Technical Editor: Alan Wrigley
in Clements

Technical Assistant: Gly
ion Assistant: Shella Stoneman

Production

Adventising: Garah Shrive
Sheridan Williams

Managing Editor:
o part of this pub\'\caﬂon may be
ission of the Publisher.

All rights reserved. N
4 without prior written permis
icher cannot ac responsibilt whatsoever
for errors in articles, s, isements pub\'\shed.
The opinions € ed on the pages of this 'gouma\ are
hors and do not necessarily represent those

those of the aut!
of the publisher, BEEBUG Limited.

£4.75

Desl\nat\on

UK, BFPO + chl
Europe + Eie £1

d, St.Albans, Herts AL1 4JS
03, FAX: (0727 860263

VAT in magazines-

orders and subscr\pﬂons)

S AND

BEEBUG PROGRAM

seeking good quality articles and
cation in BEEBUG. Al contributions
, but please i

membership number.
BEEBUG

Printed by Arlon Printers (0923)

JOHN

f JanuarylFebruary 1991 g
THE BOTTLED eas €O
D\SC CONTENTS 12 FREDERICK PARK IND. EST.
! GRAVESHAM
| highlight keyword &E%\%ESEND ME22 6RT
| _ you can highllg any keywo
| yiithin a text with this program and display further notes E‘é‘;‘ég?‘;%% Nmmésezzz
rolated to this word. A demonstration textfile is provided.
- a useful
program for BEEB owners with limted RAM, which provides
a series of st&f commands 0n disc for controlling printer i
styles and setings: ind ‘another "
- display of print 2 calendar
month by month for any year atter 1753 up 10 the year S000-
3 useful utiity which allows you
1o structure Basic programs and offers features ke
indentation of statements, spitiing multi-statement ines and
displaying hex codes of non-printable characters.
- ashort function which
increases the avg'\\ab\e program memory by sacrficing a 1ew _JUSTICE=
screen fines I high resolution screen modes. With software, most of the ripofts occur in the
. ho can program the fastest. On average, il
. use this program 0 @ s
and simple 1€ L messages of inary \:;v:gehad the original idea was not the persol
files (programs, data etc)- :
- a program for formatting PC
compatiole discs on @ BBC micro.
_ the complete database for storing
telephone numbers,names and addresses, and 2
compaction routine for compressing the data file.
. a short program
demonstrating file copying within Assembler.
i’ the last three Wilities from
this series, which introduce a function key editor and @ Basic
line editor, and a complete ROM image including some
additional features.
- bibliography for this issue (Vol9 No.8).

AL \TEM)

pDITION
e same prices.

FOR £4.75 (5.25" 835" pIsC) a0p FOR EACH A
(5.25“ disc since vol.3 No.1, 3 i Vol.5 No.1) available atth
pisC (5.25" or 35" SUBSCR\PﬂON RATES O\IERSEAS
6 months () issues) . £30.00
0 issues) 6.00 4
Prices aré inclu ostage as applicable. sterling only ple

ALL THIS

Back issues
ase-

12 months \

~ period only while smcks

:péc1al Offers to BEEBUG Members Jan/Feb 1991 |

kk C'ode Product Members Pnce inc.VAT

BEEBUG'S OWN SOFTWARE

Code Product Members Price inc.VAT

1407a
1408a
1404a
| 1409a

| 1411a
1412a
1421b
1600a
1405a
1413a
1450a
1451a
1452a
0005b
0006b
0011a
0010a

ASTAADS - 5° Disc (DFS) 5.95
ASTAAD3 - 3.5" Disc (ADFS) 5.95
Beebug Applics | - 5* Disc 4.00
Beebug Applics | - 3.5'Disc 4.00
Beebug Applics Il - 5* Disc 4.00
Beebug Applics Il - 3.5" Disc 4.00
Beebug Binder 420
Beebug magazine disc 475
Beebug Utilities - 5* Disc 4.00
Beebug Utilities - 3.5" Disc 4.00
EdiKit 40/80 Track 5.75
EdiKit EPROM 775
EdiKit 3.5° 575
Magscan Vol.1 - 8 40 Track 12.50
Magscan Vol.1 - 8 80 Track 12.50
Magscan Update 40 track 475
Magscan Update 80 track 4.75

Please add p&p. UK :a-60p. b - £1.50, ¢ -£2.50,

PAGI

PAG2
PBG1

PBG2

0077b
0081c
0024c
0025¢
0085¢
0086c
0009c
0074c
0075¢
0084c
0073c
0053¢c

Arcade Games (5.25" 40/80T) 595
Arcade Games (3.5") 5.95
Board Games (5.25" 40/80T) 5.95
Board Games (3.5% 595
C - Stand Alone Generator 14.25
Masterfile ADFSM128 80 T 16.50
Masterfile DFS40T 16.50
Masterfile DFS80T 16.50
Printwise 40 Track 22.50
Printwise 80 Track 22.50
Studio 8 16.50
Beebug C 40 Track 4425
Beebug C 80 Track 4425
Command 2925
Command(Hayes compatible) 29.25
Dumpmaster Il 2325
0004c Exmonll 24.00
0087c Master ROM 29.25
Europe: a-£1.00, b - £1.50, ¢ -£9.30

OTHER MEMBERS OFFERS

FORTH

Dueto a popular demand
we are extending the offers
from last month. The
products listed below wilkl ;
be available for a limited

LISP

are avaxlable

RRP £20.00 (inc VAT)

Offer price £2.99 (inc VAT) + £0.60 p&p
The fundamental LISP language on ROM
(no manual).

Stock code 1003a

RRP £20.00 (inc VAT)
Offer price £2.99 (inc VAT) + £0.60 p&p

A complete implementation of the FORTH
language on ROM (no manual).

Stock code 1041a

View 3 ROM

Normal Members price £51.75 (inc VAT)
Offer price £12.56 (inc VAT) + £2.50 p&p

The enhanced version of the excellent View
wordprocessor from Acorn. Supplied with
manual keystrip and printer driver generator on disc or
tape. Many features over the original version of View.

Stock code 1022¢

ViewSpell
Normal Members price £28.75 (inc VAT)
Offer price £7.00 (inc VAT) +£1.50 p&p

The automatic spelling checker with a built-in 75
000 word dictionary. Supplied on ROM with full
manual, examples disc and reference card. Ideal for
View or ASCII text files, and can use updateable
user dictionaries.

Stock code 1043b

ViewSheet

Normal Members price £42.49 (inc VA;I')
Offer price £12.50 (inc VAT) + £1.50 p&p

Acorn's excellent spreadsheet for the BBC micro
and Master, supplied on a 16K ROM. A very
powerful and extremely useable product which
will produce results ready to print or for direct
merging into View text files.

Stock code 1001b

ViewStore

Normal Members price £42.49 (inc VAT)
Offer price £13.80 (inc VAT) +£1.50 p&p

ViewStore is Acorn's database manager program. It
offers 40 and 80 column display, multiple indexes,
detailed report generation, variable field lengths and
much, much more. Excellent value for money.

Stock code 1019b

