

cEATURES

6
Spinning ext :

\rg\t'\a\'\s'mg M Images . i

REEBUG uwey:Datgba e

ADFS DisC Sector Editor :

Control Codes in \nterWor =
and \nterShegt - e
inpointing a Ua _

‘ggg\sp'\cuous Consumption 5

: | 35
Vﬁl‘z)?‘:tshlp: Searching (Part 2)
Mf\nt;\l)\:ch'\ne Code Monttor (Part2) 38

{ Course: 0
F“Snderstand'mg Data Files
Practical ste)ne\b\ -

PROGRAM INFORMATION

All listings published in BEEBUG magazine are
° produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space
following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

RE\I\EW S
Basic Music Composition
REGULAR ITEMS :
Editor's Jottings

News
RISC User

53

personal AdS

Postbag Lo
Hints and 1P
gubscriptions g Back Issues

Magazine Disc/Cassette

Printing a'%' SIg"
gSimple Sprites

difference between the digit one and a lower case 1

(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the
article on page 44 of BEEBUG Vol.7 No.2 (reprints

e

BlEkE
BEEBU®
BEEBUS
BEEBUC

sopeEEeTE

e

e

SRR

e
2 2SR NBAR
B SERB TS

o)

22
o

AT

pEEBUG

pUB weBl®
BUB o

E% “ﬂ ﬁg i

o
28BS
25 et
T T T A
RS nin
<

Ao
Y

Conspicuous Consumption

EDR sac4d
EOR (b4
8

431
43438,
46341

R 84900

3341C, %
4D09C, R

available on receipt of an A5 SAE), and are strongly
advised to upgrade to Basic IL. Any second processor .
fitted to the computer should be turned off before the
programs are ryn. :

Program will not function on a cassette-
based system.

Where a program requires a certain configuration, !
 this is indicated by symbols at the beginning of the
article (as shown opposite). Any other requirements
arereferred to explicitly in the text of the article. -

Program needs at least one bank of :
1 sideways RAM.

Program is for Master 128 and Compact
g ~ only.

Lditors Jottings

RETAIL GATALOGUE

With this issue of BEEBUG you will find the latest version
of our Retail Catalogue containing details of Acorn related
products. We are producing two additional catalogues,
one on Commodore Amiga products, and one on Business
products including Amstrad PCs PCWs and Fax
machines. Please let us know if you would like to be put
on the mailing list to receive either of these. Associated
with the new catalogue are some fundamental changes to
our policy which we believe will improve the service we
offer.

We recognise that in the past our members’ prices have
sometimes been higher than the discounted prices offered
by some other dealers. Our ability to match or even
improve on such prices is linked to our purchasing power.
From now on a single price will apply to all customers,
which we hope, with your support, will enable us to set
even better prices in the future. Consequently our Retail
Catalogue will just have one price for all products from
now on. However, for your convenience we will be showing
the price both exclusive and inclusive of VAT.

Members will continue to benefit from the discounts that
we have always offered on our own software products.
This applies to magazine products like Edikit and Astaad,
and to software products like BEEBUG C and Masterfile.
Members’ prices on these products will be listed each
month in the magazine.

It is also our intention where possible to offer members
special offers on selected items. These offers will normally
be valid only for one month, i.e. until the next issue of
BEEBUG arrives. Members' prices and any special offers
will feature regularly in the magazine.

TEGHNEAL SUPPORT

We have also taken steps to improve the quality of help
and advice available from our enlarged and restructured
Technical Support team. Jeffrey George is the new

4

manager of this group, and technical advice will be
available from him and team members Graeme Davidson,
Gary Blackwell, Nathan Brown, and Darren Finch.
Secretarial and administrative back-up is provided by
Barbara Oliver.

Robert Barnes, who was previously Technical Manager is
now Sales Manager, and team member Ian MacDougall
has moved to Software Development managed by John
Wallace.

The new Technical Support team will endeavour to
deal with all your enquiries more quickly and more
efficiently than ever before. We will in future,
concentrate on providing in-depth technical advice to
members who have queries with products they have
purchased from us. We will also endeavour to provide
general help and advice so that you may continue to
get the best use from your system. Regrettably, we
cannot continue to provide support on products
purchased from other dealers. Please bear in mind,
that unlike other magazines and organisations, we
make no extra charge for the help and support which
our Technical Support team provides. Our Returns and
Repairs departments have also been supplemented by
extra staff to improve service here.

All the changes described above have been introduced to
ensure that we can continue to provide the best service to
all users of the BBC micro and Master series, and to
BEEBUG members in particular.

BEEBUG OPEN DAY

We shall be holding Open Days this year on Sunday 7th
October and Sunday 25th November, from 10am to 4pm.
This provides the ideal opportunity to see and try out a
wide variety of hardware and software, and there should
be a few bargains to be had as well. Further details are
included with this issue of BEEBUG.

Beebug October 1990

News News News News News News

NEW FLAGSHIP ARCHIMEDES

At the Acorn User Show Acorn announced a new
flagship computer in the Archimedes range. Designated
the A540 the new machine features a completely
redesigned main board with separate plug in processor
board containing the latest ARM3 processor chip,
4MBytes of cache memory, and new FPA (Floating Point
Accelerator) chip for enhanced performance of 13.5
MIPS (millions of instructions per second). The A540
also features high resolution VGA and SVGA graphics
support. With 4MBytes of main memory (expandable to
16MBytes) and 100MByte SCSI hard disc running RISC
05, the new machine costs £2995 plus VAT.

Acorn has also announced an extension to the successful
Learning Curve package in the form of the Archimedes
Learning Curve. This is based on the 2MByte A420
system, complete with all the additional components of
The Learning Curve package (1st Word Plus, Genesis,
etc.) plus Acorn DTP. The Archimedes Learning Curve sells
for £1299 plus VAT, and will be supported by a major
sales campaign throughout the autumn (dealers will be
offering a ‘test flight’ programme, and a competition
with a flight on Concorde as first prize). At the same
time, the A420 system has also been reduced in price to
£1299 plus VAT, and the A440 system now sells for
£1699 plus VAT.

The Archimedes Learning Curve is available now, and the
A540 from the end of September. Contact you dealer
for details. Acorn are at Fulbourn Road, Cherry
Hinton, Cambridge CB1 4]N, tel. (0223) 245200.

HELP FOR MUSIC 5000 LOVERS
JB Software has published a tutorial book for users of
_ Hybrid Technology’s Music 5000 system for the BBC
micro. The writer is John Bartlett, a long-time Music
5000 composer, and author of three highly acclaimed
Music 5000 albums. The book covers the whole
spectrum of users from initial sections for beginners
through to advanced topics such as musical
arrangement and orchestration. Called PLAY - the
performance tutor for the Music 5000, the book costs £15.95
inclusive (or £11.95 for self-printing text files on disc)
from JB Software, 20 Crawley Avenue, Wellingborough,
Northants NN8 3YH, tel. (0933) 675392.

Beebug October 1990

Hybrid Technology has compiled a comprehensive
survey of nearly 60 music software packages for the
BBC micro. The 20 page report is available for £4.30
inc. p&p from Hybrid Technology Ltd, 273 The Science
Park, Cambridge CB4 4WE, tel. (0223) 420360.

MORE SOFTWARE FOR 512 USERS

Essential Software has announced details of its latest
product for the 512 co-processor, the Co-Pro-Filing-
System (CPFS). CPFS is a filing system which sits
alongside the DFS or ADFS and turns the 512 into a
RAM disc which can then be used by the BBC micro
running in native mode. Furthermore, CPFS can take
full advantage of both standard and expanded 512
memory. All standard filing system star commands are
implemented as well as machine code filing system calls
for full compatibility. CPFS will be supplied on EPROM
and is expected to cost £24.95 complete from Essential
Software, PO.Box 5, Groby, Leicester LE6 0ZB.

STAR GAZING

Software house Topologika has released details of a
new set of interactive programs called ASTRO for the
exploration of space via computer. There are seven
graphics programs and a planet database, and several
of the programs focus on specific attainment targets of
the Science National Curriculum. ASTRO is available
in different versions for the BBC micro, Master 128
and Compact, and the Archimedes range, all at £19.95
inc. VAT. For more details and orders contact
Topologika, PO.Box 39, Stilton, Peterborough PE7 3RL,
tel. (0733) 244682.

NEW RESOURCES FOR PRIMARY SCHOOLS

Doncaster based Resource has announced CASS:

Curriculum Analysis Support System initially for the
Primary Curriculum and available on double-sided 80
track disc for the BBC Master system. A classroom pack
costs just £29.95. Resource has also given details of a
new product for Primary Technology called Honeypot

(price to be announced) due for release in October, this
time for the A3000 and Archimedes range of computers.
Further details on both products are available from
Resource, Exeter Road, Wheatley, Doncaster, South
Yorkshire DN2 4PY, tel. (0302) 340331.

5

Spinning Text

by Robert Alcock

INTRODUCTION

Spinning Text is a graphics demonstration
program. It draws, and smoothly rotates in 3D,
any word or short message that you enter.

Animation on the Beeb can often be frustratingly
slow especially when large areas are involved.
Problems can, however, often be overcome by
using various crafty techniques. Spinning Text
shows how effective one particular method of
animation can be.

ENTERING THE PROGRAM

Type the program in carefully, ensuring that all
the line numbers remain unchanged. Special
attention should also be paid to the procedures
PROCass, PROCdecode and FNcompact. Save the
program as ‘SpinTxt’. Before running it, set
PAGE=&1200 (if using a model B). Now load and
run the program.

USING THE PROGRAM

When the program is run you are faced with a
menu offering four options.

Option 1 (Create Screen) allows you to design
your own screen. You are prompted to enter a
message of up to seven characters. Any upper
case letter or ~’,’!I" or space will be accepted. On
pressing return, mode 1 is selected and t” screen
is drawn. This may take up to three minutes
depending upon the text entered. Once
completed the screen is compacted, so the display
will become corrupted for a while. The
compacted screen is then saved in directory ‘S’
using as a file name the word you typed in. For
example, if your message is ‘"HELLO', the screen
is saved as ‘S.HELLO’. The text is quickly
reformed and should begin to spin. Note: ADFS
users should create a sub-directory ‘S’ before
running the program.

Selecting option 2 (Display Screen) loads in a
screen from disc (or wherever) and in. ediately
starts to animate it. There is no need to specify the
directory when asked for the filename, as
directory ‘S’ is assumed.

Once the text is spinning you have control over
its direction. The keys ‘F’ and ‘S’ make the text

6

bt
BlEE L
[BEEBUG

BEEI
L

BEEBUS

BEEBUG
IEEBUG
2l
e
Spinning text BEEBUG'

BEE
BEE
BEE
BIEE

spin faster or slower, and pressing Shift as well
makes the change more quickly. Space makes the
text move either up or down, and Return inverts
the direction of rotation of the text. Pressing
Escape returns you to the menu.

Option three (Set Colours) allows you to change
the colours of any screen that you draw.
However, it does not allow you to alter a screen
that has already been saved to disc.

To leave the program select option four.

You may also execute any star commands from
the menu, but it is not a good idea to try anything
which is likely to corrupt memory e.g. *COPY or
*BACKUP etc.

At any time if you press Escape you will be
returned to the menu. Pressing Shift and Escape
will immediately leave the program.

TECHNICAL NOTES

You may notice, when the program is running,
that the spinning text is drawn in perspective.
This gives a real feeling of depth as the letters
move towards and away from the observer. The
method used to achieve this is surprisingly easy
when you consider each step separately.

The text is created as a 3D model in the yz plane,
with its thickness in the x direction (see fig 1).
Each corner is rotated about point C by
multiplying its co-ordinates by the rotation
matrix, i.e.:

Beebug October 1990

Spinning Text

(x') = (cosA -sinA) { x)

(. zh) (sinA cosA /) (.z)
where x’,y’,z’ are the new and x,y,z are the old co-
ordinates with respect to point C. The y co-

ordinates are unchanged by this rotation.

Once rotated, the 3D co-ordinates must be
transformed so that they lie on the 2D plane
representing the monitor screen. If the object lies
at point x’,y’,z’ in 3D space its position on the
screen will be where the line from that point to
the eye intersects the screen (in the xy plane).

compresses it, thus taking up less space on your
disc. The algorithm is not desperately efficient
although it is fast enough to implement through
Basic. FNcompact is able to reduce a 20K screen
down to between 6K and 10K in about 15
seconds. The function returns the length of the
compacted data. PROCdecode takes about 10
seconds to reconstruct the display.

If you wish to use these compaction procedures in

your own programs you should add one extra

line to each to ensure that there are no variable
clashes.

screen

(Px.py)

2175 LOCAL A%,B%,D%,N%,S%
2265 LOCAL- A%,D%,S%

Also set HIMEM=&2F00 at
the start of the program,
after selecting the 20K mode
you wish to use. This

x axis *

reserves work space for the
compaction routine.

You can now simply call
FNcompact before you save

Figure 1. The 3D text model viewed from above

Using the fact that OAA” and OBB’ (see fig.
2) are similar triangles, the height AA’ can
be expressed as:

AR’ = BB’* OA/OB.
Extending this technique to both x and y
co-ordinates gives:

px=x'*0S/0C and py=y’ *0S/0C
where px and py are the transformed points
on the screen (see fig 1). Using these new
points the entire image can be drawn in
perspective.

Sixteen separate frames in a sequence are
then created. In addition, a method of

your screen and call
PROCdecode after loading
the screen.
image object
i B
A
o

4 o A B
L
screen

animation must be incorporated that is fast
enough to give the appearance of
movement. PROCspin and PROCscreen fulfil this
function. PROCspin detects the key presses and
accordingly alters the step size between each
screen scroll to give the impression of different
movements of the text. PROCscreen calls the
small machine code routine which writes to the
screen start register in the 6845 video controller
chip.

Earlier I mentioned a compaction routine (i.e.
FNcompact). This takes any 20K screen and

Beebug October 1990

Figure 2. A simple perspective transformation

CHARACTER DATA

Each letter allowed by the program was created
on a9 by 16 grid. To define your own additional
characters simply draw out your design on a
suitable grid and enter the co-ordinates of the
outline. A ‘-1’ before the co-ordinates chosen
causes a ‘move’ to that position . A ‘-2’ signifies
the end of the character. Enter your data in the
same format as that already used i.e.:

REM 'character'

DATA xcoordl,ycoordl,xcoord2, etc.

7

’

Spinning Text

with a gap of 10 between each line number.
However, ensure that the very last DATA
statement does remain at the end of all the
character data. As well as entering the data you
must also add your character to the end of the
lists of characters in the INSTR command in lines
1050 and 1160. The program should not be
renumbered in any way because of the use of a
computed RESTORE instruction.

Following these instructions should allow you to
extend to a full character set if required. Memory
limitations will unfortunately make any
extensions for model B users very small, but with
PAGE=&E00 on a Master a considerable number
of additions can be made.

10 REM Program Spinning Text
20 REM Version Bl.2
30 REM Author Robert David Alcock
40 REM BEEBUG October 1990
50 REM Program subject to copyright
60
100 BHIMEM=&2F00
110 ON ERROR GOT0190
120 DIM code 30
130 DIM C%(3),L%(30,1),ST%(3)
140 FOR A%=0TO3:READC% (A%) :NEXT
150 FOR A%=0TO3:READST% (A%) :NEXT
160 PROCmenu
170 END
180 &
190 IF ERR=17 ANDINKEY-1 MODE7:GOT0230
200 IF ERR=17 GOTO 160
210 MODE 7:REPORT:PRINT" at line ";ERL

220 PRINT'"Press SPACE to continue":IF

GET=32 GOT0160

230 END
240

1000 DEF PROCcreate

1010 REPEAT

1020 INPUTTAB(2,14);SPC(30);TAB(2,14)"E
nter Message : -------";TAB(18,14)text$

1030 bad$="":found%=TRUE:L%=LEN (text$)

1040 FOR A%=1 TO L%

1050 IF INSTR("ABCDEFGHIJKLMNOPQRSTUVWX
YZ-! ",MIDS (text$,A%,1))=0 found%=FALSE:
bad$=bad$+MIDS (text$,A%,1)

1060 NEXT

1070 IF found%=FALSE PRINTbad$;" is not

found”; : L$=0:REPEAT:UNTIL GET:VDU13:PRI
NTSPC (20)

1080 UNTIL L%<8 AND L%>0

1090 vDU22,1

1100 FOR A%=0 TO 3:VDU19,A%,C%(A%);0;:N
EXT

1110 first%=1:last%=L%:S5%=1:frame%=0

1120
1130
1140
1150
1160

X%$=320:Y%=-4

FOR A=0 TO PI STEP PI/16
r1=COSA:r2=-SINA:r3=SINA:r4=COSA
FOR B%=first% TO last% STEP S%
1ine%=3000+20*INSTR ("ABCDEFGHIJKLM

NOPQRSTUVWXYZ-! ",MIDS$ (text$,B%,1))

1170
1180
1190
1200
1210
1220

VDU29,X%;Y%;

PROCedge

PROCface

NEXT

frame%=frame%+1

IF frame% MOD 8=0 S%=-S%:temp%=fir

st%:first%=last%:last%=temp%

1230

X%=(X%+640) MOD 1280:Y%=(Y%+576-16

+32* (frame%AND1)) MOD 1024

1240
1250
1260
1270

NEXT

FOR A%=0 TO 3:A%?&3000=C% (A%) :NEXT
L%=FNcompact

OSCLI ("SAVE S."+textS+" 2F00 "+STR

$~(L%))

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

PROCdecode :PROCspin
ENDPROC

DEF PROCedge

GCOLO, 1

RESTOREline%
F%$=0:2%=100+L%*50-B%*100

REPEAT

READz,y

IF z=-1 PROCmove:GOTO1360 ELSE IF

z=-2 L% (F%,0)=9999:G0T01420

1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
K%=5
1590
1600
1610
1620
1630
1640
1650

PROCtransform
PLOT85,px,y:PLOT85,px1,yl
L% (F%,0)=px1:L%(F%,1)=yl
F$=F%+1

UNTIL z=-2

ENDPROC

DEF PROCmove

z=y :READy

PROCtransform
MOVEpX, y :MOVEpx1, y1l

L% (F%,0)=9999

L% (F%+1,0)=px1:L% (F%+1,1)=yl
F%=F%+2

ENDPROC

DEF PROCface

IF frame% MOD 16=0 ENDPROC

GCOLO, 2

REPEAT

IF L% (F%,0)=9999 F%=F%-1:K%=4 ELSE

PLOTK%, L% (F%,0) , L% (F%,1)
F%=F%-1

UNTIL F%<=0

ENDPROC

DEF PROCtransform
z=2%-z*8:y=y*5-40

8

Beebug October 1990

Spinning Text

1660 px=rl*15+r2*z:pxl=rl*-15+r2*z

1670 pz=r3*15+r4*z:pzl=r3*-15+rd*z

1680 scale=600/(pz+800) :scalel=600/ (pzl
+800)

1600 px=scale*px:pxl=scalel*pxl

1700 yl=scalel*y:y=scalel*y

1710 ENDPROC

1720

1730 DEF PROCdisplay

1740 REPEAT

1750 INPUTTAB(2,14);SPC(30);TAB(2,14);"
Enter Filename - "text$

1760 UNTILLEN (text$)<8 AND LEN (text$)>0
1770 VDU22,1

1780 FOR A%=0 TO 3:VDU19,A%,0;0; :NEXT
1790 OSCLI("LOAD S."+text$+" 2F00")
1800 PROCdecode:PROCspin

1810 ENDPROC

1820 :

1830 DEF PROCspin

1840 FOR A%=0 TO 3:VDU19,A%,A%2&3000;0;
:NEXT

1850 !'&3000=0

1860 PROCass

1870 S%=&30A0:B%=0:D%=400

1880 REPEAT

1890 PROCscreen (ST% (B%))

1900 FOR A%=0 TO D% :NEXT

1910 IF INKEY-99 B%=B% EOR 1

1920 IF INKEY-74 B%=B% EOR 2

1930 D%=ABS (D%+((INKEY-1*-4)+1) *10* (INK
EY-68-INKEY-82))

1940 UNTILO

1950 ENDPROC

1960 '«

1970 DEF PROCscreen (0%)

1980 S%=S%+0%

1990 IF S%>=&8000 S%=S5%-&5000

2000 IF S%<&3000 S%=S%+&5000

2010 ?&70=S% MOD 2048 DIV 8

2020 ?&71=S% DIV 2048

2030 CALL code

2040 ENDPROC

2050

2060 DEF PROCass

2070 FOR I%=0 TO 2 STEP 2

2080 P%=code

2090 [OPTI%

2100 LDA#&13:JSR&FFF4

2110 LDA#&D:STA&FEOQQ:LDA&70:STASFEQL
2120 LDA#&C:STA&FEQOQ:LDA&71:STASFE(OL
2130 RTS

2140]NEXT

2150 ENDPROC

2160

2170 DEF FNcompact

2180 A%=&2F02:N%=0

2190 B%=!&3000:'A%=B%:A%=A%+4

2200 FOR S%=&3004 TO &7FFC STEP4:D%=!S%
2210 IF D%=B% AND N%<255 N%=N%+1 ELSE ?

A%=N% :N%=0:! (A%+1) =D%:A%=A%+5:B%=D%

2220 NEXT:?A%=N%

2230 ?&2F00=A%-4:?&2F01=(A%-4) DIV256
2240 =A%+1

2250 ¢

2260 DEF PROCdecode

2270 S%=&7FFC

2280 FOR A%=(!&2F00 AND &FFFF) TO &2F02
STEP-5:D%=!A%

2290 FOR S%=S% TO S%—4*? (A%+4) STEP-4:!
S%=D% : NEXT : NEXT

2300 ENDPROC

2310,

2320 DEF PROCmenu

2330 REPEAT

2340 vDU22,7

2350 PRINTTAB(0,0);CHRS$145; STRINGS (36,C
HR$243)

2360 FOR A%=0 TO 1:PRINTTAB(10,2+A%);CH
R$141;CHRS (131) ;"Spinning Text":NEXT
2370 PRINTTAB(0,5) ;CHR$145; STRINGS (36,C
HR$243)

2380 vpU28,0,24,39,6

2390 PRINTTAB(12,4);"1 ";CHR$134;"Creat
e screen";TAB(12,6);"2 ";CHR$134;"Displa
y screen";TAB(12,8);"3 ";CHR$134;"Set co
lours™;TAB(12,10) ;"4 ";CHR$134;"Quit"
2400 PRINTTAB(2,14);"Enter choice"

2410 REPEAT:K%=GET:UNTIL K%>48 AND K%<5
3 OR K%=42

2420 IF K%=42:VDU42:INPUT""command$:0SC
LI (command$) :PRINT'"Press SPACE to conti
nue" : REPEAT :UNTIL GET:GOT02450

2430 PRINTTAB (0, (K%-49) *2+4) CHRS$136
2440 IF K%=49 PROCcreate ELSE IFK%=50 P
ROCdisplay: ELSE IFK%=51 PROCsetcolour
2450 UNTIL K%=52

2460 ENDPROC

2470 ¢

2480 DEF PROCsetcolour

2490 CLS

2500 PRINTTAB(2,2);"Select colour using
Z and X ,then"'"press return to edit ne
xt colour"

2510 PRINTTAB(17,6);"Default
TAB (17) :"Colour Colour"
2520 PRINTTAB(2,9);"Background ";TAB(14
) ;FNcolour (0) 'TAB(2) ; "Edge Colour";TAB(1
6) ;FNcolour (1) 'TAB(2) "Face Colour";TAB(1
6) ;FNcolour(7)

2530 FOR A%=0TO2:PRINTTAB (27, 9+A%) ;FNco
lour (C% (A%)) :NEXT

2540 REPEAT

2550 FOR A%=0 TO 2

2560 PRINTTAB (0, 9+A%)CHRS$136

2570 REPEAT

2580 K%=GET

2590 IF K%=90 C%(A%)=(C%(A%)+1) MOD 8
2600 IF K%=88 C%(A%)=(C%(A%)+7) MOD 8
2610 PRINTTAB (27, 9+A%) ;FNcolour (C% (A%)

Actual"'

Beebug October 1990

9

Spinning Text

2620 UNTIL K%=13

2630 PRINTTAB (0, 9+A%)" "

2640 NEXT

2650 PRINTTAB(2,14);"Correct (Y/N)":K%=
GET

2660 PRINTTAB(2,14);SPC(20)

2670 UNTIL K%=89

2680 ENDPROC

2690 :

2700 DEF FNcolour (colour)

2710 RESTORE2790

2720 FOR C%=0 TO colour:READcol$:NEXT
2730 col$=col$+STRINGS (7-LEN(col$)," ")
2740 IF colour=0 col$=CHR$135+col$ ELSE
col$=CHRS$ (128+colour) +col$

2750 =col$

21760 :

2770 DATA 0,2, 7,7

2780 DATA&2E40,&2BCO,-&2BC0, -&2E40

2790 DATABlack,Red,Green,Yellow,Blue,Ma
genta,Cyan,White

3000

3010 REMA
3020 DATA-1,
16,006,5,3,9)
6,10,6,8,3,8
3030 REMB
3040 DATA-1,0,0
8.5,9,7,9,3,6,0,0
,4,5,3,3,3, Al
+10,3,10,=2

3050 REMC

3060 DATA-1,0,3,0,13,3,16,6,16,9,13,9,1
1,6,11,6,12,5,13,4,13;3,12,8,4,;4,3,5;,3,6
¢4,6,5,9,5,9,3,6,0,3,0,0,3,-2

3070 REMD

3080 pATA-1,0,0,0,16,6,16,9,13,9,3,6,0,
0,0,+1,3,3,3,13,5,13,6,12,6,4,5,8,3,3,-2
3090 REME

3100 DATA-1,0,0,9,0,9,3,3,3,3,7,8,1,8,1
0,3,10,3,13,9,13,9:76, 0,16,0,0, <2

3110 REMF

3120 paTa-1,0,0,3,0,3,7,8,1,8,10,3,10,3
F13, 0,123,000 6. 0,16.0,0;=2

3130 REMG

3140 DATA-1,0,3,0,13,3,16,6,16,9,13,9,1
1, 6,10,6,12;5,13,4,13,3, 12,3 4.4 3 5.3 6
+4,6,5,5,5,5,8,9,8/9,3,6,0,3,0,0,3,~2
3150 REMH

0,0,11,3,16,6,16,9,11,9,0
0,0,0,-1,

0, i

3, +0,-1,3,8,3,10,4.5,13,
=2

.0,16,6,16,9,13,9,10,7,
101_11313131715171 6! 676
0,3,13,5,13,6,12,6,11,5

3160 DATA-1,0,0,0,16,3,16,3,10,6,10,6,
16,9,16,9,0,6,0,6,7,3,7,3,0,0,0,-2

3170 REMI

3180 para-1,9,0,9,0,9,3,6,3,6,13,9,13,9
.16,0,16,0,13,3,13,3,3,0,3,0,0,-2

3190 REMJ

3200 para-1,0,3,0,6,3,6,3,4,4,3,5,3,6,4
+6,5,6,16,9,16,9,3,6,0,3,0,0,3,-2

3210 REMK

3220 para-1,0,0,0,16,3,16,3,11,6,16,9,1
6,5,8,9,0,6,0,3,5,3,0,0,0,-2

3230 REML

3240 pATA-1,0,0,0,16,3,16,3,3,9,3,9,0,0
o0y 2

3250 REMM

3260 DATA-1,0,0,0,16,3,16,4.5,12,6,16,9
,16,9,0,6,0,6,9,4.5,7,3,9,3,0,0,0,-2
3270 REMN

3280 para-1,0,0,3,0,3,8,6,0,9,0,9,16,6,
16,6,8,3,16,0,16,0,0,-2

3290 REMO

3300 para-1,3,0,0,3,0,13,3,16,6,16,9,13
,9,3,6,0,3,0,-1,8,4,8,12,4,13,5,13,6,12,
6,4,5,3,4,3,3,4,-2

3310 REMP

3320 paATA-1,0,0,0,16,6,16,9,13,9,10,6,7
73,1,3,0,0,0,-1,3,10,3,13,5,13,6,12,6,11
+9,10,3,10,-2

3330 REMQ

3340 DATA-1,3,0,0,3,0,13,3,16,6,16,9,13
v9,3,8,2,9,1,8,0,7,1,6,0,3,0,-1,3,4,3,12
,4,13,5,13,6,12,6,4,5,5,4,4,5,3,4,3,3,4,
=2

3350 REMR

3360 DATA-1,0,0,0,16,6,16,9,13,9,10,6,7
,9,0,6,0,3,1,3,0,0,0,-1,3,10,3,13,5,13,6
:12,6,11,5,10,3,10,-2

3370 REMS

3380 DATA-1,0,0,6,0,9,3,9,7,6,10,4,10,3
,11,3,12,4,13,9,13,9,16,3,16,0,14,0,10,3
7 1,5,7,6,6,6,4,5,3,0,3,0,0,-2

3390 REMT
3400 DATA-1,0,16,9,16,9,13,6,13,6,0,3,0
13,13,0,13,0,16,-2

3410 REMU

3420 DATA-1,0,16,0,3,3,0,6,0,9,3,9,16,6
,16,6,4,5,3,4,3,3,4,3,16,0,16,-2

3430 REMV

3440 DATA-1,0,16,3,0,6,0,9,16,6,16,5,5,
3,16,0,16,~2

3450 REMW

3460 DATA-1,0,16,0
9,16,6,16,6,7,4.5,9
3470 REMX

3480 DATA-1,0,0,3,8,0,16,3,16,4.5,12,6,
16,9,16,6,8,9,0,6,0,4.5,4,3,0,00,-2
3490 REMY

3500 DATA-1,0,16,3,16,4.5,8,6,16,9,16,6
15,6,0,3,0,3,5,0,16,-2

3510 REMZ

3520 DATA-1,0,16,9,16,9,12,3,3,9,3,9,0,
0,0,0,4,6,13,0,13,0,16,-2

3530 REM-

3540 DATA-1,1,9,8,9,8 6,1,6,1,9,-2

3550 REM!

3560 DATA-1,3.16,6,16,6,4,3,4,3,16,-1,3
»0.3,3,6,3,6,0,3.0 -2

3570 REM" "

3580 DATA-1,0,0,-2

3590 REMend

3600 DATA-2 B

.5,4,6,0,9,0,

+0,3,0,4
¢3:/7,3,16,0,16,-2

10

Beebug October 1990

Initialising ROM Images

s

David Holton discusses the problems of loading and initialising ROM images from boot
files, and offers a number of solutions.

The following discussion is based upon my
experiences with a Master 128 and with a B+,
but in principle applies to all machines to
which sideways RAM has been fitted. Note,
too, that on a Master ROM slots 4, 5, 6, and 7
may be referred to as ‘W’, ‘X', “Y’, and ‘Z’ when
loading sideways ROM images.

There have been a number of letters and articles
in various magazines concerning the
initialisation of ROM images. Theoretically, it is
necessary to perform a hard Break to get the
MOS to recognize the presence of ROM images
and to initialise them. Real ROMs are initialised
on power-up, but ROM images in RAM are by
their nature not in memory until after the
power is on. The snag appears when you try to
start up such a program from a !BOOT file. You
can put:

*SRLOAD Rom image 8000 W Q

in the !BOOT file, and Rom_image will load, but
not work. On a Master 128, *ROMS will show
it, but *HELP won’t (incidentally, this is a
handy way of finding out whether a ROM
image is initialised or not). If you perform Ctrl-
Break to initialise the image, you lose anything
else set up by the !BOOT file, such as mode
changes and function key settings. Press Shift-
Break to reboot the !BOOT file, and the ROM
image is loaded again, which de-initialises it.
Back to square one! If only the image were not
de-initialised when loaded a second time, we
could just boot a simple !BOOT file twice,
pressing Ctrl-Break inbetween.

The MOS does two things when initialising a
ROM/RAM image (it can’t tell the difference
between the two, and treats them exactly the
same - from now on, unless explicitly stated, I
shall use the word ROM to mean either). Firstly,
it reads the type-byte from the seventh byte of
each ROM (at &8006), and copies it into a
vector-table in RAM which begins at &2A1 (673
decimal). Each ROM’s type-byte is held at:

Beebug October 1990

[&2A1 + the number of the ROM slot]
During normal running, as opposed to start-up,
the presence of a type-byte in the table tells the
MOS that a ROM is in the slot, and the value of
the byte tells it (mainly) whether or not the
ROM has a language entry-point.

The other thing that happens on initialisation is
that the ROM has a chance to claim any
workspace it may need in RAM. Many ROMs
do not use anything like all the 16K bytes
allocated, and if programmers don’t mind their
programs being restricted to sideways RAM
only, they can use workspace inside the same
16K segment of sideways RAM which contains
the program.

Unfortunately, though, you can’t write to a real
ROM, and so if you want your code to be
capable of being loaded from disc or blown into
an EPROM without any changes, or if you're
writing a commercial ROM, any sideways
program needing workspace must use RAM in
main memory or in RAM elsewhere (e.g.
“hidden RAM”). Programs can be set up to
claim such workspace on initialisation. A ROM
may also need to change one or more vectors in
the main RAM on start up. Still, there are many
programs which do not need to claim
workspace or to redirect vectors, or at least not
on start up.

Now we are getting somewhere. Any ROM
which doesn’t need to claim workspace, or to
redirect vectors, can be initialised merely by
inserting its type-byte into the table at (&2A1 +
slot-number). On a Master, our example
Rom_image will have its type-byte at 677, since
“W” on the Master means “4”, and &2A1 + 4 =
&2AS5, which is 677. The type-byte is usually
either 130 or 194 (see table 2). So, writing:

*BASIC

*SRLOAD Rom image 8000 W Q
2677 = 130 (or 194)

11

Initialising ROM Images

in the !BOOT file will set the whole thing up for
us, provided that Rom_image is the ‘easy’ sort
which doesn’t need to claim workspace. This is
all that the famous “I” parameter on the
Compact does, which is why it only works with
some software. Note, however, that on a B+
“W” indicates 12, not 4, so that the vector
would be at 685 - see table 1.

Slot M 128 Vec.Add. Type B+128
15/&F TERMINAL 688/&2B0 194 Basic
14/&E VIEW 687/ &2AF 194
13/&D ADFS 686/ &2AE 130 SRAMX
12/&C BASIC 685/&2AD 96 SRAMW
11/&B Edit 684 /8&2AC 194
10/&A ViewSheet 683/8&2AB 194

9 DFS 682/ 8&2AA 130

8 Free socket 681/ &2A9

7 SRAMZ 680/ &2A8

6 SRAMY 679/ &2A7

5 SRAMX 678 / &2A6

4 SRAMW 677/ &2A5

3 Cartridge 676 / &2A4

2 Cartridge 675/ &2A3

1 Cartridge 674/ &2A2 SRAM Z

0 Cartridge 673/ &2A1 SRAM Y

Table 1. Slots and vectors on a B+128
& Master 128

How do we know the value of the type-byte?
Load in your ROM image, initialise it by Ctrl-
Break, and peek at the type-byte using the
following routine, which reveals all:

10 FOR slot = 15 TO 0 STEP -1

20 vecadd = slot + 673

30 PRINT ~slot;" ";vecadd;" ";?vecadd
40 NEXT slot

RUN this, then do *ROMS. You now have the
type-byte and vector address of your ROM
image.

How do we know whether a given ROM image
needs to claim workspace or set vectors? The
easy way is to suck it and see! *SRLOAD it,
don’t initialise it by Ctrl-Break, but do so by a
poke as above, and give it a thorough trial. Use
an unwanted back-up of your disc, though! I've
had crashes caused by this that reduce discs to
software-spaghetti.

12

Suppose our ROM is the ‘awkward’ sort which
needs a hard Break. Well, we are now in a
position to write a Basic !BOOT file that will
know, by peeking addresses in the table,
whether there is a ROM initialised in a given
slot. Write, in a boot file:

IF ?677=0 THEN
0SCLI "SRLOAD Awkward ROM 8000 W Q"

You will need to boot the disc twice - the first
time, the ROM image will be loaded but not
initialised. Then press Ctrl-Break. The image is
now initialised, and the contents of address 677
are no longer zero. Boot the disc a second time,
and the image won’t be loaded again, so it will
stay initialised; you’ve also got all your
function key settings, etc intact. It's very quick,
and we’ve only used one file out of the precious
31 which is all that we ADFS-haters get to use.

There’s a bonus here, too. There may be a case
when you don’t always want to use the ROM. I
keep an ‘awkward’ on-screen clock program as
a ROM image on my View discs for my Master.
I load it up as above; if - as normally - I don’t
want the clock, then a normal boot-up loads it,
but doesn’t set it going. If I'm short of time and
need to keep my nose to the grindstone, then
booting twice produces the on-screen clock (as
a similar conditional line in the !BOOT file also
turns it on).

The fact that the ROM identities W,X,Y and Z
correspond to different slots on the B+ and the
Master can also be a minor complication. For
example, my View discs also go into my wife’s
B+128. We need to let the !BOOT file know
which machine it’s in: on the B+, slot 14 is
empty so ?687 gives 0. On the Master, slot 14
has View in it, so ?687 is always 194. My trusty
sideways ROM printer buffer, loaded by the
IBOOT file into “W”, ends up in slot 12 of the
B+ (vector address 685), and slot 4 of the Master
(vector address 677). So: ‘

IF ?687=0 THEN
?685=130 ELSE ?677=130

initialises the right slot on each machine - the
buffer being the ‘easy’ sort of program.

Beebug October 1990

Initialising ROM Images

The on-screen clock, being the ‘awkward’ sort,
needs a proper Ctrl-Break to initialise it. It is
also useless on anything but a Master 128
(which has a built-in real-time clock), so:

IF ?687=194 AND ?680=0 THEN
OSCLI "SRLOAD ROMKLOK 8000 z Q"

loads it only into the Master, slot 7 -

This works on our own two machines; there is
no guarantee that these particular numbers will
do so on any other Beeb - it all depends what
ROMs, Sideways RAM boards and other
ironmongery are fitted - especially to a B or B+.
The principles, however, can always be
implemented.

and only the first time !BOOT is Bit
EXECed, whilst peek 680 is still 0. I
only use the second Ctrl-Break to get it
going when I want it, as described
above. When I do boot it twice,
however, a simple *SRLOAD would
cause my buffer ROM to be loaded
again, too. This would be OK, as the
next line will always re-initialise it, but

O=MNWhLrOO N

Value Meaning

128 ROM has a service-entry point (compulsory).

64 ROM has a language-entry point.
32 ROM has a 2nd processor relocation address.
16 Electron only - soft key expansion.

8 ROMis in Z80 code (for Z80 co-processor).

4 ROM s in other co-processor code.

2 Always set if slot is not empty.

1 Never set.

I might as well save loading time and
wear on my drive by making it, too,
load only the first time:

IF ?677=0 THEN
OSCLI "SRLOAD Buffer 8000 W Q"

All we have to do now is poke the correct byte
of the vector-table to set up the bulffer the first
time round, as above:

IF ?687=0 THEN
2685=130 ELSE ?677=130

Note that this is not conditional on 677 or 685
being “empty” before poking them. It doesn’t
matter - this line takes no significant time to
execute, and to add tests would produce a
ghastly tangle:

IF ?687=0 AND ?685=0 THEN
?685=130 ELSE IF ?677=0 ?677=130

What a mess! Forget it. The complete 'BOOT
file is therefore:

*BASIC
IF ?687=194 AND ?680=0 THEN

0SCLI "SRLOAD ROMKLOK 8000 Z Q"
IF ?677=0 THEN

OSCLI"SRLOAD Buffer 8000 W Q"
IF ?687=0 THEN

?685=130 ELSE ?677=130
*WORD etc etc

Beebug October 1990

Table 2. Type-bytes in bits

Tip one - do NOT use the same filename for
the ROM image file on the disc as any star
command needed to use the image once
installed. For instance, my clock routine is
enabled by *CLOCK. If the file on the disc
were called CLOCK, and if I did *CLOCK
when the image was not initialised or loaded,
the MOS would pass the unrecognised call to
the DFS which would load and try to run the
program in normal RAM space. The result is a
crash; I have therefore named the disc file
ROMKLOK.

Tip two - using such a !BOOT file on a Master
becomes easier still if your machine is
*CONFIGUREd BOOT, as opposed to NO
BOOT. The first time, 'BOOT runs without any
key-press; the second time, the Ctrl-Break also
does the boot-up. I much prefer it anyway.

A “normal” ROM for an unexpanded machine
will have bits 7 and 2 set (128+2=130), and a
“language” ROM will also have bit 6 set
(128+64+2=194). If you set a bank of Sideways
RAM as *SRDATA or *SRROM, a peek will
reveal that only bit 1 is set (the Basic ROM is
unique in having no service-entry point, and bit
1 of its type-byte is also reset. Bits 6 and 5 are
set, giving 64+32=96). B

13

Special Offers to BEEBUG Members

As explained in the Editorial, members will still receive a discount on our own software for the
Archimedes. Below is a list of this software showing members prices inclusive of VAT.

Code Product Members Price inc.VAT Code Product Members Price inc.VAT
1407A ASTAADS - 5" Disc (DFS) 9.95 | 00778 C - Stand Alone Generator 14.25
1408A ASTAAD3 - 3.5" Disc (ADFS) 9.95 | 0088C Masterfile ADFSBBC 40 T 16.50
1404A Beebug Applics | - 5" Disc 5.75 | 0089C Masterfile ADFS BBC 80 T 16.50
1409A Beebug Applics | - 3.5'Disc 575 | 0081C Masterfile ADFSM128 80T 16.50
1411A Beebug Applics Il - 5° Disc 5.75 | 0024C Masterfile DFS40T 16.50
1412A Beebug Applics Il - 3.5" Disc 575 | 0025C Masterfile DFS 80T 16.50
1421B Beebug Binder 3.99 | 0085C Printwise 40 Track 22.50
1600A Beebug magazine disc 4.75 | 0086C Printwise 80 Track 22.50
1405A Beebug Utilities - 5" Disc 5.75 | 0009C Studio 8 16.50
1413A Beebug Utilities - 3.5" Disc 5.75

1450A EdiKit 40/80 Track 5.75 | 0074C Beebug C 40 Track 4425
1451A EdiKit EPROM 7.75 | 0075C Beebug C 80 Track 4425
1452A EdiKit 3.5" 5.75 | 0084C Command 29.25
0005B Magscan Vol.1- 8 40 Track 12.50 | 0073C Command(Hayes compatible) 29.25
0006B Magscan Vol.1 - 8 80 Track 1250 | 0053C Dumpmaster Il 2326
0011A Magscan Update 40 track 475 | 0004C Exmon i 24.00
0010A Magscan Update 80 track 475 | 0087C Master ROM 29.25

OTHER MEMBERS OFFERS

Wherever possible we will attempt to include details here of items upon which we have
negotiated a special deal. These offers will only be for a limited period while stocks are available.
This month these are:

C Programming Language Computer Concepts Mega 3
& Stand Alone Generator
Normal Members price £87.40 (inc VAT)

Normal Members price £58.50 (inc VAT) Offer price £58.65 (inc VAT)

Ul viprios £39 Gnc van A complete Wordprocessor/Spreadsheet/

The complete Beebug C Programming Graphics Package incorporating the well known
Language conforming to the Kernighan and Inter-Word, Inter-Sheet and Inter-Chart.
Ritchie standards including the Stand Alone stock Code 1119D
Generator.

Stock code 0082C - 40 track

Stock code 0083C - 80 track Play it Again Sam 13

Normal Members price £11.35 (inc VAT)

Offer price £7.25 (inc VAT)

Incorporating the following games:

5 Games for the Master Compact
Normal Members price £58.50 (inc VAT)

Barbarian II
inc VA’
Offer price £5 (inc VAT) Ssperbull
A collection of 5 quality games, well known titles, for Percy Penguin
the Master Compact on 3.5" disc. Pandemonium

Stock code 1045D Stock code 1092B

BEEBUG Survey
Databases

This is the second of our surveys, and has been
compiled in the same vein as the survey of
word processors in Vol. 9 Nos. 3 & 4. Once
again, authors who are familiar with one of the
major packages available for the BBC micro
have been invited to describe its main features
and explain why they like to use it.

Over the years there has been a large number of
databases marketed for the Beeb. Some have
fallen by the wayside, but a few have soldiered
on, and like word processors, each has its own
dedicated band of followers. In this issue we
will look at Viewstore, Masterfile and System

Delta, while next month Interbase and Betabase
will fall under the spotlight.

One point to bear in mind when choosing a
database is to consider whether the data can be
exported in a standard format recognisable by
other databases - CSV (comma separated
values) format is the most common. If not, you
may find you are locked in to a particular
database, particularly if you have a large
amount of valuable data stored.

All the databases covered in this issue are available
from BEEBUG. All prices quoted are BEEBUG
retail prices and include VAT.

ViewStore
Peter Rochford describes Acornsoft’s powerful package.

| ViewStore (Acornsoft) £42.49 i

Way back in BEEBUG Vol.4 No.6 I wrote a
somewhat enthusiastic review of Acorn’s
ViewStore ROM-based database. At that time
there were a number of database packages
already around, most of which I had used to a
greater or lesser extent. But with the arrival of
ViewStore, here was a totally new concept in
database software for the BBC micro, unlike
anything else and vastly more powerful.

ViewStore was written by Mark Colton, who
was responsible for the rest of the View family
of ROM-based productivity software. It shares
the same ‘command’ and ‘edit’ modes that are a
feature of all these packages, and has the same
general look and feel. It works with all the BBC
filing systems and can operate in any of the
Beeb’s screen modes. Along with this, it enjoys
the ability to work with shadow RAM and can
take advantage of a second processor to allow
more memory and an extra turn of speed.
Among the features that set ViewStore apart are
its amazing maximum capacities in terms of file
size (4096 megabytes!), record size (60K),
number of fields (254) and field size (239).
Couple all of this with the ability to display

Beebug October 1990

records in both a spreadsheet-type format and
the usual card index layout, and you can see
why ViewStore is such a potent and flexible
piece of software.

This spreadsheet-type display, whereby you can
show up to 27 records on screen at once, is one
of the most appealing features of ViewStore. It
is particularly useful for stock control
applications, where it is an advantage to be able
to view a large number of stock item records at
any one time.

When you set up a database in ViewStore, two
main files are created. These are the data file
and the format file; the latter contains
information on the screen layout. The
advantage of this is that you can have as many
format files as you like coupled with one data
file, allowing great flexibility. Besides these
files, a ViewStore database will usually
encompass index files as well, for the purpose
of searching and sorting on certain fields. You
can have up to nine automatically updated
indexes and as many manually updated
indexes as you require. However, the more auto
indexes you have running, the slower the
operation of the database becomes. Indeed,
with large databases, it can all become quite

15

BEEBUG Survey - Databases

painfully slow. Even slower is the rebuilding of
manually updated indexes, which with a large
database can be a dreadfully drawn out affair. I
have on occasion re-indexed a large database
and decided to pop out to the shops whilst the
software was getting on with it!

With many database packages, once you have
set up the layout along with the number of
records and field sizes etc, you are stuck with it
for good. However, ViewStore has a disc-based
utility called Convert which enables you to
change the size of the database and the fields it
uses. You can then create a new format file to
go with it containing a new layout structure.
This can also be done with a utility called
Select which creates subsets of a data file on
which other operations can be performed.
These subsets can in fact be converted into
separate data files for the creation of new
databases based on the original.

Other disc-based utilities provided with the
package are Label for creating labels, Link for
linking numeric data from a file which can then
be imported into Viewsheet, and Report for
creating complex reports from data files.

For personal use, ViewStore has remained to
this day my only database package. Even now, I
use it on the Archimedes under the emulator
for all my database needs. On the Arc it runs
pretty well at the same speed as on my Master,
except when indexing, which on the Arc is
blindingly fast. I have two main uses for a
database. Firstly I keep records of my friends,
acquaintances and business contacts in one
enormous file. My second use is keeping track
of my LP collection which exceeds 1200 albums.
I also keep records of photographic slides and
my collection of video recordings.

I have developed a love-hate relationship with
ViewStore over the years. Sometimes it
frustrates me because of its slowness. This is
even more noticeable now I have an Arc, on
which everything seems to happen
instantaneously! Also, certain operations with
ViewStore can be so long-winded to achieve,
and involve typing in so many commands. This
is particularly true when you are creating
subsets. It can make you really angry when you

16

get half way through typing in the fields you
want to work on and then forget the name of
one of them. You have to list them and then
start all over again! Report generation, too, can
be real fun. Things don’t always turn out as you
intended and I have had some real hair-tearing
experiences with this particular activity.

L Space 22
Manufacturer

Indexed by entr
Hi-en cars: Specitication and price |

.......... Tup.Drs.Extras.,Cap.Bo
a 2861 LSECR 2792 14

RRRoRaRoRoRsoRsRs RoRohs i i s w @il

SN B e s 3 S I SO O OO I R ES S e

9
9
9
4
4
[}
8
19

Vauxhall Cavaller 3L
Vauxhall Cavalier 1.36L

ViewStore's spreadsheet - type display

H
]
$
$
E
E
E
E
E
E
E
E
E
 §
§
H
H
§
$
S
H
H
H
H
$
§
§

ViewStore is the not the friendliest of packages
to work with. Some people I have spoken to
have commented that they find it downright
intimidating. This I believe is due to the
package relying heavily on typed-in commands
rather than offering a menu-driven system of
operation. This is highlighted if you do not use
the package regularly as you will easily forget
the commands, and need to refer to the manual.
And talking of the manual, this is the biggest
criticism I have of ViewStore. In short, it is
pretty awful. Everything is probably in there, as
they say, but it isn’t all that easy to get at and
understand. You might well say that a lot is left
to the imagination! Some independent guides
to the package have been written and these are
a definite advantage, particularly to novice
users.

Yet despite all these niggles and shortcomings, I
still continue to use ViewStore for my needs. The
main attraction I believe is that of the spreadsheet
type layout. Having got used to that facility, I
can’t imagine using a database without it. It is
certainly still the most powerful database on the
Beeb but definitely not the most friendly.
Nevertheless, until someone produces something
better for the Arc, I will stick with it.

Beebug October 1990

BEEBUG Survey - Databases

Masterfile

Bernard Hill explains why he uses BEEBUG's Masterfile.

Masterfile (BEEBUG) £22.00 all versions .

I'm not sure how long I've been using Masterfile,
certainly since my Cassette days (ugh!) and
Masterfile I. Masterfile is now in version II and
naturally is compatible with the Master, with an
ADFS version available. The surprise when
examining the Masterfile package is that it is
written entirely in Basic and this may reflect its
ancient origins. But this in no way detracts from
the use of the package, and in fact gives benefits
(besides cost) which would not be available in a
ROM-based package - more of this later.

But perhaps I had better begin by saying what
Masterfile is and is not, and I would add that all
my comments explicitly relate to the disc versions.

t down=end
=edit, Ins, Erase
alc. COMMAND?

record: ¢=bck +=fwd
Field number, All,
Find, Dump, Rec,

Displaying a record in Masterfile
(model B version)
The manual claims that Masterfile is a general
purpose file management program. I would
add that it only handles what are known in
database terminology as ‘flat-file’ applications.
In other words it does not easily handle
databases which are multi-file and in which one
file may cross-reference another, such as an
invoice file containing a customer number
which must then be looked up in another file to
find the customer address. Masterfile does not
preclude you writing this sort of add-on
application for yourself, however, as all the
data structures used in the database are
documented in the manual. There is even a

Beebug October 1990

sample program to enable you to read database
items from Basic. From here, it’s only a small
step to the production of graphics programs for
displaying data in pie charts or other formats,
but you will have to write them yourself as
there is no graphics support in Masterfile.

However, even if you have no intention of
writing your own routines the package is a very
powerful database tool at an extremely
reasonable cost, and has handled all my
personal database needs for the last six years.

Having specified a Database Name after
booting up Masterfile, this will be used as the
filename of the principal data file. Other files
such as index, descriptor and form design files
which are associated with the same database
will have the same name but reside in other
directories. As an example, a sample database
called PEOPLE is provided with the package,
and files with the same name exist in directories
D,E,EG and 9. (There are slight differences here
in the ADFS version but the principle is the
same, and instructions are included for using
the package with a hard disc). On the DFS
version the seven Basic programs which drive
the package also reside in the root directory,
making a disc catalogue look unnecessarily
busy. However if you take the advice of the
manual and copy the program files to an empty
disc then you can use one disc per database,
and with double-sided drives you have the
opportunity to use the lower surface for a back-
up copy of the data. But it's equally easy to use
drive 1 for the database and leave the programs
on drive 0, giving maximum disc space
allocation for your database.

Incidentally, writing the package in Basic has
brought another benefit for the user. The
manual gives full details of how to customise
the loading program so that you automatically
load up a database and set other options after
booting, making the one-database-per-disc
concept even more attractive.

Having defined a name, the next action is to
define the record structure. Up to 18 fields are

17

BEEBUG Survey - Databases

allowed, and can be of type String, Integer, Date,
and Floating-point or Fixed-point real numbers.
In actual fact all fields are stored in the database
as strings (though you may change the field
type later) and this may lead to a waste of disc
space, but a DFS disc will still hold a couple of
thousand 80-byte records which should really
be plenty for a package of this type. Although
stored as strings, all validity checking and
conversions for sorting purposes are handled
invisibly, though the Date-type records are a
little inflexible, e.g. for “1 February 1990” you
must use “010290”. The program will merely
swap this internally for “900201” in order to get
the sorting order correct. More complex forms
such as “01 Feb 90” are not allowed in Date
fields, and you can’t do date subtractions to find
days between dates.

Having defined our database field structure, we
need to clear space for the data to prevent the
dreaded Can’t Extend error from occurring. This
is a simple process and requires only a
projected record count to be given; you can
always clear more later.

Now we are ready to enter the data. The screen
display shows one record per screen, with field
names and lengths as defined previously. You
can use the cursor keys to access the next,
previous, first and last records, and options are
given to jump to a given record number, to edit
or amend fields, to dump the current record to
printer, or to search for a record. This screen
thus forms the principal view of the file and is
ideally structured for browsing.

Other options available at the main menu are
related to printing, searching and sorting and
global file changes. Besides the expected field
deletion/addition this last option has some
impressive features. Using Basic syntax you
could, for example fill a ‘total value’ field across
the whole database with the product of ‘price’
and ‘quantity’ fields. Or you could fill a 'VAT’
field with 15% of the ‘value’ field, or even
produce a field which holds the cumulative
value to date.

The searching and sorting options are fairly
comprehensive. It is possible to sort all or part of
the file on any field or combination of fields in
any combination of ascending or descending

18

orders. Sorts can be actual record movements
(very slow) or by index files (called tags in this
package). A nice feature of the searching options
is a ‘fuzzy’ search which looks for a sub-string in
the records. You could extract, print or view all
the people in the supplied PEOPLE database
who have the title “Dr.” and live in a “Lane”.

Examination of the print options impresses even
more. Apart from the tabular (horizontal) and
vertical printing of any selection of fields, there is
the ability to print labels and a very impressive
Form Design option, where a page-per-record
output format can be defined. The Form
Description Language is rather cumbersome and
a long way from WYSIWYG but it is very
powerful, even allowing calculations - using any
Basic expressions you care to define - which
could cut down the size of the database. No need
for a separate VAT field if you can calculate it in
the form design just for printing! It can even
handle conditionals so that in a mail shot “Sir” or
“Madam” can be printed depending on the value
of a ‘sex’ field in the database.

Another useful feature of Masterfile is the
ability to export data in any format you specify.
This means, for example, that if you change
your computer you are not condemned to
losing all the data you have painstakingly
stored over the years.

But in any database package speed is an
important factor. A fact of life with the Beeb’s
filing systems is the miserable speed of PRINT#
and BPUT#, and Masterfile cannot overcome
this. Sadly it makes no effort to save data in any
other way, but the general impression in terms
of speed is that the package is adequate, but
only just so. If you want to sort 2000 records, do
it with an index file and wait at least 10 minutes.

In spite of this however, in conclusion I would
like to say that I have remained very happy
with my Masterfile package, implementing
dozens of databases from Christmas card lists to
correspondence chess pairings, saving me hours
of work when printing address labels and
standard letters. Very good value for money.

An Archimedes version of Masterfile is available,
and existing users can upgrade at a cost of £10.

Beebug October 1990

BEEBUG Survey - Databases

System Delta

Graham Stanley looks at Minerva's System Delta.

System Delta (Minerva) £61.70
System Delta Reference Guide £18.95

In the past six years or so there have been a
number of databases released for the BBC
Micro and Master 128, ranging from the very
basic type to the more sophisticated.

There is a multitude of different uses for a database.
Businesses large and small, professionals such
as doctors and dentists, even just clubs keep
records of all kinds. For example, I know of a
Newsagent who keeps details of his paper
rounds and customers’ addresses on a database.
And at home too, you may want to catalogue
your video collection or keep a file on friends
and other contacts. So a database is potentially
a very serious piece of software indeed.

X=016 All Cards F005=Tel
¥=005 C0027

Name B. F. Fossett
Road 19 Shogun Terrace
Town Wakefield

Count: West Yorkshire

Telephone 0924 714231

Birthdate 18,0345
13500.00

Age 45
Salary

<CTRL>-Z for Info

A card displayed in System Delta

I myself pushed the boat out and went for
System Delta from Minerva which seems to
cover all my needs. Why? Mainly because I
needed a database with many options that
could be used according to my specific criteria,
and give me the flexibility I wanted.

The System Delta software is supplied as a
ROM and a 5.25” floppy disc. Documentation
consists of a spiral bound A5 manual which has
84 pages (with index). Once the ROM has been
installed you can then insert the disc and boot
it, whereupon you will be presented with a title
screen which has a number of options.

Beebug October 1990

Selecting B leads to a further multi-option
menu screen, which is one of the most
important of the System Delta Package. When
working with a database, there is also what is
called a “quick reference menu” which gives
you a number of commands, all accessed by
pressing Ctrl together with another key. These
allow you to perform functions such as printing
a file or adding a record. Some examples of
Quick Reference Menu commands are:

Info On/Off
Card Edit

Go To Field
Valuate Card
Remove Card

Ctel~Z
ctzl-C
Ctrl-G
Ctrl=V
CEr1=R

Before you go ahead and create a file there are
numerous points to bear in mind. Firstly you
should decide how the format of your database
is going to look. I would suggest at this point
that you get a pencil and paper, then do a rough
layout before you start creating your file.

The next thing you should be looking at is the
size of the database. This will obviously vary
according to the information you are going to
input at the time of creating your file, for
example the number and size of records. For
instance, a file containing 100 records which
will have 100 characters in each record, would
require (after taking into account various
overheads) approximately 13000 bytes. If you
do not think about this before going ahead with
your new database file, you could find later
that you will very quickly run out of disc space.

Database label generators can often be very
confusing to use, but with System Delta
nothing could be easier. Suppose that, once you
have your file loaded, you would like to run off
a mailing list or send a few Christmas cards to
your friends. From the main menu select option
G and load the format from the disc by entering
Label and the name of your file. If you now
press the Escape key you will see your card
index as normal, but then pressing Ctrl-L will
display on the screen how your label will look
before it is printed. You can choose to print or

19

BEEBUG Survey - Databases

not to print any field by pressing Ctrl-E. This
gives you the chance to make any amendments
to your label before printing.

System Delta has a built-in programming
language, and I have heard many people say
this is difficult to get on with. But it is not that
difficult if you have some knowledge of Basic
itself, and there is a Reference Guide available
which will guide you in the construction of
your database.

The programming language is made up of star
commands, for example:

*SDadd (File} add a card to a file.

*SDfile {File} select a primary file.

*SDdefault enable/disable default record.
Variables are also used, just as they would be
in a Basic program. In the manual supplied
with System Delta you will find a few
examples of what can be done with the
programming system itself. I have to say that
the only way to come to grips with this subject
is to experiment, and I suggest you do the
same, following the examples given in the
manual.

Sorting records in System Delta can be achieved
either by running a separate Sort program
supplied on the disc, or by selecting S from the
title screen. When sorting or selecting in System
Delta you can of course use wildcards such as
the hash symbol to reference any of the fields.
As an example, if you want all the names
beginning with B, such as Bardwell, Bones,
Bramley or whatever, you would use B#.

System Delta is very user friendly and has a
nice layout, which is easy to follow. The
structure of menus and sub-menus makes
System Delta very easy to use and enables you
to manipulate data exactly as you require.

ADDRESSES
Acorn Computers Ltd,
Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN.
Tel. (0223) 245200.

BEEBUG Ltd,
117 Hatfield Road, St Albans AL1 4JS
Tel. (0727) 40303.

Minerva Software,
Minerva House, Baring Crescent, Exeter EX1 1TL.
Tel. (0392) 437756.

BDIKIT ROWM

An indispensible utility ROM for all Basic programmers for the Master, BBC B and B+ (all with sideways RAM).
It contains eleven commands to help you with the editing and development of Basic programs:

*FTEXT (find text) , *FBASIC (find Basic), *FPROCEN (find procedure
/function) - locate lines of programs according to their contents.
*LFROM (list eight lines of a program), *LPROC (list procedure), *LFN
(list function) - list out significant segments of a program.
*RTEXT (replace text) and *RBASIC (replace Basic) are directly analogous
to FTEXT and FBASIC.
*SYSINF (system information) - gives background information on the system
i variables and their sizes, and the size of your program
et *VARLIST (list program variables) - I[Lgs varpi;b%; names
FKDEFS ¢ *FKDEFS (function key definitions) - prints out current function keys
RENUMBER [<first)] [{last)] [{start)] [<inc)] [F] deﬁnitions.
CHECKORDER [(first)] [<last)] das
Incorporating the updated Basic Booster utilities:

BRMOVE [<first)] [<last)] [(destination)]
gggg;;[[(ﬁrst)] [{last)] [{destination}] Suvek SQUEEZE i it
- m com .
3??5}"???55&3“ ot PARTIAL RENUMBElgr-grrenumber,: a selected block of lines.
PROGRAM LISTER - lists any program direct from a file.
TEXTLOAD AND TEXTSAVE - save and load a Basic program as text.
RESEQUENCER - rearranges and automayivally renumbers the lines in a Basic program

TEKTSAUE ¢filenane)
TEXTLOAD (filename)
e SMART RENUMBER - renumbers a program so that procedures start at a particular line number.

EDIKIT 1.6
| FBASIC (element)
FTERT #(string)/
FPROCFH
LFROM (element}
LPROC (procname}
LFN {fnname)
RBASIC Celement)/(element)
RTEXT /{stringl}/(string2}/

Members Members Non-members
£5.75 £4.75 £6.33
£5.75 £4.75 £6.33
£7.75 £6.75 £9.00

EDIKIT (including Basic Booster) is available on:

Stock Code 1452a
Stock Code 1450a
Stock Code 1451a
* If you have previously purchased Basic Booster, return {our original disc or EPROM to obtain an upgrade at the reduced price.

Non-members
£15.00
£15.00
£18.00

*Upgrade:

Stock Code 1455a
Stock Code 1453a
Stock Code 1454a

3.5" ADFS disc
40/80T DFS 5 25" disc
EPROM

BEEBUG Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS. Telephone (0727) 40303.

Beebug October 1990

ADFS Disc Sector Editor (partl)

This program by Stefano Spina presents a highly professional approach to a powerful
utility for all ADFS disc users.

This comprehensive utility is designed for discs
using the ADFS filing system on a Master 128
or Master Compact, though it could be easily
adapted for a BBC micro fitted with the ADFS,
shadow and sideways RAM. It also offers an
extended range of features compared with
published in BEEBUG Vol.8 No.3. The program
allows any individual disc sector to be loaded
into memory, and displayed on the screen in
both ASCII code and character formats. At any
time you can move on to the next sector or back
to the previous one. Each byte of a sector can be
edited, and any changes saved back to disc.

Disc Scanner

S e T S S R S S PR S RO
Edit Disc Sector

Save Disc Sector
Recovery
Load/Exec Address Change
Command Page
Exit to,Basic
R e S i 1. S e N i T SO et

Figure 1. The main menu
The program also provides a comprehensive
recovery feature allowing files which have been
lost or deleted to be recovered in many instances,
a real life saver when this problem occurs.

The complete program is too long to be
presented in one issue, and it has therefore been
split into two parts. The first part, the still
substantial listing given here, provides the
main program structure together with an
implementation of the first three main menu
options. This is a complete working program in
its own right. Part two, to be added next month,
will implement the remaining functions.
Because of the length of the full program the
use of shadow RAM is essential.

Type in the program given in listing 1 and save
this as DiscScan. Because of the length of the

Beebug October 1990

eventual program you are advised not to add
any additional spaces when entering the
program, and this also accounts for the rather
dense style of coding employed. When you run
the program, you will be asked to put the disc
to be examined in drive 0, and then press
Return. After selecting this disc as the current
drive, the program shows the main menu on
screen (see figure 1).

There are seven options in all, the first three of
which are active this month, together with the
last menu option which terminates the
program. Before a disc sector can be examined
it must be loaded from disc using the
appropriate menu option. The sector address
can be given in decimal or hexadecimal
(preceded by ‘&’). Once loaded, you can
examine the sector by selecting the first edit
option in the menu. The main edit screen is
then displayed (see figure 2). At any time you
can return to the main menu by pressing ‘M’, or
by pressing Escape (which will also abort any
other operation).

5254 53 6 04 26 28 26 73 61 76 65 20 40 44 58
20 23 38 3R 53 54 58 20 26 37 34 3A 53 54 58 28
26 37 35 8D B4 38 21 2E 6C 6F 6F 70 33 20 4C 44
59 26 23 30 3A 53 54 59 20 26 37 34 30 53 54 §9
20 26 37 36 6D 84 42 76 2E 6C 6F 6F 70 34 20 53
54 59 26 26 37 36 3A 4C 44 59 20 26 37 34 30 4C
44 41 26 28 26 37 32 29 2 59 3 49 4E 59 30 §3
54 59 26 26 37 34 3A 4C 44 59 20 26 37 35 3A §3

o osave LDR
#0:STX &74:5TX
475,.8!.loop3 LD
¥ #0:5TY &74:5TY
876, .Bp.loop4 §
¢ &76:LDY &74:L
DA (872),V:INY:S
Y 874:L0Y 475:5
| Lonnands |
e deotor

3
wap Side
a

)
)
)
Dain Henu

(P,
(N
(43
()

WALHLE Keys To Mo
[EA Character Input

To Select [Decimal Input

X Hexadecinal Input

Figure 2. The edit screen
There are three other options in edit mode
selected by single key presses: ‘N’ to move to
the next sector, P’ to move back to the previous
sector, and ‘S’ to change which side of the disc you
are examining (referred to as sides ‘A’ and ‘B’).

The cursor keys can be used to move around
the contents of one sector, and as you do this

21

ADF'S Disc Sector Editor

you will see all the other information on the
screen updated at the same time. Pressing
Return prompts for a new character to replace
that currently highlighted. Input may be as a
character, or as a code in binary, decimal or
hexadecimal depending on the initial character
(all the relevant information is shown on the
screen). Once a sector has been edited, return to
the main menu and select the third (save sector)
option to save the edited sector back to disc.

There are many safeguards built into the
program which is much easier to use than
might be expected. Remember too that this
utility can be used to edit any sector on disc,
and that includes the disc directory, as well as
the contents of any files. This provides a
powerful feature, but one which if misused can
also cause as much damage as it can cure. You
would be advised to practise with a disc whose
contents are unwanted (or which have been
backed up using *BACKUP) until you are
confident of what you are doing.

A disc sector editor is a powerful tool. You may
not use it frequently, but when needed it can
literally save hours of work if a file is
corrupted, or a disc becomes unreadable.

The remaining disc recovery functions will
appear next month together with further help
and advice on using this important utility.

Listing 1

10 REM Program DiscScan
20 REM Version Bl.2
30 REM Author Stefano Spina
40 REM BEEBUG October 1990
50 REM Program subject to copyright
60 ¢

100 PROCinit

110 ON ERROR PROCerr

120 REPEAT

130 me%=FNmenu("Disc Scanner",7)

140 MODE128

150 ON me% PROCedit,PROCloads,PROCssav
e, PROCrecovery, PROCaddress (0) ,PROCcomm, P
ROCexit

160 *FX4,0

170 UNTIL FALSE

180 END

190

1000 DEFPROCalm (M%) :LOCAL S$,G%

1010 PROCstbx(0,28,79,31,0)

1020 VDU7:PROCinl:PROCcolor(1)

1030 PRINTTAB(1,29)STRINGS (Inl%," ")
1040 IFM%=1 S$="No Sector Loaded"

1050 IFM%$=2 S$="Error in Cyclic Redunda
ncy Check"

1060 IFM%=3 S$="Sector Not Found"

1070 IFM%=4 S$="Unrecognised Command"
1080 IFM%=5 S$="Address Not Allowed"
1090 IFM%=6 S$="Volume Error"

1100 IFM%=7 S$="Drive Not Allowed"
1110 IFM%=8 S$="Unrecognised Error"
1120 IFM%=9 S$="File Not Found"

1130 IFM%=10 S$="Input Must Be In Hexad
ecimal (Start With ""&"" Chr)"

1140 IFM%=11 S$="Illegal Pathname"
1150 PRINTTAB (FNcnt (S$),29)S$

1160 PROCcolor (0) :S$="Press Any Key"
1170 PRINTTAB (FNcnt (S$),30) S$:PROCcurs (
0) :G%=GET:PROCinl

1180 ENDPROC

1190 :

1200 DEFFNb (V$)

1210 LOCAL B$,L%:v1%=0:L%=LENVS

1220 FORF%=1TOL% STEP 1

1230 B$=MIDS (VS$,L%-F%+1,1)

1240 IFB$<>"Q"ANDBS$<>"1" BS="1"

1250 v1%=v1%+VAL (B$) * (2* (F%-1))

1260 NEXT

1270 =v1$%

1280

1290 DEFFNbin (X%)

1300 A$="":REPEAT:A$=STR$ (X% MOD 2)+AS:
X%=X% DIV 2:UNTILX%<1

1310 IFLENAS<8 AS="0"+A$:GOT01310

1320 =A$

1330 ¢

1340 DEFPROCchg:LOCAL J%:VDU7

1350 REPEAT

1360 PRINTTAB(12,26) "Save Changes (Y/N)
":J%=GET:PRINTTAB (4, 26) SPC40

1370 UNTILFNtest (78,J%)ORFNtest (89,J%)
1380 IFFNtest (89,J%) PROCpv(10,sec%)
1390 chg%=FALSE

1400 ENDPROC

1410 :

1420 DEFPROCchoose

1430 LOCAL A%,B%,G%:A%=0:B%=0

1440 PROCsel (A%,B%)

1450 PROCflash (A%,B%,FNhex (pk%),chr$)
1460 IFG$=13 PROCcurs (1) :PROCinp (A%, B%)
:PROCsel (A%, B%) :PROCcurs (0) :GOT01450
1470 IFFNtest (77,G%) ELSE GOT01500
1480 IFchg% PROCchg

1490 M%=TRUE : ENDPROC

1500 IFFNtest (78,G%) ELSE GOT01540
1510 IFchg% PROCchg

1520 sec%=sec%+1:IFsec%>2559 sec%=0

22

Beebug October 1990

ADFS Disc Sector Editor

1530 pg%=0:PROCpVv (8,sec%) :ENDPROC

1540 IFFNtest (80,G%) ELSE GOT01580

1550 IFchg% PROCchg

1560 sec%=sec%-1:IFsec%<0 sec%=2559

1570 pg%=0:PROCpv (8, sec%) :ENDPROC

1580 IFG%=83 pg%=pg%EOR1 :ENDPROC

1590 IFG%=136 A%=A%-1 ELSE IFG%=137 A%=
A%+l

1600 IFG%=139 B%=B%-1 ELSE IFG%=138 B%=
B%+1

1610 IFA%<0 A%=15 ELSE IFA%>15 A%=0

1620 IFB%<0 B%=7 ELSE IFB%>7 B%=0

1630 PROCsel (A%,B%)

1640 GOT01450

1650 ¢

1660 DEFFNcnt (S$)

1670 LOCAL C%,S%:S%=FNmd

1680 IFS%=00RS%=3 C%=80 ELSE IFS%=10RS%
=40RS%=60RS%=7 C%=40 ELSE C%=20

1690 =INT (C%-LENSS) /2

1700 :

1710 DEFPROCcntrl (L%,D%,U%, M%)

1720 LOCAL B%,C%, I%:B%=FALSE:P%=FALSE

1730 IFM%=1 M%=3 ELSE IFM%=2 M%=8 ELSE
IFM%$=3 M%=2:B%=TRUE

1740 IFL%$>M% PROCreply:P%=TRUE : ENDPROC

1750 FORI%=1TOL%

1760 C%=ASC(MIDS (V$,1%,1)) :IFB% ELSE GO
T01790

1770 IFC%<D%ORC%>U% AND C%<650RC%>70 0%
=TRUE

1780 GOT01800

1790 IFC%<D%ORC%>U% 0%=TRUE

1800 NEXTI%

1810 IFO% PROCreply:P%=TRUE

1820 ENDPROC

1830 ¢

1840 DEFPROCcolor (M%)

1850 LOCAL B%,F%,S%

1860 S%=FNmd:IFS%=7 ENDPROC

1870 IFS%=00RS%$=30RS%=40RS%=6 B%=129:F%
=1 ELSE IFS%=10RS%=5 B%=131:F%=3 ELSE B%
=135:F%=7

1880 IFM%=0 COLOURF%:COLOUR128 ELSE COL
QOURO : COLOURB%

1890 ENDPROC

1900 :

1910 DEFPROCcurs (M%)

1920 vDU23,1,M%;0;0;0;0;

1930 ENDPROC

1940 :

1950 DEFPROCdiske

1960 LOCAL X%:X%=?stk$%

1970 IF X%=72 X%=2 ELSE IFX%=80 X%=3 EL
SE IFX%=96 X%=4 ELSE IFX%=97 X%=5 ELSE I
FX%=99 X%=6 ELSE IFX%=101 X%=7 ELSE X%=8

1980 PROCalm(X%) :ENDPROC

1990 :

2000 DEFPROCedit

2010 LOCAL M%:M%=FALSE:chg%=FALSE

2020 IFsec%=-1 PROCalm(1) :ENDPROC

2030 PROCscr:REPEAT:PROCout (pg%) :PROCch
oose :UNTILM%

2040 ENDPROC

2050 =

2060 DEFPROCerr

2070 PROCcolor(0) :IFERR=17 ENDPROC

2080 LOCAL S$,G%:*FX4,0

2090 VDU26:CLS:PROCstbx(0,14,79,19,0) :P
ROCstbx (0,17,79,0,1) :PROCcolor (1) :PRINTT
AB(1,15) STRINGS (Inl%,"™ ")

2100 S$="Error "+STRSERR+" at line: "+S
TRSERL:PRINTTAB (FNcnt (S$) ,15) S$

2110 PROCcolor(0) :vDU28,2,16,78,15:REPO
RT:VDU26:S$="Press Any Key" :PRINTTAB (FNc
nt (S$),18)S$:PROCcurs (0) : G$=GET

2120 ENDPROC

2130 ¢

2140 DEFPROCexit

2150 S$=CHR$129+CHR$157+CHR$135:VDU22,1
35:0SCLI"CLOSE" :FORI%=4T07 :0SCLI (" SRROM
"4+STR$I%) :NEXT:PRINTTAB (3,10)S$" All
Files Closed "CHR$156 :PRINTTAB (3,12
) S$"SideWays Banks Restored "CHR$156:P
RINT'' :END

2160 :

2170 DEFPROCflash (A%, B%,AS$,BS)

2180 LOCAL F%,S%:F%=TRUE: *FX4,1

2190 REPEAT

2200 IFS% PROCcolor(l) ELSEPROCcolor (0)
2210 PRINTTAB (3+3*A%,3+2*B%)" "AS" "
2220 PRINTTAB (58+A%, 3+2*B%)BS

2230 G%=INKEY (40) : IFS%=FALSE S%=TRUE EL
SE S%=FALSE

2240 IFG%=130RG%=770RG%=780RG%=800RG%=8
30RG%=1360RG%=1370RG%=1380RG%=139 F%=FAL
SE

2250 UNTIL NOT F%

2260 IFG%=13 PROCcolor (1) ELSEPROCcolor
(0)

2270 PRINTTAB (3+3*A%,3+2*B%)" "AS$" ":PR
INTTAB (58+A%, 3+2*B%) B$: PROCcolor (0)

2280 *FX4,0

2290 ENDPROC

2300 '«

2310 DEFPROCget (G$, M%)

2320 LOCAL A$,S$:PROCinl:VDU7

2330 IFM%=1 S$="Insert the disc to be t
ested into drive 0 - press Return"

2340 IFM%=2 S$="Change Disc (Y/N)"

2350 IFM%=3 S$="Replace Disc - press Re
turn®

2360 PRINTTAB(2,29)S$:PROCcurs (0) :REPEA
T:A$=GETS$:UNTIL INSTR(GS$,AS$)<>0

Beebug October 1990

23

ADFS Disc Sector Editor

2370 PROCinl:get%=ASCAS$

2380 ENDPROC

2390 :

2400 DEFFNhex (N%) :N$=STR$~N%

2410 IF LENN$<2 N$="0"+N$

2420 =N$

2430 :

2440 DEFPROCin (A$,B$,C$,D$,ES$,A%,B%,C,D)
2450 LOCAL F$,GS$,E%,F%,G%,H%,J%, K%

2460 C$=FNswap (C$,1) :D$=FNswap (D$,1)
2470 IFFNmd>=0ANDFNmd<=5ANDFNmd<>3 Inr%
=29 ELSE Inr%=22

2480 IFFNmd=00RFNmd=3 Inl%=78 ELSE IFFN
md=20RFNmd=5 Inl%=19 ELSE Inl%=38

2490 H%=LENA$+3:PROCcolor (0) :PRINTTAB (1
,Inr%)AS": "STRINGS (A%," ")" "BS

2500 REPEAT:REPEAT:VDU7:PROCcolor (1) :PR
INTTAB (H%, Inr$) STRINGS (A%, " ") :F$="":G%=
0:8r$="":5r=0:5r%=0:K%=0:J%=0:style%=TRU
E:F%=FALSE :REPEAT :E$=FALSE : PROCcurs (1) :V
DU31, H%+K%, Inr%:F$=GETS : G$=ASCF$

2510 IFG%=9 style%=FALSE:G0T02570

2520 IFG%=13 THEN GOT02570

2530 IFG%=127ANDJ%=0 THEN GOT02570

2540 IFG%=127 J%=J%-1:sr$=LEFTS$ (sr$,J%)
:PRINTTAB (H%+K%, Inr%) CHR$127 : K%=K%-1:GOT
02570

2550 IFNOTFNinl(C$,F$) THEN GOT02570
2560 sr$=sr$+F$:J%=LENSr$:IFJ%>A% E%=TR
UE ELSE K%=K%+1:PRINTTAB (H%-1+K%, Inr%)F$
2570 REM@inl

2580 UNTILG%=130RE%

2590 IFsr$=""ANDES$="" E%=TRUE

2600 IFE% THEN GOT02640

2610 IFSr$=""ANDES<>"" sr$=ES:style%=FA
LSE:F%=TRUE

2620 IFB%>0 IFNOTFNin3 E%=TRUE:GOT02640
2630 IFFNin2 ELSE E%=TRUE

2640 REM@in2

2650 UNTILNOTE%

2660 IFF% PROCcolor (0) :PROCinl:GOT02690
2670 PROCcurs (0) :PROCcolor (0) :VDU7 :PRIN
TTAB (1, Inr%+1) "Confirm (Y/N)"

2680 REPEAT:GS$=GETS$:UNTILFNinl ("YN",GS$)
:IF (ASCGSAND95) =89 PROCinl ELSE PRINTTAB
(1, Inr%+1) STRINGS (13," ") :E%=TRUE

2690 REM@in3

2700 UNTILNOTE$%

2710 ENDPROC

2120 :

2730 DEFPROCinl

2740 PRINTTAB(1, Inr%)STRINGS (Inl%," "):
PRINTTAB (1, Inr%+1) STRINGS (Inl%," ™)

2750 ENDPROC

2760

2770 DEFFNinl (C$,F$)

2780 IFC$="" =TRUE

2790 F$=FNswap (F$,1)

2800 IFINSTR(C$,F$)>0ANDFS$<>"\" =TRUE
2810 IFLEFTS (C$,1)="\" C$="01"+C$

2820 LOCAL J%,K%:J%=1:REPEAT:K%=FS$>MID$
(C$,J%,1) ANDFS<MIDS (C$, J%+1,1) :J%=0%+2:U
NTILK%ORJ%>=LENCSORMIDS (C$,J%,1)="\":IFK
$ORFS$=RIGHTS (C$,1) =TRUE ELSE=FALSE

2830 -

2840 DEFFNin2

2850 IFDS$="" =TRUE

2860 LOCAL Y$,Z$,Ws,X%,Y%,2%

2870 W%=LENDS$:X%=1:2%=0:Y$=FNswap (sr$,1)
2880 REPEAT:Z%=INSTR (DS, "~",X%) :2$=MID$
(DS, X%, (2%-X%))

2890 IFZ$=Y$ Y%=TRUE ELSE X%=Z%+1:Y%=FA
LSE

2900 UNTILY$ORX%>=W%:=Y%

2910

2920 DEFFNin3

2930 IFsr$=CHR$13 =TRUE

2940 LOCAL Z$,X%,Y%,2%:X%=TRUE

2950 IFLEFTS (sr$,1)="-" Z$=MIDS (sr$,2)
ELSE Z$=sr$

2960 IFLEFTS (2$,1)="&" Z%=TRUE:ZS$=MIDS (
2$,2) ELSE Z%=FALSE

2970 IFINSTR(ZS$,"&")<>00RINSTR (Z$,"-")<
>0:=FALSE

2980 IFLEFTS(2$,1)="."ANDZ%:=FALSE

2990 FORY%=65T070:IFINSTR (Z$, CHR$Y%) <>0
ANDNOTZ% : X%=FALSE

3000 NEXTY%:IFNOTX%:=FALSE

3010 sr=EVALsr$:sr%=EVALsr$:IFB%=2 =TRU
E

3020 IFsr<C OR sr>D =FALSE ELSE =TRUE
3030

3040 DEFPROCinit

3050 OSCLI"SHADOW":0SCLI"DIR :0"

3060 LOCAL S$,F%,G%:VDU22,128

3070 DIMasm%1000,data%2000:pg%=0:sec%=-
1:Inr%=29:In1%=78

3080 FORF%=0TO2STEP2:P%=asm%: [OPT F%:LD
A #114:LDX #(stk% MOD 256) :LDY #(stk% DI
V 256) :JSR &FFF1:RTS:.stk%:EQUB 0:EQUW d
ata%:EQUW 0:EQUB 8:EQUB 0:EQUB 0:EQUB 0:
EQUB 0:EQUB 0:EQUW 256:EQUW 0:]NEXT

3090 PROCoption (1) :PROCget (CHR$13,1)
3100 ENDPROC

3110

3120 DEFPROCinp (A%,B%)

3130 LOCAL V$§,C%,L%,0%,P%, V%

3140 chg%=FALSE:*FX4,0

3150 INPUTTAB(4,26)"Input New Value: "V
$:PRINTTAB (4,26) SPC40

3160 OSCLI"FX4,1":IF VS$="" ENDPROC

3170 PROCcurs(0)

3180 C%=ASC(LEFT$(V$,1)) : IFC%<350RC%>38
PROCreply:GOT03150

24

Beebug October 1990

ADFS Disc Sector Editor

1:0%=FALSE

3200 ON C%-34 GOT03210,3230,3240,3250
3210 PROCcntrl(L%,48,57,1):IFP% THEN GO
T03150

3220 IFVALV$>255 PROCreply:GOT03150 ELS
E V%=VALVS$:G0T03260

3230 IFL%<>1 PROCreply:GOT03150 ELSE V%
=ASCVS$:GOT03260

3240 PROCcntrl (L%,48,49,2) :IFP% THEN GO
T03150 ELSE V%=FNb (V$) :GOT03260

3250 PROCcntrl (L%,48,57,3) : IFP% THEN GO
T03150 ELSE V%=EVAL ("&"+V$)

3260 PROCpoke (A%,B%,V%,pg%) :chg%=TRUE
3270 ENDPROC

3280 :

3290 DEFPROCinput (M%)

3300 ON M% GOT03310,3320

3310 PROCin("Input Sector Number"," (000
0/2559 | §000/&9FE) Y, MOJRRNEY, " " 4.0 0
;2559) :ENDPROC

3320 PROCin("Input Sector Number","(0/2
559 &000/&9FF) Return -> Overwrite","0
9AF\&","",CHR$13,4,1,0,2559) : ENDPROC
3330

3340 DEFPROCinv(X%,Y%,AS)

3350 PROCcolor (1) :PRINTTAB (X%, Y%)AS:PRO
Ccolor (0)

3360 ENDPROC

3370 :

3380 DEFFNlen (D%,S$,CS$,M%)

3390 LOCAL L%:L%=LENSS$:IFL%>=D% =S$
3400 IFM%=0 =STRINGS (D%-L%,CS$)+S$ ELSE
=S$+STRINGS (D%-L%, CS)

3410 :

3420 DEFPROCloads

3430 PROCoption(2) :PROCinput (1) :sec%=sr
%:PROCpv (8,sec%

3440 ENDPROC

3450 :

3460 DEFFNmd

3470 LOCAL A%,Z%:A%=&87:2%=USR (&FFF4)
3480 =VAL (LEFTS$ (STRS$~ (Z%AND&OOFF0000) ,1
))

3490 :

3500 DEFFNmenu (H$,0%)

3510 CLS:VDU22,135:LOCALNS,G%,J%,I%, T,
P%:T%=(19-0%)DIV2 :RESTORE3520

3520 REM@mnl

3530 DATA Edit Disc Sector,Load Disc Se
ctor,Save Disc Sector,Recovery,Load/Exec
Address Change,Command Page,Exit to Bas
ic

3540 VDU23,1:0:0;0:0::PRINTTAB(]1,7%) CHR
$145CHR$232STRINGS (31, CHR$172) CHR$180
3550 FORJ%=T%+1TOT%+2:PRINTTAR(0,J%)CHR
$145CHRS141CHRS234CHRS131STRINGS (29," ")

CHR$145CHRS181 :NEXT

3560 PRINTTAB(1,T%+3)CHR$145CHRS$234STRI
NG$ (31, CHR$172) CHR$181

3570 FORJ%=T%+4TOT%+3+0%:PRINTTAB (1,J%
CHR$145CHR$234CHR$131CHR$156CHRS134STRIN
G$(26," ")CHRS145CHRS156CHRS181 :NEXT

3580 PRINTTAB (1,J%)CHRS$145CHR$170STRING
$(31,CHR$172) CHRS37

3590 FORJ%=T%+1TOT%+2:PRINTTAB (1+(25-LE
N (H$))DIV2,J%) HS :NEXT : FORJ%=1T00%-1 : READ
NS :PRINTTAB (6, J%+T%+3) NS : NEXT

3600 READNS:PRINTTAB (5,J%+T%+3) CHR$130;
N$

3610 P%=1:PRINTTAB (4,P%+T%+3) CHR$157CHR
$129

3620 *FX4,1

3630 REPEAT:REPEAT:G%=GET:UNTILG%=130RG
%$=1380RG%=139

3640 IFG%=13 THEN3690

3650 IFP%<0% PRINTTAB (4,P%+T%+3)CHRS$156
CHR$134 ELSEPRINTTAB (4,P%+T%+3) CHR$156CH
R$130

3660 IFG%=138 P%=P%+1:IFP%>0% P%=1

3670 IFG%=139 P%=P%-1:IFP%=0 P%=0%

3680 PRINTTAB (4,P%+T%+3) CHR$157CHR$129

3690 REM@mn2

3700 UNTILG%=13

3710 =P%

3720 -

3730 DEFPROCoption (M%)

3740 LOCAL S$:PROCstbx(0,10,79,12,0) :PR
OCstbx(0,28,179,31,0) :PROCcolor (1) :PRINTT
AB (1, 11) STRINGS (78,1 1) : vDU7

3750 IFM%=1 S$="Preset Option"

3760 IFM%=2 S$="Load Sector Option"

3770 IFM%=3 S$="Save Sector Option"

3780 IFM%=4 S$="Recovery Option"

3790 IFM%=5 S$="Normal Area Recovery Op
tion!

3800 IFM%=6 S$="Extended Area Recovery
Option"

3810 IFM%=7 S$="Change Load/Exec Addres
s Option"

3820 PRINTTAB (FNent (S$),11)S$:PROCcolor
(0)

3830 ENDPROC

3840 :

3850 DEFPROCout (N%)

3860 LOCAL BS,B%,F%,P%:PROCcurs (0)

3870 FORF%=(N%*128) TO(127+N%*128

3880 B%=? (data%+F%) :NS=FNhex (B%)

3890 IFB%>31 BS=CHRS$B% ELSE BS$="."

3900 P%=F%-N%$*128:X%=P% MOD 16:Y%=P% DI
V 16:PRINTTAB (4+3*X%, 3+2*Y%) NS :PRINTTAB (
584X%, 342*Y%)BS

3910 NEXT

3920 ENDPROC

Beebug October 1990

25

ADFS Disc Sector Editor

3980 1

3940 DEFPROCpeek (A%,B%,F%)

3950 pk%=?(data%+16*B%+A%S+F%$*128)

3960 ENDPROC

3970 ¢

3980 DEFPROCpoke (A%,B%,C%,E%)

3990 ?(data%+16*B%+A%+E$*128)=C%

4000 ENDPROC

4010 :

4020 DEFPROCPV (M3, T%)

4030 LOCAL H%,I%,L%,R%:H%=T% DIV 65536:
R%=T%-H%*65536:I%=R% DIV 256:L%=R% MOD 2
56:? (stk%+6)=H%:? (stk%+7)=I1%:? (stk%+8)=L
%:?(stk%+5)=M%:CALLasm$

4040 IF?stk%<>0 PROCdiske

4050 ENDPROC

4060 :

4070 DEFPROCreply

4080 LOCAL G%:VDU7:PRINTTAB(12,26)" Ill
egal Input - Press Any Key":PROCcurs(0):
G%$=GET:PRINTTAB (4,26) SPC40

4090 ENDPROC

4100 :

4110 DEFPROCscr

4120 CLS:PROCcurs (0)

4130 PROCstbx(0,0,78,31,0) :PROCstbx (0,1
8,78,0,1) :PROCstbx(54,0,0,27,2) : PROCStbx
(0,27,78,0,1):PROCStDbx (2,2, 52 0, 11« EROCS
tbx(56,2,76,0,1) :PROCstbx(2,20,52,0,1) P
ROCstbx (56,20,76,0,1) :PROCstbx(0,24,54,0
1)
| 4140 PROCinv(17,1," Hexadecimal Values
[") PROEinvi(57, L, " Character Duine. (1)
PRINTTAB (4,21) "Dec, Value:":PRINTTAB (4,2
2)"Bin. Value:":PRINTTAB (4,23)"Character

4150 PRINTTAB (29,21)"Sector:" :PRINTTAB (
29,22) "Sector Side:":PROCinv(19,19," St
atus Window ")
| 4160 PROCinv(19,25," Input Window "):
1PROCinv(61,l9," Commands ") :PROCinv (2,28
J," CURSOR ") : :PRINTTAB(12,28) "Keys To Mo
ve":PROCinv(31,28," Return ") :PRINTTAB (3
9,28) " To Select':PROCinv(53,28," ¥ "):P
RINTTAB(57,28) "Decimal Input"

4170 PROCinv(2,30,"™ $ ") :PRINTTAB(6,30
|"Character Input":PROCinv(31,30," % "):P
|RINTTAB (35, 30) "Binary Input":PROCinv (53,
30," & ") :PRINTTAB(57,30) "Hexadecimal In
put"

4180 PRINTTAB(57,22)" (P) revious Sector"
:PRINTTAB (57, 23) " (N) ext Sector" :PRIN
|TTAB(57,24) " (S)wap Side":PRINTTAB (57,25
{"(M)ain Menu"
| 4190 ENDPROC

4220 PROCpeek (A%,B%,pg%) : IFpk%>31 chrs$=
CHR$pk% ELSEchr$="."

4230 PRINTTAB(16,21)STRSpk" ":PRINTT
AB(16,22)FNbin (pk%) :PRINTTAB (16,23) chr$

4240 PRINTTAB(42,21);:IFsec%=-1 PRINT"N
one" ELSE strS$=FNlen(4,STRS$sec%,"0",0) :P
RINTENlen (3, STRS~sec%, "0", 0) +"/"+str$

4250 PRINTTAB(42,22); :IFpg%=0 PRINT"A"
ELSE PRINTI"B"

4260 ENDPROC

42700 3

4280 DEFPROCssave

4290 LOCAL D%,G%,S%:PROCoption (3) : IFsec
%==-1 PROCalm(1) :ENDPROC

4300 PROCinput (2) : IFsr$=CHR$13 S%=sec%:
GOT04330 ELSE S%=sr%

4310 PROCget ("YyNn",2) :D%=get%

4320 IFFNtest (89,D%) PROCget (CHR$13,3)

4330 PROCpv (10, S%)

4340 IFFNtest(89,D%) PROCget (CHR$13,1)

4350 ENDPROC

4360 :

4370 DEFPROCstbx (A%,B%,C%,D%,M%)

4380 LOCAL S%,E%,F%:S%=FNmd

4390 IFS%=30RS%=60RS%=7 ENDPROC

4400 IFS%=10RS%=4 E%=40 ELSE IFS%=20RS%
=5 E%=20 ELSE E%=80

4410 F%=1280/E%:A%=(A%*F%) -1+ (F%/2)

4420 B%=(((31-B%)*32)-1)+16

4430 IFM%<2 C3%=(C%*F%)-1+(F%/2)

4440 IFM%<>1 D%=(((31-D%)*32)-1)+16

4450 MOVEA%,B%

4460 IFM%=0 DRAWC%,B%:DRAWC%,D%:DRAWAS,
D% :DRAWA%, B%: IFS%=0 MOVEA%+2,B% :DRAWA%+2
,D%:MOVEC%+2,B%:DRAWC%+2,D% ELSE IFM%=1
DRAWC%,B% ELSE DRAWA%,D%:IFS%=0 MOVEA%+2
,B% :DRAWAS+2,D%

4470 ENDPROC

4480 :

4490 DEFFNswap (S$, M%)

4500 IESS="" =n¥

4510 LOCAL AS,F%,H%,1%,L%:L%=LENSS

4520 FORI%=1TOL%

4530 H%=ASC (MIDS (S$,1I%,1)) :IFH%<650R (H%
>90ANDH%<97) ORH%>122 THEN4570

4540 IF (H%>=65ANDH%<=90) F%=FALSE

4550 IF (H$>=97ANDH%<=122) F%=TRUE

4560 IFNOTF$AND (M%=00RM%=2) H%=H%+32 EL
SE IFF%AND (M%=10RM%=2) H%=H%-32

4570 REM@swl

4580 A$=AS+CHRSHS

4590 NEXTI%

4600 =A$

4610 :

4620 DEFFNtest (C%,G%) :IF (G%AND95)=C% =T

[42000 RUE ELSE =FALSE I
| 4210 DEFPROCsel (A%,B%) 5]
26 Beebug October 1990

Control Codes in InterWord and InterSheet

R.G.Sharman details the control codes needed for user programming of the function
keys when using InterWord and InterSheet.

The function keys on any BBC micro provide a
method for the user to set these up to perform
quite complex functions at the press of a single
key, and this practice can be extended to
situations where commercial ROM software is
in use (see BEEBUG Vol.8 No.9 for their use in
conjunction with the View word processor).
This is possible because commercial software
seldom uses all the function key options which
are possible (particularly the Shift-Ctrl-fkey
combination). Usually, each software function is
represented by some code value; the problem
lies in trying to represent this in a function key
definition, but this is easier than it might at first
seem.

FUNCTION KEY DEFINITIONS FOR
INTERWORD

InterWord is a powerful and effective word
processor. However, if like me you are in the lazy
habit of highlighting single lines of text simply by
pressing the relevant Shifted function key (for
underlining, emboldening etc.) instead of
properly marking the line first, you may have
noticed that there is a tendency for the
highlighting to carry on to the next line as it is
typed in, and even backwards to previous lines if
they are subsequently amended. This is operator
error, not program error, but it is still a nuisance!
All is not lost though, because by making full use
of control codes and function keys we can carry
out incredibly long-winded procedures on
InterWord text with only one keypress.

Each of the 52 separate InterWord functions
available normally from the keyboard has a
single character code within the range 1 - 175
(excluding the printable characters 32-126).
These character codes can be represented by
control code sequences that will render them
usable within function key definitions. Table 1
lists all the actions available in InterWord, the
corresponding keyboard equivalent, and the
associated control and character codes. Don’t be

Beebug October 1990

misled by the examples of control codes in the
BBC Reference Manual (Part 2 page U6.2) -
some of them are wrong!

To replicate the keyboard functions singly or
severally, within the function keys, it is only
necessary to type the relevant control codes, in
the order in which they are to be carried out,
into a function key definition. This can be done
directly from the InterWord main menu, or
more tidily by a suitable !BOOT file which
assigns the definitions to the function keys and
then calls InterWord. The only other
requirement is to issue a *FX228,1 call first to
ensure that it is the Ctrl-Shift-fkey combinations
which are programmed in this way.

By way of an example, consider underlining a
line of text - the normal method would require
you to move the cursor to the beginning of the
line, insert a marker, move the cursor to the end
of the line, insert another marker, move the
cursor into the marked area, underline with
Shift-f4, and then move the cursor to the end of
the line to continue inserting text. This involves
4 Shifted and 3 ordinary keystrokes - the 7
equivalent control codes are:

'L move cursor to beginning of line

[14 insert marker

[1'IM move cursor to end of line

| 14 insert marker

Iy, back 1 space into marked area

[1ID underline marked area

[1'IM move cursor to end of line to
continue editing text

If these codes are typed exactly as shown to
define key (n), i.e.:
*KEY n [HILIEIEIM L 1D

then when in InterWord editing mode, the single
keystroke Ctrl+Shift-fkey(n) will correctly
underline the current line of text and leave the
cursor positioned ready for further text typing.
Not really earth-shattering stuff, but quite a

27

Control Codes in InterWord and InterSheet

saving on fingertips and key switches,
especially if you are writing a document
with lots of underlined headings.

There are two practical points to note. The
vertical bar character used above (I)
appears on the keyboard above “\” to the
left of the cursor keys. Its purpose in a
function key definition is to represent code
values over 127 by adding 128 to the code
value of the following character. Thus ‘| A’
represents a code value of 193 (128 + 65).

The power of this facility becomes more
apparent when you realise that by the
same process, it is possible to call menus,
insert embedded commands, alter
preferences and so on, all with one
selection of a pre-programmed function
key - and all ten function keys are available
for use with Ctrl-Shift. The only limitation
is the amount of memory available for the
function key definitions in your machine.

To give another example, the following
sequence of codes will underline and
embolden a line of text, and send the
printer codes for single line double width
printing (on an Epson-compatible) - all
from one key press!

I1IL move to beginning of line

[invoke embedded command menu

I move down in the menu to the

command line

commands to printer for single

line double width

I Escape from the menu

|'# insert marker

[1IM move to end of line

[1# insert marker

1L move to beginning of line

[11D underline - Shift-f4

[1IM move to end of line

['# insert marker

1L move to beginning of line

['# insert marker

11! embolden line - Shift-f5

[1IM move to end of line to continue
inserting text

1,14

28

InterWord Action

Delete under cursor
Delete Word

Goto String prompt
Tabulator

Delete to end of line
Delete Line
Return/New line
Same place next page
Same place previous page
Remove markers
Change case

Mark whole document
Mark Word

Escape

Delete before cursor
Underline

Bold

Dotted Underline
Normal

Beginning of line

End of line

Bottom of document
Top of document
Status Menu (1)
Preferences Menu
Marked Section Menu
Search & Replace Menu
Page Layout Menu
Printer Setup Menu
Control Codes Menu
Multi File Menu

Spell Check Menu
Rom Link Menu

Left 1 word

Right 1 word

Down 1 screen

Up 1 screen

Status menu (2)
Embedded command menu
Insert ruler

Insert marker

Left align text

Centre text

Right align text

Justify text

Delete marked region
Copy marked region
Delete under cursor (2)
Back 1 space
Forward 1 space
Down 1 line

Up 1line

What You Control

Type

|A
ID
1G
IT
IK
IL
M
IN
[P

Code

Ctrl-A
Ctrl-D
Ctrl-G
Gtrl-I o
Ctrl-K
Ctxl -1
Ctrl-M
CrriaN
Corl-p
Ckrl-R
Ctrl-S
Gtrl-X
Cerl-7
Escape
Delete
Shift-f4
Shi fit-£5
Shift-£6
Shift-f7
Shifte
Shift 5
Shiftd
shiftT
Ctrl-fo
Ctrle-rl
Ctal-f2
Ctrl-£3
Ctrl-f4
Ctrl-£5
CErl-£6
Ctrl-f1
Ctrl-f£8
Ctrdsf9
Ctrle
Ctrl—o
cerld
ceril
f0

f1

£2

£2

f4

£5

£

B

£8

o

Copy
172

173
174 0
178

Character
Code

1

4

7

r Tab 9
i1
12
13
14
16
18
19
24
26
217
127
132
133
134
135
140
141
142
143
144
145
146
147
148
149
150
151
152
153
156
157
158
159
160
161
162
163
164
165
166
167
168
169
171

Table 1. Control code sequences for InterWord

Beebug October 1990

Control Codes in InterWord and InterSheet

This achieves the required result by
one selection of Ctrl-Shift-fkey instead
of no less than 19 (the printer command
is 4) various Shifted and normal
keystrokes. Obviously not all of the
InterWord functions are likely to be
suitable or desirable for this treatment,
but I'm sure you will find lots of repetitive
multi-code sequences that will lend
themselves admirably to the function
keys.

The procedure is the same whatever the
required function:

a. Identify the keyboard actions normally
needed.

b. Type the corresponding control codes
as a function key definition.

INTERSHEET CONTROL CODES
Continuing the story of control characters
in function keys, the equivalent codes for
InterSheet are given in table 2. The
application of sequences of codes within
InterSheet is likely to be less useful than
in InterWord, but may still be of help at
times. For example, I keep my bank
account details on InterSheet, and use the
following routine (on a function key) for
copying the monthly standing orders and
direct debits into the sheet at the
beginning of each month:

/C /copy command

A denotes Area Copy
A5:E10 sheet area to be copied
M Return

It then only remains to type in the top left
box of the area to be copied to e.g. A127

InterSheet Action What You Control Character
Type Code Code
Set area blank /B /B -
Copy area /1 /c -
Set number of digits /D /D -
Set number format /F /F -
Goto Box /G /G -
Hold area at cursor /H /H -
Justify area /J /3 -
Lock area /L /L -
Change negative sign /N /N -
Print /P /P -
Release area /R /R -
Unlock area /U /U -
Width of column(s) /W /W -
Zap sheet /2 /2 -
Force recalculation [T Tab 9
Return/New line M Return 13
Escape I [Escape 21
Current box contents | 1K No kybd 139
(without “) to command line equiv
Rightmost occupied col. | tIL Shifte 140
Leftmost occupied col. | IM Shift— 141
Bottom occupied row 1IN shiftl 142
Top occupied row 1o shift? 143
Screen Left [LN Ctrle 156
Screen Right [0 Ctrl- 157
Screen Down Tl Etrlh 158
Screen Up it ctr1? 159
Edit box at cursor [[Litspy il £0 160
Change screen mode R £1 161
Change auto step-on [0t £2 162
Justify box | 4 £3 163
Auto/manual re-calc s £4 164
Delete box | 1% £5 165
Insert row | 1& £6 166
Delete row il £7 167
Insert column fLig £8 168
Delete column k] £9 169
Current box number to |1+ Copy 171
command line

Left 1 box/space 1, 172

Right 1 box/space [t~ 173

Down 1 box/line {1 174

Up 1 box/line [4/ 175

Table 2. Control code sequences for InterSheet

followed by Return. This saves all the bother of
paging up and down the sheet to find the items
required, and eliminates any possibility of
“finger trouble”. You will probably find several
code sequences to enhance your own use of
spreadsheets.

Beebug October 1990

The numeric code 139, for transferring the
contents of the current box (without quotes if it
is a label) doesn’t appear to have an equivalent
function documented in the InterSheet manual -
it is a somewhat limited function for which I
have yet to find a use - any suggestions? 3

29

Pinpointing a Date

by Jeff Gorman

INTRODUCTION

The program listed here shows how to pinpoint a
future calendar date which lies a given number of
days forward from a specified date. The routines to
do this can prove useful in a variety of programs.

These routines are presented
here as part of a complete
working demonstration. Type
the program in, save it and
then run it to see what it does.
You will be asked to enter a
reference date, say today’s
date, and then a number of
days from that date. The
program will calculate and
display the corresponding day
of the week and date of the
target day. Note that by asking for the year as a
four digit number, the program will work
correctly with starting dates in this or the next
century.

Enter base date

UNDERSTANDING THE PROGRAM
The routines from lines 1000 to 1240 are
concerned with obtaining the necessary data from
the user, and converting this into the format
required by the date prediction routines which
follow. PROCgetDate inputs the reference date
using FNgetDate, and the number of days to
elapse. The start date is then converted into
separate day, month and year numbers (using
PROCsplitDate), and these are passed as
parameters to FNdaylID.

FNdayID is the key function. It counts the number
of days that the known date (expressed as day,
month and year numbers) is distant from a
hypothetical datum of “01.01.1900”. This calculated
number (strtDatelD%) is used as an identification
number (hence the suffix ID). The identifier Exec is
used in the program to indicate the actual day on
which something is due to happen. By adding the
value of daysToExec% to strtDatelD% one gets the
ID of “exec” day (execID%).

In turn PROCreport finds and prints the name of
the day, and the date, month and year, represented
by execID%. A REPEAT loop increments years at
yearly intervals as it compares execID% with a

30

Date Prediction Demonstration

Use format (dd.mm.yyyy> 10.08.1990
Enter the interval in days 30..
The day and date 30 days ahead
will be Sunday, 09.09.1990

Press any key to repeat

Predicting a date

series of trial IDs for the first day of the year, until
the trial ID is greater. The resulting execYr% is
therefore the preceding year. The figure often
given in diaries execDayNo%, is found by
subtracting the ID for the end of the previous year.

A further REPEAT loop (in
FNexecMonth) uses FNmonLen
to aggregate the number of
days according to the month
in question, until execDayNo%
is greater. The loop count
gives the number of the
calendar month. As the loop
operates it also aggregates the
days prior to the terminating
value. When, in FNexecDay
these are subtracted from
execDayNo%, execDate%, the conventional
calendar date is left.

Since the days of the week rotate in an invariable
sequence, it is easy to identify the day which an
ID represents. The program takes the remainder
produced by dividing the ID by seven (rem% in
FNdayName) to identify the name from a DATA
list.

USING THE ROUTINES IN OTHER
PROGRAMS

If you want to incorporate the date calculation
routines into other programs you will need first
to obtain values for day%, mon% and yr%, and
then use FNdaylID to return strtDateID%. Add the
interval in days to strtDatelD% and call
PROCreport with this result as a parameter.

The short format “dd.mm.yy” is probably suitable
for many purposes, but if the more civilised
“ddth, month 19yy” form is required, e.g. “24th
April 1990”, my article in the May 1989 issue of
BEEBUG (Volume 8, No.1) indicates, in principle,
how the transformation might be achieved.

FNmonlLen is gratefully derived from a BEEBUG
Hints and Tips item offered by Frank McAree in
BEEBUG Vol.5 No.3. Using the formula gives
greater speed than the alternative method of
repeatedly reading month lengths from DATA
statements.

Beebug October 1990

Pinpointing a Date

10 REM Program Predict

20 REM Version Bl.4

30 REM Author Jeff Gorman

40 REM BEEBUG October 1990

50 REM Program subject to copyright

100 MODE 7:ON ERROR GOTO 200

110 Y$=CHR$131:C$=CHR$134:execID%=0
120 PROCgetData

130 PROCsplitDate (strtDate$)

140 strtDateID%=FNdayID (day%,mon%,yr%)

150 execID%=strtDateID%+daysToExec%
160 PROCreport (execID%)
170 PRINT'' C$ "Press any key to repea

BV IR (GET : CLS i RUN

180 END

90

200 PRINT'':REPORT:PRINT" at line ";ER
L

210 END

220

1000 DEF PROCgetData:PRINT TAB(0,4);
1010 FOR A%=1 TO 2:PRINT CHRS141 (CS" D
ate Prediction Demonstration":NEXT

1020 PRINT TAB(0,8) Y$ "Enter" CS$S "base
date"'C$ "Use format (dd.mm.yyyy)

",
..... 7

1030 PRINT TAB{0,11)YS "Enter" (S "the
interval in days"

1040 strtDate$=FNgetDate

1050 INPUT TAB(28,11) daysToExec%

1060 IF daysToExec%<0 OR daysToExec%>28
440 PROCmistake

1070 ENDPROC

1080 :

1090 DEF FNgetDate:INPUT TAB(25,9)date$

1100 ok1=MIDS$ (date$,3,1)="." AND MIDS (d
ate$,6,1)="."

1110 ok2=VAL (MIDS$ (date$,4,2)) > 0 AND V
AL (MIDS (dates$, 4,2)) < 13

1120 ok3=VAL (LEFTS (date$,2)) > 0 AND VA
L(LEFTS (date$,2)) <= FNmonLen (VAL (MIDS (d
ate$,4,2)),VAL(RIGHTS (date$,2)))

1130 IF NOT (okl AND ok2 AND ok3) PROCm
istake

1140 =date$

1150

1160 DEF PROCmistake:VDU7

1170 PRINT'''YS "Error - Press any key
to start again®

1180 IF GET:CLS:PROCgetData:ENDPROC

1190

1200 DEF PROCsplitDate (date$)

1210 day%=VAL (LEFTS (date$, 2)

1220 mon%=VAL (MIDS$ (date$,4,2))

1230 yr%=VAL (MIDS$ (date$,7,4))-1900:ENDP
ROC

1240

1250 DEF FNmonLen (mon%, year%) 1
1260 =30+ABS ((mon%>7)+(mon% AND 1))+ (mo
n%=2) * (2+ (FN1pYr (year%))) 1

uiprionie

1280 DEF FN1lpYr(y$%) :y%=y%+1900 |
1290 =(y%>1900 AND y%<2100)AND(y% AND 3 |
)=0

1300 «

1310 DEF FNdayID(days$%,mnth%, year%)
1320 yearDays%=365.25* (year%-1)

1330 IF mnth%=1:=days%+yearDays$%

1340 monLen%=0:FOR m%=1 TO mnth%-1

1350 monLen%=monLen%+FNmonLen (m%, year%)
1360 NEXT:=days%+monLen%+yearDays$%

13710 v

1380 DEF PROCreport (execID$%)

1390 execDayNo%=FNexecDayID (execID%)
1400 execMonth$=FNexecMonth (execDayNo%)
1410 execNme$=FNdayName (execID% MOD 7)
1420 execDate$=FNexecDay (execDayNo%, exe
cMonth$, execYr%)

1430 execYr%=execYr%+1900

1440 execYr$=STR$execYr%

1450 PRINT' Y$ "The day and date ";days
ToExec%" days ahead"'Y$"will be"

1460 PRINT TAB(10,14) execNme$", ";exec

|

Date$;".";execMonth$;".";execYr$
1470 ENDPROC
1480 :

1490 DEF FNexecDayID (execID%) :y%=y%-1
1500 REPEAT:y%=y%+1:a%=FNdayID(01,01,y%
)

1510 UNTIL a%>execID%:execYr$=y%-1

1520 =execID%-FNdayID (31,12, execYr%-1)
1530 ¢

1540 DEF FNexecMonth (exDy%) :agg%=0:h%=0

1550 REPEAT:h%=h%+1:pAgg%=agg$%

1560 agg%=agg%+FNmonLen (h%, execYr$%)

1570 UNTIL agg%+l > exDy%:em$=STRS (h%

1580 IF h%<=9 em$="0"+em$

1590 =em$

1600 :

1610 DEF FNdayName (rem%) : LOCAL no%, :no%
=-1

1620 RESTORE 1660:REPEAT:no%=no%+1

1630 READ prefix$:UNTIL no%=rem% OR no%
=6

1640 =prefix$+"day"

16501 -

1660 DATA Mon, Tues,Wednes, Thurs,Fri, Sat
ur, 5un

1670

1680 DEF FNexecDay (exDy%, em$, ey%

1690 execDate%=execDayNo%-pAgg%

1700 IF execDate%<=9 execDate$="0"+STRS
execDate% ELSE execDate$=STR$execDate%

1710 =execDate$

B

Beebug October 1990

31

Conspicuous Consumption (Part2)

Ralph Maltby concludes his description of a _fuel consumption monitor for your car.

Part 1 last month described a program for the
Master to tabulate recorded fuel consumption
for a car. It also gave some modifications to that
listing to suit the model B. In this second part
we provide listings for the Master and the
model B to extend the program to plot a graph
from the computed data (see Figure 1).

The scale of the plot is self-adjusting; the
consumption scale, which is in miles per gallon,
runs from 75% to 125% of the current value of
overall consumption, rounded to the nearest
integer. This is usually enough to cover the
variations in the short term figures.

5 3
1987 L]

Do you want a print out?(Y/K)

A typical screen display produced by the plot
routine

Note that the Dump call (line 3390 for the
Master & 1170 for the model B) has not been
included and that you will have to supply the
commands required for your own dump
program if you wish to print the graph.

THE MASTER PROGRAM

Listing 3 should be added to Listing 1 to give
the complete Master program, ignoring the
REM lines at the start. It makes use of the
memory released by the shadow RAM to allow
ample data to be stored and processed when

32

the complete program is run. The plots are in
modes 0 or 1; mode 1 is used for a colour
monitor, and mode 0 for a monochrome
monitor and for the screen display which is
dumped when printing.

THE MODEL B PROGRAM

There is not enough room for an adequate
amount of data to be handled easily when the
entire application is run as one program. The
approach taken here is to have a separate
plotting program (Listing 4), which should be
saved as FPlot-B. When typing this in, note that
three procedures are identical to those in
Listing 3 (with the exception of three lines) and
have therefore not been listed a second time.
Details are given in the REM statements at the
end of Listing 4. For ease of typing, the lines
can be given the same line numbers as in
Listing 3.

When the plot routine is required, the main
program stores the calculated data in a separate
file called Temp, sets PAGE to &1300 and calls
FPlot-B.

Unfortunately there is still not quite enough
room for modes 0 or 1 to be used, so mode 4 is
used instead. If the program is crunched, it
might well be possible to use modes 0 and 1
with a reasonably long file.

When the model B plot routine is run, it will
first re-load the calculated data from the file
Temp, and then perform the plot exactly as the
Master version.

Listing 3

10 REM >FConM2

20 REM Version Bl.2 (Master)

30 REM Author Ralph Maltby

40 REM BEEBUG October 1990

50 REM Program subject to copyright
3260
3270 DEFPROCplot

Beebug October 1990

- —

Conspicuous Consumption

3280 vpU19,128,128,0,0,0

3290 PRINTTAB(10,9)CHR$134"Are you usin
g":PRINTTAB(1,11) CHR$134"a Colour or Mon
ochrome monitor?":PRINTTAB(10,14)CHRS131
"Enter C or M"

3300 IF FNkey("CcMm") THEN VDU22,1:col$
="C" ELSE VDU22,0:col$="M"

3310 PROCgrid:PROCplotlines

3320 MOVEQ,-140:PRINT;"Do vou want a pr
int oub? (Y/N)"

3330 IF FNkey("YyNn") THEN PROCAump
3340 VDU22,7:ENDPROC

3350

3360 DEFPROCAump

3370 CLS:col$="M":VDU22,0:PROCgrid

3380 PROCplotlines:VDU29,0;0;2

3390 REM Insert dump call here

3400 VDU3:ENDPROC

3410 :

3420 DEFPROCgrid

3430 LOCAL yearorigin%,monthorigin%,yea
rlast%,dateend%, ext, step%, X%, Y%, fuelstep
%, N%

3440 IFcol$="C":GCOLO,128:VDU19,128,132
,0,0,0 ELSE GCOLO,128:GCOLO, 1

3450 dateorigin%= (VAL (RIGHTS (date$(0),2
)) + (VAL (MIDS$ (date$ (0) ,4,2))-1)/12) *10°4
3460 yearorigin%=dateorigin%DIV1074
3470 monthorigin%=VAL (MIDS ((date$(0)),4
12))

3480 yearlast%=VAL(RIGHTS (date$ (lastent
ry%),2)) :dateend%=(yearlast%+1) *10°4
3490 ext=(dateend%-dateorigin%)*12/10"4
3500 IF ext<12 THEN ext=12

3510 vDU29,200;200; : VDUS

3520 month%=monthorigin%

3530 year%=yearorigin$%

3540 MOVE 0,-60:PRINT; (1900+year%)

3550 MOVE900,-88:PRINT"DATE"

3560 MOVE-188,750:PRINT; "MPG"

3570 datescale=1000/ext:

3580 step%=(ext DIV 12)+1

3590 FOR X%=0 TO 1000 STEP step%*datesc
ale

3600 IF month%>12 THEN month%=month%-12
:year%=year%+1:MOVE X%, -60:PRINT;year$%
3610 MOVEX$%,0:DRAW X%, 800

3620 MOVE X%-16,-20:PRINT;month%

3630 month%=month%+step%

3640 NEXT

3650 M%=0.75*mpgall% (lastentry%) /100
3660 m%=M%:fuelstep%=2

3670 IF 100*M$MOD100>50 THEN M%=M%+1

3680 N%$=1.25*mpgall% (lastentry%)/100

3690 IF (N%-M%)MOD2>0 THEN N%=N%+1

3700 scale=800/ (N%-M%)

3710 FOR Y%=0 TO 800 STEP fuelstep%*sca
le

3720 MOVE 0,Y%:DRAW 1000,Y%

3730 MOVE -100, Y$+4 :PRINT;m%

3740 m%=m%+fuelstep%:NEXT

3750 ENDPROC

3760 ¢

3770 DEFPROCplotlines

3780 GCOLO,1:IF col$="C" THEN VDU19,1,2
00,0

3790 entry%=1:PROCgriddate (1)

3800 MOVE (date%-dateorigin%)*datescale
*12/1074, (mpgall% (entry%) /100-M%) *scale

3810 entry%$=1:REPEAT entry$=entry%+l

3820 PROCgriddate (entry$%)

3830 IF mile%(entry%)<1050 THEN MOVE (d
ate%$-dateoriging) *12/10"4*datescale, (mpg
all% (entry%) /100-M%) *scale ELSE PLOT21, (
date%-dateorigin%) *datescale*12/10%4, (mp
glast%(entry%) /100-M%) *scale

3840 UNTIL entry%=lastentry%

3850 IF col$="C" THEN GCOLO,2:VDU19,2,1
+0,0,0

3860 entry%=1:PROCgriddate (1)

3870 MOVE (date%-dateorigin%)*datescale
*12/10%4, (mpgall% (entry%) /100-M%) *scale

3880 entry%=1:REPEAT entry%=entry%+1l

3890 PROCgriddate (entry$%)

3900 DRAW(date%-dateorigin%) *datescale*
12/10%4, (mpgall% (entry%) /100-M%) *scale

3910 UNTIL entry%=lastentry$

3920 MOVE 0,0

3930 ENDPROC

3940 :

3950 DEFPROCgriddate (entry$%)

3960 date%= (VAL (RIGHTS (date$ (entry%),2)
) + (VAL (MID$ (date$ (entry$),4,2))-1) /12 +V
AL (LEFTS (date$ (entry%),2)) /365) *10°4DIV1

3970 ENDPROC

Listing 4

10 REM >FPlot-B

20 REM Version B2.2

30 REM Author Ralph Maltby

40 REM BEEBUG October 1990

50 REM Program subject to copyright
60

100 DIM dates$ (200) ,mpgall% (200),mpglas
t%(200) ,mile% (200)

continued on page 46

Beebug October 1990

33

RIS USER
The Archimedes Magazine & Support Group

Risc User continues to enjoy the largest circulation of any magazine devoted solely to the
Archimedes range of computers. Now about to start its fourth year of publication, it provides
support for all Archimedes users at work (schools, colleges, universities, industry, government

establishments) and home.

"Fierce raged the ,l;{"';‘:*_ﬂdgm N s o
publishing (6 thst the betier the package the
betier the cutput. Ax discussed in an aartier

Tempest..."

lsme of this magazine, waing Drew md
A yoar ago ther was n epidemio of @t JBdit on & 310 & is always possible (o
packages for the Arctumedes. Now that the produce an identicel copy of a doctment
quality of dot-matrix printers has improved, prox
wid the price of fast laser printers ties fallen
below & ihousand people are

he potcntial of the Anchimedes In possty) ¢ £0 height

Double size

the Deskiop Publisbing (DTF) sector. The
marel sow tas four DTV

2| Double page
User scale

Existing Beebug members, interested in the new range
of Acorn micros, may either transfer their membership
to the new magazine or extend their subscription to
include both magazines.

A joint subscription will enable you to keep
completely up-to-date with all innovations and the
latest information from Acorn and other suppliers on
the complete range of BBC micros. RISC User has a
massive amount to offer to enthusiasts and
professionals at all levels.

&4 Show frames & guides

9i Show pictures

% Show rulers
Hyphenation 9|7 Show page index..,

TIGER
A Wimp multi-tasking extended CATalogue which
enables you to add descriptive information to files
and directories.
ICON BAR CLOCK
A Wimp application which places a combined
analogue and digital clock on the icon bar.
INTRODUCING C
A wide ranging new series on C, a major
programming language for the Archimedes.
WP/DTP
Anew column which offers hints on using different
DTP and WP packages. The first article
concentrates on 1st Word Plus .
THE BRITISH ISLES IN RELIEF
An entertaining program which creates a coloured
map of the British isles.
ASSEMBLER WORKSHOP
A major series for the more advanced ARM

processor programmer. The latest one provides an

introduction to heap management.

TEMPEST .
A review of the latest DTP package for the
Archimedes, an enhanced version of Acorn DTP.
MASTERING THE WIMP
A major series for beginners to the Wimp
programming environment. The most recent
instaliment is dedicated to the Message system
and Object dragging.
INTO THE ARC
A regular series for beginners. The latest article
explains expansion cards.
ARCADE
A round-up of the latest games for the Archimedes,
including The Pawn and Guild of Thieves from
Magnetic Scrolls, and Apocalypse (one of the very
best games yet for the Arc) from Fourth Dimension.

As a member of BEEBUG you may extend your
subscription to include RISC User for only £8.10

(overseas see below).

Don't delay!

Phone your instructions now on (0727) 40303

Or, send your chequo/postal order to the address below.
Please quote your name and membership
When ordering by Access, Visa or Connect, please quote your card
number and the expiry date.

SUBSCRIPTION DETAILS
Destination Additional Cost
UK,BFPO &Ch [s £ 8.10
Rest of Europe and Eire £12.00
number. Middle East £14.00
Americas and Africa £15.00
Elsewhere £17.00

RISC User, 117 Hatfield Road, St Albans, Herts AL1 4]S, Telephone (0727) 40303, FAX (0727) 60263

by Bernard Hill

If you attempted the eight

queens problem I left you

with at the end of last

month’s article, you will

have found how long

permutation searching can

take. In this article we shall

be looking at ways in which

we can avoid looking at all

the possibilities, and so

shorten the search process.

Let’s start by examining this

problem of placing eight

queens on a chessboard so

that none is attacking any

other - i.e. so that no two lie

on any vertical, horizontal or

diagonal line.

As mentioned last month, we

obviously have only one

queen in each column, and

each in a different row

number so that the positions

of the queens can be

represented by an array:

DIM rownum(8)

of the row numbers on which

the queens stand, and the

numbers in this array will be

W

a permutation of the numbers

1 to 8. The problem of testing

for queens on the same

diagonal is solved by

calculating the sum of each

piece’s row and column co-

ordinates: those on the same

NW-SE diagonal will give the
same sum, and queens on the

same NE-SW diagonal will

have the same difference of

; their co-ordinates. Thus given

a permutation of the numbers

1 to 8 in the array ‘rownum’,

we can test for mutual attacks

with a function:

Beebug October 1990

Searching (Part 2)
Backtracking algorithms

10000 DEF FNattack

10010 LOCAL col,d,bad

10020 FOR d=2 TO 16:dlused(d)=0:NEXT
10030 FOR d=-7 TO 7:d2used(d)=0:NEXT

10040 col=0

10050 REPEAT

10060 col=col+l

10070 d=rownum(col)+col
10080 bad=dlused(d)
10090 dlused(d)=1

10100 UNTIL bad=1 OR col=8

10110 IF bad THEN =TRUE
10120 col=0

10130 REPEAT

10140 col=col+l

10150 d=rownum(col)-col
10160 bad=d2used(d)
10170 d2used(d)=1

10180 UNTIL bad=1 OR col=8
10190 =bad

This function presupposes that we have two
arrays ‘dlused’ and ‘d2used’ which have been
declared initially. Those of you with eagle eyes
will have spotted that the index of ‘d2used’ has
to go negative (see line 10030). BBC Basic
doesn’t allow this, but we could fudge this by
declaring it as DIM d2used(14) and adding 7
onto all index calculations. In this case,
however, there’s a subtler - and faster - solution.
If we use indirected arrays, e.g.:

DIM dlused 16
then we can also use:

DIM dummy 14 : d2used=dummy+7
and use d2used?x where x can go from -7 to +7!

I leave you to the exercise of putting this
function into last week’s permutation problems.

A BACKTRACKING ALGORITHM

But if you were to attempt to solve this problem
yourself, you would not generate permutations.
Logically you might try the following:

1. Place the first queen in square al.

2. Now the second queen goes in the second
column. Obviously not at b1 but equally
obviously not at b2 since this is on a diagonal
line to al.

35

Workshop - Searching

And this is the important part: we can shortcut
further placings of the other six queens on the
basis of the impossibility of the point we’'re
trying at the moment (in this case b2).

Here is a pseudocode algorithm for
implementing such a process. It is called a
backtracking algorithm because the algorithm
automatically ‘backs off’ blind alleys. The key
to this is the “unmake move” statement:

DEF PROCtry(n)
REPEAT
select next move
IF acceptable THEN
make move
IF n=max depth THEN print solution
ELSE PROCtry(n+l)
unmake move
UNTIL no more moves
ENDPROC

Note that I am using indentation to indicate
logical grouping, so that the IF statement covers
the next four lines.

If we call the procedure with PROCtry(1) then
it will generate all solutions to whatever
problem we program. If we are merely
searching for any solution (as opposed to all)
then of course we can put and END statement
after our ‘print solution” line.

Listing 1 is a solution to the queen’s problem
along these lines, but I have generalised it to N
queens on an NxN chessboard, and the addition
of a few lines of graphics means that you can
watch the process as it searches. You can see that
the vast majority of searches fail well before a
queen is placed in the right-hand row.

As written the program will not handle chess-
boards over 20x20. This is because of the
nesting limit of the REPEAT statement: a
maximum of 20 REPEAT nestings is allowed by
BBC Basic, and the recursion means that we are
leaving one REPEAT uncompleted when
another starts (a FOR loop is even worse; only
10 are allowed). If you want to search on a
larger chessboard then you'll have to replace
REPEATs with GOTOs.

Again the program is written for clarity, not
speed. To speed up the program you could:

36

Listing 1
10 REM N Queens problem
20 REM Version Bl.1
30 REM Author Bernard Hill
40 REM BEEBUG October 1990
50 REM Program subject to copyright

100 MODE7

110 INPUT "How big a chess-board";N
120 MODE 1

130 DIM rowused N,dlused 2*N,dum 2*N
140 d2used=dumtN

150 FOR i=1 TO N:rowused?i=0:NEXT
160 FOR i=2 TO 2*N:dlused?i=0:NEXT
170 FOR i=0 TO 2*N:dum?i=0:NEXT

180 REM draw board

190 s=800/N:GCOL 0,1

200 FOR i=0.5 TO N+.5

210 MOVE s*i,s/2:PLOT 1,0,N*s

220 MOVE s/2,s*1:PLOT 1,N*s,0

230 NEXT

240 GCOL4, 3:VDU5,29,-16;16;

260 T=0

270 PROCtry (1)

280 VDU4

290 PRINT T;" solutions"
300 END

1000 DEF PROCtry (row)

1010 LOCAL col:col=0

1020 REPEAT

1030 col=col+l

1040 REM test for illegal place...

1050 IF rowused?col THEN 1150

1060 IF dlused? (row+col) THEN 1150

1070 IF d2used? (row-col) THEN 1150

1080 REM OK so place it

1090 MOVE row*s,col*s:PRINT "Q";

1100 rowused?col=1

1110 dlused? (row+col)=1

1120 d2used? (row-col)=1

1130 IF row=N THEN T=T+1:VDU7:z=GET ELS
E PROCtry (row+l)

1140 rowused?col=0:dlused? (rowtcol)=0:d
2used? (row-col)=0:MOVE row*s,col*s:PRINT

l|Qll’,

1150 UNTIL col=N

1160 ENDPROC

1. Omit the graphics (gains about 30%)

2. Replace all variables by resident integers
(another 30%)

3. Replace the GOTO statements in lines 1050-
1070 with “UNTIL col=N:ENDPROC” (which is

Beebug October 1990

Workshop - Searching

what they actually implement if the statement
is true). About 10%.

Overall result: a gain of 3 times in speed!

KNIGHT’S TOUR

To complement Eric Bramley’s Knight’s Tour
program of Vol. 7 No. 2 which invites you to
test your skill, Listing 2 is a chance to tell your

Listing 2

10 REM Knight's tour

20 REM Version B 1.1

30 REM Author Bernard Hill

40 REM BEEBUG October 1990

50 REM Program subject to copyright

100 MODE7

110 INPUT "Size of board";N

120 MODE129:REM MODE 4 on Model B
130 NSQ=N*N

140 DIM A(8),B(8) ,H(N,N)

150 FOR i=1 TO 8:READ A(i),B(i) :NEXT
160 REM plot board

170 GCOLO,1:s=800 DIV N

180 FOR 1i=0.5 TO N+0.5 STEP 1

190 MOVE s*i,s/2:PLOT 1,0,N*s

200 MOVE s5/2,s*1:P10T 1,N*s,0

210 NEXT:GCOL 4,3

230 TIME=0:H(1,1)=1

240 PROCtry(2,1,1)

250 REM if you get here there was...
260 PRINT"No solution"

270 END

280 ¢

1000 pATA 2,1, 1,7, =1 2, 2,1
1610 DATA =2, =%, =lpod i] w2, 0,50

1620

2000 DEF PROCtry(i,x,y)

2010 REM try from sg (x,y) at move i
2020 LOCAL k,u,v:k=0

2030 REM repeat

2040 k=k+1

2050 u=x+A (k) :v=y+B (k)

2060 IF u<l OR u>N THEN 2150

2070 IF v<1 OR v>N THEN 2150

2080 IF H(u,v)>0 THEN 2150

2090 H(u,v)=1:REM make move

2100 MOVE &*s, y*s:P1OT 6,urs,vts

2110 IF 1=N50 THEN PREINT "Solution in "
TIME/100" sec.":END

2120 PROCtry(itl, u,v)

2130 H(u,v)=0:REM undo move

2140 MOVE %*s,y*s:PLOT 6,u*s,v’e

2150 IF (k<8) THEN 2030:REM until k=8

2160 ENDPROC

Beebug October 1990

Beeb to find a solution for itself. The basic
program is very similar to the Queen’s
problem, all we need is to pre-generate arrays
of 8 knight moves A (x-moves) and B (y-moves)
(lines 1000-1010) and keep an array H(N,N) for
each square which indicates the move number
when the square was visited, or 0 if it has not
yet been used.

Generating a new move (u,v) from a current
position (x,y) is simply a matter of adding the
k’th move number to the co-ordinates (line
2050). These new co-ordinates must lie on the
board (lines 2060-2070) and be unused (line
2080). Success is indicated by the depth of
iteration being N*N.

Note that as mentioned above we have had to
replace the REPEAT with GOTO statements as
our nesting level would have meant that we
can only solve for boards up to 4x4 (16 squares).
In any case, the depth of recursion used means
that even using shadow RAM (if available) and
with PAGE set at &E00 we can only solve
boards up to about 16x16 since the depth of
recursion then goes up to 256!

However, BE WARNED that the program as
given takes about 20 minutes to solve a 5x5
board and about 12 days to find a solution to an
8x8 board! To find a faster solution we need to
be more circumspect about the order in which
we generate moves. By generating all legal
moves first (on entry into PROCtry), and then
sorting them so that those nearest the corners
are tried first, I generated a solution to an 8x8
board in only a few minutes. I leave that as an
exercise for you!

Have some fun watching the program solve the
(trivial for humans!) problem of covering the
board with king’s moves. Just alter the DATA
statements in lines 1000-1010.

LAST MONTH’S PROBLEM

Those of you who had a go at the permutations
problem in the last issue should have found
that there are 9 distinct solutions to the
problem. Interestingly, two sets of multipliers
give the same product:

27*198=5346 and 18*297=5346
42*138=5796 and 12*483=5796 3
37

Monix: A Machine Code Monitor (Part 2)

by Richard Taylor

This month, the remaining eight utilities are
added to the program. Load up your copy of
MONIXI1 from last month and select mode 7
(the program gets rather long). Then type in
this month’s listing keeping to the line numbers
exactly as listed so that it will merge correctly
with part one. Alternatively, if you have
BEEBUG’s Toolkit then type this part in
separately with correct line numbers, save it as
'MONIX?2’, then load up part one and type:
*MERGE MONIX2

Remember that unwanted routines can be left
out (see part one) and you can lower the new
value of PAGE by doing this. When you have the
full program save it and then run it. Again see
part one for details of how to get the assembled
program running. The source program should
never need to be run again unless you need to
make any changes, or the original PAGE value
on your machine changes. Normally whenever
you require Monix just type *MN.

It would be relatively easy for users to add any
machine code utilities of their own which they
had written. Any suggestions would be
welcome.

PART TWO OPTIONS

E - Edit Memory.

Input the start address. The display will then
show the address, the hex value, the binary
value (bitwise), and the ASCII character. The
zero page can be viewed but not edited. To
adjust the user variables (&70-&8F) use option
U. For editing use the following keys:

A - move down through memory.

Z - move up through memory.

B - enter new hex value for the address
and the edit address will then move
on one, enabling quick editing.

S - enter new ASCII character for the
address and again the edit address
will move on one.

Escape - exit editor.

38

00 00 37 00110111 EEFA F6 EEFA

00 00 00 00 00 OC
00 00 00 00 20 00
00 00 01 00 05 44
07 9E 07 06 04 00

&FO
&FBDF
A

A

Address
OEQO 08 00001000 .

Editing Memory from &E00

U - Edit the User Variables (&70-&8F).

Input the single-byte zero page address and
then the new value wanted. The value will be
shown in the display on the menu screen.

S - String Search.

Enter the string to be searched for, and then the
pages to search between (to search between
&4100 and &5BFF enter 41 and then 5B). The
hex values of the bytes being searched for will
then be shown underneath the input. Then the
page values currently being searched through
will be displayed followed by the addresses of
all occurrences of the string in that page
(usually none). Look out for ‘false’ finds,
usually in page 03 and anywhere in the monitor
itself.

B - Byte Search.

Enter the bytes to be searched for pressing
Return after each one. Press Return again when
no more bytes are to be entered (the final
Return will enter 00 but this will not be
searched for). Then follow the same
instructions as for the String Search.

J-JSR.

Any subroutine can be accessed with this
command. Input the address, followed by the
accumulator, X register and Y register values
which are required on entering the routine. On

Beebug October 1990

|

Moni};: A Machine Code Monitor

return from the routine the register values will
be shown again, allowing use of OSBYTE calls
which send back values. This can be very useful
for testing whether routines that you have
written actually work.

M - Memory Mover.

Enter the start address, the number of bytes to
be moved, followed by the destination address.
The mover will cope with moves in both
directions and overlaps.

ORA €&01),Y

EOR &52
EOR 84E49
EOR (84C,X>
BRK

PLP
AND -831
AND 83438,
JSR 86341

ROR &A900
INC &341C,X
INC &DD9C,X

ROR 03
CLD
LDX -&FF

8000 JMP &AF77 Lw.
8003 JMP &9D72 5

Using the disassembler

4C 77 AF
4C 72 90

P - Prompt on Entering On/Off.

When this is turned on, each time the monitor
is accessed (from within a program, say) a
prompt seeking confirmation will appear in the
top left hand corner of the screen. If any key
other than ‘Y’ is pressed, any program will
carry on with what it was doing. This also
allows a check of where the computer had got
to before entering the monitor.

D - Disassembler.

Input an address, and disassembly will start
immediately from that address. Be careful, as
the first few instructions may be false since
disassembly may have started in the middle of
an instruction or block of data. If the op-code is
not recognised then ‘—- will be printed. The
first column shows the address, which is
followed by the assembler command, the ASCII
characters of the bytes and then the bytes in
hex. The ASCII characters can be useful to show
data and therefore reveal false assembly
language. These keys are needed:

Beebug October 1990

Shift - move on for the next eight
instructions.
Escape - exit Disassembler.

PROGRAM NOTES

OPTION ROUTINES

.edit prints the hex, ASCII and binary values of
the byte being looked at. The byte can be
changed either by giving it a new hex value or
by giving it the value of an ASCII character. The
zero page cannot be edited but .editusr allows
the stored user variables to be changed by
asking for the address and new value. The
values will be put into &70-&8F when an exit is
made from the monitor, as the monitor
obviously uses these locations itself.

.bysrch gets an input of up to ten hex bytes
from “.slct’ and places them in “.srchline’. It then
goes to the main search routine at ‘“.bgsrch’,
which asks for the area to be searched and then
moves through this area byte by byte. If the first
byte matches then it tries the second and so on
until a complete match is made in which case it
prints out the address.

.stsrch takes the input string from ‘.inline’ and
puts it in “.srchline’ before carrying on to
“bgsrch’ (see above).

.move goes to ‘.upmove’ or .downmove’
depending on which way through the memory
the move is to take place. This is to allow for
overlaps. “upview’ starts at the end and works
to the beginning, and vice versa for
. downview’

.prompt prints out the necessary message and
then toggles the byte at “.prmvar’ between 0
and 1 (prompt off and on). See “monitor” at the
beginning of the program.

.jsr asks for the address to go to, and the
register values to be sent. They are then printed
on return. At the end of the routine, the normal
‘IMPkeyrts’ cannot be used as it is likely that
some of the monitor’s zero page variables have
been overwritten and they must be reset.

39

Monix: A Machine Code Monitor

.dis loads up the three bytes at and after the
address stored in memps. These will not always
be needed depending on the instruction. The
opcode’s addressing mode is found from the
data at “.adrmode’. For example ‘I’ stands for
implied addressing mode which is only a one
byte instruction (no operands). Then memps is
incremented by the required amount, in this
case one. The assembler mnemonic is printed
out from the data at “mnemstr’ together with
any operands, followed by the hex bytes (or
machine code) and the ASCII values. The
disassembler has a counter allowing its use in
the menu screen and for it to stop every eight
bytes. It also has many subroutines of its own
which follow after it.

.t8 labels the start of the part two text.

.mnemstr marks the data for the assembler
mnemonics.

.mnemvec gives the mnemonic to be printed for
each opcode (0-255). Note that mnemonics like
‘LDA’ have many different addressing modes
and so many different opcodes.

Lastly .adrmode gives the addressing mode for
each opcode.

3000 .edit LDX#(tl-tbs) :JSRprtxt
3010 LDA#memps:JSRslctwrd:JSRonw
3020 .bgedit LDX#(t8-tbs) :JSRprtxt
3030 JSRprwrd:LDY#0:LDA (memps),Y
3040 JSRprnm:JSRbitwise:JSRasc:JSRonw
3050 JSRrd:TAY:JSRspc:TYA:LDY#0
3060 CMP#ASC"A":BEQdownedit

3070 CMP#ASC"Z":BEQupedit

3080 LDXmemps+1:BEQbgedit

3090 CMP#ASC"B":BEQbyteedit

3100 CMP#ASC"S":BNEbgedit

3110 JSRrd:STA(memps),Y

3120 JMPupedit

3130 .downedit DECmemps :LDAmemps
3140 CMP#255:BNEcseedit :DECmemps+1
3150 .cseedit:JMbbgedit |

3160 .upedit INCmemps :LDAmemps
3170 BNEccledit:INCmemps+1l

3180 .ccledit JMPbgedit

3190 .byteedit LDA#var:JSRslct
3200 LDY#0:STA (memps) ,Y:JMPupedit

3210 -

3220 :

3230
3240
3250
3260
3270
3280
3290

3300 :
3310 :

3320
3330
3340
3350
3360
3370
3380
3580
3400
3410
3420
3430
3440
3450

| 3460

3470
3480
3490
3500
3510
3520
3530

| 3540

3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690

3700 ¢

.editusr LDX#(t9-tbs) :JSRprtxt
LDA#memps : JSRslct
CMP#&70:BCCeditusr
CMP#690:BCSeditusr

LDX# (t10-tbs) : JSRprtxt
LDA#var2:JSRslct : LDYmemps
STAretmem-&70,Y:JMPrts

.bysrch LDX#(t1ll-tbs) :JSRprtxt
LDY#0: .1lpbysrch

LDX# (srchline DIV256) : TYA:CLC

ADC# (srchline MOD256) :BCCcclbysrch
INX:.cclbysrch STYvar2
JSRslctntzp:BEQoutbysrch

LDYvar?2
INY:CPY#10:BNElpbysrch: INCvar2
.outbysrch LDYvar2:TYA:PHA
JMPbgsrch

.stsrch LDX#(t6-tbs) :JSRprtxt
.gtstr LDA#10:STAlim:JSRrdline
1DYlgth:.tran LDAinline,Y
STAsrchline, Y:DEY:BPLtran
LDAlgth:BEQgtstr:PHA

.bgsrch LDX#(t12-tbs) :JSRprtxt
LDA#menmps+1:JSRslct
LDA#memps1+1:JSRslct : INCmempsl+l
PLA:STAlgth:JSRonw
LDY#0:.1lpsrch

LDAsrchline, Y:JSRprnm
INY:CPY1lgth:BNElpsrch
JSRonw : LDA#0 : STAmemps
LDA#14:JSRowr

.lpsrch JSRonw:JSRprwrd
.lpsrchl LDY#&FF

.1psrch2 INY:CPYlgth:BEQfound
LDAsrchline, Y:CMP (memps),Y
BNEoutsrch:BEQlpsrch2

.found JSRonw:LDA#&81:JSRowr
JSRprwrd

.outsrch INCmemps:BNElpsrchl
LDX#&8F: JSRkeys :BCSensrch
INCmemps+1 : LDAmemps+1
CMPmemps1+1:BNElpsrch

.ensrch LDA#15:JSRowr:JMPkeyrts

kil

3720

.move LDX#(tl13-tbs) :JSRprtxt

40

Beebug October 1990

Monix: A Machine Code Monitor

3730
3740
3750
3760
3770
3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060

4090
4100
4110
4120
4130
4140
4150

4180
4190
4200
4210
4220
4230
4240

4160 :
4170

LDA#memps : JSRslctwrd
LDA#amnt : JSRslctwrd
LDA#memps1:JSRslctwrd
LDAmemps+1 : CMPmemps1+1
BCCmoveup : BNEmovedown
LDAmemps : CMPmemps 1 : BCCmoveup
.movedown

1DY#0:LDXamnt +1:BEQmovedlo
.movedlp

LDA (memps) , Y: STA (memps1) , Y

INY :BNEmovedlp

INCmemps+1: INCmemps1+1

DEX : BNEmovedlp

.movedlo LDXamnt :BEQenmove
.movedlolp

LDA (memps) , Y: STA (memps1) , Y

INY :DEX:BNEmovedlolp :BEQenmove
.moveup

LDAamnt : CLC : ADCmemps1 : STAmemps 1
LDAamnt +1 :ADCmemps1+1 : STAmemps1+1
LDAamnt : CLC : ADCmemps : STAmemps
LDAamnt+1 :ADCmemps+1 : STAmemps +1
DECmemps+1 : DECmemps1+1

LDY#255 : LDXamnt+1 : BEQmoveulo
.moveulp

LDA (memps) , Y: STA (memps1) , Y
DEY:CPY#255 :BNEmoveulp
DECmemps+1:DECmemps1+1
DEX:BNEmoveulp

.moveulo LDXamnt :BEQenmove
.moveulolp

LDA (memps) , Y:STA (memps1) , Y

DEY :DEX : BNEmoveulolp

.enmove JMPrts

4070 :
4080 :

.prompt LDX#(t1l4-tbs) :JSRprtxt
LDAprmvar :BEQturnon
LDA#ASC"F": JSRowr : JSRowr
DECprmvar :BEQenprompt

.turnon LDA#ASC"N":JSRowr
INCprmvar: .enprompt JMPkeyrts
JMPkeyrts

.jsr LDX#(t15-tbs) :JSRprtxt
LDA#memps : JSRs1ctwrd: JSRonw
LDA#jsra:JSRslct
LDA#jsrx:JSRslct
LDA#jsry:JSRslct
TAY:JSRonw:LDAjsra:LDXjsrx
JSRjsrvec:STAjsra:STXjsrx

4250
4260
4270
4280
4290
4300
4310

4320 :
4330 :

4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760

LDX# (£t15-tbs) : JSRprtxt
JSRprwrd:JSRonw
LDAjsra:JSRprnm:LDAjsrx: JSRprnm
TYA:JSRprnm

LDX# (t7-tbs) : JSRprtxt : JSRrd
TSX:INX:INX:TXS:JMPreset
.jsrvec JMP (memps)

.dis LDX#(t1-tbs) :JSRprtxt
LDA#memps : JSRs1lctwrd: LDA#0:STAlim
.disl LDA#0:STAcnt
JSRonw : JSRonw

.bgdis JSRprwrd
JSRspc:LDY#0

LDA (memps) , Y: STAopcode : INY
LDA (memps) , Y: STAbytel: INY
LDA (memps) , Y: STAbyte2
LDYopcode : LDAmnemvec, Y : TAY
LDX#3:.1lpdis

LDAmnemstr, Y:JSRowr
INY:DEX:BNElpdis

JSRspc: LDYopcode : LDAadrmode, Y
CMP#ASC"I":BEQimp
CMP#ASC"#" :BEQimm
CMP#ASC"A" :BEQacc
CMP#ASC"S" :BEQabs
CMP#ASC"Z" :BEQzpg
CMP#ASC"X" :BEQabx
CMP#ASC"Y" :BEQaby
CMP#ASC"x" :BEQzpx
CMP#ASC"y" :BEQzpy
CMP#ASC"N" :BEQind

CMP#ASC" (" :BEQiny
CMP#ASC") " :BEQinx

.imp LDA#1:JMPmtdis

.imm JSRowr
JSRprbyl : IMPtwo

.acc JSRowr:LDA#1:JMPmtdis
.abs JSRprby2:LDA#3:IMPmtdis
.zpg JSRprbyl:JMPtwo

.abx JSRprby2:JSRx
LDA#3:JMPmtdis

.aby JSRprby2:JSRy
LDA#3:JMPmtdis

.zpx JSRprbyl :JSRx:JMPtwo
.zpy JSRprbyl:JSRy:JMPtwo
.ind JSRopbr:JSRprby?2
JSRclbr:LDA#3:JMPmtdis
.iny JSRopbr:JSRprbyl
JSRclbr:JSRy: IMPtwo

Beebug October 1990

41

Monix: A Machine Code Monitor

4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080

5090 :

5100
5110

.inx JSRopbr:JSRprbyl
JSRx:JSRclbr

.two LDA#2

.mtdis STAlgth:CLC:ADCmemps
STAmemps :BCCccldis : INCmemps+1
.ccldis LDA#31:JSRowr
LDA#20:JSRowr
LDA#134:JSRoby : TYA:STAvar2 : JSRowr
LDY#0:.1lpdisl:LDAopcode, Y:JSRasc
INY:CPYlgth:BNElpdisl
LDA#31:JSRowr : LDA#25 : JSRowr
LDAvar2:JSRowr :LDY#0: . 1pdis2
LDAopcode, Y: JSRprnm
INY:CPYlgth:BNElpdis2
INCent : LDAlim:BEQpage

CMPcnt :BNEcont :RTS

.page LDA#&07:BITcnt :BNEcont
.shift LDX#&FF:JSRkeys:BCScont
LDX#&8F : JSRkeys:BCCshift :JMPrts
.cont JSRonw:JMPbgdis

.prby2 LDA#ASC"&":JSRowr
LDAbyte2 : JSRprnm: JSRback
BNEmtprbyte

.prbyl LDA#ASC"&":JSRowr

.mtprbyte LDAbytel:JSRprnm:JMPback

.X LDA#ASC",":JSRowr
LDA#ASC"X" : JMPowr
.y LDA#ASC",":JSRowr
LDA#ASC"Y" : IMPOWT

.opbr LDA#ASC" (":JMPowr
.clbr LDA#ASC")":JMPowr

5120 :

8000

.t8 EQUD&TFTFTFTF :EQUD&2B17001F

8010 .t9 EQUB&OD:EQUS"70-8F" :EQUB&86:EQ
st

8020 .t10 EQUS"= &+"

8030 .t1ll EQUS"Bytes":EQUW&2B86

8040 .t12 EQUB&OD:EQUS"St Fn":EQUW&2BOD

8050 .t13 EQUS"Strt Amnt Dest":EQUW&2B0
D

8060 .tl4 EQUS"Prompt":EQUB&86:EQUS"0O+"

8070 .t15 EQUD&OD:EQUS"A X Y JSR":EQU
B&86:EQUS"&+"

8080 .mnemstr

8090 EQUS"ADCANDASLBCCBCSBEQBITBMI"

8100 EQUS"BNEBPLBRKBVCBVSCLCCLDCLI"

8110 EQUS"CLVCMPCPXCPYDECDEXDEYEOR"

8120 EQUS"™INCINXINYJMPJSRLDALDXLDY"

8130 EQUS"LSRNOPORAPHAPHPPLAPLPROL"

8140
8150
8160
8170
8180
8190
8200
8210
8220
8230
8240
8250
8260
8270
8280
8290
8300
8310
8320
8330
8340
8350
8360
8370
8380
8390
8400
8410
8420
8430
8440
8450
8460
8470
8480
8490
8500
8510
8520
8530
8540
8550
8560
8570
8580
8590
8600
8610
8620
8630
8640
8650
8660

EQUS"RORRTIRTSSBCSECSEDSEISTA"
EQUS" STXSTYTAXTAYTSXTXATXSTYA"

EQUS Wi W

.mnemvec

EQUD&ABAB66LE:
EQUD&A806666C:
EQUD&ABAB661B:
EQUD&ABAB6627 :
EQUD&ABA80354:
EQUD&A8750372:
EQUD&ABAB0315:
EQUD&ABA80384:
EQUD&ABA8457B:
EQUD&A8604569:
EQUD&ABAB4521:
EQUD&ABAB452D:
EQUD&ABABO0TE:
EQUD&A878006F :
EQUD&ABA80024:
EQUD&ABAB008A:
EQUD&ASA88DAS :
EQUD&ABIFAB42:
EQUD&ABAB8D09:
EQUD&ABA28DAS :
EQUD&A85A575D::
EQUD&A8965799:
EQUD&ABA8570C:
EQUD&A89C5730:
EQUD&ABAB83339:
EQUD&AB3F334E:
EQUD&A8A83318:
EQUD&ABAB8332A:
EQUD&ABAB8136:
EQUD&A863814B:
EQUD&ABA8810F :
EQUD&A8A88187:
.adrmode

EQUD&A80666A8
EQUD&AB0666A8
EQUD&AB0666A8
EQUD&AB0666A8
EQUD&A8750312
EQUD&A8750312
EQUD&A87503A8
EQUD&A87503A8
EQUD&A86045A8
EQUD&A8604551
EQUD&A86045A8
EQUD&A86045A8
EQUD&A87800A8
EQUD&A8780051
EQUD&A87800A8
EQUD&A87800A8
EQUD&A8908DI3
EQUD&A8908DI3
EQUD&A8908DI3
EQUD&ABA88DAS
EQUD&A85A575D
EQUD&A85A575D
EQUD&A85A575D
EQUD&A85A575D
EQUD&A83C3339
EQUD&A83C3339
EQUD&A83C33A8
EQUD&A83C33A8
EQUD&A8488136
EQUD&A8488136
EQUD&A84881A8
EQUD&A84881A8

EQUS"I)IIIZZII#AIISSI"
EQUS"Z (ITIxxIIYITIXXI"
EQUS"S) ITZZZII#AISSSI"
EQUS"Z (IIIxxIIYITIXXI"
EQUS"I)IIIZZII#AISSSI"
EQUS"Z (ITIxxIIYIIIXXI"
EQUS"I)IIIZZII#AINSSI"
EQUS"Z (IIIxxIIYIIIXXI"
EQUS"I)IIZZZIIIIISSSI"
EQUS"Z (IIxxyIIYIIIXII"
EQUS"#) #1Z2ZIT4IISSSI"
EQUS"Z (IIxxyIIYIIXXYI"
EQUS"#)IIZZZIT#IISSSI"
EQUS"Z (ITIxxITYITTXXI"
EQUS"#) I1ZZZIT#IISSSI"
EQUS"Z (IIIxxITYIIIXXI"

5.

42

Beebug October 1990

Understanding Data Files

This month’s First Course is contributed by Paul Pibworth who

course

I write programs to
process data stored in files, and on the whole,
the file structure remains the same. But every
now and again, I modify the structure, and then
sometimes find that the program will no longer
read the data from a previous data file. What I
needed was a program to read any data file,
assuming it was based on strings, integers, and
what I call real numbers (numbers like 2.5),
which are stored as so-called floating point
numbers. The program listed here is the result.
However, the added bonus is that it can help
you to understand how these things are stored
by Basic, and to learn more about floating point
numbers.

Before any data file can be used it must first be
opened (and if necessary created as a file on
disc). This is done with one of the instructions
OPENOUT, OPENIN and OPENUP. When a
file is opened it is linked to the program via a
channel number, and all future references to the
file use this channel number rather than the file
name. Thus:
F=OPENOUT ("MyData")

would create and open a new data file called
MyData, and assign its channel number to the
variable F'.

To write data to a file, or to read data from a
file, Basic provides a number of instructions,
but the two most often used are PRINT# and
INPUT#. Apart from the reference to the
channel number, which immediately follows
the ‘#, these instructions are very similar in use
to the more normal PRINT (to screen or printer)
and INPUT (from the keyboard). Data may be
in the form of integer or floating point
numbers, or as strings of characters (see below
for more detailed examples). This article is
concerned with the way in which these three
data types are stored in files, particularly
floating point numbers.

In addition, there are two other instructions,
BPUT# and BGET# which allow a single byte to
be written to or read from a file. These

Beebug October 1990

explains how data is stored in data files by Basic.

instructions are used by the accompanying
program to achieve its purpose but we need not
consider them further in our discussions here.

The program listed here is designed to help you
to understand how Basic stores data in a file. It
also serves as a means for examining any data
file created using PRINT#. You don’t need to
understand exactly how the program works to be
able to use it. Before you try out the program it
helps to create a short data file, such as TempDat

below, which can be analysed by this program.

This file can be created easily direct from the
keyboard, and will also help to explain the use
of some of the instructions introduced earlier.
Just type:

N%=12345:R1=12.0625:R2=-1.5
F=0PENOUT (" TempDat")

AF,%This; is aistring.”
P.#F,"Next is an integer."
P.4#F,N%

P.#F,"Now some real numbers!'"
P

i3

c

oo}

#F,R1
.#F,R2
LOSE#F

and the file will be created. This is just a sample,
but one which includes examples of all three
data types. Sample numbers are assigned to
suitable variables in the first line to ensure that
Basic stores these in memory specifically as
integer or floating point numbers. If you run the
main program, specifying TempDat as the file
name, it will show you the contents of the file.
We will now examine this aspect in more detail.

If you already know how data is arranged in a
data file on disc, just skip this bit. All file data is
stored as a series of bytes (8 bit numbers in the
range 0 to 255 - e.g. numbers like 00110100). If
you have created the data file as described
above, one way of looking at it is by typing:
*DUMP TempDat

The dump will show each byte of the file as a
hexadecimal value, with the corresponding
characters (if any) displayed to the left.

43

First Course

In this instance the dump will start with a zero
byte &00. This usually means that a character
string follows. Then comes another number, in
hex, which tells you how long the string is. It is
&11 (17 in decimal). On the right of your screen,
you will see the character string itself, but
written backwards. This is the standard format
used by Basic for storing character strings in
files when using PRINT#.

An integer follows if the leading byte is &40.
You can convert this value into decimal by
typing:

PRINT &***x*xkkxx*
where the 8 asterisks are the four pairs of hex
digits that follow the &40. Integers always use
four bytes when stored in data files.

Finally, for a real number, the leading byte is
&FF, (but &80 on an Archimedes). The number
itself consists of five more bytes, but you will
not be able to convert these into a numeric
value as simply as you can with an integer. This
is because it uses what is known as a floating
point number, which makes it rather more
complicated to decipher, but more of this later.

The basis of the program is quite simple. The file
is read, byte by byte, using BGET#Z% (which
reads one byte at a time). Depending on the value
of this byte, the program branches to one of three
procedures PROCstring, PROCint, or PROCnum.

Basic stores strings on disc with the characters
in reverse order, but the INPUT# statement
puts everything the correct way round. When a
string is found, this is read (see line 1020) and
displayed correctly on screen.

Integers are stored as four bytes, but once the

program has identified this type of data it can

again be read using the INPUT# statement (see
line 1090), and then displayed on the screen.

Now we come to the floating point numbers,
indicated by the first byte of &FF. Floating point
numbers are in two parts. An example is:
6.023 x 10723

where the first part, 6.023, is called the mantissa
(mant% in the program), the 23, i.e. as in 10 to the
power of 23, is the exponent (exp% in the
program). With binary numbers, the 10 in the

44

exponent is replaced by 2. Again, by using
INPUT#, Basic does all the work of converting
the five bytes used for a floating point number
into the correct value (see line 1230). However,
the program also contains additional instructions
enabling the structure of a binary floating point
number to be shown more clearly, as we shall see.

The five bytes comprising a floating point
number are again stored back to front, so that the
first thing Basic has to do is to reverse them. A
decimal point is understood to be between the
first byte and the second (reading from the left).

An example of a binary number might be:
1101.1011

The first part (the ‘1101’) means:
Ix8 + 1x4 + 0x2 + 1x1 = 13

A binary fraction like the 1011’ means:
1x1/2 + 0x1/4 + 1x1/8 + 1x1/16 = .6895

In binary, 0.1 means 1/2, and 0.01 means 1/4.
Thus, 0.11 means 1/2 + 1/4, which we would
recognise as 3/4 or 0.75 (decimal). Every binary
fraction is thus composed of a mixture of
halves, quarters, eighths, sixteens,
thirtyseconds, sixty... you must have got the
picture. The problem is that you cannot
accurately represent numbers like 0.1 (decimal)
in binary using such fractions. You just have to
get as close as possible.

So we have arrived at numbers (in binary) like
1101.1011, which is 0.11011011 when divided by
2, four times. Thus 0.11011011 x 2”4 will give us
back 1101.1011. The computer calls the
.11011011 the mantissa, and the 3 the exponent
(I have used decimal 3 for convenience). The
decimal point is understood to be in front of a
“one” (and hence not stored). Furthermore,
since the decimal point must be followed by a
“one”, there is no need for this to be stored - it
is only put back to show a negative number.

What about numbers like 0.000111. To move the
decimal point to the start of the “ones” is to
move it the other way. Thus,
0.000111 = 0.111 x2/-3

It is a positive number, but with a negative
exponent. The exponents are added to &80 (so
that the exponent is always represented as a
positive number).

Beebug October 1990

First Course

The program shows the complete binary form
of any floating point number, so let us follow a
typical example and see how basic deals with
this, say:

00 00 00 08 81
Extract and reverse:

81 08 00 00 00
The exponent is 81 -80 =1
The decimal point comes between byte 1 and
byte two:

01 .08 00 00 00

The mantissa is bytes 2 to 5:
.08 00 00 00
Examine the first mantissa byte ‘08’. The top bit is
not set, and it is therefore a positive number. But
now set the top bit, i.e. (&80 OR &O8), giving:
.88 00 00 00
As a 32 bit binary fraction, this becomes:
0.10001000 00000000 00000000 00000000

The exponent was 1, 21 = 2 Therefore x 2 (or
move the point once to the right). We now have:

1.0001000 00000000 00000000 00000000
whichis 1 +1/16 = 1.0625 in decimal.

A negative number works in exactly the same
way, except that the first mantissa byte will be
greater than 126. It is numbers between 0 and 1
which are perhaps a little harder.

Let us look at such a number, already reversed:
77 40 00 00 00
Exponent = &77 - &80 = -3, and the mantissa
becomes:
.40 00 00 00
Set the mantissa top bit:
.C0 000000
and this becomes:
0.11000000 00000000 00000000 00000000

This time move the point 3 places left:
0.00011000 00000000 00000000 00000000
Thisis 1/8+1/16 =3/16 = 0.1875.

This is the principle of floating point numbers.
The program shows any real numbers in a file,
first as five hexadecimal digits, then in binary
format showing how the point is positioned,
and finally the resulting decimal number. Of
course, Basic’s PRINT# and INPUT#
instructions do all this for you, but it can be
helpful at times to understand in more detail

Beebug October 1990

how the data is stored, or to use a program like
the one listed here, to examine in more detail
the contents of a data file.

If the program helps you as a utility, good, but
if it can help you understand floating point
numbers, so much the better! Finally, as with a
previous article, I found the book BASIC ROM

User Guide by Mark Plumbley to be most useful.

10 REM Program ReadDat

20 REM Version Bl.1

30 REM Author Paul Pibworth

40 REM BEEBUG October 1990

50 REM Program subject to copyright

100 CLS:string$=STRINGS (255,"")
110 DIM num% 5
120 DIM mant$% 32
130 INPUT"Filename: "F$
140 CLOSE#0:Z%=OPENUP (F$)
150 A%=BGET#Z%
160 REPEAT
170 B%=A%:A%=BGET#2%
180 IF B%=0 AND A%>0 PROCstring (A%) :A%
=BGET#2%
190 IF B%=&40 PROCint (A%) :A%=BGET#Z%
200 IF (B%=&FF OR B%=&80) PROCnum(A%) :
A%=BGET#2%
210 UNTIL EOF#Z%
220 CLOSE#2%
230 END
240
1000 DEF PROCstring (B%)
1010 PTR#Z%=PTR#2%-2
1020 INPUT#Z%,string$
1030 PRINT'"STRING, of length ":B%;® :
" string$
1040 ENDPROC
1080 ¢
1060 DEF PROCint (B%)
1070 PRINT'"INTEGER : ";
1080 PTR#Z%=PTR#Z%-2
1090 INPUT#Z%,int$%
1100 PRINT;int%
1110 ENDPROC
1120 s
1130 DEF PROCnum (B%)
1140 PRINT'"REAL NUMBER : ";
1150 num$%?4=B%
1160 FOR I%=1 TO 4
1170 B%=BGET#2Z%:num%? (4-1%)=B%
1180 NEXT
1190 FOR I%=0 TO 4
1200 PRINT;~ (num%?2I%);" ";
1210 NEXT:PRINT

45

First Course

1220 PTR#Z%=PTR#Z%-6

1230 INPUT#Z%,real

1240 exp%=?num%-&80:mant%?0=ASC"."

1250 IF num$%?1>127 sign$="-" ELSE sign$
=nmn

1260 num%?1=num$%?1 OR 128

1270 FOR byte%=1 TO 25 STEP 8

1280 FOR I%=0 TO 7

1290 ? (mant%+byte%+I%)=FNbin (? (num%+1+ (
byte% DIV8)),I%)

1300 NEXT I%,byte%

1310 PROCprintbin

1320 IF ?num$>0 PRINT" x27";exp%;" i.e.
x";2%exp% ELSE PRINT

1330 IF exp%>=0 PROCmovepointup

1340 IF exp%<0 AND num%>0 PROCmovepoint
down

1350 PROCprintbin:PRINT" = %;

1360 PRINT real

1370 ENDPROC

1380 :

1390 DEF FNbin (a%,b%)

1400 b%=2"(7-b%)

1410 IF (a%$ AND b%)=b% THEN =1

1420
1430 -

1440 DEF PROCprintbin

1450 PRINT"O";

1460 FOR I%=0 TO 32

1470 a%=mant%?I%

1480 IF a%=46 PRINT;"."; ELSE PRINT;a%;
1490 NEXT

1500 ENDPROC

1510 :

1520 DEF PROCmovepointup

1530 IF exp%=0 ENDPROC

1540 FOR pos%=0 TO exp%-1

1550 a%=pos%?mant$%:b%=pos%? (mant%+1)
1560 pos%?mant%=b%:pos%$? (mant%+1)=a%
1570 NEXT

1580 ENDPROC

1590 :

1600 DEF PROCmovepointdown

1610 FOR loop%=1 TO ABS (exp%)

1620 FOR pos%=32 TO 2 STEP -1

1630 mant%?pos%=mant%? (pos%-1)

1640 NEXT:mant%?1=0:NEXT

1650 ENDPROC

0

Conspicuous Consumption (continued from page 33)

110 ONERROR MODE7:PROCerror
120 PROCload:MODE4:PROCplot
130 MODE7:PRINTTAB(3,10) CHR$131"Do you
want to continue?(Y/N)":IF FNkey ("YyNn"
) CHAIN"FConB"
140 CLS:END
1501
1000 DEFPROCload
1010 PRINTTAB(5,20) CHR$131"Loading entr
¥ Noai %
1020 V%=OPENUP"Temp"
1030 INPUT#V%, lastentry%
1040 FOR entry%=0 TO lastentry$%
1050 PRINTTAB(24,20) ;entry%
1060 INPUT#V%,date$ (entry%),mile% (entry
%) ,mpgall% (entry%) ,mpglast$ (entry$%)
1070 NEXT entry%
1080 CLOSE#V%
1090 entry%=0:V%=0
1100 ENDPROC
venka oplic
1120 DEFPROCplot
1130 PROCgrid:PROCplotlines
1140 MOVEO,-140:PRINT;"Do you want a pr
int out?(Y/N)"
1150 IF NOT FNkey("YyNn") THEN CLS:ENDP

ROC ELSE CLS

1160 PROCgrid:PROCplotlines:VDU29,0;0;2

1170 REM Insert dump call here

1180 VDU3:MOVE200,24

1181 PRINT"Press SPACE to continue"

1182 Z=GET:ENDPROC

1200

1750 DEF FNkey (K$)

1760 LOCALK%:REPEAT:K%=INSTR ("@"+K$, GET
$) DIV 2:UNTIL K%:K%=K%-2

1770 =K%

1780

1790 DEFPROCerror

1800 IF V% THEN CLOSE#V%

1810 IF ERR=17 THEN CLS:PRINTTAB(0,10)"
Do you want to continue?(Y/N)":IF FNkey(
"YyNn") THEN CHAIN"FConB" ELSE CLS:END

1820 REPORT:PRINT" at line: ";ERL:END

1830 ENDPROC

1840 :

1850 REM (PROCgrid, PROCplotlines

1860 REM (and PROCgriddate exactly
1870 REM (as Listing 3 [lines 3420

1880 REM (following lines should be

(
(
(
1871 REM (to 3970] except that the
(
1890 REM (omitted: 3440,3780,3850 B

46

Beebug October 1990

Practical Assembler: Basic Variable Storage

by Bernard Hill

Last month we started to look at an example of
a slightly larger project - to use the Basic’s
CALL statement to sort an array. The assembler
routine has to find out for itself the type of the
array and perform the subsequent sort, so that:

CALL sort,name(0),n% or:
CALL sort,names$(0),n% or:
CALL sort,name%(0),n%

would perform the sort where the value of n%
indicates the number of items to be sorted. In
order to build a bigger program we’re going to
use the general techniques I dealt with in the
July issue (BEEBUG Vol.9 No.3). In particular,
we are going to look first at the problem of a
comparison of numbers in assembler, and build
a routine which will test the result of this. First,
however, we need to look more closely at the
storage of reals and strings in Basic (note: this
month’s First Course article similarly looks at
the storage of numbers and strings in data files).

REAL NUMBERS

Real numbers are stored in a base 2 mantissa-
exponent form. Put simply, that means that a
number (say 24.5) is first converted to binary:
24=11000.100 (remember that 0.1 in binary =
1/2), and then stored as a mantissa * a power of
2, 24=0.110001 x 275. Within the 5 bytes
allocated to a real these are stored as follows:

Byte 1: exponent + 128, in this example:

5+128 = 133 = &85
Bytes 2-5 contain the 32 bits of the mantissa
(1100 0100 0000 0000....). However, since the
first bit of the mantissa must always be a 1, it is
used instead for the sign of the complete
quantity, 1=negative, O=positive. So +24.5 has a
modified mantissa giving:

0100 0100 0000 0000 0000 0000 0000 0000
which in hex is:

&44 00 00 00
Thus the complete +24.5 would be:

&85 44 00 00 00
and -24.5 would be:

&85 C4 00 00 00

Although at first glance this floating-point format
appears to be complicated, it is in fact a standard
method of storing floating point numbers across
all computers - often with different numbers of

Beebug October 1990

bytes for exponent and mantissa depending on
the range and accuracy implemented.

You can experiment with actual storage
(verifying the values above) by using Program
1 from last month in the same way as that
article checked out integer storage.

STRING STORAGE

On the BBC micro the address of the string
variable (as given by Program 1 last month)
does not contain the string itself but a String
Information Block of 4 bytes:

Bytes 0-1: The address of the start of the
string

Byte 2: The maximum allocated length

Byte 3: The actual length

Thus arrays of strings, like integers, take 4 bytes
per array element. But there is also the string
storage itself, which may be anywhere in
memory. Unfortunately, on the Beeb there is no
automatic deletion of unwanted bits of strings
so that the memory used can be freed for
further use (garbage collection). When a string’s
length exceeds the allocated length (as in
a$=a$+”EXTENSION”) a new RAM area is
created to contain the new string and the String
Information Block is altered to point to it. The
old string is just left stranded, and the memory
it uses remains unavailable to the program.

THE SORTING PROGRAM

Since this is a Practical Assembler series we are
going to look carefully at the steps taken in the
creation of this program, which will be
completed in the next article. We shall be using
‘top-down’ and ‘bottom-up’ techniques, again
as mentioned in the July article.

To start with we are going ‘bottom-up’. With
the complexity of storage formats mentioned
last month for integers, and above for reals and
strings, it will be apparent that comparing the
values of variables (in assembler) is not a
simple task. In fact we shall need to consider
the three cases separately:

1. INTEGERS
The presence of the sign bit at the top of the last
byte (byte 3, counting from 0) complicates

47

Practical Assembler

matters. We first have to test the sign bits of
both integers and consider the four cases
separately:

a. Both are positive

b. Only the first is negative (so it is
smaller)

c. Only the second is negative (so the
first is greater)

d. Both are negative.

Now remembering that we are all the time
going to be dealing in pointers where we know
the ADDRESS of the variables, we shall have to
use indirected addressing, and I shall assume
that ‘ptrl” and ‘ptr2’ are zero-page locations
containing the addresses of the two integers.

We can obtain the sign bit as follows:

LDY #3

LDA (ptrl),Y \ 3rd byte has sign
ROL A \ Roll top bit into C flag
BESRirw. \ if C set it was negative

Similar treatment can be provided for ptr2 and
the second variable, but the cases (a) and (d)
above will need us to go on to compare bytes 3
down to 0 aborting the comparison when we
find a byte differing.

Look carefully at lines 1600 to 1720 in listing 1
which contain the necessary logic for the
integer case. The label less is the target if the
first is smaller than the second, and greateq the
target for any other possibility.

2. REALS (FLOATING POINT NUMBERS)
Now surprisingly and in spite of their
apparently complex storage scheme, once we
have done the comparison for integers, reals
follow on quite easily. The difference is that the
five bytes are numbered 0 to 4 and the sign byte
is at the top of byte 1, so must be tested first to
give four cases as above. Also, the most
significant bytes of a real are in the lower bytes
(the integer’s are in the higher), and so we must
count upwards rather than down. Lines 1420 -
1590 in listing 1 handle reals.

NOTE: See the HINT at the end of this article
for clarification of the macros jcc, jne, jcs etc.

3. STRINGS
This is fairly easy, only being complicated by
the fact that:

IDY #0:LDA (ptrl),Y

48

gives us the first byte of the ADDRESS of the
string, so we shall need another zero-page
pointer (ptr3) to store it in. Likewise, ptr4 is
obtained from:
LDA (ptr2),Y.

Also we will start at the first byte of the string
(LDY #0:LDA (ptr3),Y) and carry on comparing
until the smaller string length has been reached,
or the characters are not equal. The string lengths
are found by LDY #3:LDA (ptr1),Y and LDA
(ptr2),Y so we find the shortest first and store it
for later as the stop point of comparisons. Lines
1730 - 1870 of listing 1 contain this code.

Note, that in this string comparison, the strings
“ABC” and “ABCD” are considered equal since
we stop comparing after 3 characters. I leave it to
you to put in the extra few bytes around line 1870
to make the shorter string the ‘lesser’ of the two.

PUTTING IT TOGETHER

It's no good writing the bottom-up modules
unless you can test them. Program 1 provides
such an environment whose sole purpose is to
test lines 1410 - 1870. Since all this ‘skeleton
code’ is going to be disposed of after testing, I
have been lazy: rather than properly print out a
string message about which value is greater I
have produced two error messages via BRK
(see the June issue - Vol.9 No.2) with arbitrary
error number 60: I can trap these and re-run to
test more numbers (line 170). Of course to test
integers and strings you’ll have to replace the
‘a’ and ‘D’ in lines 140-150 with a%, b% or a$,
b$. Note in passing the normal use of the error
handler to check for types not handled (static
strings - $a and indirected bytes - ?a) as we
shan’t need these in the sort routine.

Next time we'll be completing the project with
‘top-down’ methods and incorporating lines
1410-1870 into the final program. If you keep to
the line numbering of listing 1 you’ll find this
easier.

HINTS & TIPS
When developing program code you will of
course.use situations such as:

LDA value:CMP #5:BEQ valueisb
where the label valueis5 occurs later in the
program. As your code expands when you
develop it, the distance from the BCC
instruction to the label often exceeds 128 bytes
and during compilation you obtain an “Out of
range” error. Naturally you can replace the line
above with:

Beebug October 1990

Practical Assembler

LDA value:CMP #5:BNE over:JMP valueis5 1440 LDA (ptr2),Y:ROL A
SOVED) i 1450 EQUS FNjcs (greateq)
but this involves another label (.over) and 1460 \ both positive
destroys the visibility of the code. Using the 1470 DEY
macro facility we have developed in previous 1480 .loop LDA (ptrl),Y:CMP (ptr2),Y
articles you can invent a JEQ (Jump if EQual) 1490 EQUS FNjcc(less)
instruction as follows: 1500 EQUS FNjne (greateq)

- LDA value:CMP #5:EQUS FNJEQ (valueis5) 1510 INY:CPY #4:BMI loop

by: 1520 EQUS FNjpl (greateq)

30000 DEF FNJEQ (addr) 1530 .rnegl LDA (ptr2),Y

30001 [OPT opt 1540 ROL A:BCC lgss

30002 BNE P$+5 \ branch over next instr 1550 \both negative

30003 JMP addr 1 0

30004]:="" 1570 .loop LDA (ptr2),Y:CMP (ptrl),Y

1580 BCC less:BNE greateq

The same system applies to any of the branch 1590 INY:CPY #4:BMI loop:BPL greateq
instructions (BPL, BCS etc.) as long as you include 1600 .ints IDY #3

the opposite (BMI, BCC etc) in line 30002 above. 1610 LDA (ptrl),Y:ROL A:BCS inegl

This month’s program uses this technique. 1620 LDA (ptr2),Y:ROL A:BCS greateq
1630 \ both positive

1640 .loop LDA (ptrl),Y:CMP (ptr2),Y
1650 BCC less:BNE greateq

; 1660 DEY:BPL loop:BMI greateq
30 REM Author Bernard Hill 1670 .inegl LDA (ptr2),Y

40 REM Beebug October 1990 .
50 REM Program subject to copyright 1288 }\lgﬁtﬁ'gggaﬁ‘s’:

601
100 DIM order 256 1700 .loop LDA (ptr2),Y:CMP (ptrl),Y
1710 BCC greateq:BNE less
110 FROCassenble 1720 DEY:BPL loop:BMI less
120 ON ERROR GOTO 170 i P:
130 ¢ 1338 i;;r;ggs LDA (ptrl),Y
s ptrl),;
%gg (IlgilLJToiézr a'b 1750 STA len \ length of string
160 : el 1760 LDA (ptr2),Y:CMP len \ length2
170 REPORT:IF ERR=60 THEN PRINT:RUN i;;g Bgzvzg‘l’e“’sn ien \ min length
" ! ", . &
igg ?RINT Bt line LD 1790 \ now get ptrs to strings
e Sl 1800 LDY #0:LDA (ptrl),Y:STA ptr3
e 1810 INY:LDA (ptrl),Y:STA ptr3+l
P ‘P 1820 LDA (ptr2),Y:STA ptrd+l

1020 ptr3=674:ptrd=76 ! i
1030 FOR opt=0 TO 2 STEP 2 1830 DEY: LDA (ptr2),Y:STA ptr4

10 REM Ordering test
20 REM Version B1.0

i 1840 \ start scanning string
iggg Tgpgrg;i 1850 .loop LDA (ptr3),Y:CMP (ptr4d),Y
1060 LDA &601:STA &70 1860 BCC less:BNE greateq
1070 LDA &602:STA &71 1870 INY:CPY len:BNE loop:BEQ greateq
1080 LDA &604:STA &72 1880 .less BRK:EQUB 60:EQUS "<":BRK
1090 LDA &605:STA &73 1890 .greateq BRK:EQUB 60:EQUS ">=":BRK
1100 LDA &603:CMP #5 \ which type? 1900 .len EQUB 0
1110 BEQ reals 1910] :NEXT:ENDPROC
1120 CMP #4 1930 DEFFNjcs(addr) : [OPT opt:BCC P%+5
1130 BEQ ints 1940 JMP addr:]:=""
1140 CMP #129 1950 DEFFNjcc(addr) : [OPT opt:BCS P%+5
1150 EQUS FNjeq(strings) 1960 JMP addr:]:=""
1160 BRK:BRK:EQUS "Type not implemented 1970 DEFFNjeq(addr) : [OPT opt:BNE P%+5
yet":BRK 1980 JMP addr:]:=""
1170 1 1990 DEFFNjne(addr) : [OPT opt:BEQ P%+5
1410 .reals 2000 JMP addr:]:=""
1420 LDY #1 2010 DEFFNjpl(addr): [OPT opt:BMI P%+5
1430 LDA (ptrl),Y:ROL A:BCS rnegl 2020 JMP addr:]:=""

Beebug October 1990 49

512 Forum

by Robin Burton

This month I'm going to cover one of the
several topics which has been on my list of
items for the Forum for months, but until now
something else has always seemed to crop up
instead. At the same time I'll recap on a point I
covered in one of the very first issues of Forum,
for the benefit of newer readers.

CGA EMULATION

A week or two ago I had a query from a reader
which prompted this item. I won’t be spending
long on it, but it might be interesting for one or
two of our newer readers. After all, not all 512
users write programs even in BBC mode.

Essentially my correspondent said that he was
delighted with the speed of his 512 (and a
friend with an Amstrad PC wasn’t quite so
pleased), but of course when it came to
coloured text displays the Amstrad owner
regained his smile. Couldn’t something be done
to produce colour in 80 column screen modes
for the 512, since it’s supposed to emulate
COLOUR Graphics Adaptor output?

The short answer is no, but the reasons can be
presented in two versions. The simple answer is
that the 512’s 80 column display uses a (BBC)
mode 3 screen and that’s a two colour display.
Fine, but it doesn’t explain why (by the way,
even if you don’t use PCSCREEN 7', which is a
completely accurate mode 3 screen, the 512 still
uses mode 3, but with some direct
programming of the BBC’s 6845 CRTC to close
up the gaps between the lines).

Also as an aside, for those who wonder what a
‘single colour’ or monochrome display is,
strictly this refers to the monitor, not to the
computer’s display capabilities. After all, a
display in the same colour as the background
wouldn’t be a lot of use, would it?

For the longer version of the answer to this
query you need to consider how characters are
displayed on the screen by the BBC micro since
that is doing the work. If you look at the BBC
micro’s VDU23 character definitions you can see
that each character is made up of 8 bytes in an 8

50

x 8 bit matrix. If a bit is set to 1 (on) the pixel is
displayed in foreground colour, if the bit is off its
corresponding pixel is left as background.

In a BBC mode 3 display you'll know that the
screen map occupies 16K of RAM. The reason is
that if every character takes 8 bytes or 64 bits
and there are 25 lines of 80 characters each, it
obviously takes 8 x 25 x 80 bytes (= 16,000) to
store all the pixels. Each bit of this data can be
set on or off (to represent foreground or
background) but the problem with displaying
more colours is that each pixel must instead be
capable of being displayed in any one of the
chosen number of colours.

Simple arithmetic therefore shows that to
display 80 column text in, say, only four
colours, would require that each pixel was
represented by one of five values in memory
including the background. Even if it was
optimised this would take a minimum of three
bits (binary values 0 to 4 inclusive) to store and
since three bit arithmetic isn’t exactly
convenient, four bits would be used. This
means that the necessary storage for four
colours would be 64K bytes. That figure is the
entire RAM of the BBC micro including the
MOS’s memory, and unfortunately shows the
absolute impossibility of the idea. If you
perhaps thought the 512 or even DOS Plus was
the limiting factor, now you know.

There’s one final point. Before anyone says “But
I have 64K of free sideways RAM”, remember
that this might not be true for model B and B+
hosts, so Acorn couldn’t produce DOS Plus
under that assumption. The result is that even if
you somehow managed to devise a very clever
scheme to intercept screen mapping (?), DOS
doesn’t pass the colour information across the
tube anyway, so it still wouldn’t work.

REDIRECTION - INPUT
At last! I've been meaning to talk about this for
a long time.

One facility found in the BBC micro which is at
first sight missing from DOS is a facility to

Beebug October 1990

512 Forum

*SPOOL (or some similar operation) screen
output directly to disc to create a file of the
display.

Such a facility would be just as useful in DOS as
it is in the BBC micro. You could use it, for
example, to create disc files of directory
displays, perhaps for reading into a word
processor for record keeping purposes.
Alternatively you might have text files
containing embedded Tab characters and so on,
but which you would like to transfer to disc
with all the codes expanded to give a formatted
file just as it would be if printed.

Well, for those of you who didn’t know, it can
be done using a standard DOS facility called
‘REDIRECTION’ and it’s very easy to use. First
though (as usual) a bit of explanation about
how it works.

Those of you who program in DOS will know
that everything except the processor and main
RAM is, or can be treated as a peripheral,
including the screen and the keyboard. This is
the philosophy that permits redirection. Of
course the various device types which may be
attached to a DOS system vary greatly in their
control needs and capabilities, but the core of
DOS, the BDOS, doesn’t need to know about
that. All the BDOS is concerned with is memory
management and input/output at the most
elementary level.

In simple terms, when you enter a command to
type a file to the screen the BDOS makes a
request through the BIOS (or the XIOS in the
case of the 512) to get the required data. The
BIOS actually does the disc controller handling,
and the disc controller simply passes the raw
data to the BDOS. When a sufficient quantity of
data has been received (e.g. a ‘cluster full’) the
BDOS then tells the BIOS to output the data to
the standard output device, which is usually
the screen, but it needn’t be, more of which
shortly.

What the type command does not specify in
this example is the output device, but if you
don’t specify it, the console output device is
used by default. Likewise the default console
input device is the keyboard, which is used

Beebug October 1990

when it’s not specified, but again this need not
be so.

I'd guess most of you have at some time used a
command in the form ‘COPY CON filename’ to
create a short .BAT file or text file on disc. What
this command really translates to within DOS
is:

“Read data from the default console input
device (i.e. CON, the keyboard) and write the
output data to the default console output
device (the screen), but also to the named file”.

Without sensible device defaults DOS machines
would be very difficult to use, so the standard
start-up defines the console input and output
devices, plus disc as the filing medium, the
printer as the hard copy device,
communications ports as auxiliary devices and
so on. However, all these very different
peripherals are just devices and the BDOS is
equally happy to ‘talk’ with one of them as with
another. For example, if you enter:
COPY FILE1l.TXT FILEl.BAK

DOS will assume (unless you tell it otherwise)
that the filing system is to be used for this
operation and the file is copied from one disc
file to another.

Likewise if you simply enter:

DIR
DOS assumes that the current directory list is to
be output to the screen since no destination was
supplied.

However, the way you tell DOS that a different
source or destination is to be used is simply by
inserting the “<” or “>” symbols respectively at
the appropriate point in the command. An
example will show this more clearly.

With a (writeable) disc in the current drive try
entering:
DIR >CATALOG.TXT

and you’ll see that the disc starts up in the
usual way, but no directory list appears on
screen. After a bit more disc activity the drive
stops and the normal DOS prompt re-appears.
You’ll no doubt have guessed where the data
has gone to and you're quite right. It has been
re-directed into a disc file called
‘CATALOG.TXT" (of course, with an example

51

512 Forum

like this the catalogue might be instantly out of
date, as you've just added a new file).

After trying that command enter:
TYPE CATALOGUE.TXT

which needs no explanation, and the directory
list will appear on the default output device,
the screen. The console output data from the
original command was re-directed into the disc
file, which is why it wasn’t seen on screen, but
the point is you can now edit or manipulate the
contents of that file in any way you please.

REDIRECTED OUTPUT

OK, that explains redirected output, but what
about input? Simple, using the left chevron,
“<”, the direction of the operation is reversed.
Again an example will best explain it.

Suppose we have a program which, after
loading, normally requires one or more lines of
input. However, because the program’s author
was lazy and didn’t want to process disc files
he didn’t provide the option for us to supply a
filename to allow automatic reading of input
data. The result: we normally have to enter
everything manually every time the program
runs.

No we don’t! There’s a much easier way! Let’s
call the program ‘FILTER’ for illustration, and
let’s also suppose that we have created a file
containing all the lines we wish to feed to the
program called ‘COMMANDS.IN’. All we need
to do to persuade DOS to supply the text to the
program from the file, exactly as if it had been
typed live on the keyboard, is to enter:

FILTER <COMMANDS.IN
which says to DOS, ‘redirect standard input (i.e.
the keyboard) to read data from the disc file
COMMANDS.IN and pass the data to the
program called FILTER

INPUT & OUTPUT

Ok, now let’s extend our example. Suppose that
FILTER reads the input and, after performing
its operations, perhaps ensuring that
everything is in lower case or that there are no
embedded control codes, it displays the data to
the standard output device (i.e. the screen).
What we want to do though, is to capture a file
of the output instead of just getting a
temporary display.

52

No problem! Let’s call the new file
‘COMMANDS.OUT’. All we need to do is to
enter:

FILTER <COMMANDS.IN >COMMANDS.OUT
and the input file, COMMANDS.IN, will be
read, processed and written to the new output
file, COMMANDS.OUT, automatically.

Of course, these are simple examples and this
one may look a bit artificial, but even so I'd bet
that virtually everyone who didn’t know about
redirection before can easily think of plenty of
occasions when they wish they had known.

OTHER DEVICES

You'll notice that I've been talking about only
the standard input and output devices in these
examples. That’s only because these are the
most easily understood for the purpose of
explanation. Re-direction can be applied to any
device DOS knows about within the limits of
common sense (e.g. don’t try reading the printer).

Taking our last example again, if instead of
creating an output file you wanted hard copy
there are several ways you might go about it.
You might create the file as above then print it
as a separate operation, but if the file is only a
means to an end that way is a bit long-winded.
In some cases you might be able to use Ctrl-P to
enable the printer while displaying to the
screen, but you must usually be on the
command line to do this. It frequently doesn’t
work within programs, so you must do the
Ctrl-P before you begin, with the result that you
also get the commands on your printout, not
always an acceptable result.

Using redirection for other than filenames, or
instead of the standard input or output devices
is easy. The logical printer in the 512, for
example, is known as ‘PRN:’, so to redirect
output from the standard output device to
PRN: the command would be:

FILTER <COMMANDS.IN >PRN:
If output to the serial port were required
instead the command would be:

FILTER <COMMANDS.IN >AUX:

That's it, again I've run out of space, so I'll have
to leave the rest of this subject until next month.
In the meantime try a few experiments for
yourself.

Beebug October 1990

Basic Music Composition

Alan Wrigley reviews a new music package from Tobin Music

Product Basic Music Composition

Supplier Tobin Music
The Malthouse, Knight Street,
Sawbridgeworth, Herts CM21 9AX.
Tel. (0279) 722318.

Price £19.95 inc. VAT

Basic Music Composition claims to be an invaluable
introduction to learning the fundamentals of
composing. It will be of most interest to younger
users, though adults may also find it fascinating.

The package consists of a single 40/80 track disc
and a slim, though clearly written manual. Also
available from Tobin is a Composition Manual (price
£5.00) which covers the theory of composition in
greater detail. The program disc is protected and
dire warnings are given about software piracy.

USING THE PACKAGE

On booting the disc, you are first offered the option
of using a joystick instead of the keyboard. Since
most people will probably use the keyboard, it
would have been nice if this could have been built
in as a default, instead of having to make the choice
each time you boot the disc. The program is driven
from a main menu, from which you can choose to
create or edit a tune, load or save a tune from or to
disc, play the tune currently in memory or print the
score on a printer, or select the “instruments” on
which it is to be played. An option is also available
to allow you to use an extra sound channel which
will make the output compatible with Hybrid’s
Music 5000 Synthesiser Universal (see the review in
BEEBUG Vol.9 No.4).

I should make it clear at this stage that the tunes
you can create with this package are of a fixed
format, in a choice of three keys (C, F or G) and two
time signatures (3/4 or 4/4). The software is
designed to teach the fundamental principles of
composition at a basic level, not to produce a
magnum opus.

The heart of the program is the main composition
screen on which all compositions are made and
tunes displayed (see Figure 1). This shows two sets
of staves, into which the notes forming the tune are
inserted. At the foot of the screen is a further small
stave showing the key selected and the notes

Beebug October 1990

available in that key, and a small menu which
allows you to edit or play the tune, or insert passing
notes (more of this later). While you are composing,
a small bird dangles a note from its beak to show
where you have chosen to place the next note. The
bird has other functions in the program, as you will
see!

Edit Tune
H - Melody Hotes
Edit

P. Play
M - Go to Menu

Figure 1. The main composition screen
showing a tune ready to be played or edited

COMPOSITION

As explained earlier, all tunes have a fixed format.
The first stave is played twice, followed by the
second and finally the first again. The melody notes
are input by the user, but the harmony is played by
the computer in the form of chords in a specific key
depending on the bar currently being played. Thus
in the key of G, for example, the accompanying
chords are G, D7, D7, G for the four bars
respectively of the first stave, and G, C, D7, G for
the second stave. This means that the melody notes
must harmonise with the accompaniment, and thus
on each bar you are restricted to only those notes
which are applicable. The small stave at the bottom
of the screen shows which these are, and any
attempt to select a wrong note is disallowed.

The bird can be moved around with the cursor keys,
and pressing Return positions a note at that point
(provided it is legal). Rests can also be included at
any point by pressing the space bar. When the
composition is complete, you can edit it at will, or
play it in one of a range of tempos from 1 (slow) to 9
(fast). As the tune plays, the bird moves along at the
top of the stave to show you which note is being

Continued on page 57

53

BEEBUG Education

by Mark Sealey

Product Hands on Spelling,

for the BBC B and Master 128

ESM,

Duke Street, Wisbech,
Cambridgeshire PE13 2AE.
Tel. (0945) 63441

£27.50 plus VAT, p&p £2.50

Supplier

Price

This month BEEBUG Education looks at a piece
of software designed for use in Primary and
perhaps some Special schools, although it could
be of some use on Adult Literacy (and similar)
courses.

Good new software for the BBC micro is
becoming increasingly rare; good software that
is really based on wholly sound educational
research is usually of special interest in its own
right. Hands on Spelling falls happily into both
categories though there are limitations. What is
more, it is definitely not one of those deadly
drill and practice programs which rely
exclusively on memory and do little to really
and effectively support children, who need to
see for themselves the whys and wherefores of
what they are doing.

BACKGROUND

A bit of background on the rationale behind
this package is needed. It has been thought for
some time that there is a close and predictable
relationship between learning to spell and the
act of handwriting. English is composed of
common clusters of letters (or more technically
graphemes) such as the “or” and “se” in
“horse”, the “sad” and “dle” in “saddle”).
When practising creative handwriting patterns
(NOT 1111l or efefefec etc!) the child’s familiarity
with these meaningful clusters of letters is
actually reinforced. ;

It is now widely believed that children learn to
read (and write) by recognizing and
contextualizing the visual shapes of words and
letter clusters as much as by decoding them
phonically. So it is that this program presents its

54

material following the patterns of visual
structure: “were” with “here” and not with
“was”, which is found near “has” instead.

Much research has clearly gone into frequency
lists, ways of exploiting the children’s awareness
of alphabetical order, and ways of motivating
users by encouraging them to have fun.

Indeed, the clear six page manual (the rest of
the documentation is taken up with usable
resources) sets out some of this rationale right
at the start.

CONCEPT KEYBOARD

The last of the principles outlined in the manual
is that the program gives pupils expertise in
using IT. One of the most successful peripherals
used in education has been the Concept
Keyboard. Hands on Spelling makes full use of
the Concept Keyboard: the resources
accompanying the manual consist largely of
overlays.

It is recommended that the Concept Keyboard
be used in preference to the QWERTY one,
though this latter option always exists. Each
overlay itself includes a QWERTY style layout
of the keys together with Space and Return etc.
There is a menu option from the main program
which sets these (and other) preferences.

USING HANDS ON SPELLING

On booting, then, you are presented with the
top level menu. It is the third option that allows
these preferences to be set. The other two
(selectable in the usual ways) either load an
overlay file or begin the program itself. In each
case Escape returns to the main menu, but there
appears to be no way of terminating the
program altogether.

This may not be as trivial as it sounds and
could prove expensive. Children don’t always
behave as their teachers want, and can grow
more and more frustrated by not being able to
move on. So great did one girl’s annoyance

Beebug October 1990

PEe———

BEEBUG Education

with just this sort of situation once become that
she resorted to cutting the disc-drive to
computer cable with a pair of scissors in order
to end a session!

In most respects Hands on Spelling behaves as
you would wish, although it is necessary to set
the options mentioned above individually for
each Concept Keyboard overlay loaded.
Otherwise choices are made with the cursor
keys and confirmed with Return.

So, you load the overlay file - there are 10, each
in A4 or A3 size - and each concentrates on 8
letter groups... “ight”, “ound”, “wor” etc. This
means that pupils can work from a maximum
of 80 such groups. It would not be wise, from a
teaching point of view, though, to ask children
to work through more than one or two at each
session.

Nor would many teachers want to abandon
the children to explore this central part of the
program for themselves - as the manual
suggests. In some ways the computer running
this package is doing what even a good
teacher can rarely have time to do - examine
the ways in which letters are grouped in
English in detail. Nevertheless, there is much
that young children will benefit from if it is
pointed out to them by a competent reader as
it happens.

What happens next is that the letter group (say
“alk”) is selected by the child (via either
keyboard or a function key) and it is displayed
in the centre of the screen in yellow. From the
alphabet at the top - with or without sound -
descend in turn “t”, “ch”, “st” and “w” in white
to form “talk”, “chalk” etc.

It is at this point that the program’s lack of
interactivity becomes more apparent. Albeit on
the educationally soundest of lines, the pupil is
asked to reproduce the spelling “t-a-1-k” and
the success rate can be monitored (rather
grandly called “assessment”, another selectable
option) and some feedback given.

The strongest part of Hands on Spelling is as the
letter cluster chosen (“alk”) is drawn enlarged
in yellow at bottom left, though only once, to

Beebug October 1990

reinforce its visual impact and hence “teach” its
spelling.

As said earlier, much attention has been paid to
spelling families and the organisation and
grading of material. The software would be
more satisfactory, though, if you could include
letter groups of your own - “ion” is missing, for
instance, and so is “er”.

Finally - another option, this - a poem putting
the letter group into context is displayed.
Although ways in which the child could have
more to DO would have to be thought out very
carefully, their lack is felt quite keenly by this
point.

To some extent this is compensated for by the
excellent and exhaustive set of suggestions in
the manual of ways to reinforce and support
this learning. A strong point of the product,
this.

CONCLUSIONS

Hands on Spelling certainly goes some way to
meeting the first criterion for selecting ANY
piece of software: in some respects it does what
only a computer can do - demonstrates letter
groups relatively dynamically.

And there are other definite strengths to this
package: it is based on good learning
principles. It is easy to use and well-
documented; there are plenty of valid follow-
up and support activities suggested.

But weaknesses are not insignificant either.
Given its sparse scope for interaction between
the child and the computer, the protected disc
seems a little overpriced at £30+. There are
other small points: the poems in the book are
printed in non-cursive script after so much
emphasis is given in the software to getting the
cursive habit.

Allin all, if this is an area that interests you and
you believe in the underlying philosophy,
Hands on Spelling is worth a look. However, if
any of the drawbacks mentioned here set alarm
bells ringing, you may prefer to wait for
something more substantial and which will
involve the user more.

55

Configuring the Master Turbo

Derek Gibbons offers some advice on the use of 6502 second processors.

Master 128 owners who have fitted a Turbo co-
processor, or those who have fitted an external
6502 second processor, will have realised that
programs (and ROMs) fall into three categories:

1. Those such as Bitstik for which the co-
processor is essential. These will obviously
fail if the co-processor is not ‘ON’ and they
therefore usually contain a suitable check,
and inform the user of this requirement.

2. Those such as System Delta which will not
work with the co-processor operating. Again,
an appropriate check and comment is often
included, but this is by no means universal.

3. Those such as View which will function quite
happily in the basic micro, but will benefit
from the extra speed and/or memory of the
co-processor. These will involve no check at all.

Whether the co-processor is currently configured
‘ON’ or ‘OFF’ will obviously depend on the
previous application. It is therefore desirable to
have a simple, and preferably automatic, method
of changing the configuration to suit any new
application. Unfortunately, a *CONFIGURE
command does not take effect until the next
Ctrl/Break which, of course, then halts the flow
of any user control routine.

However, the !BOOT file shown as listing 1,
which uses ideas published previously in
BEEBUG to reduce the amount of unwanted
information displayed on-screen, can be used to
configure the co-processor ‘ON’ with the
minimum of effort by the user, but will take no
such action if the co-processor is already “ON’".

Listing 1: IBOOT file for co-processor ‘ON’

Either way, the simple demonstration program
“TUBE”:

10 PRINT "Page = &";~PAGE;" in co-processor"

is chained to confirm that the required action has
taken place, but this program could equally be a
full-scale Basic program or a set-up program for
another language such as View or ViewSheet.

In use, the 'BOOT file first checks the Tube
status by means of OSBYTE 234. If ‘ON’, no
further action is taken other than chaining
“TUBE” after issuing FX calls via OSCLI to set
the Break and Shift/Break actions to normal,
and to close the !BOOT file so that when
“TUBE” has run, control is not handed back to
the rest of the !'BOOT file. If the Tube status is
‘OFF’, *CONFIGURE TUBE is issued, the Break
and Shift/Break actions are reversed with
*FX255, and Break is then simulated with
CALL!-4, but is interpreted as a Shift/Break
causing the !BOOT file to be re-entered.

Strictly speaking, as mentioned earlier,
Ctrl/Break should be used to implement a
configure command, and is indeed essential in
many cases, but the CALL!-4 appears to be
adequate here. This call could be preceded with
*FX151,78,127 to give what purports to be a
simulated power reset and, although this
would give an undoubtedly stronger Break
action, it unfortunately also destroys the setting
of FX225 before it can be utilised.

The co-processor can equally be turned ‘OFF
by a slightly modified 'BOOT file, as shown in
listing 2.

Listing 2: IBOOT file for co-processor ‘OFF’

*BASIC

C0.0

VDUl 11, 11,1 1 PRINT SECT/SPCS

A%=234:X%=0:Y%=255:t%=(USR(&FFF4) AND
&FF00) DIV 256

IFt%=255 CO.7:0SCLI"FX255,8,247":
OSCLI"FX119":CHAIN"TUBE"

*CO TUBE

*FX255,0,247

CALL !'-4

*BASIC

C0.0

VDull,11,11,11,11:PRINT SEC7!SPCS

A%=234:X%=0:Y%=255:t%=(USR (§FFF4) AND
&FF00) DIV 256

IFt%<>255 C0.7:0SCLI"FX255,8,247":
OSCLI"FX119" :CHAIN"HOST"

*CO .NOTUBE

*FX255,0,247

*GOIO E364

56

Beebug October 1990

R T N EESeee———

Configuring the Master Turbo

Here, the status check after OSBYTE 234 has been
reversed; the demonstration program “HOST”:

10 PRINT "Page = &";~PAGE;" in Host Proc
essor"

is chained; and *GOIO E364 is used instead of
CALL !-4 to ensure that the appropriate MOS
routine is called in the Host processor. Note that
the contents of !-4 are &E364 on a Master 128,
rather than the more familiar &D9CD of the
Model B.

There is, however, a snag when using the DFS!
These !BOOT files MUST then be called by
Shift/Break and not by *EXEC !'BOOT or *'BOOT,
thus precluding their use on any drive other than
drive 0, because the simulated Shift/Break is still
a Shift/Break and so attempts to use a !BOOT file
on drive 0 regardless. This restriction does not
apply to ADFS where Shift/Break will still work
on drive 1, if it is the current drive.

However, even with the ADFS, or with DFS
using drive 0, if Shift/Break is not used, the

first Host-to-Tube change after a genuine Break
will still work; all Tube-to-Host changes will
apparently work; but if a Host-to-Tube change is
attempted after a Tube-to-Host change without
an intervening genuine Break, the computer will
hang until Break is actually pressed, although
the changeover will then be found to have been
implemented. Using the !BOOT files with
Shift/Break provides the necessary Break
action.

This problem appears to be due to the fact that
the use of *GOIO E364 to simulate a Break (even
if preceded by *FX151,78,127) does not perform
ALL the actions which even a simple Break
causes, especially as far as the Tube is concerned.
Perhaps someone knows a way around this
problem, using a different FX command, or a
different MOS entry point, to fully reset the micro
when moving from co-processor ‘ON’ to co-
processor ‘OFF'.

NOTE: With the alternative Master System ROM
fitted, the *GOIO E364 command needs to be
changed to *GOIO E374. B

Basic Music Composition (continued from page 53)

played. You can then, of course, edit the tune
further until it sounds just right when played.

Figure 2. Examples of passing notes (upper
stave) and auxiliary passing notes (lower stave)

PASSING NOTES

To increase the versatility of the composition
process (and the listenability of your tunes!) it is
possible to place passing notes at any point in the
tune. A passing note is a note of half the normal
length positioned between two notes which are on
adjacent lines or adjacent spaces on the stave; when

Beebug October 1990

inserted, the length of the previous note is also
automatically halved and the two joined together.
The program also accepts auxiliary passing notes,
which are positioned between two identical notes.
Examples of passing notes are shown in Figure 2.

Tunes can be filed on disc, and previously saved
tunes can be loaded into memory and then played
or edited. The program disc contains a number of
specially-composed tunes. You can also choose a
demonstration mode, in which the computer will
generate a tune at random. Sometimes this turns out
to be a quite acceptable melody, but it is very much
a matter of pot luck!

Having composed your tune, you can print out the
score on an Epson-compatible printer. This is a
useful facility and I can imagine many children
rushing home from school clutching a printed copy
of their latest work to show everyone.

CONCLUSIONS

Basic Music Composition is a well thought-out piece
of software which should prove very helpful both in
the classroom and at home. Bear in mind, though,
that it is designed as a learning aid and not a
complete music system, and you should not expect
to produce musical masterpieces with it. B

57

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads (including
'wants') in BEEBUG. These are completely free of charge but please keep your ad as short as possible. Although
we will try to include all ads received, we reserve the right to edit or reject any if necessary. Any ads which cannot
be accommodated in one issue will be held over to the next, so please advise us if you do not wish us to do this. We
will accept adverts for software, but prospective purchasers should ensure that they always receive original
copies including documentation to avoid any abuse of this facility.

We also accept members' Business Ads at the rate of 30p per word (inclusive of VAT) and these will be featured
separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117 Hatfield Road,
St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 15th of each month.

M128, Turbo co-processor, two CS400S
Cumana disc drives, GIS teletext
adaptor, AMX mouse, SuperArt,
Pagemaker, Viewstore, Interword,
Wordwise plus, MicroProlog,
Logotron Logo and other firmware.
BEEBUG bound vols. 2-8, ref. manuals
1&2 with many other books and discs
£500 o.n.o. Tel. (0272) 771733.

BEEBUG Printwise disc and manual,
Dabs Hyperdriver ROM and manual,
Merlin Database ROM disc and
manual, Micro Aid Cashbook disc and
manual, Acornsoft Viewsheet ROM
and manual, no reasonable offer
refused. Tel. (0705) 371018.

BBC Master 512 with 40Mb Viglen
hard disc, dual 40/80T DS/DD
Technomatic disc drives, Microvitec 653
colour monitor, manuals for Master,
DOS+ manuals and books. Software;
GEM suite (3 discs), View, Viewsheet,
Edit (ROMs), mouse, a few games and
discs £740. Tel. (0635) 578925.

Spellmaster £25, Wordwise Plus £20,
ADT £15, Artroom, Ace, Digimouse,
Chauffeur £30, Speech! £5, Genie
Junior £10, Printwise II £10, Master
ROM cartridge (ACP) 2 £6 each,
Books; Assembly Language
Programming (Birnbaum) £6,
Programming the 6502 (Zaks) £6,
Creative Assembler (Griffiths) £3,
Master Sideways RAm User Guide
(Smith) £6, all with original
documentation etc. prices include
p&p. Tel. (0302) 744005.

BBC A3000 computer, colour monitor
+ lead, printer lead, serial chip, mouse
mat, 2 games, demos. The computer
system is just over one year old and in
very good condition. Asking price is
only £770. Willing to throw in an old 9
pin working Star SG-10 printer, if
whole set-up is collected within a few
days of display of this ad! Tel. John:
Welwyn Garden (0707) 323032 eves.

WANTED: Vol. 1 of BEEBUG
magazine complete or Nos. 1-6 and 8.
Tel. (0243) 862842.

58

Disabled Master user requires to
purchase one or two Peartree MR8000
battery backed RAM cartridges. Due
to speech being part of problem please
write rather than phone. Mr Skelton,
Queens Pit Bungalow, Pit Lane, St
Columb, Cornwall, TR9 6LG.

512 co-processor in Acorn case with
PSU M-TEC basic "DOS plus reference
guide” (Glentop). Norton
"Programmers guide to the IBM PC"
mouse and GEM software, offers
around £175. Tel. (0705) 371018.

Archimedes 410/1, 4Mb RAM, 53Mb
hard disc, paper white monitor (only 2
months old), Eizo 9060SZ multisync
monitor, Aleph One 30 MHz ARM3
upgrade, Epson LQ2500 printer,
Autosketch V2, 1st Word Plus V2,
Logistix, Impression DTP, PC
Emulator V2, Artisan, absolutely loads
of games & utilities, 2 lockable boxes
full of blank discs, every issue of
Archive & RISC User. All boxed as
néw for only £2400 (cost over £4600)
Tel. 081-997 8484 extn 258.

Get near laser or plotter quality
output from your NLQ printer
for only £12!
For samples and details,
send an A5 SAE to :
MASC Software,
1 Barker Close, Waterbeach,
Cambridge CB5 INX.

BBC B issue 7, with ATPL Sideways
ROM/RAM board issue 4, (takes 12
extra ROMs) including Wordwise,
Printmaster, 2 extra RAM chips and
some odd EPROMs, Philips green
screen, double plinth and twin double
sided 80T disc drives. Offers invited
around £395 for the complete system.
Also available Raven 20 shadow RAM
board, wide carriage Epson serial
printer type MX80 FT, 5" disc library
boxes (new), offers? Tel. 071-253 4399
extn 3275 or (0487) 814227 eves.

Microvitec 1431 monitor, Torch ZDP
dual 40/80 drives with Z80 board etc.,
various ROM & RAM boards, 5.25"
discs, various ROMs. For list phone
(0873) 3429.

Overview package, suitable for use
with M128, includes Viewspell and
Viewstore in a ROM cartridge, with
additional Overview facilities,
Viewindex, Viewplot, Printer Driver
Generator and all supporting programs
on an 80T double sided 5.25" disc. Also
includes manuals for all the View range
ie. View and Viewsheet £45 o.n.o. Tel.
(0924) 826483.

BBC B 1.2 plus Cumana mains
powered 3.5" 40T disc drive and
Shadow RAM, plus CP80 printer in
virtually new condition £250 o.n.o.
Tel. 071-736 5429.

BBC B 1.2 with shadow RAM, ROM
board with Toolkit, Prolog, Gdump,
ROMit, Interword, 16K battery backed
RAM, Music 500, Shinwa CP80
printer, many games, software, books,
BEEBUG magazines & tapes, joysticks.
All for £250 (or will split). Tel. (0535)
605793.

Archimedes 440 colour, RISC OS, 1st
Word Plus release 2, PC Emulator,
mouse mat, Atelier art package, 5.25"
disc drive interface, all manuals,
boxed as new (less than a month old -
11 months guarantee!) £2300 o.n.o. Tel.
(0909) 562399.

Printwise II (5" disc), Dumpout III,
Dumpmaster, WYSIWYG Plus, all at
£10 each, PCB (2 chip version) £30,
Care quad cartridge for Master 128
£10. Tel. (0428) 713326 eves.

BBC B issue 4 with Acorn DFS, 40/80
DS/DD disc drive, Morley Teletext
with ATS, Solidisk 2Mb 128 and DFS,
Computer Concepts MEGA 3 ROM
plus misc. software, books and
magazines. All in superb condition.
Unbeatable value at £385, could sell
separately. Send an sae for full list.
Tel. (0628) 825202.

Beebug October 1990

.

MORE VIEWS ON WORD PROCESSORS

I was especially interested to see the recent
comparisons of word processors, as I had just
been doing an in-depth look at both InterWord
and Wordpower. Admittedly, your articles are
intended to be a brief resume of each, but in
looking at InterWord there are two strong
points one for and one against, that I was
surprised were not mentioned.

A very powerful feature is the ability to format
the page in up to four columns, newspaper
style. A strong disadvantage is that there are
only four built-in printer codes; after that you
have to delve into your printer handbook and
enter codes yourself, which is distinctly
unfriendly.

Likewise, in Wordpower, the opposite is true.
You can easily vary the column width, but can
have only one column. But there are 26 single
letter codes loaded with the word processor,
which can be tailor-made for each user or
printer. So I use ‘B’ for bold, ‘C’ for condensed,
‘D’ for double height, and so on.

Many users will prefer the pull-down menus of
InterWord, and not bother with using codes
other than for Italic or underline, but I certainly
prefer the wide variety of print codes easily
available in Wordpower.

David Williams

Having just read the survey of Wordwise, View
and InterWord, it struck me how muted the
praise for the latter was. In my experience it is
so vastly superior to all the others for the Beeb
that I cannot understand anyone fiddling about
with Wordwise or View when the job can be
done so much more easily with InterWord,
unless perhaps you are a computer buff.

If, like me, you are someone who simply wants
a computer to make some things easier and
quicker use InterWord. Let me give an example.
I have a daisy wheel printer, and with some
daisy wheels I need to give it a special code to
make it print ‘£". Using InterWord that code is
entered in the control codes menu, and that is

Beebug October 1990

EB
0(«,_0@

1990
\A.I. J

the end of it. With View, I have spent hours
trying to achieve the same effect. I'm not saying
it can’t be done - just that for those uninterested
in programming it is a hassle.

J.A.Brook

Each person has their own particular requirements
when it comes to choosing a word processor (like
anything else). You need to decide what features or
facilities are most important to your own work, but
even then there are other less tangible factors at
work. The answer is often to stay with the product
you feel most comfortable with, but not to be afraid
of trying a different ‘brand’ if you can’t get on with
the one you already have.

MORE TALES OF THE TRAVELLING SALESMAN
Many thanks for publishing my letter
requesting help on the Travelling Salesman
Problem (Postbag, BEEBUG Vol.9 No.3). I'm
pleased to say that I have had a reply which
gives an acceptable solution to the problem,
and it fits the Beeb (see also BEEBUG Workshop
in BEEBUG Vol.9 No.4).

Now for another question. Is there a method of
cutting down memory requirements when
using less than half a square array? I am
thinking of the example of the mileage table for
distances between towns given in motoring
books and the like. My need is for 30 x 30,
which is wasteful when under half is necessary.

John Holt

This is an interesting challenge which I was unable
to resist. First of all, assuming that all data is in
integer format, it can be stored and accessed using
the °!" indirection operator. Assuming that the table
consists of n towns, then it can be shown that the
distance from town ‘a’ to town ‘b’ (assuming that
for all a,b b>a) is at:

! (start+4 ((2n-a) (a-1) /2+(b-a-1)))

where start is the address of a reserved area of
memory, i.e.:

DIM start 2*(n-1) (n-2))

The working out of this is something else! Any
other thoughts on this subject would be most
welcome.

59

Master turbo co-processor, a 65C102
co-processor fitted complete in an
Acron Universal second processor
unit. As new £110 o.n.o. Tel. (0793)
770886 or after 6pm (0793) 771659.

M128 with 80T 5.25" DSDD drive &
PSU, Voyger 7 Auto Answer modem
and Epson RX80 printer, all manuals
included plus View Printer Driver
Generator software and View manual, a
complete word processing and comms
setup for £550 o.n.0. Tel. (0226) 340421.

Unused, Quest mouse MKII, The
complete Mouse User Guide and the
examples disc from the Complete
Mouse User Guide all for £30. Tel. 021-
449 7211.

Archimedes colour monitor, almost
new £100. Tel. (0428) 713326 eves.

Archimedes 440/1 60Mb hard disc,
colour monitor, additional external
5.25" disc drive and modem, all
manuals, a wide range of software for
Arc, including PC Emulator and
several good MSDOS packages. About
1 year old and has had little use, offers
in the region of £2200 for the package
which could include a Tandy
daisywheel printer if required. Tel.
(0223) 872178.

ATPL sidewise ROM board (no fitting
instructions) £10, Acorn 0.9 DFS kit
(8271 FDC) £20, BASIC II ROM £8,
0S1.2 ROM £4, Speech processing
ROMs (TMS 6100, TMS 5220) £10 the
pair, model B power supply £15. Other
spares available. Tel. (0244) 344695.

Viglen PC style case for model B with
dual sw mode p.s. & 12v fan, £40
o.n.o. Tel. (0992) 583228.

Interword ROM (as new), Spellcheck
ROM (as new), Command ROM (as
new), Dumpmaster ROM (not used),
Printwise disc (not used), Masterfile II
disc (not used), all with manuals etc.
plus misc. BBC books, 7 games,
joysticks, some unused 5.25" discs. The
lot sold together £125. Cumana CS100
disc drive £30, Acorn tape recorder as
new £25. Tel. (0753) 868038.

Music software, complete music
performing/printing package for the
BBC B/Master. This hardly used
package includes EMR Miditrack
Editor, Performer, Scorewriter,
Utilities, Midi Interface and all
manuals. May split, offers around
£230.00. Tel. (0705) 371018.

Model B issue 7 £170, Cumana dual
sided double drive 40/80T, PSU £120,
Epson LX80 printer £120, Solidisk
8271/1770 DFS £35, Solidisk 4Mb board
£80 o.n.o. Tel. (0634) 241237 after 5pm.

60

M128 turbo, Viglen PC case, twin 40/80
DS drives, RGB monitor, MOS+ ROM,
Vine ROM board 3&4, Master Replay
ROM, Soundmaster volume control
£400. Turbo co-processor £80, Internal
modem (BEEBUG) £75, Interword £30,
Spellmaster £35, ADI £15, Wordwise
Plus £25, various games discs £5 each,
Master Reference manuals £8 the pair.
Tel. (0780) 53484 eves.

WANTED: Hybrid Music 5000 & 4000
(+ all software and guides). Either will
be bought at a reasonable price. Tel.
(0794) 68373.

Master 512/1024 (Solidisk PC+) with
dual 80T DS DD, 2 joysticks, View etc.,
cartridge with Printmaster ROM, Dabs
M512 Guide, Master Ref. manuals,
BEEBUG magazines vol. 1 no. 9 to
present, TCS 512 mouse driver, mosaic
twin advanced pc Lotus compatible
spreadsheet package, considerable
amount of BBC & PC software £500.
Acorn 30Mb Winchester drive for
Master £250, also BBC teletext adaptor
& TFS, £30 o.n.o. Tel. (0905) 67488 eves.

8087-2 co-processor, new unused £45,
Genius mouse £20, Magic Modem with
command ROM £50, BBC B computer
with shadow RAM BASIC II, EPROM
board and sideways RAM, EPROM ZIF
socket, one owner since new £150,
Epson FX80+ printer with serial port
and NLQ, as new, little used £120,
Monochrome, green monitor, long
persistence, composite and video +
sync £30, Taxan supervision III
monitor, as new £150, BEEBUG cassette
tapes, vols 1-10 to 8-7 £50, Challenger 3,
80T floppy disc drive with 512k RAM
disc, plus advanced disc investigator
£120, Morley teletext adaptor with ATS
ROM £55, Watford NLQ ROM for
Epson £10, Wordwise plus £20,
BEEBUG 'C' Language £25, Interbase
£35, Interword £30, Intersheet £25,
Interchart £16, Spellmaster £35, BROM
plus £15, Pen Friend II £15, Clares
fontwise plus and editor £15, Clares
Grafdisk £5, *GDUMP 2.01 ROM £5,
Gemini Database + Beebcalc
spreadsheet + Beebplot £7, Psion Vufile
+ Vucalc £5, Design 7 screen designer
£5, Toshiba P351SX dot matrix printer,
new & unused £400. Tel. (0276) 35228.

BBC B DFS 1.44 with 32k shadow
RAM card, ZIF socket, w/processor,
s/sheet, & d/base, Hantarex (green)
monitor, Cumana single d/d 40T,
Epson RX80 printer £520 o.n.o. Tel.
(09274) 24076.

BBC B issue 7 with 32k sideways
RAM, Challenger 3 disc drive, B&W
monitor, joysticks books & discs £280
o.n.o. Tel. (0959) 71133 eves.

M128 twin 40/80T drives, two
switchable ROM cartridges, Master
ROM, Teletext adaptor, Wapping
editor & mouse, DTP package, Epson
compatible (FX80) Datac dot matrix
printer, Teletext/mouse splitter box, 8
vols of BEEBUG in binders, Acorn
User mags, selection of books on
BASIC and computing, software, disc
box and discs, computer; disc drives &
teletext adaptor mounted in wood
cabinet on top of which a monitor will
stand. Ideal package for a newcomer
to computing. Complete package £575.
Tel. 081-304 1405.

BBC issue 7, Acorn DFS, Solidisk dual
floppy disc controller (8271/1772) inc.
ADFS+DDFS, Viglen 40/80T DSDD,
Cumana 40T SSSD (PSU), HCR
electronics 16k ROM/RAM expansion
board, AMX MKII mouse, Toolkit+,
Interword, all manuals + boxes
BEEBUG magazines vol.2-8 to vol.9-4
(5.25" disc vol.7-8 to vol.9-4) £600
o0.n.0. plus many selected games discs
from £7, tape from £1 all original. Tel.
(0392) 423596.

Apollo modem & software £40,
EPROM programmer (includes some
blank EPROMs)k £25, Commstar-1
£15, Printmaster £20, Stop Press,
SuperArt, mouse and software to
match (originally cost £150) £90, Extra-
Extra Utilities £15, Acornsoft LOGO
brand new (normally £70) £35, CYB
Mailing list £5, Mail Merge £5, 3.5"
Elite (Master) £5, 3.5" Music System
£10, Master reference Guide Part 1 £5,
all software is original and boxed as
new, all prices include postage etc. Tel.
(092575) 5139 after 6pm except at
w/ends.

Book WANTED: Wordwise Plus user
guide by Bruce Smith (Collins). Tel.
(0935) 812007.

Software & books for BBC B/Master
for sale, as new, mostly at quarter of
original price, list available, Micro
User magazines, vols 1-4 complete in
binders £25, A&B computing 1983-86,
32 issues + 3 supplements in binders
£20, either set without binders at £8
less. Collect London or St Albans or
post extra please. Tel. (0727) 861835.

Mono monitor, Taxan amber screen
12" composite video in £25 o.n.o. Tel.
(0582) 581051.

We have a small quantity of BEEBUG
Members Pack discs (40 track only) at
£2.50 each inc. p&p.
First come, first served!
If you require details, please contact
Alan Wrigley at BEEBUG.

Beebug October 1990

e

HILI; 2@ HILI’I%%

HINTS,, HINTS,, HINTS,

PRINTING A ‘£’ SIGN
D.M.Bruce
Printing a ‘£” sign from Basic (and from other
applications) poses difficulties. The routine listed
here solves the problem by intercepting the INSV
vector and if an insertion is for the print buffer (3)
and the character is ‘£’ (ASCII 96) then a string of
codes is sent to the printer to change to English
characters, send ASCII 35 (which generates ‘£’),
and return to American characters (the default).
The program should be saved in the library
directory and then run to assemble the necessary
code which will have the name prf. At any time
the routine can be established by typing:

*prt
after which the ‘£’ sign will be printed correctly,
until INSV is reset by pressing Break (or Ctrl-Break).
The program uses memory from &9A0 to &9FD.

The routine was developed for a Citizen 120D
printer, but may well work with other printers (or
can be adapted to do so - the relevant codes are
contained in lines 230 to 290).

10 REM Program to print 'f'
20 REM Author D.M.Bruce
30 DIM code% 120:INSV=&22A:start%=&9A0
40 FOR Z%=4 TO 7 STEP 3
50 0%=code%:P%=start%
60 [OPT Z%
70 .init
80 LDX #ins AND &FF:CMP INSV:BEQ exit
90 LDA INSV:STA defVv
100 LDA INSV+1:STA defV+l
110 LDY #ins DIV &100
120" SET 8TX INSV.: STY TNSV+1:CLT
130 .exit
140 RTS
150 .defv
160 EQUW 0
170 . nots
180 PLP:PLA:JMP (defV)
190 .ins
200 PHA:PHP
210 CPX#3:BNE notf
220 CMP#96:BNE notf
230 LDY #27:JSR codein
240 LDY #82:JSR codein
250 LDY #3: JSR codein
260 LDY #35:JSR codein
270 LDY #27:JSR codein
280 LDY #82:JSR codeinr
290 PLP:PLA:LDA #0

Beebug October 1990

300 JMP (defV)

310 .codein

320 LDA#1:JSR &FFEE

330 TYA:JSR &FFEE:RTS

340]

350 NEXT

360 OSCLI("SAVE prf "+STR$~code%+" "+
STR$~0%+" "+STR$~start%+" "+STRS~start$
370 END

SIMPLE SPRITES

Al Harwood

Fast mode 5 multi-coloured sprites can be added
to your programs easily with the use of this
routine. Once run, you enter the pixel colours
using keys 0 to 3. An enlarged version of the sprite
will appear on the screen - | recommend that you
draw the sprite on paper first. Once complete, a
line of data will appear, which can be added to
your own programs, though the line number may
need to be changed (see line 500 below).

To display the sprite, first RESTORE to the relevant
DATA line, and then call PROCsprite(X,Y) to place
the sprite at screen co-ordinates (X,Y), e.g.:

RESTORE 500:PROCsprite(3,2)

100 MODE 5:DIM P(7,7)

110 FOR Y=0 TO 7:FOR X=0 TO 7

120 VDU31,X+5,Y+5:A=GET-48:VDU17,A+128,
32:P(X,Y)=A:NEXT

130 COLOUR 128:PRINT''"1000D."

140 FOR A=0 TO 4 STEP 4

150 FOR B=0 TO 7 STEP 4

160 TS="":FOR C=0 TO 3

170 D$=STR$~ ((P (A+3,B+C)AND1)+

((P (A+3) ,B+C) AND2) *8) + ((P (A+2) , B+C) AND1) *2) +
((P (A+2,B+C) AND2) *16+ ((P (A+1, B+C)AND1) *4+
((P (A+1,B+C) AND2) *32) + ((P (A, B+C) AND1) *8) +
((P(A,B+C)AND2) *64))

180 D$=STRINGS (2-LEND$, "O") +D$: T$=D$+T$
190 NEXT:PRINT"&"TS",";

200 NEXT, :PRINT CHR$127'

210 END

220

230 DEF PROCsprite (X%, Y%)

240 A%=HIMEM+X%*16+Y%*320

250 READ !A%,A%!4,A%!8,A%!12

260 ENDPROC

2710

500 DATA &03113130,&22330505,&0C88C8C0, &44C
COROA B

61

3.5"DisC airmail. We Wi

5 £1.20 £4.50 c450 | orders for subscrip!
6 £1.30 £4.75 £4.75 jssues, but pl

7 £1.30 £4.75 £4.75 will be a £1 h

8 eas, (EATD orders :?g;’e'

I £4.75 VAT in magazines

pOST AND P Destination
please add the cost of p&p
when ordering '\nd'w'\dua\ items. UK, BFPO + chl 60p
See table opposite- Europe + EIr® £1
BEEBUG
117 Hatfield Road, st.Albans, Herls AL1 4JS
Tel. St.Albans (0727) 40303, FAX: (0727) 860263

_Fri 9am-5pM
one fof

COnnedl AooessIV\sa orders and subscr \pl\ons)

Manned Mon
(24hr Answe

. Sarah Shrive
Managing Editor: Sheridan Williams

ved. No part of this pub\'\cat'\on may be
{ ission of the Publisher.

Al rights reser
roduced without prior written permiss
The Publisher cannot acoept any respo
for errors in articles, progF

The opinions expresse

those of the authors an

o the Publishet,
Printed by Arlon Printers (0923) 268328

s are sent
t

m
p official UK
ack

‘Magazine pisc

f October 1990 ;

'pisC CO ONTENTS Disc Scannet
Edit DisC gector

e DisC gector

Sav

' SP\NN\NG TEXT - aiascmat\ng visual d\sp\ay, which draws Recoverg
and spins text in3D-3 single word of 3 message. TWo Load/Exec Cchange
demonstration 1 files are als0 provided. Command page
Exit t
DFS DISC SECTOR EDITOR - useful program for /
or unreadable e di scs wh\ch allows you 10
on-screen and save

1epalring corrupted
display an nd edit individual disc S sectors
4 sector back 10 disc.

{he edited S
PINPOINT! TING DATE - mdemons\ra\mg a
| tou\\neiov calc! u\a\\ng aiu\ure calenda(date.
rograns,

? CONSPICUOUS CONSUMPTION (Pert art 2) - TwWO P
for the model nd the Mastet, to prov vide plotting tacilities
h's fuel oonsump\\on monitor.

| for last mort
BEEBUG WORKS HOP.Seard\l g (Part2) -0 POIET®
which use ! the 'Queens P¥ and the Ko g hi's tour' on
the chessboa to demon uale xhe se of & acktracking
| a\gomhmior mpHyng\hesearohmg process.
. MONIX: A MACHINE CODE MONITOR (Part 2) - the
comp\e&e p!ogram, nclu month's utilities an! ew
routines such a8 memory editor, disassembler, mover, o o
 gearch routine € Date Prediction Denonstration
; COURSE: Unde anding Data Files - a program Crter base date
demonstrating the storage of 1\oat|ngp0\m numboers in files. tiae format (dd.mb: yyuy? 10.08.1990
PRACTICAL ASSEMBL LER (Pert 4). 825 Variable Storage S .
a demonstr ration progra ram from this mon! \hs article whi L‘;eudav Sdnf;:*e 30 dausgggead
urrbers and stings in data files. i
press any key to repeat

\ooks at the storage ©! of nu

MAGSCAN DATA - bibliogr (Vol.9 No. 5).

aphy for this issue
Pin
AL ITEM)

OREACH ADD\T\ON
at the same prices.

ALL THIS FOR & + 60° papP (30P F

Back issues (¥ i o disc since Vo! 5No.t) available
UK ONLY OVERSEAS

£25.50 30 00

£50.00

and postage as appli

Prices aré inclusive of VAT
ans, Herts AL

The Beebug Master ROM is a powerful 32K ROM
developed to enhance the ADFS, sideways RAM, and
real-time features of the Master 128 and Master Compact.

Features include: A comprehensive Disc Front End, Multi-
Option Panel, Diary with Calendar and Alarm. Plus a
Printer Buffer using sideways RAM, a RAM Disc,
and a host of invaluable disc commands.

Disc Menu
Typing *MENU takes you straight to a full feature disc
menu and front panel. This gives a readout of current
status and displays all the items in the current
directory. Just select the file or directory of your
choice to be loaded and run. The menu also
allows files to be marked for subsequent

£ OECOAGSOFT F COMMG§ SUSTER
TOOENL R de

LTI ORODE O ST P

O STERRON & 00K 5 PRINISE PGS
v v 8

%m W i 0 v WL srovan,

Disc Commands

The Master ROM boasts a wealth of
new disc commands to help the user
exploit the power of the ADFS with its
nested directory structure. Commands
include: *BACKUP *WIPE *USED
*CATALL *FIND *FORMAT *BACKUP
*MERGE *DIRCOPY *FCOPY *GOTO

copying, renaming or deleting

Other Features
O Control Panel - displays all the Master's preset options as well as all
available ROMs. The cursor keys are used to move around the panel,
and to adjust the state of any items. Current status settings may be

The Command Driven
Communications ROM

Unlike much communications software, this 16K
ROM is command driven and has a very powerful
extended command set. In addition, for ease of use, all
major features are available at the touch of a function
key. Because the ROM may be command driven it is
exceptionally easy to link commands together in Basic

to meet your own individual needs.

saved away to disc for subsequent reloading at any time.
Q Printer Buffer - the Master ROM boasts a 16K-64K full
feature printer buffer. This uses sideways RAM in
selectable banks, allowing you to print long documents
whilst using the computer for another task.
Q Diary & Alarm - the Master ROM allows you to
keep a disc-based diary and alarm with
reminders for any date in the year.
0 RAM Disc - a simple RAM disc of up to
64K in length. Commands are provided
to save programs and memory to the
RAM disc.

) Text Terminal

Use this terminal to access
Telecom Gold and thousands
of bulletin boards worldwide.
XMODEM file transfer allows
you to send files to a friend for
the cost of a phone call.

Q Telephone Directory
Set up the name, number and
modem configuration of your
favourite bulletin boards for
easy recall at a later date. No
need to remember telephone
numbers any more, just type:
*CALL PRESTEL
for example, and everything
will be done automatically for
you - even sign-on strings and
passwords are entered.

BEEBUG Ltd, 117 Hatfield Rd, St.Albans, Herts AL14JS. Tel. (0727)40303 Fax (0727)860263

3 Viewdata Terminal

Members Price

A full feature Viewdata
Terminal giving access to
thousands of pages in Prestel
and other Viewdata services.

0 Viewdata Editor

A complete teletext editor, with
a full range of editing
commands, on-screen help, and
a pixel editor.

0 Modem Compatibility
The standard version of
Command is suitable for the
Magic Modem and similar
models (Demon, Apollo etc).
The Hayes version is suitable for |

Stock Code:

Hayes and other intelligent Stock Codes:
modems. Command 0084B*
Hayes Command 0073B" |

* Please add £1.50 for P&P ;ﬁ!
]
]
i

