
Create your own Spectrum game Workshop
using The Churrera maker

Chapter 1
Introduction
W hat can you do with this
How do we start
Let’s Start

Chapter 2
Tileset
Collision
Interactable
Making a 16 tile tileset
Automatic shading
Examples
Making a 48 tile tileset
We already have the painted tileset. Now what?
The tileset for Mappy
The tileset to import
A bit of manual work

Chapter 3
Defining our map
Creating a project in Mappy
Exporting our map
Converting our map to code

Chapter 4
What are sprites?
Sprites in the Churrera Maker
Building our sprite-set
Side View Sprite-sets
Top View Sprite-sets
Drawing our sprite-set
Converting our sprite-set

Chapter 5
Extra Sprites
Editors Notes – Extra Sprites additional tutorial
Changing the explosion
Changing the shot
Fixed screens
Title screen
Editors Notes – Using ZX Paintbrush
The framed screen game
Combined title and frame screen
The final screen
Converting screens to Spectrum format
Compressing screens

Chapter 6
Basics: Enemies and Hot - spots
Enemies
Hot - spots
Preparing the necessary materials
Setting up our project
Basic program management
Putting enemies and platforms
Placing hot - spots
Generating the code

Chapter 7
The configuration file
General configuration
Map Size
Start position
End position
Number of objects
Initial life and recharge value
Multi-level games
Engine Type
Collision Box Size
General Directives
Types of extra enemies
Shooting engine
Scripting
Directives related to the top view
Directives related to side view
Display Settings
Graphic effects
Setting the main character's movement
Vertical axis in lateral view games
Horizontal axis in lateral view / general behavior in top view
Behavior of tiles
Preparing our compilation script
Compiling

Chapter 7B
What's New?
Destructible Tiles
Combination tile types
Running out of Bullets
Improvements to type 7 enemies
Scripting engine stuff
Corrections and optimizations
How do I upgrade?
NOTICE

Chapter 7C
Timers
Scripting
Checks
Commands
Control of pushable blocks
Check if we get off the map
Type of enemy "custom" gift
Keyboard / joystick configuration for two buttons
Masked Bullets

Chapter 8
But it's programmed
Saving values: flags
How do I activate scripting?
My first clauses

Chapter 9
Basic Scripting
Let's refresh a little
Go for it!
Counting dead monks
Logic of the boxes
Interesting Improvement
I'm a little lost
Example: Sgt. Helmet Training Day

Version Changes
Version 3.99.2

Timers
Scripting
Checks
Commands
Control of push blocks
Check if we exit the map
Type of enemy "custom" gift
Keyboard / joystick configuration for two buttons
Shooting up and diagonally for side view
M asked bullets

Version 3.99.2mod
Animated Tiles

Version 3.99.3
Animated Tiles
128K Mode
Type 3 Hotspots
Pause / Abort
Message catching objects

Version 3.99.3b
Version 3.99.3c

Item Engine
Shooting / stepping enemies disable

Create your own Spectrum game Workshop(Chapter 1)

One of the most remembered features of our beloved Micro-hobby was one that allowed many to take
the first steps in programming and hardware. Among other things, and almost always in the form of
short workshops, we could “chop” lines and lines of code to make our own games. Then we could
modify them and even learn by self-teaching. It was the closest thing to that eternal promise of “buy
the Spectrum that will help me study.” Well, relatively speaking, we have always wanted in The
Spectrum World a technical section and today, thanks to the Mojon Twins, starts a new section
workshop where you can learn to make your own game for the ZX Spectrum. It is never too late and
that is good. It is now the time that you took off the thorn stuck 20 or 30 years ago and finally you can
be the author of your own ZX Spectrum masterpiece game.

Divided into chapters, the Mojon Twins tell, with their traditional surrealistic style and humor, the
method to use their Churrera Maker v3.99b. You will see how easy it is when it is explained. If you
have any questions you can ask what is through the comments for which a teacher Mojono, monkey or
person, answer you, I'll sell you a used bike.

Without further ado, here's the first chapter of The Churrera maker v3.99b – Tutorial and other
nonsense – Copyleft 2013 the Mojon Twins.

Chapter 1: Introduction

What a hedge?

That I say, but what a hedge? Phew... There is so much to say and so little space. You could throw me
hours chatting and saying crap, but I'll try not to. I have been told that I have to be clear and concise,
and, if it costs me, I will try to be.

Let's start at the beginning. Actually a little later, there are many arguments between creationists and
evolutionists. Let's get to 2010... (This sounds typical music put images of the past, that makes taaaa,
taaaa taaaa, tada...)

Earlier this year, we had a brilliant idea. We were basically tired of copying and pasting when making
games. Because see, everything is not a matter of copying and pasting, but it is true that many things
always do the same, changing several parameters. Let's see, if you think that we do, we write the same
routine of painting the screen with tiles each time we make a game... no no. We were also tired of the
hard manual work. We hand make sprites to the format of the splib2, as we hand sort the tiles so
SevenuP takes them in the correct order, then we pass the map, and place enemies with a sheet of
squares... There were a thousand tasks when making games that were tedious and boring. And who
wants to be bored while doing something that supposedly likes? We do not. And neither do you either,
I suppose.

I already know that. That designing made on graph paper is very 80's and this is seriously a pain. One
may be a geek, but not masochistic.

It occurred to us that what we needed was a framework, that is what this is. A framework that allows us
to have the code modules that are used easily, and that would make us smoothly around the subject of
the conversion and integration of data (graphs, maps and positioning of enemies and objects...). We
started timidly writing conversion utilities, to go then lifting, using pieces from here and there, an
engine which will serve as a base for a game.

We had lots of ideas for the engine. We could have developed gradually and then make the final game,
but did not work well. As we were going paranoid, we were frustrated every time we were getting into
a new feature into the engine. Thus, as was ready "operational minimum", which premiered with Lala
the Magical, Cheril of the Bosque, Sir Ababol y Viaje al Centro de la Napia.

As developers within the retro-scene, was that we did games “as Churreras” (but what Churreras!), we
decided to call the system “The Churrera Maker”. And so it began…

But then what exactly is The Churrera Maker?

The Churrera Maker is a framework that consists of several very cool things:

1. The engine, or "engine", the heart of the Churrera Maker. It is a beastly mess of code that is
"governed" by a main file called “config.h” in which we say which parts of the engine we will use in
our game and how they will behave.

2. The conversion utilities that allow us to design our game in our favorite editors and so colorless,
odorless and tasteless, put all that data into our game.

3. A lot of monkeys, which are essential for anything you want to do in terms.

The Churrera Maker had many versions over the last three years. Internally, we have reached version
4.7, but the mess of code rolled us so much that is not at all, presentable. It has too many hacks and
very messy. So when we came to do a tutorial we decided to go back a little, to a point in the past in
which the subject was still manageable: version 3.1 (Office Space, Zombie Skull, Prologue). But do not
think that we have limited ourselves to give ourselves the "old version". No, nothing like that.

We have for a couple of months dedicated to taking version 3.1, and correcting all the things that were
in a mess, change half of the components to make them faster and more compact, and add a lot of
features. So when we build the 3.99b version, which is what we offer you, is more advanced, faster, and
does more things than version 4.7. In fact, it has gone so well that we continue to develop from this
3.99b version, including improvements "branch 4" (Ramiro the Vampire) we consider interesting.

The 3.99b version is optimized so that if we recompile the old games with it, we get a binary between 2
and 5Kb smaller, with movements faster and more fluid. And here it is at your disposal. In addition,
recorded on a diskette gives the necessary consistency to the magnetic material so that, launched in
ninja plan, clearly encroach the heads of enemies.

What can you do with this?

Well, a lot of things. To us, they have already happened a lot. While it is true that there are common
elements and certain limitations, you can often go paranoid combining different elements you have at
your disposal. Do you want examples? Well, for that we have it launched the Mojon Twins Cover-
tape No. 2. If you do not already have, Get it. NOW.

For Mojon Twins Cover-tape No. 2 what we did was hire a tribe of feet-dirty Indians (natives of the
Die Hard Badajoz). For each, we write a feature of the Churrera Maker on the back and another in the
chest, and encourage them to go down the hills making a meal. When they came down and did a photo
of combinations. With these combinations, we made a game. Then we called Alberto, Monkey Tuerto,
Just a story invented to justify that with a convincing argument. And it works, really.

Let's take a look at what we have.

1. Values: All values related to the movement of the protagonist are modifiable. We can make the
protagonist jump high or low, to fall more slowly, slipping more, you run little or a lot and more.

2. Orientation: We can make our game look sideways or from above (known as "top perspective"). It
is the first thing we have to decide because this will determine the whole design of the game.

3. Jump? Fly? Run?: If we choose a side perspective, we will have to decide how the character will
move. We can make Jump when you press jump (Lala Lah, Julifrustris, Journey to the Centre of the
Nose, Dogmole Tuppowski...), which always jump (Bootee), or increasingly more jump as gaining
strength (Monono). We can also make you fly (Jet Paco).

4. Bouncing off the walls. If we choose our game can have a top perspective, we can make the main
character bounce when colliding with a wall.

5. Special blocks. We can enable or disable keys and locks or blocks that can be pushed. This works
for both orientations, while in side view, the blocks can only be pushed laterally.

6. Shoot. We can also make the main character shoot. We can shoot in any of the four main
directions. We can also tell the engine which direction (vertical or horizontal) is preferable in the end
zone. In the side view, it will shoot in one direction or another depending look left or right.

7. Flying Enemies: chasing you relentlessly.

8. Pursuing enemies: Similar but different... We'll talk about them.

9. Skewers and other things that will kill you, not necessarily skewers.

10. Kill: in side perspective, we can make enemies, a type of enemy that dies if you stand on their
head.

11. Objects: that there are things that collecting and pocketing go in the pocket.

12. Scripting If the above is not enough, we can invent many more things using a simple scripting
language built-in.

And more things that now cannot remember but that will emerge as we go doing things.

The trick is to combine these things, throw some imagination, cheat a little with graphics, and,
ultimately, be a little creative. For example, if we put a weak gravity (which will make the main
character falls very slowly) and we enable the ability to fly with very little acceleration, we put a blue
background and your character is shaped like a diver can do as if we were underwater. You can also try
extreme things, such as putting the values of vertical acceleration and gravity in the negative so that the
character would be pushed up and would force to sink... Which, incidentally, have never tried and that
just gave me an idea... As you talk with Alberto and an argument we invent new games.

You see? That's how it works!

How do we start?

With imagination. To me, it's not worth taking a game that is already made and just change some
things. No. So you will not get anywhere. People think yes, but NO. Invent something new, start from
scratch, and build gradually.

If you are not good at drawing get yourself, a friend who knows how to draw. Seriously, there is
always someone. If you do not find anybody, nothing happens: You can use any graphics that have
made by us. In the packages, all the source code is all .png graphics and such. Learn to cut and paste
into a graphics editor.

Anyway, for beginners, we suggest that you build the Dogmole Tuppowski game little by little. Why do
this? Because it uses a lot of things, including scripting. But don't want you to go, download the Cover-
tape #2 Font Pack, and limit yourself to follow the tutorial looking at files and such. What are you
starting with the package of the empty engine which we are going to offer more down, and that, for
each chapter, go to getting different resources and performing actions, as if really were creating the
game from scratch.

Why the drama? Because when you assemble your first game, it will not be the first time and believe
me, is a real advantage. And because the theatrics is cool.

Let’s Start

The first thing is to make up a story that points of the game-play. We will not even write a story for the
game (because now we do not need) - that will come shortly. First, we will decide what to do.
Let's make a game with Dogmole Tuppowski, a character we invented some time ago and it looks like
this:

First, we will make a side perspective platform game where the character jumps. He also will jump,
say that you can cover a distance of about four or five tiles horizontally and two vertically. This we
must decide at this point because we have to design the map and be taken to make sure that the player
can reach the sites you decide that you can get.

We will do that in the game has to carry out two missions to finish it. This can be achieved through
scripting, it will be something that we will leave until the end of development. The two missions are
simple and employ automatic engine characteristics so it is not too complicated to make a script:

1. There will be some kind of enemies you have to eliminate. Once eliminated, you will have access to
the second mission because a stone block will have to be removed from the screen that gives access to
another part of the map.

2. We will have to take objects, one by one to the part of the map that is unlocked with the first
mission.

To justify this, we explain that the enemies to be eliminated are sorcerers or monks or something
magical that do a power that remains closed the part of the scenario where you have to carry objects.

The story we will write one!

Therefore, we know we have to build a side view platform game with jumping. You can step on certain
types of enemies and kill them. You will need to carry over an object. We will need scripting to paint
the stone at the entrance of the site where objects must take if we have not killed the enemies. In
addition, the fact taking things one by one to leave on a site will need a little scripting as well.

As we have a seed, we invented the story, which, if you read in your day details Cover-tape # 2, and
you know:

Dogmole Tuppowski was the skipper of an old iron boat used to do some smuggling – mainly rare
objects and obscure artifacts I deliver to the Certain department in the University of Miskatonic
(province of Badajoz). Sadly, one night, the sea went grumpy and launched the boat to a barrier reef.
In the crash, all the boxes I HAD to deliver got spread around the beach and the caves underneath the
University.

Miss Meemaid from Miskatonic, was combing the hair WHO of her dolls in the full moon light sitting
in her room at the top of the tower on the cliffs, witnessed the crash. Knowing of the valuable contents
of the probably pit, she Decided to get them for her. As her truck was broken and would not get
repaired Until the day after, in September she her minions to guard the boxes, and Besides, just in case,
she ordered her twenty sorcerers to launch to haunt Which would leave the University closed by a
boulder.

Dogmole's mission is twofold: First, you have to find and eliminate all 20 Sorcerers (by Means of
jumping over them). That would open the University. Secondly, I have to collect 10 boxes and carry
them to the University one by one. Boxes are delivered Where it reads "BOXES" by pressing "A"

With this, we can start designing our game. Actually the issue usually goes well. In our traps and
sometimes we play with an advantage: many of our games have arisen because we have added a new
capability to Churrera Maker and had to try it, as happened with Bootee, Balowwwn, Zombie Skull or
Cheril the Goddess. The creative process is unfathomable and requires that you have some inventive
and imagination and that, unfortunately, is not something you can teach.

Oh, I forgot. We also did a drawing of the Meemaid. Here it is:

Let's start putting things together. First, you'll need z88dk, which is a C compiler and splib2, which is
the graphics library we use. As we do not feel that you complicate installing things (especially since the
splib2 is very old and it is difficult to compile it using a modern z88dk), we have prepared, for
Windows users, this package must decompress directly on the root of C: and containing 1.10 and splib2
z88dk. If it works out well, you should see a folder C: z88dk10 with stuff inside.

http://www.mojontwins.com/churrera/mt-z88dk10.zip

Linux users and other systems should have no problem installing the latest version of z88dk in their
systems and copy the file splib2.lib and splib2t.lib where clibs and spritepack.h are includes. I have left
these two files for them here:

copy splib2.lib and splib2t.lib to C:\z88dk10\lib\clibs
copy spritepack.h to C:\z88dk10\include

http://www.mojontwins.com/churrera/mt-splib2.zip

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fmt-splib2.zip
http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fmt-z88dk10.zip

We will also need a text editor. If you are a programmer, you will already have one that you like the
host. If you are not, please do not use the Windows Notebook. Get Crimson Editor, for example.
Actually, anyone is better than the Windows notebook. If you have Linux you will already have at least
seventeen text editors installed that are better than the Windows notebook: there you have an advantage
with Linux.

We will need the editor Mappy for maps of the game. You can download the official version, although
it is better to use the Mojon version which is modified with the things we need and a pair of custom
features that come in handy and we'll see.

http://www.mojontwins.com/churrera/mt-mappy.zip

Another thing you need to have is SevenuP to convert graphics. Download it from their official
website, here:

http://metalbrain.speccy.org/

When we get to the part of the sound of talk and BeepFX Beepola utilities. Look for them and
download them now if you want, but we will not use them until the end.

Another thing you will need is a good graphics editor to paint the monkeys and small pieces of scenery.
You'd better save in PNG format. I reiterate that if you cannot draw and do not have a friend who
knows graphics you can capture the graphics from Mojon Twins. Also, you'll need a graphic editor to
cut and paste our graphics in yours. You can use anything. I use a super old version of Photoshop
because it's what I'm used to. Many people use Gimp. There is a lot, choose the one you like. But
remember to save in .png.

Once it is installed and such, you will need the Churrera modules. The following address is the full
package version 3.99b:

http://www.mojontwins.com/churrera/mt-churrera-3.99b.zip

To get started, we extract the package Churrera Maker and we customize for our game by following
these steps:

1. We changed the name to the home directory Churrera Maker3.99b by our game. For example
"Dogmole Tuppowski".

2. We changed the name to the main C module for our game. This module is in /dev/ and is called
churromain.c . We will change the name to dogmole.c.

3. Make.bat edit the file on /dev/ with your text editor to suit our game. First you have to replace
where it says% 1 and put the name that you put in churromain.c . In our case, Dogmole. It should
look like:

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fmt-churrera-3.99b.zip
http://metalbrain.speccy.org/
http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fmt-mappy.zip

Every time we make a new game we will have to unpack a new copy of the Churreras and also
customize it.

We're ready to go... But you have to wait for the next chapter.

Create your own Spectrum game Workshop (Chapter 2)

Continue your own Spectrum game creation workshop with the framework of the Mojon Twins. In this
second chapter, we will get into trouble and start to see the process of creating the game. Do not be
scared, it seems complicated, but it is no problem if you dedicate some time and attention. In addition,
it is explained with humor and in a pleasant way, it is always more bearable.

Let's not waste any more time. Let's go there.

Chapter 2: Tile set

Before we start.

In this chapter and in practically all the others we will have to open a window of command line to
execute scripts and programs, to launch the compilation of the game and things like that. What I mean
is that you should have some basic notion of these maneuvers. If you do not know what this is that I put
down here, it is better to consult some basic tutorial on the command line window (or console)
operating system you use.

Material

The material needed to follow this chapter I have left here:

http://www.mojontwins.com/churrera/churreratut-capitulo2.zip

Download it and put it in a temporary folder, which we'll now put things in our project as we are going
to need them. Inside there are beautiful things.

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fchurreratut-capitulo2.zip

Tileset ... What are we talking about?

As for tiles, what is a tile? Well, to put it simply is not more than a bit of graphic that is the same size
and shape as other small pieces of graphics. So you can see it, looking for the translation: tile means
“tile”. Now think about the wall of your bathroom, and imagine that on each tile there is a little graphic.
We have the tile with a little brick, the tile with a little grass, and the black tile and the tile with a little
soil. With several of each, we can order them so that we make a drawing that looks like a country
house. A bathroom like this would irritate the host, by the way.

This is what The Churrera Maker uses to paint the background graphics. How to save a full graphic
screen occupies an egg, what I do is to keep a certain number of small pieces and then a list of what
parts occupy each screen. The collection of small pieces of a screen is what is known as “tileset”. In
this chapter, we will explain how Churrera maker tilesets are, how they are created, how they are
converted, how they are imported and how they are used. But first, we need to understand several
concepts. Go prepare a drink.

Collision

The Churrera maker also uses the tiles for something else: for the collision. Collision is a very cool
name referring to something very silly: the protagonist of the game can walk by the display or not
depending on the type of tile you are going to step on. That is, that each tile is associated with behavior.
For example, to the black of the example above tile, we could put “traversable” behavior so that the
player could move freely through the space occupied by these tiles. On the other hand, the grass tile
should be “obstacle”, meaning that it must prevent that the protagonist moves through space that they
occupy. A game of platforms, for example, the engine will fall the protagonist whenever there is a tile
“obstacles” under their feet.

The Churrera maker games we have the following types of tiles, or, rather, the following behaviors for
the tiles. Each one also has a code that we will need to know. Now, no, but later, when we already
have everything and we are riding the game. For now, it is enough with the list:

Type “0”, Traversable. In platform games this can be the sky, some bricks for the background, the
picture of Uncle Narcissus, an ugly vase or some mountains. In top view games, we will use them for
the floor where we can walk. In other words, objects that do not stop the main character sprite.

Type “1”, Traversable and dangerous: may be transferred, but if you touch life is subtracted to the
protagonist. For example, some spikes, a pit of lava, radioactive squid, broken glass, or the mushrooms
in the forest of Cheril (do you remember? It could not be touched!).

Type “2”, Traversable but hidden. They are the Zombie Skulls. If the character is standing behind
these tiles, it is supposed to be “hidden”. The effects of being hidden are very interesting because they
only affect bats in Zombie Skull, but hey, there it is, and we mentioned.

Type “4” platform. They only make sense in the platform games, obviously. These tiles only stop the
protagonist from above, that is, if you are down you can jump through them, but if you fall from above
you will pose on top. I do not know how to explain it to you... As in Sonic and that. For example, if you
paint a column that occupies three tiles (head, body, and foot), you can put the body of type “0” and the
head of type “4”, and so you can upload one of the columns. It is also good to use this type for thin
platforms that do not stick to being obstacles at all, like the typical metal platforms that come out in
many of our games.

Type “8”, obstacle. This stops the character from all sides. The walls. The rocks. Soil. All that is a type
8. Do not let the character pass.

Type “10”, intractable. It is an obstacle, but that is of type “10” makes the engine know that it is
special. Of this type are, for now, the locks and blocks that can be pushed. We'll talk about them shortly.

You might think, there are missing numbers! And the more that were missing before. This is done
because it simplifies the calculations a lot and allows putting more types in the future. For example,
notice how anything greater than or equal to 4 will stop the protagonist from above, or that anything
less than 7 will let pass the character horizontally. You see? Programming cheats.

In the future, however, it can be easily expanded, as we have said. For example, the code could be
added to the Churrera Maker so that the tiles of type “5” and “6” were like conveyors to the left and to
the right, respectively. It could be added. Might. Maybe, in the end, we do a chapter of changes and put
new code in the Churrera Maker... Why not?

Interactable

We have mentioned the intractable tiles. In the current version of the Churrera maker are two: locks
and pushable. You have to decide if your game needs these features.

Lock you will need them if you put the keys in the game. If the character collides with a lock and
holds a key, then open it. The lock will disappear and you can continue.

The pushable tiles are a few tiles that push them with the main character, will change its position if
there is room. In the platforms games you can only can push laterally; in the top view, they can be
pushed in any direction. As we shall see in due course, we can define a few things related to these tiles
held, e.g. If we want enemies, not to transfer them (and so you can use them to confine them and
“remove them on the way” as in Cheril of the forest or Monono, for example).

We were going to the mess already, isn't it?

We are going to draw our tileset, or scavenge it, or ask a friend who knows to draw. Yes, man, that you
seek one, there are many graphic designers out there that love to draw. The first thing we have to
decide is if we are going to use a tileset of 16 different tiles or 48, which are two sizes of tilesets
withstanding the Churrera maker. What nonsense, you're thinking, of 48! They are more! Of course,
there is more, my dear Einstein, but one thing: 16 different tiles can be represented by a 4-bit number.
That means that in one byte, which is 8 bits, we can store two tiles. Where I want to go? Well, you
guessed it! Maps occupy exactly half of memory if we use tilesets of 16 tiles instead of 48 tilesets.

I know that 16 may seem few tiles, but think that the majority of our games are made as well, and they
are not ugly. With a little ingenuity can make screens very cool with few tiles. In addition, as we will
see later in this chapter, use tilesets of 16 tiles will allow us to activate the automatic shadow effect,
which will make it appear that we have quite a more than 16 tiles. But, patience, that we have not yet
gotten there.

Open your favorite graphics editing program and create a new file of 256×48 pixels. Sure that your
graphic editing program has an option to turn on a grid (or grids). Place to make boxes of 16×16 pixels
and, if possible, having 2 subsections, so that we can see where each character begins. This will help us
to make graphics following the restrictions of the Spectrum, or know where each tile begins and ends
when cutting them or drawing them. I use an old version of Photoshop and when I create a new tileset I
set it up like this:

Making a 16 tile tileset

If you have decided to save memory (for example, if you plan on ending the game engine being
moderately complex, with scripting and many cool things, or if you prefer that your map is very big)
and use tilesets of 16 tiles, you need to create something like this:

The tileset is divided into two sections: the first, formed by the first sixteen tiles, is the section of map.
It is that we use to make our map. The second, made up of the following four, is the special section
that will be used to paint special things.

Let's start looking at the map section:

By Convention, 0, that is, the first tile of the tileset (real developers begin counting at 0), will be the
tile's main tile, which will occupy most of the background in most screens. This is not a requirement,
but it will provide us with life when we do the map for obvious reasons: to create an empty map
already will be all the tiles to 0.

The tiles of 1 to 13 can be whatever you want: tiles in the background, obstacle, platforms, treachery...

Tile 14 (the next to the last one), if you have decided that you are going to activate the tiles held, will
be the pushable tile. It has to be 14, and nothing else.

The tile 15 (the last), if you have decided that you are going to activate the keys and locks, will be the
tile lock. It has to be 15, and nothing else.

If you're not going to use held or keys/locks you can use the tiles 14 and 15 freely, of course.

As for the special section, it consists of four tiles that are, from left to right:

Tile 16 is the recharging life. It will appear on the map and, if the user catches it, recharge a bit of life.

The tile 17 represents objects. They are the ones the player will have to pick up during the game, if we
decide to activate them.

The tile 18 represents the keys. If we have decided to include keys and locks, the key in this tile paint.

The tile 19 is the alternative background. To give a variation to the screens, randomly, this tile will be
painted from time to time instead of tile 0. For example, if your tile 0 is the sky, you can put a stencil
on this tile. Or, if you are doing a top perspective game, you can put a variation of the ground.

Are you understanding? Basically you have to draw 20 tiles: 16 to make the map, and 4 to represent
objects and subtract monotony from the backgrounds. Needless to say, if, for example, you are not
going to use keys and locks in your game, you can save yourself painting the key on tile 18.

Here’s a chart for your use

In the Dogmole, for example, there are no pushable tiles. That is why our 14 tile is a Mussel from the
Cantabrian Sea which, as we all know, can not be pushed.

Automatic shading

Automatic shading can make our screens look much cooler. If activated, the Churrera maker will make
obstacle tiles cast shadows over others. To achieve this, we need to define an alternate version of the
map section with tiles that are not obstacle shaded, which we paste in the bottom row of our tiles file as
follows:

We will have complete control, therefore, of how the shadows are projected. The result obtained you
can see in many of our games. For example, in the Cheril Perils, which belongs to the tileset above.
Notice how the tiles leave a shade on the background. Also seen in the Lala Lah, which is the other
screen:

In Dogmole we will not use this because we need the space that would occupy the automatic shadows
for another thing we'll see at the time.

Examples

To see it, let's take a look at some tilesets of our games, so you can see how they are designed.

Here is the tileset for Lala lah. As we see, the first tile is the blue background that is seen on most
screens. It follows a piece of platform that is also a tile of background, and then the ridge that is a tile
type "platform" (type 4). If you play the game you will see how this tile behaves, to finish
understanding it. The yellow pebble that follows is an obstacle (type 8). Then there are two psychedelic

colors to decorate the background (type 0). Then another pebble (8), a brickwork background (0), a
variation of the squares (0), a kite kickball (type 1), a star box (8), two tiles to make non-transferable
strips and therefore of type 8), a platform (type 4), and to finish tile # 15 will be type 10, because we
use locks and the locks have to be interlocking obstacles. Then we have the recharge, the object and the
key, the alternative tile for the background, and the strip below that used in automatic shading. Let's see
another:

This is the tileset of D'Veel'Ng a top perspective game. This starts with two floor tiles (type 0), followed
by four obstacles (type 8) - the bones, the skull, the canine and the stone, two matador and malignant
tiles (type 1), which are those ugly red skulls, Another obstacle in the form of yellow bricks (type 8),
another tiled floor (type 0), another tile that kills you as a malignant mushroom (type 1), white bricks
(type 8), more floor And another obstacle skull (type 8). This game has tiles that are pushed, so tile 14
is a red box of type 10. We also have keys, so tile 15 is a lock, also type 10. Then we have the typical
life recharge, the Object and key, and the alternate tile for the background that is painted randomly. In
the row below, we have a shaded version of the background tiles again. Notice how the tiles that kill
them have left the same on the strip "shaded": this is so they always look well highlighted. Some more:

Now it's the game Monono. This is very simple to see: we start with the main background tile, empty at
all (type 0). We continue with six obstacles (type 8). Then we have two more tiles background, to
decorate the bottoms: the window to peer and the shield. Then there are three more obstacle tiles (type
8), a pinch of poison (type 1), our typical metal platform copyright Mojon Twins signature special (type
4), a box that can be pushed (tile 14, type 10) and a lock (Tile 15, type 10). Then the usual: recharge,
object, key, alternative. It has no automatic shading.

Making a 48 tile tileset

As we have noticed, the maps made with 48 tiles tilesets occupy double than those made with 16
tilesets. If you still decide to go this route, here is an explanation of how to do so.

First, there is no explicit differentiation between the map and the special section: is all together. In
addition, it is not possible to add automatic shading (we have no site for the alternative versions of the
tiles). Especially, note that this of the tilesets of 48 tiles was an additive for Zombie skull have not
returned to use and it is not refined. But hey, it can be used.

In the tilesets of 48 tiles, you can use the tiles from 0 to 47 to make screens except for those
corresponding to the special characteristics: the tile 14 for the pushable tiles, lock 15, 16 for refills, for
objects 17 and 18 for keys, if it is that you will be using. If you're not going to use, you can put your
own tiles. The tilesets of 48 tiles 19 as alternative background tile, nor is used so you can put whatever
you want in that space.

As the only example, we have the tileset of Zombie skull. If you look, in Zombie skull keys (or no
locks), so that only are occupied as 'specials' for reloads 16 and 17 for objects. There is also no tiles
held. All others are used to paint the stage:

We already have the painted tileset. Now what?

The first thing is to record it as a master copy inside the /gfx folder by calling it work.png. Now we
have to prepare it for use. We will make two versions: the import in the game and which will use
Mappy to make the map and the enemies and objects stand for... well, guess.

If you are following the tutorial with the Dogmole without own experiments, you can find the
work.png of the dogmole in the bundle of files in this chapter.

The tileset for Mappy

Mappy is messed up. You need tile 0 to be empty, i.e., be all black. If loads it a tileset that does not
have the first tile all black, it puts one at the beginning and moves all the other tiles. That is a huge
problem because we would be doing a map with all the indexes. No, not more. As we cannot change
this behavior of Mappy, we will modify our tileset. If you have used a graphic in tile 0 (for example,
making the bottom of your game blue, or painting dots to simulate a lawn in top view) we will have to
modify the tileset to mappy so that this tile completely black. We are going to cut the 16 tiles (if our
tileset 16 tiles) and are going to leave the first one black, thus (in our case have not had to do anything
because our tile 0 was eliminated, but in games, such as, Cheril of the forest, it was necessary to do so):

This tileset recorded it in the folder /gfx as mappy.bmp, more than anything else because Mappy and
the stand are better understood with that format.

Remember, that is important: (read this with mother's voice, so you listen more) If your tile 0 is not
completely black, you have to leave it completely black. See the examples above. In Zombre skull,
Lala lah or D'Veel’ Ng had to do this.

The tileset to import

Splib2, the library on which operates the Churrera maker, manages a charset of 256 characters for
painting the assets, in addition to the sprites that go over. Therefore, the next step is to create a charset
for import into the game using our tileset and font. The Churrera Maker uses 64 characters that
correspond to ASCII codes 32 to 95, that is, these letters:

Using a font editor(there are many free) that paint up this graphic (which you will find inside the
package in the file source-base.png). Whatever what you finish doing it, burn it to /gfx as fuente.png.
It is very important that the letters within the chart positions are respected because if not the text and
numbers come out wrong. This is the fuente.png that we use in Dogmole:

The first thing we'll do is reorder our tileset. What we will do will be “split” each tile into four 8 x 8
pieces. Each of these pieces corresponds to what the Spectrum fans know as UDG (User Defined
Graphic) and, in addition, will lead an associated color attribute. It's something to get to be able to
convert it to code C using SevenuP:

Years ago, we did this by hand and it was a real pain. In fact, the first application that we did for the
Churrera maker was the order of tilesets in UDGs. The application is in the folder /utilof the Churrera
maker and is called reordenator.exe. To use it, open a command line window, we get into the folder
/gfx of our project, and we write something like this:

.. /utils/reordenator.exe work.png udgs.png

This will make reordenator.exe work, generating a new file: udgs.png. This will be exactly the same
as that you have seen directly above.

**Editors note:
I would recommend that you save your tileset image as a PNG before running reordenator. Name the file as work.png
I found it easier just to move the tileset image to the /utils directory and run reordenator. Afterwards you may move the
file back to the /gfx folder.
With the tileset in the /utils directory (in the command prompt) run
reordenator.exe work.png udgs.png
now move the file udgs.png back to the /gfx folder

**Editors note:
When you run reordenator, it will chop up the tiles into 8x8 blocks which will look like 8x16 blocks.

Now that we have our source in fuente.png and the udg in udgs.png, we return to our graphics editor,
create a new file of 256×64 pixels, and paste the udg under the source, as well:

That is what we are going to import in our game. We recorded it in /gfx as tileset.png. This is very
important, since SevenuP will generate the code from our image and the data structure called it,
exactly, “tileset”, which is what the engine needs.

Perfect. With all this done, open, finally, SevenuP. Once opened, click “I” to “Import”, which will open
a selection dialog of files where you can navigate to /gfx of our project to the folder and select
tileset.png. SevenuP will import it and convert it to the Spectrum format.

Now you need to configure the export of data from the program so that it will remove the charset in the
order we need. To do this we go to the menu File - > Output Options, which opens a dialog box with
many options. There will be no touch anything except the box that puts Byte Sort Priority, which we
will have to leave at exactly that (click on “Char line” and then press the button “Move up”).

**Editors note:
Create a new blank image of 256x64. Load the udgs.png in another tab and load the fuente.png and yet another tab.
Copy the font characters to the top of the newly created blank image and then copy your newly split tileset to the bottom of
the image.

That done, click OK. Now we will export the data: we give to “export data” to “D” and other file-
selection dialog will be opened to us. We now have to navigate to your folder /dev and save the file as
tileset.h (must be selected “C” in the type of file, because I believe that by default is ASM).

In this way, SevenuP will generate a file /dev/tileset.h with the code necessary to have our charset in
the game. In particular, write 8 bytes for each of the 256 characters, more 256 bytes with the same
attributes.

Learn that top of memory. No, seriously, you want to generate tileset.h for yourself. That’s why I have
not put it in the package.

A bit of manual work

Do not worry, it’s not much.

Hopefully at this point you know how the Spectrum works with colour clash or the mixture of
attributes. With this known, it is easy to understand the concept that, in the making of your game,
sprites do not have own color, they take the background color.

The engine will paint the screen and then put the sprites over. If you've been careful, and all the tiles
marked as 'Background' are yellow, the game will look quite uniform and the mixture of colors may not
be noticed as much. The problem is the characters that are integers of the same color: SevenuP is pretty
smart when selecting the two colors that has each character, but if there is only one color in the
character it does not have too much to do about it. What ends up making doesn't alert us, above all in
the case which concerns us, in the game Dogmole, in which the background tile 0 is all black: encodes
the attributes such as PAPER 0 and INK 0. With this as well, the sprites will not be, obviously. And
this should fixed it by hand.

Open /dev/tileset.h in a text editor. You should go to the line 279. If your text editor does not mark the
line number is that you should change in text editor, by the way. When you have a text editor in
condition, going to the line 279. This is the first line where defines the attributes of the characters that
form our tileset. As you can see, SevenuP formats the data in such a way that there are 8 bytes per line.
That means that each line of attributes are the colors of two tiles. If you look, (and if you are following
the tutorial with the data of the Dogmole), SevenuP will have generated a line such as:

0, 0, 0, 0, 70, 6, 66, 2,

Do you see what I told you? Those four zeros are the four attributes of the first tile. Well, because we
are going to change them. We will put the ink to white, or INK 7. If you remember, the attribute values
are calculated with INK + 8 * PAPER + 64 * BRIGHT, so to put 0 PAPER, INK 7 and BRIGHT 0 need
to change those zeros by Sevens.

In fact, we should aim for us if from there to the end goes another "0" that we don't want, and replace it
by a the same value. If not you realize now, believe me that you will notice when play the game and see
how sprites pieces disappear when passing certain sites.

Is everyone Okay at this point?

Not bad. If you have arrived here, you have passed the first test of fire. You must use the command
line to run things with parameters. It should edit graphics and cut and paste. You must use conversion
applications. Let's change things by hand! I know that many will be thinking “Hey, this is not as we
thought it would be”. Well, for very easy that they put it, to make a game it is necessary to run it.
Everything has its work from behind. The first requirement that we need to make a game is to have the
desire to do so, perseverance, and the purpose of closure a little.

And with the tutorial, you stay on this same channel for the next chapter, where we will build the map.

Small clarification

There have been a couple of questions on the subject of the normal tileset and Mappy tileset and such.
Let's give some examples to illustrate the topic.

First, let's look at our Dogmole Tuppowski. To simply get the tileset of Mappy, we cut the first 16 tiles
(top Strip) and will record it as mappy.bmp. No, to do nothing more, since the first tile is already
completely black.

Here we have another example. Here we see the tileset of Cheril of the forest. To get the tileset of
Mappy cut, as always, the first 16 tiles, and also will have to leave the first completely black, originally
has a texture of minimalist cool grass. After that, we recorded it as mappy.bmp.

7, 7, 7, 7, 70, 6, 66, 2,

I think you already caught, but we put one more example. Here's the tileset of journey to the center of
the proboscis. Here 0 tile is pink. We cut the 16 tiles and let the pink tile in black. And we recorded it
as mappy.bmp.

Create your own Spectrum game Workshop (Chapter 3)

Chapter 3: Maps

First of all, download the package of materials corresponding to this chapter by clicking on this link:

http://www.mojontwins.com/churrera/churreratut-capitulo3.zip

The map!

In this chapter we are going to make the map. The theme is to build each screen of the game using the
tiles we drew in the previous chapter. Each screen is a kind of grid of squares, where each square has a
tile. Specifically, the screens are formed with 15×10 tiles.

To build the map will use Mappy. Mappy is quite messy but the truth is that it works well and what is
best, allowed to meddle. Mappy version you downloaded from Mojonia has a couple of additions and
modifications to work as we want.

Before we start getting our hands dirty and maybe we'll explain a little about how Mappy works. The
program manages a complex format to describe maps that allows for several layers, animated tiles and
a lot of paranoia. This format, the native of Mappy, is called FMP and we'll use it to store the working
copy of the map. It is this that you change in Mappy every time you want to change something.
However, this format is too complex to be imported into the game, since it has a lot of things that we do
not even need.

We only want a string of bytes to tell us what tile is in each box on the map. That Mappy has another
format, the map format, which is a simple and customizable format. We have left it in the smallest
expression: a string of bytes that tell us what tile is in each box on the map, precisely. It is the format in
which you must save the map when we want to generate the copy which then will process and
incorporate the Game.

In other words, the MAP format is used to input to the churrera, while the FMP format is for Mappy.
Load and save to Mappy in FMP and export to MAP for the churrera.

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fchurreratut-capitulo3.zip

We must be very careful with this as it may update the map, when we record the map, and we forget to
save the FMP, so the next time you want to go to Mappy to make any changes will have lost the last
changes. We have to Colacao, Monkey Coscao, that tells us when we forget to record the FMP, but we
understand that you do not have with you any coscao monkey to look after you, so be sure to save the
map and FMP every time that you make a change!

How is this? You'll see, but the issue is as simple as mapa.map and mapa.fmp grab or when recording
the map with File → Save. Simple, but effective.

Defining our map

The first thing we have to do is decide what the size of our map will be. The map is nothing more than
a rectangle of N by M screens. Of course, the more screens our map has in total, the more RAM it will
take. Therefore, the maximum size that can have the map will depend on which characteristics we have
activated in the engine for our game. If it is a simple engine game, we will fit many screens. If we have
a more complex game, with many features, scripting and such, it will fit less. Each screen of the map is
15×10 tiles.

It is very difficult to give an estimate of how many screens will fit us, at most. In games of single
engine with few features, such as Sir Ababol (which, being built using version 1.0 of the Churrera
maker, only incorporates the basic features of a platform game), we fit in 45 screens and still had left
about 3 Kb Of RAM, so it could have had many more screens. However, in more complex games like
Zombie, Cheril the Goddess or Skull, we occupy almost all the RAM with much smaller maps (24 and
25 screens respectively).

Depending on how your game will work, maybe a small map is enough. For example, in the
aforementioned Cheril the Goddess is a fair walk from side to side and cross it several times to
bringing objects to the altars, so the game is not anything short.

As Mappy is possible to resize a map once done, it may be good idea to start with a map of moderate
size and, in the end, if we see plenty of RAM and we want more screens, zoom.

In the previous chapter we talked about tilesets of 16 and 48 tiles, and we said that using one of the first
screens took up half. This is because the map format used is the one we know as packed, which stores
two tiles in each byte. Therefore, a map of these characteristics occupies 15×10 / 2 = 75 bytes per
screen. 30 displays the Magical Lala, for example, occupy bytes 2250 (30×75). 48 tile maps can not be
packaged in the same way, so each tile occupies one byte. Therefore, each screen occupies 150 bytes.
The 25 screens occupy Zombie Skull therefore 3750 bytes. Do you see how to use less tiles?

I am aware that with all this information that I have released I have clarified very little, but it is that
little I can clarify to you. This is quite objective. I could have begun to study each feature occupies as
we activate the Churreras, but the truth is that I never desired to do. Yes, I can tell you that the fire
engine, for example, takes up a lot, especially in side view (as in Mega Meghan) because it needs many
routines that add to the binary. Flying enemies chasing you (Zombie Skull) also occupy a lot. The issue
of push blocks, keys, objects, tiles that kill you, bouncing off the walls, or the different types of
movement (to fly (Jet Paco, Cheril the Goddess), automatic jump (Bootee), accumulated jump
(Monono), Occupy less. Scripting can also take up a lot of memory if we use many different commands
and checks.

You look at a number that runs between 25 and 40 screens and will fit. And if not, it is trimmed and
ready. You can also wait for us to incorporate some kind of RLE compression to the maps, which is
something we have in mind almost from the beginning but that, is something we have never done.

Creating a project in Mappy

The first thing to do is open Mappy, go to File → New Map, and fill the box where we will define the
important values of our map: the size of the tiles (16×16), and the map size in tiles.

In our Dogmole Tuppowski, the map is 8×3 screens, Maria del Mar, the Mona knows Multiplying,
points out to us are a total of 24 screens. As each screen, we said, measures 15×10 tiles, this means that
our map Will measure 8×15 = 120 tiles wide and 3×10 = 30 tiles high. That is, 120×30 tiles of 16×16.
And that's what we have to fill in the box important values (called REDEVAIM):

When we select OK, Mappy, which is helpful, give us a message reminding us that the next thing you
have to do is load a tileset. And that is precisely what we are going to do. We go to File → Import,
which will open a dialog file selection. Navigate to the Gfx folder of your project, and select our
mappy.bmp. If all goes well, we'll see Mappy is obedient and loads our tileset properly: we will see in
the palette on the right, which is the palette of tiles:

Now there is only one more thing to do before we begin: we need a help to know where each screen
starts and ends, since the edges of each screen have to be consistent with those of the adjacent screens:
if there is an obstacle to the right edge of A screen, there must be another obstacle to the left edge of the
screen to the right. Sometimes we forget, as will be thinking that we should follow normally: the most
traditional of the Mojon Twins bugs have to with the map. Do not take us as an example and look
carefully at the edges.

Let's put those guides. Select MapTools → Dividers to open the dialog box guides. Check the Enable
Dividers box and fill Pixel gap x and pixel gap y and with the values 240 and 160, respectively, which
are the dimensions in pixels of our screens (that we know again thanks to Maria del Mar, which has
estimated that 15×16 = 240 and 10×16 = 160). Press OK and you will see how the work-space is
divided into rectangles with blue guides. Yes, you guessed it: every rectangle is a game screen. We are
ready to start working!

This is where we make the map. Let's click on the tiles palette on the right to select which tile to draw,
and then put the tile in the area on the left making the screens. It is laborious work, slow, and
sometimes a little painful. We recommend that you do not fall into monotony and make boring screens
with large areas of repeated tiles. Try to make your map organic, irregular and varied. The screens look
better. You also have to keep in mind that our character has to be able to reach all the sites. Do you
remember that at the beginning we decided that we would make the character jump around two high
tiles and four or five wide? You have to design the map with that in mind. Another thing to be respected
is that there should be no "no turning back" sites. That is very cheap and very playful 80's. Do not fall
for it. Do not confuse difficulty with bad design.

So, little by little, we build our map, we will being so (you can load the package mapa.fmp materials
in this chapter to view):

Remember to save from time to time in our directory map map as mapa.fmp (File → Save As). It is
important to put always mapa.fmp hand or you click on mapa.fmp in the list of files to be recorded in
the fmp format so not lose anything.

If your game has locks (tile 15) or tiles (locks 14) place them where you want them to come out when
the game starts. For example, on this screen we have placed a lock. Do not worry about the keys: we
will place them later, when we put the enemies and the objects on the map.

If you are, like our monkey Colacao, you've seen that there is an area of the map (in particular the
upper left) that can not be accessed. This area corresponds to Miskatonic University. If you remember,
when we invented the crazy idea of a game we said that the University would be blocked until we
eliminated to all the sorcerers or monks, that Meemaid had put there to put a mental spell that closes it
so that it does not We could carry the boxes. When we get to scripting we will see how to add code to
eliminate that obstacle during the game, when it detects that the sorcerers or monks are all dead (this is
something we can do with scripting: modify the map on the fly). For now, we simply put a pebble there
and forget:

Another thing with which you have to be careful is with the spikes: there must be a way out of any pit
with spikes. When the main character bounces with the spikes it jumps a little, but not much, so do not
put them in deep pits. Notice how they are placed on our games.

Exporting our map

When we are done with our map (or not, nothing happens if we set up the game with a small piece of
the map around, to go testing), it's time to export it as a type map and turn it to include it in our game.

We go to File → Save As and recorded as mapa.map on our map directory. Yes, you have to write
mapa.map. When you're done, you go back to File → Save As and record it as mapa.fmp again. Writing
letter to letter map.fmp. Pay attention to me. Do it, seriously. You may lose things because you forgot to
record the FMP after a quick change is a pain. That we have more than studied this. That has happened
to us a thousand times. Really. Pay attention to this monkey-faced bug:

Converting our map to code

For this we will use other utilities of the Churrera maker. In fact, the second we did: the great mapcnv.
This utility caught Mappy map files and divides them into screens (so that the engine can build more
easily, saving time and space). Also, if we are using tilesets of 16 tiles, pack tiles as explained (2 for
each byte). So, once we have our mapa.map exported file in the directory map, we use a command
line window, and execute mapcnv (which is in the directory /utils) with these parameters:

.. \ utils mapa.map mapWidth mapHeight widthTiles heightTiles lockTile packed

Explain them one by one:

mapa.map is the input file with the newly exported map made with Mappy.

mapWidth is the width of map screens. In our case, 8.

mapHeight is the height of the map screens. In our case, 3.

widthTiles is the width of each screen in tiles. For the Churrera maker, it is always 15.

heightTiles is the height of each screen in tiles. For the Churrera maker, it is always 10.

lockTile is the number of tile making a lock. For Churrera maker always be the tile number 15. If your
game does not use locks, put a value out of range as 99. For example, we do not use locks in Zombie
Skull here, so we put here by 99 to convert the map. We do have locks on Dogmole, so it will be 15.

packed sets, as is, is our tileset of 16 tiles. If we use a 48-tile tile, we simply do not put anything.

Therefore, to convert our map, we will have to execute mapcnv like this:

With this, after a mysterious and magical process, we get a mapa.h file you have to move the dev
directory of our project.

.. \ utils mapcnv mapa.map 8 3 15 10 15 packed

**Editors note:
I found it easier just to move the *.map file to the /utils directory and run mapcnv. Afterwards you may move the file back
to the /dev folder.
With the *.map file in the /utils directory (in the command prompt) run
mapcnv.exe 8 3 15 10 15 packed
now move the file back to the /dev folder

** Editors note
For 48 tilesets you would run
mapcnv.exe 8 3 15 10 15

.. \ utils mapa.map 8 3 15 10 15 packed

If you open this mapa.h with the text editor, you will see a lot of numbers in an array of C: That's our
map. Just below, the locks are defined in another structure. As you will see, there will be as many
defined locks as we have put on the map. If this is not so, you have done something wrong. Go over all
the steps!

Perfect, all cool, all right.

Very good. We're done for today. In the next chapter we will paint sprites of the game: the main
character, bad guys, platforms... We will see how to make a turn sprite-set and how to use it in our
game.

In the meantime, you should practice. Something we recommend you do, if it has not yet occurred to
you, is to download the source code packs from our game and take a look at the maps. Fmp opens with
Mappy files and see how things are made.

Until next time!

Workshop creates your own game of Spectrum (Chapter 4)

Here comes the fourth part of the workshop by the Mojon Twins learning how to use the Churrera
maker. In this chapter, you will learn to create our sprites. If you have arrived here you already have
the necessary elements to advance considerably in your future game of Spectrum. What sounds good,
huh? Well, let's go there, we know that you want to continue with the Workshop.

Chapter 4: Sprites

First of all, download the package of materials relevant to this chapter by clicking on this link:

http://www.mojontwins.com/churrera/churreratut-capitulo4.zip

What are sprites?

At this point in the story, if you don't know what is a sprite, our bad... And no, I will not do the typical
joke of carbonated drink. As this chapter is about sprites, however, we will have to start explaining that
they are. If you don't know, it's one of the laws of the tutorials from video games. No matter what level
you are or which system you deal with: is required to explain what is a sprite is.

Let's see: the concept of sprite, really, has absolutely no meaning in systems like the Spectrum, in
which the graphic output is limited to an array of pixels. Absolutely no sense. However, it is used by
analogy. Let us elaborate: Traditionally, a graphics chip designed to work on a games machine handled
two entities, mainly: the background and a certain (limited) number of sprites. The sprites were just
handfuls of pixels, usually square or rectangular, that the graphic processor was responsible for
composing on the background when sending the image to the monitor or the TV. That it: they were
objects completely alien to the background and that, therefore, you could move without affecting it.
The CPU of the system had only to tell the graphic processor where each sprite was and to forget since
that graphic processor was the one that was in charge of constructing the image sending to the monitor
sprite pixels instead of background pixels when it was necessary. It is as if the pixels were not really
there, hence their name: the word "sprite" means "fairies" or "pixies."

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fchurreratut-capitulo4.zip

Almost every game consoles 8 and 16 bits (the Nintendo and SEGA at least the Atari systems were
rare noses), the MSX and Commodore 64, among other systems, have a graphics processor that really
does Backgrounds and sprites.

In computers like the Spectrum or Amstrad CPC, or any PC, the concept of sprite makes no sense.
Why? Because the hardware only handles an array of pixels, which would be equivalent to just
handling the background. In these cases, the sprites have to paint with the CPU: you have to take care
of replacing certain pixels of the background with pixels of the character. In addition, the programmer
must be careful about some method to move the group of pixels: you must be able to restore the screen
to the way it was before painting the sprite and redraw it in the new position. However, by analogy,
these groups of pixels are called sprites.

We call them sprites, and that sometimes we are purists of the host.

Sprites in the Churrera Maker

The Churrera Maker maker handles four sprites of 16×16 pixels for the enemy (including the character
who manages the player) and generally up to three sprites for projectiles (in game kill). enemy sprites
are drawn using graphics that can define what is known as the sprite-set. Said sprite-set contains 16
graphs, of which 8 are used to encourage the main character and 8 to encourage 4 types of enemies (2
for each, if you're good mathematics). A sprite-set looks like this (this is the sprite-set the Dogmole):

As you will see, there is always a graphic of a puppet and next to it there is a strange thing just to
you're right. Let's explain what that weird thing is before we go on. In the first place, it is not called a
rare thing. It's called a mask. Yes, I know it does not look like a mask, but it's called that. Neither
computer mice look like mice nor the Horace looks like a kid and I have not seen anyone complain yet.
The mask is used to tell the graphics library (in this case, splib2), which is in charge of moving the
sprites (remember that "this is Spectrum: no graphic chip to do these things), Which pixels in the chart
are "transparent", that is, which pixels in the chart should NOT replace the background pixels.

If there were such a mask, all the sprites will be square or rectangular, and that is pretty ugly.

We have ordered our sprite-set so that each graph has a corresponding mask looks just right. If you
look, the masks have black pixels in the areas where the corresponding graphic should be seen, and
color pixels in the areas where the background should be seen. It is as if we define the silhouette.

Why are masks necessary? If you are a bit insightful as you may have guessed: Spectrum graphics are
1-bit depth, which means that each pixel is represented using one bit. That means that we only have
two possible values for the pixels: on or off (1 or 0). In order to specify which pixels are transparent,
we would need a third value, and that is not possible (that it is what the binary is!). That's why we need
a separate structure to store this information, the mask!

Building our sprite-set

Before building the sprite-set is very important to know what kind of view will have our game: side
view or top view. I suppose that, at this point, it is something that we have already decided (go, if we
have already made the map). The order of graphics on the sprite-set depends on the type of view of our
game.

Side View Sprite-sets

For side view games, graphics 16×16 (accompanied by their masks) that make up the sprite-set must
have this order:

Spriteset for Top View Games

0 Main character, walking right, frame 1

1 Main character, walking right, frame 2,
used for standing facing right.

2 Main character, walking right, frame 3

3 Main character, walking right, jumping

4 Main character, walking left, frame 1

5 Main character, walking left, frame 2,
used for standing, facing left.

6 Main character, walking left, frame 3

7 Main character, walking left, jumping

8 Type 1 enemy, frame 1

9 Type 1 enemy, frame 2

10 Type 2 enemy, frame 1

11 Type 2 enemy, frame 2

12 Type 3 enemy, frame 1

13 Type 3 enemy, frame 2

14 Moving platform, frame 1

15 Moving platform, frame 2

As we see, the first eight graphics serve to animate the main character: four for when he looks to the
right, and four for when he looks to the left.

We have three basic animations for the character: standing, walking, and jumping / falling:

Standing: The first is when the character is standing (as its name suggests). Stationary means that it is
not moving by itself (if it is moved by an external entity it is still "stopped"). When the character is
stopped, the engine draws it using frame 2 (chart number 1 if you look to the right or 5 if you look to
the left).

Walking: This is when the character moves laterally above a platform. In this case, a four – step
animation is performed using frames 1, 2, 3, 2,. In that order (graphics 0, 1, 2, 1... if we look to the
right or 4, 5, 6, 5... if we look to the left). When drawing, the character must have both feet on the
ground for frame 2, and legs extended (with the left or right front) in frames 1 and 3. That is why we
use frame 2 in the animation " stopped".

Jumping / Falling: It is when the character jumps or falls. Then the engine draws the frame "jumping"
(graphic number 3 if you look to the right or number 7 if you look to the left.

The following six graphs are used to represent enemies. Enemies can be of three types, and each has
two animation frames.

Finally, the last two graphs are used for moving platforms, which also have two frames of animation.
Moving platforms are precisely, and as its name implies, platforms that move. The main character can
climb on them to move. To draw the graphics we have to take care that the surface on which the main
character must stand must touch the top edge of the graphic.

To make it clear, let's look at some examples:

The sprite-set above corresponds to the Cheril Perils. As we can see, the first eight graphics are the
Cheril, first looking to the right and then looking to the left. Then we have three enemies that we see in
the game and in the end the moving platform. Study on the subject of animation of walking, imagine
move from frame 1 to 2, 2 to 3, 3 to 2, and 2-1. Look at the graph and picture it in your head. do you
see it? you see how it moves the character? Ping, pong, ping pong... Also, see how the frame 2 is the
best for when the puppet stands.

This another sprite-set corresponds to Monono. In the same way, we have 8 graphics to Eleuterio, three
types of enemies, and in the end the moving platform. See how the top surface of the moving platform
always touches the top edge of the frame of the sprite. Also look at as it is made animation walk of
Eleuterio and as the head is lower in the frames that extend the legs.

Top View Sprite-sets

For the top view games, the 16 graphics of the sprite-set have to have this order:

Spriteset for Top View Games

0 Main character, walking right, frame 1

1 Main character, walking right, frame 2

2 Main character, walking left, frame 1

3 Main character, walking left, frame 2

4 Main character, walking up, frame 1

5 Main character, walking up, frame 2

6 Main character, walking down, frame 1

7 Main character, walking down, frame 2

8 Type 1 enemy, frame 1

9 Type 1 enemy, frame 2

10 Type 2 enemy, frame 1

11 Type 2 enemy, frame 2

12 Type 3 enemy, frame 1

13 Type 3 enemy, frame 2

14 Type 4 enemy, frame 1

15 Type 4 enemy, frame 2

Again, the first eight graphics serve to animate the main character, but this time the subject is simpler:
since we have four directions in which the main character can move, we only have two frames for each
direction.

The remaining eight graphics correspond to four types of enemies since in a top view game there is no
platform.

Again, to make it clear, let's look at some examples:

This is the sprite-set of our great conversion of the Hobbit (one of our great honors: be the last in a
competition is almost better than being the first.). Notice how the theme changes: above we have 8
graphics with 2 frames for each direction, and below we have four types of enemies instead of three
more platforms.

This one is the Mega sprite-set, Meghan. Here again, we have the main character in all four directions
with two frames of animation for each strip on top and four women (who make enemy) in the bottom
strip.

Notice how, in this case, our top view we have designed with some perspective: when the puppets go
up they turn and when they go down look straight.

Drawing our sprite-set

Nothing is easier than creating a new 256×32 pixel file, activate the grid to not get out, and draw the
graphics. Here we will have to respect a very simple rule (or two, as you will see). To paint graphics
and masks we will use two colors:

In the graphics, pure black is the color of the paper, and the other color (we want, it is a good idea to
use white) is the color INK. Remember that the sprites will take the color of tiles that have a
background as they move around the screen.

In masks, black is the part of the graph must remain solid, and another color is used to define the
transparent parts.

In our examples, you will see that we use a different color (besides black) in graphics and masks, but
it is mostly for clarity. You can use the colors you want. I personally use different colors because I
usually paint mask and sprite in the same box 16×16, then select only the pixels of the "mask color"
and move to the next box. It's a trick you can apply if you're crafty with your graphics editor.

Once we have all of our graphics and masks on file sprite-set, we keep it as sprites.png in /gfx and are
ready to turn them into C code directly usable by the Churrera maker.

By the way, make sure again that you used black is pure black. All black pixels must be RGB = (0,
0, 0).

Converting our sprite-set

Again we have a little bit of command line window work in our hands. We will use another utility The
Churrera Maker which, as you could guess, was the third we did: sprcnv.exe, sprite-sets converter. This
utility is really silly and simple and only takes two parameters. We're going to \gfx and run:

.. \utils\sprncv.exe sprites.png.. \dev\sprites.h

**Editors note:
I found it easier just to move the sprites.png file to the /utils directory and run sprncv.exe. Afterwards you may move the
file back to the /gfx folder.
With the sprites.png file in the /utils directory (in the command prompt) run
sprncv.exe sprites.png sprites.h
now move the file back to the /gfx folder

Running this, and through a magical and mysterious process, we get a sprites.h file on our dev folder.
And we're done.

Your sprites.h file should look like this...

In the next chapter, we will explain the theme of the fixed screens: the title, the frame of the game, and
the screen of the end. Until then, to make sprites!

Workshop creates your own game of Spectrum (Chapter 5)

We already at our 5th chapter of the "Create Your Own Spectrum Game" Workshop. Today we end of
sharpen the graphics and add the screens of starting and ending of the game among other things. We
hope as always that you like it and take advantage of it.

Chapter 5: Ending graphics (for now)

First of all, download the package of materials corresponding to this chapter by clicking on this link:

http://www.mojontwins.com/churrera/churreratut-capitulo5.zip

What are we missing?

There is little left to draw. In this chapter we are going to explain two things: on the one hand, how to
change the extra sprites (explosion and bullet). On the other hand, we will see how to make, convert,
compress and include the frame of the game, the title screen, and the screen of the end.

Extra Sprites

At first, the issue of extra sprites change was not planned for this course / tutorial for a very simple
reason: since the explosion to draw Cheril Perils and Zombie Skull bullet for those graphics have not
changed to any game. Yes, we have had the task of remove all other games having explosions or bullets
without changing those graphics. As it seems that there is interest in customization, let's use a few
paragraphs explaining how to change them.

Needless to say, if your game does not have foes or bullets, or if they are worth the ones that are, you
can skip this section.

All right. To change these graphics we have to do is replace those that are defined in the file
Churrera\dev\extrasprites.h. Let's start by opening the file in our non-crap text editor and taking a
look at it. In this file, the numbers are used to define three graphs for sprites (and their masks): the
numbers 17, 18 and 19. The 17 is the one that corresponds to the explosion. The 18 is an empty sprite,
which uses the engine for missing one of the three maximum enemies that fit on a screen and other
things I now do not remember. That, obviously, we are not going to change it. The 19 is the sprite of the
bullet and is smaller (you will see that there are fewer numbers).

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fchurreratut-capitulo5.zip

Changing the explosion

The explosion is a 16×16 sprite. [Pest Alert] How splib2 is built, to define a 16×16 sprite, you have to
do it in the upper left corner of a 24×24 frame. This is because splib2 is character-oriented, and a 24×24
character-aligned box can always contain a full 16×16 sprite. Do not worry if this sounds Chinese to
you, you do not have to understand it (although if your curiosity is piqued, you can always ask us). We
only mention it so that you locate and know what we are going to change. In the file, you will see three
sprites 24 rows of pairs numbers, each under a._sprite_17_X label, where X is a, b or c. These are the
three columns of 24 rows of 8 pixels that make up our sprite and are the data that we will have to
replace. Place them well in the file.

Once done, save it as \gfx\extra.png and passed it to code using sprcnv as we explained in the last
chapter, but this time specifying extra.h as output file:

.. \utils\sprncv.exe extra.png extra.h

Which will generate us a file extra.h in \gfx. We are going to open this file in a text editor.

This file will contain definitions for 16 sprites. We only need the first of these sprites for cut and paste
it into extrasprites.h, replacing the 17. Let's do this: select the three columns of the sprite 1 (marked by
labels. _sprite_1_X, where X is a, b or c) and copy to the Clipboard.

Now go to extrasprites.h, removes the three columns . _sprite_17_X, paste three columns .
_sprite_1_X Clipboard, and now, carefully change each label . _sprite_1_X by . _sprite_17_X.

Perfect! Please beware of this. Make sure that you change the correct data and that modified the tags
correctly.

Changing the shot

The original shot is a ball centered on a box of 8×8. We put a ball because we use the same graphic for
shooting in all directions, so a form "oriented" not worth it to us.

In the same way that a 16×16 graphic is to define it in one greater than 24×24 picture by the issue of
the positioning on the screen, there is one 8×8 to define it in a box of 16×16, or what is the same, in
two columns of 8×16 pixels. In the file extrasprites.h are the hooligans who under the labels.
_sprite_19_a and . _sprite_19_b.

For reasons of speed, bullets have no mask. This means that the graph is defined by the first value of
the first eight lines. As you can see, these 8 values are 0, 0, 24, 60, 60, 24, 0, 0. If you go to binary
values and the put one on top of another, you will see how they form a ball:

00000000
00000000
00011000
00111100
00111100
00011000
00000000
00000000

We are going to change it, for example, by a star ninja (friends, a little imagination):

00000000
00010000
00011000
00100110
01100100
00011000
00001000
00000000

We could pass the values to decimal and replace them, but it is not necessary, because the z88dk
assembler is a competent guy (as Vincent, the clever monkey) and swallowed the binaries directly if we
stick them at the beginning one @, so what we will do is replace the first numbers of the first 8 pairs of
values that exist under . _sprite_19_a by something:

Damn, what did you say?

Yes, try not to charge anything. And you're annoying, for asking. It is likely that right now you are
thinking now that the explosion and bullet that come included by default are not so bad either.

Editors Notes – Extra Sprites additional tutorial

Here’s my personal tutorial on extrasprites.h

Open up your favorite image editor (in this case we are using GIMP).

Create a new image 48 pixels wide and 16 pixels high.

Zoom in the image and show the grid

The layout for your extra sprites are as follows

So a layout might look like this

Paint your extra sprites and save as extrasprites.png.

Move the image to the /utils directory

use the Sprite conversion utility: sprcnv.exe extrasprite.png extra.h

Your sprite should now be converted.

Open the extra.h file in your favorite text editor.

You should see something similar to this

This is not quite yet usable, our data is in there, but we have to make some modifications.

I’m going to promote my favorite text editor Notepad ++, it has two noticeable features that I am going
to take advantage of in this part of the tutorial: tabbed editing and split screen editing.

Browse to the /dev folder in the Dogmole directory and open up extrasprites.h.

in Notepad ++ go to view - Move/Clone current Document – move to other view.

Tabbed and split views in Notepad++

You will notice that the extrasprites.h file consist of several different sections

Declarations

// Extrasprites.h
// Contiene sprites extra para el modo de matar enemigos de la churrera
// Sólo se incluirá (tras los sprites) si se define PLAYER_KILLS_ENEMIES
// Copyleft 2010 The Mojon Twins

// Frames extra por si se pueden eliminar los enemigos:

#if defined(PLAYER_CAN_FIRE) || defined(PLAYER_KILLS_ENEMIES) || defined(ENABLE_PURSUERS)
extern unsigned char sprite_17_a [];
#endif
extern unsigned char sprite_18_a [];
#ifdef PLAYER_CAN_FIRE
extern unsigned char sprite_19_a [];
extern unsigned char sprite_19_b [];
#endif

#if defined(PLAYER_CAN_FIRE) || defined(PLAYER_KILLS_ENEMIES) || defined(ENABLE_PURSUERS)

This equates to
 ._sprite_17_c
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255

 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255

 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 25
 defb 0, 255
 defb 0, 255
 defb 0, 255
#endasm
#endif

#asm
 ._sprite_17_a
 defb 0, 128 //00000000
 defb 56, 0 //00111000
 defb 117, 0 //01110101
 defb 123, 0 //01111011
 defb 127, 0 //01111111
 defb 57, 0 //00111001
 defb 0, 0 //00000000
 defb 96, 0 //01100000
 defb 238, 0 //11101110
 defb 95, 0 //01011111
 defb 31, 0 //00011111
 defb 62, 0 //00111110
 defb 53, 128 //00110101
 defb 42, 128 //00101010
 defb 20, 128 //00010100
 defb 0, 192 //00000000

 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255

 ._sprite_17_b
 defb 0, 3 //00000000
 defb 240, 1 //11110000
 defb 248, 0 //11111000
 defb 236, 0 //11101100
 defb 212, 0 //11010100
 defb 248, 0 //11111000
 defb 224, 1 //11100000
 defb 24, 0 //00011000
 defb 124, 0 //01111100
 defb 120, 0 //01111000
 defb 244, 0 //11110100
 defb 168, 0 //10101000
 defb 0, 1 //00000000
 defb 0, 3 //00000000
 defb 0, 63 //00000000
 defb 0, 127 //00000000

 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255
 defb 0, 255

Sprite 17’s definition

You may have noticed that I added the binary equivalent of the decimal representation for Sprites 17a
and 17b. This helps with the visualization of the sprite itself.

Now scroll down and look at the definition for Sprite 19

 #ifdef PLAYER_CAN_FIRE
#asm //ball shape

._sprite_19_a
defb 0, 0 //00000000
defb 0, 0 //00000000
defb 24, 0//00011000
defb 60, 0//00111100
defb 60, 0//00111100
defb 24, 0//00011000
defb 0, 0 //00000000
defb 0, 0 //00000000

defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0

._sprite_19_b
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0

defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0
defb 0, 0

#endasm
#endif

In the Notepad ++ tab that has your new sprite definition (extra.h) find _sprite_1_a (should be at line
64). Lines 65 – 79 is the sprite definition for the first 16 lines, left side of your sprite. Copy these lines
(65 – 79) and paste them into your ._sprite_17_a data, lines 20-35.

We are going to repeat this for ._sprite_1_b (lines 91 to 106) to ._sprite_17_b (lines 47 to 62).

For the projectile sprite we are going to use ._sprite_2_a

Copy the first 8 lines (lines 143 to 150) and copy them to ._sprite_19_a (lines 132-139). Save your
extrasprites.h

Fixed screens

Well, let's go with the theme of the fixed screens. Basically, Churrera Maker games have three fixed
screens: the title screen, which is what also shows the menu (to select the type of control and start
playing), the framed screen game, where will be located markers lives, objects, and so on, and the end
screen, it will be shown that once the player has accomplished the objective assigned.

To save memory also is the possibility that the title screen and the screen with the frame of the game
are the same, thus saving enough memory, and that will be the option we will take to our Dogmole. But
do not worry we will explain everything.

Another thing I do not want to fail to mention is that the screens are stored in the game in a compressed
format. The type of compression used (like almost all compression) works the better the simpler the
images. That is the more repetition and / or fewer things on the screens, the less they will occupy the
end. Keep this in mind. If you look at it from memory, one way to save that works very well is to make
your fixed screens less complex.

Title screen

As we have already mentioned, it is the screen that is displayed with the title of the game and control
options. The selection of control is fixed: if the player presses 1 will select the control by keyboard. If
you press 2, you will choose Kempston, and if you press 3 it is because you want to play with a
joystick of the Sinclair standard (Interface 2, port 1). What does this mean? Well, we will have to draw
a screen that, besides the title of the game, shows these three options. For example, something like this:

When you make yours, save it as title.png in the \ gfx directory.

Editors Notes – Using ZX Paintbrush

Another tool I would like to promote in this document is ZX Paintbrush available at
 http://www.zx-modules.de/ .

This tool can be used by itself or with the collection of modules that the author has written. It’s a
handy utility that allows one to capture graphics from anywhere on the web or your image program.

Let’s say that I want to import an image of a hot-rod. I would first find a nice image on the web
somewhere.

I am going to capture this image and paste it into GIMP.

I want to resize the image so that it fits into the area that I want it to. In this case let’s make it 128x96.

In GIMP, I would drill to Image – Scale Image.

http://www.zx-modules.de/

Select scale when finished.

You can now either modify your image within GIMP, or if you are happy with the image, simply select
the entire image and copy.

Now, let’s open ZX Paintbrush.

Drill to File – New. Select ZX-Paintbrush picture.

Drill to Edit – Paste Windows bitmap.

If you are not happy with the results, there are a number of things you can do prior to committing. This
is just a preview. Try some of the options available to you in ZX Paintbrush, such as adjusting the
brightness and contrast or try dithering.

If you are still not happy, go back to GIMP and try to simplize the color scheme.

Another way to go is by using a filter called G’MIC for GIMP, a very powerful filter. One of the many
filters available in G’MIC is “Old School 8 Bit”.

Another popular tool is the magic wand, select the areas that you want to be the same color and
continually refine the selection process.

Paint in the selected areas

After enough of fighting with the image, you just might come up with something decent.

When happy, paste the Bitmap into ZX Paintbrush.

You still may have to fidget around with the image.

Or try something new

It’s all an artistic choice.

When Finished drill to File – Save as.

Save as a PNG.

The framed screen game

There is more here. The screen of the game frame must reserve several important areas and then
separate them with an ornament and indicators. The areas that we have to reserve are:

The playing area, which is where things happen. As you guessed, it should be just as big as each of our
screens. If you remember, the screens are 15×10 tiles and, therefore, they occupy 240×160 pixels. You
must reserve an area of that size as the main area of play.

The number of lives / energy / vitality / whatever: two numeric digits to be drawn with the font you
defined when we made the tileset. You should place it somewhere in the frame, adding some graphic
that gives it meaning. We usually put a cartoon of the protagonist and an "x", as you will see in the
examples.

The marker keys (if you use keys on your game). It has the same characteristics as the life marker.

The marker object (if you use objects in your game). Ditto for objects.

The number of killed enemies (if you can kill enemies and it is important to count). Well, the same.

All these things we can place where we want, as long as they are aligned with character. In addition, we
must point out the position of each of these things (in character coordinates, that is, 0 to 31 for the X
and 0 to 23 for the Y), because then it will have to be indicated in the configuration of the Churrera
Maker (as we will see within a couple of chapters).

Let's look at an example. This is the frame screen Lala Prologue game. Let's look at the different
elements. In LaLa we have keys and in addition, we have to collect objects, so we will have to put
those two things, along with the energy marker, in the frame, as we see:

The playing area, as we see, begins at coordinates x = 1, y = 2, that is, (1, 2).

The space we have left for the energy counter is at (4, 0).

The marker objects displayed such that (11, 0).

Finally, the marker keys are (18, 0).

As I say, we have to point all those values because we will have to use them when building the
configuration of our game, within a couple of chapters.

When you have yours, it is recorded as marco.png in the \ gfx directory.

Combined title and frame screen

Since very early we started doing this because it helped us save a lot of memory. The theme is simple:
to a screen of the game frame, you add the title and menu options within the area reserved for the main
area. The truth is that it looks quite good, and, reiterate, you can save enough memory.

This is, in fact, what we are going to use in our Dogmole, as we see here:

As we see, on the one hand, we have the title of game and control options, as we explain when we talk
about the title screen. On the other hand, we have the score of the game. The game area, as will be
shown, will be displayed on the space that occupies the title and control options:
The play area will be placed at coordinates (1, 0).

Counter for eliminated enemies (sorcerers) will be drawn in (12, 21).

The box counter (ie, objects) will be drawn in (17, 21).

The life counter is drawn in (22, 21)

Finally, the counter keys we will have in (27, 21).

In this case, the title screen / combined frame is saved as title.png in \ gfx. There will be no marco.png
file for games that combine title and frame on the same screen, as in our case with Dogmole.

The final screen

It is the screen that is displayed when the player finishes the game successfully. There is no restriction
here: you can draw whatever you want. If you have the skill it looks better, but if you like to make
serious game maybe not paste. This is the end of Dogmole screen:

When we have the record it as ending.png in the gfx directory.

Converting screens to Spectrum format

For this, we will use SevenuP again. You can use other programs for these purposes, but as we
SevenuP because we will use it right? We started, then SevenuP. Once opened, I press Import. In the
file selection box that appears seek our title.png. SevenuP will load the file and convert it to the
Spectrum screen format. Press S to save, and we recorded it in \ gfx as title.scr.

We do the same for marco.png (if we will use) and ending.png. At the end, we stay with title.scr,
marco.scr (if we will use) and ending.scr in \ gfx. Do not be goofy and delete png, then if you want to
change something or reuse the framework for another game.

Compressing screens

As you may have noticed, the 6912 bytes that each screen occupies for three (or two) are large, so it
will have to be compressed. For that, we will use the apack.exe compressor package aplib library. We
have included in the utils folder. We opened our window command line, we go to the gfx directory and
compress each scr in a file named bin but at the end with these three orders (or two, if not going to use
the separate frame).

With this have obtained three (or two) that we copy the .bin files to the \ dev folder.

If you look, the size of the files has dropped drastically. For Dogmole, title.bin 1277 bytes and occupies
1084 bytes ending.bin. Between the two they add 2361, which is considerably less than the 13824 bytes
they would occupy without being compressed.

.. \ utils \ apack.exe title.scr title.bin

.. \ utils \ apack.exe frame.scr frame.bin

.. \ utils \ apack.exe ending.scr ending.bin

And we're done

What, now? What a boring chapter. I know. But hey, it was necessary. In the next chapter, we will learn
how to place enemies, objects and keys on the game map. And soon, very soon, we can compile for the
first time to start seeing everything in motion.

Workshop creates your own game of Spectrum (Chapter 6)

A new installment of the workshop "Create your own game of Spectrum" with the Churrera Maker of
the Mojon Twins. On this occasion, we will put the different elements that we have been creating.
Without further ado we go there:

Chapter 6: Placing Things

First of all, download the package of materials corresponding to this chapter by clicking on this link:

http://www.mojontwins.com/churrera/churreratut-capitulo6.zip

Now, what?

That's when we put things. It is the equivalent of when you arrive from the supermarket loaded with
bags and you have to place them throughout the kitchen. It is a tedious but necessary process. You can
choose not to, of course, but then to see who finds the sausages. Or, I do not know, the filters on the
coffee maker. Does anyone still use coffeepot filters?

Basically what we are going to do is to put on the map the enemies, the objects, and the keys. And no,
we are not referring specifically to doing this:

Each item will belong to a particular screen and will have a series of values that indicate its position, its
type, its speed in the event that they move, and other things like that. We are actually talking about a
huge number table that would be quite a pain to create by hand. That is why we have made an
application to the host of grotesque to be able to complete this work in a visual way.

The tool of which I have spoken, we call that very imaginatively The Underwriter (nothing to do with
illegal substances), is not only useful for making games with Churrera maker. Any project that you
have with tiles of 16×16 pixels, for any size of screen, could benefit from this utility. Without going
any further, we use it to place bugs in games Uwol 2 of CPC, Lala Prologue of MSDOS or some
experiment for some 16-bit that console to see if someday we dared to finish and get a blessed time.
The program will seem very cumbersome, but the truth is making the workaround.

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fchurreratut-capitulo6.zip

Incidentally, the Underwriter is a program for Windows platforms. However, being compiled with
GCC and using Allegro as a graphical library, it should be very easily portable to Linux. If you are
willing to do so and provide an additional tool for the users of this platform, contact us. The program is
completely contained in a .c file so generating a Linux executable should be the simplest task on the
globe.

Basics: Enemies and Hot-spots

Let's start by explaining some basic concepts before we start the application, more than anything
because the terminology we use tends to be less intuitive than Uchi-Mata.

Enemies

First we have the concept of enemy. An enemy, for Churreras, are those things that move on the screen
and they kill and also moving platforms. Yes, for The Churrera Maker moving platforms they are
enemies. So when we talk about placing enemies, we also talk about placing moving platforms. And
when we say that the screen can have a maximum of 3 enemies, you must also count the moving
platforms.

Enemies have associated different values and something very important: the type. The type of enemy
defines its behavior and, in addition, the graph with which it is painted. Attention because this is
somewhat confusing, especially since it was not designed as a priority and is somewhat patched (read
on the subject of moving platforms):

The enemies of types 1, 2 or 3 (and type 4 in the side view game) describe linear paths and are drawn
with the first, second or third (or fourth) tileset sprite enemies. When we speak of linear paths we refer
to two possible cases:

Trajectories warp, vertical or horizontal paths: the starting point and end point are defined
describing a straight vertical or horizontal line. The enemy follows that imaginary line coming and
going continuously.

Diagonal paths: they came out of a "feature" of the engine (side effect not intended due to a crappy
algorithm), but leave them because they are cool. We have used them much. If the starting point and the
end are not in the same row or column, the puppet moves inside the rectangle describing both points,
bouncing off the walls and moving diagonally.

The enemies of type 4, on side view games, are moving platforms. They behave exactly like linear
enemies, but with a limitation: although we can define a diagonal path, we do not guarantee that the
operation is correct in all cases. Therefore, only vertical or horizontal trajectories can be used.

The enemies of type 5 were added when we did the Zombie Skull. It's the type of bats. They are painted
with the graph of the third enemy of the tileset and have this special behavior: they are created off-
screen, and if the protagonist is not hidden, they are chasing him. If the protagonist hides, they move
away until they leave the screen again. We have not tried this type of enemies in this revised version of
Churreras, so we can not assure that work well. Do you dare to try? By default, the code to move and
manage type 5 enemies is not included in the engine, but must be explicitly activated.

The enemies of type 6 are not implemented in this version of Churreras for one simple reason: they
have always been totally and completely custom. Cheril the Goddess in myopic bats were only chasing
you if you approached a distance by walking away and returning to your site. In the Gheg Ramiro
Vampire bats are the crypts that appear when you activate the trap and pursue you until you catch all
the crosses. In Uwol 2 for CPC, they are the Fanty of the lower floors. For each game in which we have
used type 6 we have programmed a different behavior (reusing things, yes). That is why we have left
this "hole", in case you need a custom behavior for some game we have where to add it. Just like the
engine, if you create a type 6 enemy, it will not even appear on the screen.

The enemies of type 7 are what we call EIP, i.e. Enemies Incredibly persistent. These are linear
pursuers. These enemies appear at the point where you create them and are dedicated to chasing the
player. They can not cross the stage. If the player can shoot and kill them, they will appear again in the
same place from where they first appeared. The graph with which they are drawn is chosen randomly
from all available ones. They work best in top view game and you can see them in action in Mega
Meghan. Like type 5 enemies, the code to manage them is not included in the default engine and must
be explicitly specified.

At Dogmole will use only the enemies of types 1 to 3 and type 4 moving platforms.

For the final chapters of this tutorial, which will deal with additions and modifications, we will see how
to do two things with the engine: add a type 6 with a custom behavior and how to modify the entire
enemy engine to be able to use more than 4 basic linear types of Two ways: using 8 different types
without animation, or adding more frames to have 8 different types of animation (spending a lot of
memory in the process). But for this, there is still a lot.

Hot-spots

Hot-spots are, quite simply, a position within the screen where there may be an object, a key, or a
recharge. In each display a single hot-spot is defined. Each hot-spot has an associated value. If it is
given a value "0" this hot-spot will be disabled and nothing will ever appear. If a value of "1" is given,
an object will appear in this position. If it is given a value of "2", a key will appear. Hot-spots with
values "1" or "2" are considered "active". Once we have taken the key object or an active hot-spot, the
engine may make appear a refill of life there next time we go on that screen.

When we talk about objects we refer to the item that is drawn with the tile tileset number 17 and will
be automatically counted by the game engine without having to do us nothing but tell the engine that
will use objects. It is in Lala Prologue potions or crosses Zombie Skull, pencils in Journey to the Center
Napia or diskettes in Working Trash. We are going to use objects to represent the boxes that we have to
pick up and take to Miskatonic University in our game. Then, through scripting and configuration, we
will make the behavior of the objects different (we will not count the object until, after taking it, we
have deposited it in a certain point of the university, much like how floppy disks work working Trash),
but basically objects should be placed on the map using hot-spots object type (type 1).

As I know you are going to ask, you can not assign more than one hot-spot on the screen as it is
programmed the engine.

Preparing the necessary materials

All right. Let's get down to business. The first thing we will have to do is copy the necessary materials
to the directory where the Colocador is, which is the \ enems directory. We need two things: the map of
game in .map format, and the tileset we prepared for Mappy in .bmp format. Therefore, copy \ map \
map.map and \ gfx \ mappy.bmp to \ enems. We are ready for the march!

Setting up our project

When you run the Underwriter (for example, by double clicking on colocador.exe) the main screen
that appears, or charge an existing project, or configure a new one. As we do not have an existing
project, we will create a new one.

As we see, in the first two boxes will have to enter the name of our map and our tileset (mapa.map and
mappy.bmp, which should already be in the \ ENEMS directory). Then there are four boxes that
define the size of the map and the screens. MAP_W and MAP_H should contain the width and height
of your map measured on screens. SCR_W and SCR_H are to specify the width and height of the
screens in tiles. Paras The Churrera Maker the Gheg of these values are, as should already know plenty,
15 and 10.

The last box to fill is the number of enemies that will appear on each screen. In the Churreras are 3. No,
if you put more they will not go more in the Game. You'll just make it all go wrong. Put 3. I assure you
that 3 are enough.

When all the files are clicked on NEW and then we can start working.

Basic program management

The handling is very simple. More than anything because the program is very simple. If you look, there
is a grid with the current screen. If the grid does not come out, or what comes out on the grid is not the
first screen of your map, ill come on. Review the previous steps, especially those referring to the
dimensions of the map and the screens.

To navigate the map (so that another screen appears in the grid) we will use the keys of the cursors.
Test it. You should be able to do a nice tour of your map.

If you press ESC the program, something tremendously useful when we are finished will close and we
want to go. But be careful: it comes out no more. Careful, careful, careful. Do not press ESC without
saving earlier. It does not warn you. The program closes.

Precisely to have the S key to record. In fact, we will use it right now, even if we have not placed any
enemies. By convention, we use .ene as an extension for the Colocador files. Press S and in the dialog
that comes out, writes enems.ene and click on the OK button. We have already recorded our
placements. Do this very often. Hear us.

Let's see this in action. Press ESC to exit. Note that there is now a enems.ene in \ ENEMS file.
Colocador.exe reruns. This time, instead of filling in values, writes enems.ene in the box is labeled
Open an existing project and click on the button that says Load. If all goes well, you should exit the
first screen on the map again.

This file enems.ene is not used to use directly in the game. In order to have our enemies in the game
will need the stand to export code to C. This is done by pressing the E. When we do, a dialogue similar
to that of the save will appear. There must write enems.h, press OK, and copy this file to \ dev. This
will be what we will do when we have finished placing all the enemies and we want to integrate them
in the game.

Putting enemies and platforms

The simplest is to place linear enemies (horizontal, vertical, or those rare diagonals we saw before).
What is done is to define a trajectory, a type, and a speed. Let's do it.

The first thing to do is place the mouse over the box beginning of the path and click. This position
will be the initial one, where the enemy will appear, and it will also serve as one of the limits of their
trajectory (look at the pictures above, when we talked about enemy types). When we do this, a dialog
where we enter the type of enemy will appear. Remember that in the case of linear enemies will be a
value of 1 to 4, 4 for platforms in side view games. Put the little number and press OK.

Now what the program hopes is to tell you where the trajectory ends. We go to the square where the
path must end and we click again. We will see how the path is shown graphically and a new dialog
box appears in which we are asked about speed.

The value entered will be the number of pixels that will advance the enemy or platform for each game
box. These values, so that there are no problems, should be powers of two. That is, 1, 2, 4, 8... Actually,
the values that are worth 1, 2 or 4. Something beyond is already too fast and would give problems of all
kinds. Values that are not powers of two can also give problems. If you want you can try to put a 3 or
something to see what happens, but I tell you since you are likely to end up with the enemy going
fishing off the screen or worse. Once we have put the numerical, press OK and we already have our
first enemy placed.

For enemies of other types (5 or 7, for now) the subject changes a little. For example, type 5 enemies
no matter where you put: always come from outside of the screen (see bats Zombie Skull to know what
I mean). You can set the beginning and end of the path where you feel like it. The speed you put is also
the least. With the enemies of type 7 (Mega Meghan) only take into account the starting position. The
speed and position of the end will be ignored equally.

When we put, in the future, to program in the engine a type of enemy custom for the type 6, we will do
taking into account that we have the positions of start and end and a value of speed to play. For
example, if we are going to make a cannonball that fires, we can use the end position to define the
direction in which it will fire. Well, let's not go ahead. In addition, Dogmole does not use non – linear
enemies.

You can put a maximum of three per screen (the program will not let you push more). There does not
have to be three on each screen, you can have screens with one, two, or none.

To delete or edit the values of an enemy we have already placed, just click on the box start of the path
(where the little number that indicates the type appears). Then we will see a dialog box where we can
change its type or speed or eliminate it completely.

And so, little by little, we will place our enemies and platforms on the map, with a maximum of 3 per
screen, being careful not to put a value out of range as an enemy, and not forgetting that the speed must
be 1, 2 or 4.

Placing hot-spots

As we said earlier, a hot-spot is the box where a key or an object appear during the Game, and where a
recharge may appear if we caught after said key or said display object.

Remember, we mentioned that each hot-spot has a type. For the Churrera Maker, this type can be 0
(deactivated), 1 (contains an object) or 2 (contains a key). If you get cool then you can expand the
engine for more, but as it is the Churrera Maker supports these three types.

Recall that each screen supports a single hot-spot. That means that the total number of keys and objects
needed to finish the settling can not exceed the number of screens. For example, we have 30 screens
Lala Prologue. In order to finish the game successfully it is necessary to collect 25 objects, and in
addition there are four locks to open, reason why we need 4 keys. This means that in 25 of the 30
screens there will be an object, and in 4 there will be a key. Perfect: we need 29 screens of 30. It's
important to plan this beforehand. If you get excited by placing a bunch of locks then you will not be
able to fit all the keys and all the objects that need to be picked up.

You should also make sure that you put enough keys to open all the locks and that there is always a
way to finish the game without getting locked in. Be careful with this, it is possible to build incorrect
key combinations and locks if you are branching and the player may spend the keys on a route that you
did not plan and then can not move forward.

To place the hot-spot of the current screen, simply we click the right mouse button in the box where
we want the key or object to appear, which will show a small dialog box where we enter the type. In
this capture I am placing one of the keys Lala Prologue.

With patience we will screen at placing the hot-spot, indicating the value 1 in the places where should
leave an object (the boxes in Dogmole) and the value 2 in the sites where it should leave a key.

Generating the code

Once we have finished placing everything, as we said before, we will have to generate the code that the
Churrera Maker needs. Do you remember the super table of values we mentioned at the beginning of
the chapter? Well, that. When you're done, then press E and records the code as enems.h. Copy this file
to \ dev. If you're curious, you can open it in the text editor and see how many numbers you've saved to
write.

And we're done!

In addition, with more emotion: in the next issue, we will compile for the first time our game, even
without scripting, to see how it is going.

Workshop creates your own game of Spectrum (Chapter 7)

We arrived at the seventh part of the Workshop "Create your own game of Spectrum" with the Churrera
Maker of the Mojon Twins. Finally, we can compile our game but before we have to put the batteries
because this chapter requires maximum attention. Ready? Let's go there.

Chapter 7: First Assembly

First of all, download the package of materials corresponding to this chapter by clicking on this link:

http://www.mojontwins.com/churrera/churreratut-capitulo7.zip

Come now. I want to see things moving!

That's where we are. This chapter is going to be deeper. Get ready to absorb what tons of information.
To follow this chapter we recommend that you eat a good Tico-Tico watermelon, which strengthens the
brain.

Let’s start off easy, let's first make a kind of recap to see that we have everything we need.

First of all, the first thing we should have done is to unzip the package from the Churrera Maker and
custom the files as explained at the beginning of this tutorial. With this, we should have something like
this:

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fchurreratut-capitulo7.zip

On this we should have copied all the files that we have been elaborating, converting and generating,
namely:

The fixed screens, title.bin, frame.bin (if we are going to use it) and ending.bin

Do we have everything? Insurance? All right. Then we can start to configure the engine to make our
first compilation. Hold on, curves come.

The configuration file

If you look at our development folder /dev, in which you should already have all the resources prepared
and ready to use, there is a file called config.h. Stick with your face: it is the most important file of all
since it is the one that decides which pieces of the engine are assembled to form the game, and what
parameter values are used in said pieces. You should have done it already, but just in case: open
/dev/config.h in your favorite text editor. And now I show you how many things there are. Let's go by
parts, explaining each section, what are values, how to interpret them , and filling them for our
Dogmole example. Let's take some air and start.

General configuration

This section configures the general values of game: the size of the map, the number of objects (if
applicable), and the like:

Map Size

These two directives define the size of our map. If we remember, for our Dogmole the map measures
8×3 screens. We, therefore, fill in 8 and 3 (W of Width, width, and H of Height, height).

Start position
Here we define the position of the main character when starting a new game. SCR_INICIO defines
which screen, and PLAYER_INI_X and Y define the coordinate of the tile where the character will
appear. We started on the first screen of the third row, which (if we count or calculate) is the number 16
screen. We placed Dogmole on the ground and next to the rock wall in the coordinate box (1, 7)
(Remember! Real developers start counting on 0).

The tileset, in the tileset.h file
The sprite-set, in the file sprites.h
The map, in the map file.h

Enemies and hot-spots, in enems.h

#define MAP_W 8 //
#define MAP_H 3 // Map dimensions in screens

#define SCR_INITIO 16 // Initial screen
#define PLAYER_INI_X 1 //
#define PLAYER_INI_Y 7 // Initial tile coordinates

End position

Here we define the final position that we must reach to finish the game. It may interest us to make a
game in which we simply have to get to a particular site to finish it. In that case, we would fill these
values. As in the game that occupies us (and in none that we have done we have not used this never!),
We are not going to use it, we put values out of range. Usually, the 99 is out of range (our map does not
have as many screens, for example), and is a number that spring.

Number of objects

Pay attention to this: this parameter defines the number of objects that we have to gather to finish the
game. In simple gestures like Lala Prologue, counting objects and checking that we have all is
automatic and uses this value: as soon as the player has that number of objects will be displayed the
screen of the end. In our case, not: we're going to use scripting to handle the objects and the checks that
we've done everything we had to do to win the game, so we're not going to need this at all. Therefore,
we will put a value out of range, our beloved, so that the engine ignores the automatic object count. If
you are doing a game on your own in which you simply have to collect all the objects, as in so many
that we have launched, places here the maximum number of necessary objects.

Initial life and recharge value

Here we define what the character's initial life value will be and how much it will increase when we
take an extra life. In Dogmole, we will start with 15 lives and recharge 1 in 1 to find hearts. As we are
going to configure the engine so that a collision with an enemy causes us to blink, lives will be lost
little by little. In shots like Lala Prologue, where collisions produce rebounds and the enemy can hit us
many times, "lives" are considered "energy" and higher values such as 99 and more generous recharges
are used, 10 or 25.

Multi-level games

The Churrera Maker is able to handle several compressed levels, in principle in low RAM, but with the
possibility of admitting a slight modification to use extra pages of RAM in the 128K models. This is an
advanced feature that we will explain in future chapters.

#define SCR_FIN 99 // Last screen. 99 = deactivated.
#define PLAYER_FIN_X 99 //
#define PLAYER_FIN_Y 99 // Player tile coordinates to finish game

#define PLAYER_NUM_OBJETS 99 // Objects to get to finish game

#define PLAYER_LIFE 15 // Max and starting life gauge.
#define PLAYER_REFILL 1 // Life recharge

// # define COMPRESSED_LEVELS // use levels.h instead of map.h and enems.h
// # define MAX_LEVELS 2 // # of compressed levels
// # define REFILL_ME // If defined, refill player on each level

Engine Type

Now we start with the good: the configuration of the parts of the code that will be assembled as a
multiple transformers to form our spawn. This is where all the fun is. It's fun because we can
experiment using strange combinations (we've done it on Covertape # 2) and testing the effects. As we
have already mentioned, it is impossible to activate everything, not only because there are things that
cancel each other out, but because, simply, it would not fit.

Here we have two types of parameters: those that take a number, such as we have already seen, and
those that can be active or inactive. To deactivate a capacity, simply comment. In C the comments are
put with two bars //. When you see a line with two bars at the beginning, it is commented out and,
therefore, the characteristic that describes is deactivated.

Let's go in parts, as Victor Frankenstein said...

Collision Box Size

The collision box refers to the square that "really" occupies our sprite. To understand us, our sprite will
hit the stage. This collision is calculated with an imaginary square that can have two sizes: 16×16 or
8×8. The engine simply checks that square does not get into an obstacle block.

For you to understand the difference, see how Lala interacts with the stage in Lala Prologue (which has
a collision box of 16×16 that occupies the whole sprite) and in Lala Lah (in which we use an 8×8
collision box, smaller than The sprite). The 8×8 collision has been one of the additions to this special
version 3.99b of the Churrera Maker, and, in our opinion, makes the control more natural. Anyway, we
have let the developer (i.e, you), choose if you prefer the old collision of 16×16, which may be more
appropriate for depends on what situations.

If we choose an 8×8 collision with the scenario, we have two options: that the box is centered in the
sprite or that is in the lower part:

#define BOUNDING_BOX_8_BOTTOM // 8×8 aligned to bottom center in 16×16
// # define BOUNDING_BOX_8_CENTERED // 8×8 aligned to center in 16×16
// # define SMALL_COLLISION // 8×8 centered collision instead of 12×12

The first option (centered box) is designed for top view games, like Balowwwn or D'Veel'Ng. The
second works well with side-view games or top-looking "with a bit of perspective" genius, like Mega
Meghan.

Only one of the two directives can be active (because they are exclusive): if we want centered 8×8
collision we activate BOUNDING_BOX_8_CENTERED and deactivate the other one. If we want
8×8 collision in the lower part we activate BOUNDING_BOX_8_BOTTOM and deactivate the other
one. If we want 16×16 collision we deactivate both.

The third directive refers to collisions against enemies. If we activate SMALL_COLLISION, the
sprites will have to touch us much more to give us. With SMALL_COLLISION, enemies are easier to
dodge. It works well in fast-moving gestures such as Bootee. We are going to leave it disabled for
Dogmole.

General Directives

If we define this, the player will change screen when he / she leaves the edge. If it is not defined, you
must be pressing the specific address for this to happen. Normally it is left activated, so that if the
player moves only by inertia also change of screen. We can not think of a situation where this is not
desirable, but anyway there is the option to disable it.

These two directives activate and configure the pushable blocks. We are not going to use pushpins in
Dogmole, so we disable them. Activating the first one (PLAYER_PUSH_BOXES) activates the
blocks, so tiles # 14 (with behavior type 10, remember) can be pushed.

The second directive, FIRE_TO_PUSH, is to define whether the player must press fire in addition to
the direction in which he pushes or not. In Cheril Perils, for example, you do not have to press fire: just
touching the block while we move will move. In D'Veel'Ng, it is necessary to press fire to push a block.
If you are going to use pushbutton blocks, you have to decide which option you like best (and best suits
the type of gameplay you want to get).

This directive is activated to achieve what we said when we were doing the fixed screens: that the title
of the game also serves as a frame. If you have a separate title.bin and a frame.bin, you should disable
it. In our case, where we only have a title.bin that also includes frame, we leave it activated.

#define PLAYER_AUTO_CHANGE_SCREEN // Player changes screen automatically

// # define PLAYER_PUSH_BOXES // If defined, tile # 14 is pushable
// # define FIRE_TO_PUSH

#define DIRECT_TO_PLAY // If defined, title screen = game frame.

These two directives are used to disable keys or objects. If your game does not use keys and locks, you
must activate DEACTIVATE_KEYS. If you are not going to use objects, we activate
DEACTIVATE_OBJECTS.

Surely some of you will be thinking why we do not activate DEACTIVATE_OBJECTS in Dogmole,
if we said that the objects we will control by scripting? Good question! It is simple: what we will
control by scripting is the count of objects and the final condition, but we need the engine to manage
the collection and placement of objects.

What a mess, right? Patience.

We continue with two directives with a very specific application: if we activate the first,
ONLY_ONE_OBJECT, we can only carry an object. Once you pick up an object, the collection of
objects is blocked and you can not catch any more. To re-activate the collection of objects we will have
to use scripting. With this we get the effect we need to take the boxes one by one: we set the engine to
only allow us to carry an object (a box), and then, when we do the script, we will do that when we take
the box to Site where you have to go depositing (a specific site of the University) to activate the
collection of objects so that we can go to the next box.

The second directive, OBJECT_COUNT, is used to display the value of one of the flags of the
scripting system in the object marker instead of the internal account of collected objects. We'll see it in
the future, when we explain the scripting engine, but the scripts have up to 32 variables or flags that we
can use to store values and perform checks. Each variable has a number. If we define this directive, the
engine will display the value of the flag indicated in the marker counter. From the script we will
increase this value each time the player arrives at the University and deposits an object.

Briefly, we only need to define OBJECT_COUNT if we are the ones that are going to take the
account, by hand, from the script. If we are not going to use scripting, or we will not need to manually
control the number of objects collected, we will have to comment on this directive so that it is not taken
into account.

Uncomment this directive if you want to disable the tiles that kill you (type 1). If you do not use type 1
tiles in your game, uncomment this line and save space, as this way the detection of matting tiles will
not be included in the code.

// # define DEACTIVATE_KEYS // If defined, keys are not present.
// # define DEACTIVATE_OBJECTS // If defined, objects are not present.

#define ONLY_ONE_OBJECT // If defined, only one object can be carried
#define OBJECT_COUNT 1 // Defines FLAG to be used to store object #

// #define DEACTIVATE_EVIL_TILE // If defined, no killing tiles are detected.

These two directives control rebounds. If you activate PLAYER_BOUNCES, the player will bounce
against enemies by touching them. The strength of this rebound is controlled by FULL_BOUNCE: if
activated, the rebounds will be much more beasts because the speed will be used with which the player
originally advanced, but in the opposite direction. Disabling FULL_BOUNCE the rebound is half the
speed.

If we define, in addition, SLOW_DRAIN, the speed at which we lose energy if we get stuck in the
path of the enemy (remember Lala Prologue, Sir Ababol or the original version of Journey to the
Center of the Napia) will be four times smaller. This is used in Bootee, where it is easy to get trapped in
the path of an enemy and complicated to leave it. This makes the game more affordable.

As you can imagine, FULL_BOUNCE and SLOW_DRAIN depend on PLAYER_BOUNCES. If
PLAYER_BOUNCES is disabled, the other two directives are ignored.

Activating PLAYER_FLICKERS allows the character to blink if he collides with an enemy (being
invulnerable for a short period of time). Usually we will choose between PLAYER_BOUNCES and
PLAYER_FLICKERS, but they can work together. We in Dogmole want the protagonist to only blink
when he collides with an enemy, so we deactivate PLAYER_BOUNCES and activate
PLAYER_FLICKERS.

Disable this directive if you want to, in case the character is going to leave the map below, the engine
will bounce and subtract life, as in Zombie Skull. If your map is closed from below, turn it off to gain a
few bytes.

This directive is related to pushable tiles. If you define pushing blocks, you may want enemies to react
to them and alter their trajectories, as in, for example, Monono or Cheril of the Forest (among many
others). If you do not use pushy tiles or you do not want them to go through them, turn it off to gain a
lot of space.

Types of extra enemies
Let's now see a set of directives that will be used to activate enemies of types 5, 6 or 7. Remember what
we mentioned about this type of enemies: 5 are the bats Zombie Skull, 7 are the enemies who are after
you Of Mega Meghan, and the 6 is reserved for us to implement a new type of enemies.

// # define MAP_BOTTOM_KILLS // If defined, exiting the map bottom kills.

// # define PLAYER_BOUNCES // If defined, collisions make player bounce
// # define FULL_BOUNCE
// # define SLOW_DRAIN // Works with bounces. Drain is 4 times slower
#define PLAYER_FLICKERS // If defined, collisions make player flicker

// # define WALLS_STOP_ENEMIES // If defined ... erm ...

In Dogmole we do not use any kind of extra enemy. For your games, you can experiment with these
bugs, or you can wait for the end of the tutorial when explaining how to implement a type of custom
enemy for type 6.

Activating ENABLE_RANDOM_RESPAWN activates type 5 enemies. These enemies appear off the
screen if there is any type 5 enemy or a dead enemy, and they chase the player unless he is touching a
type 2 tile (is hidden). The following directives are used to configure their behavior:

FANTY_MAX_V sets the maximum speed. To give you an idea, divide the value between 64 and the
result is the number of pixels that will advance for each frame as a maximum. If we set 256, the flying
enemy can accelerate to 4 pixels per frame.

FANTY_A is the acceleration value. Each game box, the speed will increase by the value indicated in
direction towards the player, if it is not hidden. The lower this value, the longer the enemy will react to
a change of player's direction.

FANTIES_LIFE_GAUGE defines how many shots the character must receive to die, if we have
activated the shots (see below).

Activating ENABLE_PURSUERS activates type 7 enemies. These enemies appear where we have
placed them (remember the chapter of the enemies) and chase the player. They stop with stage
obstacles, unlike Type 5 enemies.

If we have the firing engine activated, when we kill an enemy of type 7 it will take some time to re-
exit. This time, expressed in number of frames, is calculated using the expression defined in
DEATH_COUNT_EXPRESSION. The one that is seen in the example is the one that is used in Mega
Meghan: 8 plus a random number between 0 and 15 (that is, between 8 and 23 frames).

Shooting engine

The firing engine is quite expensive in terms of memory. Activate it includes quite a few pieces of
code, since you have to check more collisions and take into account many things besides the extra
sprites needed.

If we activate this directive, we are including the shots engine. The following directives are used to
configure their behavior.

// # define ENABLE_RANDOM_RESPAWN // If defined, flying enemies
// # define FANTY_MAX_V 256 // Flying enemies max speed.
// # define FANTY_A 12 // Flying enemies acceleration.
// # define FANTIES_LIFE_GAUGE 10 // Amount of shots needed to kill.

// # define ENABLE_PURSUERS // If defined, type 7 enemies are active
// # define DEATH_COUNT_EXPRESSION 8+ (rand () & 15)

// # define PLAYER_CAN_FIRE // If defined, shooting engine is enabled.

The PLAYER_BULLET_SPEED directive controls the speed of the bullets. 8 pixels per frame is a
good value and is the one we have used in all games. A higher value can cause collisions to be lost,
since everything on the screen is discrete (not continuous) and if an enemy moves quickly in the
opposite direction of a bullet that moves too fast, it is possible that from frame to frame They cross
without colliding. If you think about it a bit and imagine the game in slow motion as a succession of
frames you will see.

The MAX_BULLETS value controls the maximum number of bullets that can be displayed. Be
careful with this, I am already seeing the intentions to upload it: in theory we could have more than
three bullets, but to do that we would have to modify the part of the engine that reserves the memory
that the sprites system needs. Each moving sprite spends a lot of memory (14 bytes per block, and a
8x8 sprite uses four blocks), so the reserve is just. The truth is that everything is tight to the max and
can not even the hair of a shrimp, but by the end of the tutorial explain how to modify the number of
blocks that are reserved for the sprites so that we can have more bullets.

Why let us define it, then? Well to be able to put less. Being able to fire only one bullet can come in
handy for some games, for example.

These two directives define where bullets appear when fired. The behavior of these values is relatively
complex (good, not so much) and changes according to the view:

If the game is in side view, we can only shoot left or right. In that case,
PLAYER_BULLET_Y_OFFSET defines the height, in pixels, at which the bullet will appear
counting from the top of the character sprite. This serves to adjust so that they leave the gun or
wherever we want. PLAYER_BULLET_X_OFFSET is ignored completely.

If the game is in top view, the behavior is the same as the one described if we look left or right, but if
we look up or down the bullet will appear shifted laterally PLAYER_BULLET_X_OFFSET pixels
from the left if we look down or from the Right if we look up. This means that our character is right-
handed. Look at Mega Meghan's sprites. To make left-handed players, you have to change two lines of
the engine. If you are super interested and your life depends on it, write to us and we will tell you,
friend Flanders.

These are used to control what happens when bullets hit normal enemies (type 1, 2 or 3). First,
ENEMIES_LIFE_GAUGE defines the number of shots that must be taken to die. If we activate
RESPAWN_ON_ENTER, the enemies will be resurrected if we leave the screen and re-enter. As in
classical games, Illo.

// # define PLAYER_BULLET_SPEED 8 // Pixels / frame.
// # define MAX_BULLETS 3 // Max number of bullets on screen.

// # define PLAYER_BULLET_Y_OFFSET 6 // vertical offset from the player's top.
// # define PLAYER_BULLET_X_OFFSET 0 // horz offset from the player's left / right.

// # define ENEMIES_LIFE_GAUGE 4 // Amount of shots needed to kill enemies.
// # define RESPAWN_ON_ENTER // Enemies respawn when entering screen

By the way, the killed enemies are counted and this value can be controlled from the script.

Scripting

The following directives are used to activate the scripting engine and define a couple of things related
to it. For now we will leave not activated, so we can compile and test the game without having to make
a script. Because we're already in the mood, right? Calm down, we'll get back to them when we start
getting hardcore.

The first is simple: if we enable ACTIVATE_SCRIPTING, the entire scripting system will be
included in the engine. The other two define what will be the action key: down or fire. Only one of the
two can be activated. We will use below to perform the actions, so we activate SCRIPTING_DOWN.

As I told you, for now we leave ACTIVATE_SCRIPTING disabled. We will activate it when we begin
to make our script.

Directives related to the top view

If we activate PLAYER_MOGGY_STYLE, the game will be of top view. If not activated, the game
will be side view. For Dogmole we left it disabled, therefore.

The next, TOP_OVER_SIDE, defines the behavior of the diagonals. This is useful especially if your
game also has shots. If you define TOP_OVER_SIDE, when moving diagonally the puppet will look
up or down and will therefore shoot in that direction. If it is not defined, the puppet will look and shoot
left or right. Depending on the type of game or the configuration of the map you will be more interested
in either option. No, you can not shoot diagonally.

Directives related to side view

Here are a lot of things:

If this is defined, the player can jump. If the shots have not been activated, fire will cause the player to
jump. If activated, the "up" key will be activated.

// # define ACTIVATE_SCRIPTING // Activates msc scripting and flags.
#define SCRIPTING_DOWN // Use DOWN as the action key.
// # define SCRIPTING_KEY_M // Use M as the action key instead.

// # define PLAYER_MOGGY_STYLE // Enable top view.
// # define TOP_OVER_SIDE // UP / DOWN has priority over LEFT / RIGHT

#define PLAYER_HAS_JUMP // If defined, player is able to jump.

If we define PLAYER_HAS_JETPAC, the "up" key will activate a jetpac. It is compatible with being
able to jump. However, if you activate the jump and the jetpac at the same time you will not be able to
use the shots ... although we have not tried it, maybe something strange happens. Do not do it. Or, I do
not know, do it. If you do not know what this is, play Cheril the Goddess or Jet Paco.

They activate the trample engine. With PLAYER_KILLS_ENEMIES activated, the player can jump
over enemies to kill them. PLAYER_MIN_KILLABLE helps us not to kill all enemies. In Dogmole,
we can only kill the sorcerers, who are type 3. Eye with this: if we put a 1 we can kill all, if we put a 2,
the enemies type 2 and 3, and if we put a 3 only to the Of type 3. In other words, it will be possible to
kill the enemies whose type is greater than or equal to the value that is configured.

This directive activates the continuous jump (see Bootee). It does not support PLAYER_HAS_JUMP or
PLAYER_HAS_JETPAC. If you activate PLAYER_BOOTEE, you have to disable the other two. If
not, crawl.

The player bounces against the walls, as in Balowwwn. This also works in top view (in fact it was
programmed specifically for Balowwwn which is in top view), I do not know why we have put it in this
section. Oh, I do not know.

This works in conjunction with PLAYER_HAS_JUMP. If it is defined, when you press the jump key
we will start jumping a little and every time we go bouncing we will gain more and more altitude, as in
Monono.

Display Settings

In this section we place all the elements on the screen. Do you remember when we were designing the
frame? For this is where we are going to put all the values that we pointed out, namely:

They define the position (always in character coordinates) of the playing area. Our play area will start
at (0, 1), and those are the values we give to VIEWPORT_X and VIEWPORT_Y.

// # define PLAYER_HAS_JETPAC // If defined, player can thrust a jetpac

#define PLAYER_KILLS_ENEMIES // If defined, stepping on enemies kills them
#define PLAYER_MIN_KILLABLE 3 // Only kill id> = PLAYER_MIN_KILLABLE

// # define PLAYER_BOOTEE // Always jumping engine.

// # define PLAYER_BOUNCE_WITH_WALLS // Bounce when hitting a wall.

// # define PLAYER_CUMULATIVE_JUMP // Keep pressing JUMP to JUMP higher

#define VIEWPORT_X 1 //
#define VIEWPORT_Y 0 // Viewport character coordinates

They define the position of the life marker (from the numerical, go).

They define the position of the object counter, if we use objects (the numerical position).

These two are used with ONLY_ONE_OBJECT: When we "carry" the object above, the engine will
indicate us by blinking the icon of the object in the marker. In OBJECTS_ICON_X and Y we indicate
where this icon appears (the tile with the box's drawing). As you will see, this forces us to be using the
icon on the marker, not a text or something else.

Yes, it is a limitation.

Graphic effects

In this section we define several graphic effects (very basic) that we can activate and that will control
the way in which the game is shown. Basically we can configure the Churrera Maker to paint shadows
or not when building the stage, and define a couple of things related to sprites and such.

These two take care of the shadows of the tiles, and we can activate only one of them, or none. If you
remember, in the chapter of the tileset we speak of automatic shadows. If we enable
USE_AUTO_SHADOWS, the obstacle tiles draw shadows on the trashable tiles using only attributes
(sometimes results, but not always).

USE_AUTO_TILE_SHADOWS uses shaded versions of the background tiles to make the shadows,
as explained. Disabling both will not draw shadows.

In Dogmole we will not use shadows of any kind, because the attributes we do not like and the tiles we
can not afford because we will use these tiles to embellish some screens by printing graphics through
the script.

If we define UNPACKED_MAP we will be telling the engine that our map is 48 tiles.

#define LIFE_X 22 //
#define LIFE_Y 21 // Life gauge counter character coordinates

#define OBJECTS_X 17 //
#define OBJECTS_Y 21 // Objects counter character coordinates

#define OBJECTS_ICON_X 15 // Objects icon character coordinates
#define OBJECTS_ICON_Y 21 // (use with ONLY_ONE_OBJECT)

// # define USE_AUTO_SHADOWS // Automatic shadows made of darker attributes
// # define USE_AUTO_TILE_SHADOWS // Automatic shadows using tiles 32-47.

/ # define UNPACKED_MAP // Full, uncompressed maps.

These two directives were designed specifically for Zombie Skull. The first one (NO_MASKS) causes
the sprites not to be masked, which saves memory. As Zombie Skull did not need masks, we were able
to get a bunch of bytes for other things. However, the sprites converter that is currently in the Churrera
Maker is not able to export sprite-sets without masks, so for now this directive will not serve you much.
We will consider telling Amador, the Programmer Monkey, to update the sprites converter to be able to
remove sprite-sets without masks if there is enough demand.

PLAYER_ALTERNATE_ANIMATION may suit you, as it changes the order in which the character
is animated when he walks. Normally, the animation is 2, 1, 2, 3, 2, 1, 2, 3... But if you activate this
directive it will be 1, 2, 3, 1, 2, 3,…

Setting the main character's movement

In this section we will configure how our player will move. It is very likely that the values you put here
have to be adjusted by the trial and error method. If you have some basics of physics, you'll be fine to
know how each parameter affects.

Basically, we will have what is known as Uniformly Accelerated Rectilinear Motion (MRUA) on each
axis: the horizontal and the vertical. Basically we will have a position (say X) that will be affected by a
velocity (say VX), which in turn will be affected by an acceleration (i.e., AX).

The following parameters are used to specify various values related to the movement on each axis in
lateral view games. In the top view, the values of the horizontal axis will also be taken for the vertical.

To get the smoothness of movements without using decimal values (which are very expensive to
handle), we use fixed-point arithmetic. Basically the values are expressed in 1/64 pixel. This means that
the value used is divided by 64 when moving the actual sprites to the screen. That gives us an accuracy
of 1/64 pixels on both axes, which translates into greater smoothness of movement.

We are aware that this section is deeper, so do not worry too much if, from the outset, you get lost a bit.
Experiment with the values until you find the ideal combination for your game.

Vertical axis in lateral view games

Vertical movement is affected by gravity. The vertical velocity will be increased by gravity until the
character lands on a platform or obstacle. In addition, when jumping, there will be an initial impulse
and an acceleration of the jump, which we will also define here. These are the values for Dogmole; We
will then detail each of them:

// #define NO_MASKS // Sprites are rendered using OR
// # define PLAYER_ALTERNATE_ANIMATION // If defined, animation is 1,2,3,1,2,3 ...

Free Fall: The player's speed, measured in pixels / frame will be incremented by PLAYER_G / 64
pixels / frame ^ 2 until it reaches the maximum specified by PLAYER_MAX_CAYENDO / 64. With
the values we have chosen for Dogmole, the vertical free fall rate will be increased by 48/64 = 0.75
pixels / frame until it reaches a value of 512/64 = 8 pixels / frame. That is, Dogmole will fall faster and
faster until it reaches the maximum speed of 8 pixels per frame. Increasing PLAYER_G will reach the
maximum speed much sooner. These values affect the jump: the more gravity, the less we jump and the
less the initial impulse lasts. By modifying PLAYER_MAX_CAYENDO we can get the maximum
speed, which will be reached before or after depending on PLAYER_G, be greater or less. Using small
values we can simulate low-gravity environments such as outer space, the surface of the moon, or the
sea floor. The value of 512 (equivalent to 8 pixels per frame) can be considered the maximum since
higher values and very long falls could result in glitches and rare things.

Jump: The jumps are controlled using three parameters. The first, PLAYER_VY_INICIAL_SALTO,
will be the value of the initial impulse: when the player presses the jump key, the vertical velocity will
automatically take the specified value upwards. While the jump is being pressed, and for about eight
frames, the speed will continue to increase by the value specified by PLAYER_INCR_SALTO until
we reach the value PLAYER_MAX_VY_SALTANDO. This is done so that we can control the force
of the jump by pressing the jump key more or less time. The acceleration period, which lasts for 8
frames, is fixed and can not be changed (to change it would have to touch the engine), but we can get
sharper jumps by raising the value of PLAYER_INCR_SALTO and
PLAYER_MAX_VY_SALTANDO.

Usually finding the ideal values requires a bit of trial and error. Keep in mind that jumping horizontally
from one platform to another also comes into play the values of horizontal movement, so if you have
decided that in your game the game should be able to overcome distances of X tiles you will have to
find the optimal combination by playing With all parameters.

The remaining two values are not used in Dogmole because they have to do with the Jet Paco. The first
is the acceleration that occurs while pressing the up key and the second the maximum value that can be
reached. If your game does not use jetpac these values are not used at all.
Horizontal axis in lateral view / general behavior in top view

The following set of parameters describes the behavior of the movement on the horizontal axis if your
game is in lateral view, or those of both axes if your game is in genital view. These parameters are
much simpler:

#define PLAYER_MAX_VY_CAYENDO 512 // Max falling speed
#define PLAYER_G 48 // Gravity acceleration
#define PLAYER_VY_INICIAL_SALTO 96 // Initial jump velocity
#define PLAYER_MAX_VY_SALTANDO 312 // Max jump velocity
#define PLAYER_INCR_SALTO 48 // acceleration while JUMP is pressed
#define PLAYER_INCR_JETPAC 32 // Vertical jetpac gauge
#define PLAYER_MAX_VY_JETPAC 256 // Max vertical jetpac speed

#define PLAYER_MAX_VX 256 // Max velocity
#define PLAYER_AX 48 // Acceleration
#define PLAYER_RX 64 // Friction

The first, PLAYER_MAX_VX, indicates the maximum speed at which the character will move
horizontally (or in any direction if the game is in genital view). The larger this number, the more it will
run, and the farther it will come when it jumps (horizontally). A value of 256 means that the character
will run to a maximum of 4 pixels per frame.

PLAYER_AX controls the acceleration of the character while the player presses an arrow key. The
higher the value, the faster the maximum speed will be reached. Small values make it "hard to boot".
A value of 48 means it will take approximately 6 frames (256/48) to reach the maximum speed.

PLAYER_RX is the value of friction or friction. When the player stops pressing the movement key,
this acceleration is applied in the direction opposite to the movement. The higher the value, the
character will stop beforehand. A value of 64 means it will take 4 frames to stop if it was at full speed.

Using small values of PLAYER_AX and PLAYER_RX will make the character appear to slip. It is
what happens in games like, for example, Journey to the Center of the Napia. Except for mysterious
exceptions, it almost always "burns better" if the value of PLAYER_AX is greater than that of
PLAYER_RX.

Behavior of tiles

Do you remember that we explained how each tile has a type of associated behavior? Tiles that kill are
obstacles, platforms, or intractable. In this section (the last, finally) of config.h we define the behavior
of each of the 48 tiles of the complete tileset.

We will have to define the behaviors of the 48 tiles regardless of whether our tile uses a 16 tile.
Usually, in all cases, tiles 16 through 47 will have a type "0", but we may need other values if we use
The extra tiles to paint graphics and ornaments from the script, as we do. In Dogmole we are not going
to put any obstacle "outside of tileset", but games like those of the saga of Ramiro the Vampiro yes that
they have obstacles of this type.

To put the values, simply open the tileset and look, they are in the same order in which the tiles appear
in the tileset:

As we see, we have the first empty tile (type 0), then we have five rock tiles that are obstacles (type 8),
another bottom tile (column type 0), brick tile type 8, (Type 1), three bottom tiles (type 0), and the
lock tile (type 10), tiles (type 4), tiles (type 4, platform and type 0, intractable).

Unsigned char behavior_tiles [] =
{
0, 8, 8, 8, 8, 8, 0, 8, 4, 0, 8, 1, 0, 0,10,10,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

When you modify these values be careful with the commas and that you are not dancing any number.

Arf, arf, arf!

Ah, you still there? I thought I'd already gotten bored and you could not take it anymore. Well, I see
that you are a constant type and with much power. Yes, we have already finished setting our game.
Now it comes when we compile it. Be patient with this, especially if you're not used to fighting with a
compiler in a command line window.

Let's set up our make.bat compilation script to make it very simple. The compilation script will also be
in charge of regenerating the map every time, which comes in handy if we are constantly modifying it
(for example, during the testing stage) since the process is quite automated.

Preparing our compilation script

Let's open make.bat with our text editor to change some things. Right now, if you listened to me in the
first chapter, you should have about a pint similar to the one that appears in the box:

Be sure to put "dogmole. *" (Or the name of your game) on all sites that are in bold and italic. That's
the first thing. Also, make sure that you have not forgotten to rename the churromain.ca dogmole.c
(or the name of your game).

Let's see what each line does because if you are doing your own game you will want to change things.

First, we see that there are four lines that begin with rem. These lines are commented and will not be
executed. We will remove the rem when we begin to make our script, so, for now, we will move from
them.

@echo off
Rem cd .. \ script
Rem msc dogmole.spt msc.h 24
Rem copy * .h .. \ dev
Rem cd .. \ dev
Cd .. \ map
.. \ utils \ mapcnv map.map 8 3 15 10 15 packed
Copy map.h .. \ dev
Cd .. dev
Zcc + zx -vn dogmole.c -o dogmole.bin -lndos -lsplib2 -zorg
= 25000
.. \ utils \ bas2tap -a10 -sLOADER loader.bas loader.tap
.. \ utils \ bin2tap -o screen.tap -a 16384 loading.bin
.. \ utils \ bin2tap -o main.tap -a 25000 dogmole.bin
Copy / b loader.tap + screen.tap + main.tap dogmole.tap
of loader.tap
of the screen.tap
from main.tap
from dogmole.bin
echo DONE

Then, the script changes to the directory of the map to re-generate map.h and copy it to /dev, just in
case we have made some changes so that it is reflected automatically. This is one of the lines that you
will have to change for your game, indicating the correct parameters of mapcnv (in particular, the size
of screens, or if you do not use locks to put 99 instead of 15, or if you use maps of 48 tiles for Remove
packed):

The following line compiles the game:

This is nothing more than a z88dk compiler run which takes dogmole.c as its source (and all the .h files
it contains), and outputs a binary in machine code dogmole.bin. The compilation address is 25000.

The script then creates three tapes in .tap format. The first contains a loader in BASIC (which you can
modify if you get very geeky, the source is in loader.bas). The following contains the charging screen.
Right now we are not going to stop at this, so your game will include the default loading screen of the
Churrera Maker (which is in loading.bin). The last one contains the dogmole.bin we just compiled:

Look at the -sLOADER of the first line, which generates the BASIC charger. That is the name that
appears after the Program: loading the tape into the Spectrum, so, if you want, you can change it for
something else. Remember that Spectrum tape file names can be up to 10 characters in length. Let's
change it so that DOGMOLE comes out:

When we already have the three tapes, each with a block (charger, screen, and game) the only thing left
to do is to join them:

Copy / b loader.tap + screen.tap + main.tap dogmole.tap

And, to finish, we do a little cleaning, eliminating the intermediate files that no longer serve us at all:

of loader.tap
of the screen.tap
from main.tap
from dogmole.bin

Write make.bat again with the changes. We are ready. Do we dare?

Cd .. \ map
.. \ utils \ mapcnv map.map 8 3 15 10 15 packed
Copy map.h .. \ dev
Cd .. \ dev

.. \ utils \ bas2tap -a10 -sLOADER loader.bas loader.tap

.. \ utils \ bin2tap -o screen.tap -a 16384 loading.bin

.. \ utils \ bin2tap -o main.tap -a 25000 dogmole.bin

.. \ utils \ bas2tap -a10 -sDOGMOLE loader.bas loader.tap

Zcc + zx -vn dogmole.c -o dogmole.bin -lndos -lsplib2 -zorg = 25000

Compiling

The first thing we have to do is open a command line window and go to the /dev folder of our squeeze:

Once this is done, let's run a z88dk script that sets some environment variables. Remember that we
installed it in C: \ z88dk10. We execute this:

C: \ z88dk10 \ setenv.bat

Once we have done this (we will have to do it every time we open a command line window to compile
a game), we can execute our script make.bat. Exit right or wrong, do not close the command line
window, you will probably have to recompile a thousand times more (especially if you are adjusting the
values of the movement or modifying the map to fix things).

make.bat

If we have done everything well, there should be no problem:

It has been DONE! We already have it! Now we have our dogmole.tap with the game ready to be
tested. Of course it will not work at all, since we lack the script, but at least we can see that the puppets
move, that we have not crap with the map, that the movement is well, that the sorcerers die when they
are stepped on, and things like that. If there is something wrong, it is fixed, recompiled (by putting
make again), and is tested again.

And since we already have a headache for you and me, we leave it until the next chapter. If you decided
to start with something simple like Lala Prologue or Sir Ababol, you're done. If not, there are still many
things to do.

Workshop creates your own game of Spectrum (Chapter 7B)

The Churrera Maker has been updated and the friends of Mojon Twins have been good to do a chapter
B of 7 to explain the news that this version brings. From now on we will have more possibilities (if
possible) for our own game of Spectrum. To enjoy!

The Churrera Maker 3.99.1

First of all, download the package of the new version of the Churrera Maker by clicking right here
below:

http://www.mojontwins.com/churrera/mt-churrera-3.99.1.zip

But what hedge?

We interrupt our tutorial briefly before going to the path with the topic of scripting to introduce a new
version of the Churrera Maker. We do not want you to be outdated: as we have introduced a lot of very
interesting new things and, more importantly, we have corrected some bugs and optimized enough the
existing code (so that you get more stuff in the games), we have decided not to We were going to
follow the tutorial before you had the current version.

In this tutorial, in addition, we will learn something that will come very well for the future: to update
the version of the Churrera Maker with the game started.

Is it mandatory to update? Well, you'll see. If you want to finish following the tutorial with the
Dogmole, the truth is that you do not need it. But I recommend that you still update yourself.

Are you ready? Come on, let's start by saying what's new.

Click here to read the entire chapter.

What's New?

We are going to go in parts because the novelties spread through several areas. Hopefully, now you
have half clear how everything works, and explaining these things will be easier.

Destructable Tiles

Initially (for now) geared to the games that carry the firing engine, we have defined a new type of tile,
type 16. These tiles will break and disappear (will be replaced by tile number 0) after being hit by a
certain number (Configurable) of shots. To include them, in addition to having tiles defined with type
16, we have to configure some things in config.h:

#define BREAKABLE_WALLS // Breakable walls
#define BREAKABLE_WALLS_LIFE 1 // Amount of hits to break wall

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fmt-churrera-3.99.1.zip

The first directive, BREAKABLE_WALLS enable this feature and includes all necessary to have
destructible tiles (if not active, much as type 16 tiles have nothing will happen) code. The second,
BREAKABLE_WALLS_LIFE, defines the number of shots that should be useful to break
destructible. Obviously, you have to put a number greater than 0. If you put a 3, the tile will break to
the third shot it receives.

Combination tile types

This is something we wanted to have put down from the start, but we have been leaving it. Planning to
have tiles with combination types (which were both several things at once) is the real reason why the
list of tile types has so many holes. Now you'll see why.

Basically, it is about combining tile types, so that a tile is at the same time, for example, a platform that
kills you, or an obstacle that can break. To combine types of tiles, just add the types that we want to
combine. Hence there are "holes" in the numbering.

For example, to make an obstacle that can be broken, we would have to make that tile had obstacle type
(8) and destructible type (16), ie it was type 8 + 16 = 24. In the last Game we have taken, that of Sgt.
Helmet, no electric fences (killing) we can destroy. If you download the fonts (you should, now you're
a developer churrero!) And look at the section types of tile (Behaviours) at the end of config.h see how
the tile of the electrified fence has type 17, ie killing (1) and that is destructible (16): 16 + 1 = 17.

There are many combinations stupid and make no sense, like putting an obstacle kills (8 + 1 = 9). In
fact, it is one of those stupid and impossible combinations which we have used for special tiles (the
blocks are pushed and locks), which are of type 10 (8 + 2 i.e, an obstacle that hides you).

The engine continues to support simple types (1, 2, 4 or 8), so no need to change anything in your
Dogmole or your own Game.

Running out of Bullets

Now you can decide that the bullets run out. In addition, you can place ammo refills on the game. To do
this, you must first touch config.h to enable and configure this capability:

The first directive, MAX_AMMO, if defined, causes the bullets run out and the maximum value is
specified. If you want infinite bullets, simply comment on this definition. The next, AMMO_REFILL
indicates how many bullets we caught when we pick up a refill of ammunition. The third,
INITIAL_AMMO, if defined, causes the beginning of Game have the specified number of bullets. If
not defined, the number of bullets to start will be the maximum, that is, who says in MAX_AMMO.

As out there (configuration is Sgt. Helmet), the maximum is 99 bullets in 50 refills we will take time,
and start with the maximum, i.e., 99.

#define MAX_AMMO 99 // If defined, ammo is not infinite!
#define AMMO_REFILL 50 // type 3 hot-spots refill master, using tile 20
// # define INITIAL_AMMO 0 // If defined, ammo = X when entering game.

To place the recharges we will do it with the setter, and using the hot-spots. So far we had used type 1
hot-spots for objects and type 2 hot-spots for the keys. To place refills, we will need hot-spots type 4. In
addition, in our tileset, tile number 20 must be the one corresponding to the recharge. This is the tileset
Sgt. Helmet. Notice how tile number 20 is an ammunition refill:

Improvements to type 7 enemies

We put a couple of things for the type 7 enemies. So far, the type 7 enemies came out of the place that
you defined in the setter and were told to chase you. The associated graph was chosen at random
among the four sprite-set enemies. Now we allow you to decide what chart you have, and let that be
always. In addition, these enemies advanced but were stopped by the obstacle type tiles (type 8). Now
we can configure that any type of tile that is not transferable (type 0) stops them. This was done so that
in the Sgt. Helmet, also changed in the electrified fences (not type 8). All this is achieved with two new
directives in config.h:

The first is to set a number of enemy graphics for type 7 enemies. The second is for enemies to pursue
you only by the tiles of type 0. If you comment the latter, the behavior will be the same as hitherto: Will
chase by any tile and will stop only with type 8.

Scripting engine stuff

Yes, we've put a lot of new stuff in here. But we are already waiting for the chapter where we will
begin to explain the scripting engine.

Corrections and optimizations

In addition, we have completely rewritten the part of the engine that managed the shots, so that now the
collision is more accurate and takes up less space. We have fixed some bugs as well, and we have
changed some bits of code optimizing even more. Before the optimizations, the Sgt. Helmet game
would not have fit in the memory nor of cina. Spring

How do I upgrade?

It is neither complicated nor painful but, anyway, grab the folder as you have it and make a backup ZIP,
as if you do not want the thing, just in case. When you are, follow these simple steps:

1. Rename it to the folder of your Game. I do not know, put "-old" at the end.

#define TYPE_7_FIXED_SPRITE 4 // If defined, type 7 enemies are always #
#define EVERYTHING_IS_A_WALL // If defined, any tile <> type 0 is a wall.

2. Prepare the new package as you did with the previous one , ie, unzip, rename it to the folder Game,
rename it to /dev/churromain.c and script /churromain.spt by the name of your Game , and edit% 1
make.bat changing the name of your Game. As we have already done.

3. Copy the graphics, maps, enemies and files from your old folder to the new, that is, everything is in
gfx/ in /map and /ENEMS.

4. Re-edit config.h - You have to open the new and the old /dev/config.h yours and put the new one as
had the old yours. Look carefully at the new features: comment on those you do not want, or try to use
them, or whatever you care.

5. Re-copy your own files Game from the /dev old to the new. Namely: tileset.h, spriteset.h, title.bin,
marco.bin (if using), ending.bin, mapa.h and enems.h

It is done. Now you just have to check that you did everything by opening your window command line
and running make.bat ... If not, check all the steps.

And, for the next, now, yes, the dreaded scripting. In the meantime, playing Sgt. Helmet!

NOTICE

Thanks to Fabio Didone, who is following the tutorial and doing his own game, we have noticed that in
the last version of the Churrera Maker we have sneaked a small bug that breaks the behavior of
ONLY_ONE_OBJECT. We have updated the 3.99.1 package with the bug rectified. You can
download it again in the usual way:

http://www.mojontwins.com/churrera/mt-churrera-3.99.1.zip

If you started your game, you do not have to reassemble everything. Just suffice that you overwrite
mainloop.h with the new version included in the package.

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fmt-churrera-3.99.1.zip

Workshop creates your own game of Spectrum (Chapter 7C)

The Churrera Maker 3.99.2

First of all, download the new version package of the Churrera Maker by clicking right here below:

http://www.mojontwins.com/churrera/mt-churrera-3.99.2.zip

Again? And the scripting chapter?

Yes, I know we owe you the scripting chapter and twenty thousand more things, but we did not think it
was cool to continue expanding the Churrera Maker and that you could not enjoy the new things that it
brings. What does this mean? Well, nothing, that maybe you do not know much of some of the
characteristics that we are going to explain here, but patience. The scripting chapter is very important
and we do not want to do it anyway. We will try to start next week to give the first guidelines. In the
meantime, take a look at this... And refer to the previous chapter which explains how to update the
source of your game to a new version.

Timers

It adds to the Churrera Maker a timer that we can use automatically or from the script. The timer takes
an initial value, counts down, can be recharged, can be set every how many frames is decremented or
decide what to do when it runs out. In config.h, as always:

With TIMER_ENABLE necessary to handle the timer code is included. This code will need some
other directives that specify how it works:

TIMER_INITIAL specifies the initial value of the timer. Refills of time put the underwriter as hot-
spots type 5, reload the value specified in TIMER_REFILL. The maximum value of the timer for both
the initial and recharging is 99. To control the interval time between each decrease of the timer in
TIMER_LAPSE specify the number of frames that must elapse.

If TIMER_START set, the timer will be active from the beginning.

We also have some guidelines that define what will happen when the timer reaches zero. It is necessary
to uncomment those that apply:

#define TIMER_ENABLE

#define TIMER_INITIAL 99
#define TIMER_REFILL 25
#define TIMER_LAPSE 32

#define TIMER_START

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fmt-churrera-3.99.2.zip

Defining this, when the timer reaches zero a special section of the script, ON_TIMER_OFF run. It is
ideal for carrying all control timer scripting, as in Cadàveriön.

Defining this, the game will end (“GAME OVER”) when the timer reaches zero.

If TIMER_KILL_0 defined, a life is deducted when the timer reaches zero. If further defined
TIMER_WARP_TO also will be changed to the specific screen, the player appearing in the
TIMER_WARP_TO_X and TIMER_WARP_TO_Y coordinates. Use this if these data will be fixed
during the game. In Cadàveriön, for example, they are changing, so everything is handled from the
script.

If this option is set, the timer will return to maximum after reaching zero automatically. If you are
going to carry out the control by scripting, the better leave it commented.

If this is defined, in case we have defined or TIMER_SCRIPT_0 or TIMER_KILL_0, a sign of
"TIME'S UP!" Is displayed When the timer reaches zero.

Scripting:

As we have said, the timer can be administered from the script. Interestingly, if we decide to do this, we
activate TIMER_SCRIPT_0 so that when the timer reaches zero the ON_TIMER_OFF section of
our script is executed and control is total.

In addition, these checks and commands are defined:

// # define TIMER_GAMEOVER_0

// # define TIMER_KILL_0
// # define TIMER_WARP_TO 0
// # define TIMER_WARP_TO_X 1
// # define TIMER_WARP_TO_Y 1

// # define TIMER_AUTO_RESET

#define SHOW_TIMER_OVER

#define TIMER_SCRIPT_0

Checks:

That will be fulfilled if the value of the timer is greater than or equal to or less than or equal to the
specified value, respectively.

Commands

SET_TIMER a, b – Allows you to set TIMER_INITIAL (a) and TIMER_LAPSE (b) values from the
script.

TIMER_START – It is used to start the timer.

TIMER_STOP – It is used to stop the timer.

Control of pushable blocks

We have improved the engine so that more can be done with the tile 14 of type 10 (pushable tile) that
simply push it or that stops the trajectory of the enemies. Now we can tell the engine that launches the
PRESS_FIRE section of the current screen in the script just after pushing a pushable block. In
addition, the number of the tile that is "stepped" and the final coordinates are stored in three flags that
we can configure, to be able to use them from the script to make checks.

This is the system used in the script to control Cadàveriön to place statues on pedestals, for instance.

Recall what we had so far:

The first one is necessary to activate the pushable tiles. The second forces the player to press FIRE to
push and is therefore not mandatory. Let us now look at the new directives:

ENABLE_PUSHED_SCRIPTING activating the tile that is pressed and its coordinates are stored in
the flags specified by MOVED_TILE_FLAG, MOVED_X_FLAG and MOVED_Y_FLAG
respectively directives. In the code shown, the treaded tile will be stored in flag 1, and its coordinates in
flags 2 and 3.

IF TIMER> = x
IF TIMER <= x

#define PLAYER_PUSH_BOXES
#define FIRE_TO_PUSH

#define ENABLE_PUSHED_SCRIPTING
#define MOVED_TILE_FLAG 1
#define MOVED_X_FLAG 2
#define MOVED_Y_FLAG 3

#define PUSHING_ACTION

If we define this further when we push a block AT ANY PRESS_FIRE sections and PRESS_FIRE of
the current screen script will run. In this case, the "JUST_PUSHED" condition is fulfilled and from the
scripting can control what happens when you push a block.

We recommend Cadàveriön study the script, which, besides being a good example of using the timer
control and pushable block, turns out to be a fairly complex script that uses a lot of advanced
techniques. Well, when the tutorial is ready: *)

Check if we get off the map

It is advisable to put limits on your map so that the player can not escape the map and the engine does
strange things, but if your map is narrow you may want to take advantage of the whole screen. In that
case, you can activate:

It will add checks and will not let the player leave the map. eye! If you can avoid using it, the better:
you will save space.

Type of enemy "custom" gift

So far we had left the type 6 enemies without code, but we figured we would not have to put one, for
example. It behaves like bats Cheril the Goddess. To use them, put them in the enemy setter as type 6
and use these directives

The first one activates them, the second defines which sprite will use (minus 1, if you want the sprite of
enemy 3, put a 2. Sorry for the confusion, but saving bytes). The third one says how many pixels you
see from far away. If he sees you, he follows you. If not, return to your site.

This implementation, in addition, uses two directives of the enemies of type 5 to work:

Define there the acceleration and the maximum speed of your type 6. If you are going to also use type 5
and you want other values, be a man and modify the engine.

Keyboard / joystick configuration for two buttons

There are side view games that are best played with two buttons, one of jump and one of firing. If you
enable this policy:

#define PLAYER_CHECK_MAP_BOUNDARIES

#define ENABLE_CUSTOM_TYPE_6
#define TYPE_6_FIXED_SPRITE 2
#define SIGHT_DISTANCE 96

#define FANTY_MAX_V 256
#define FANTY_A 12

The keyboard will be the following, instead of the usual one:

If a joystick is chosen, FIRE and shoot M, and N jumps.

Shooting up and diagonally for side view

Now you can let the player shoot up or diagonally. To do this define this:

This configuration works best with USE_TWO_BUTTONS, as this separate "up" button jump.
If you do not hit "up", the character will fire to where he is looking. If you press "up" while firing, the
character will fire upwards. If in addition, you are pressing an address, the character will fire at the
indicated diagonal.

Masked Bullets

For speed, the bullets do not wear masks. This works fine if the background on which they move is
dark (few active INK pixels). However, there are situations where this does not happen and looks bad.
In that case, we can activate masks for the bullets:

And now

With these things you can make many new types of game. Do not scratch yourself too much if half of
what is explained here sounds Chinese, because soon you will understand how the scripting works and
all the power it puts into your hands.

#define USE_TWO_BUTTONS
#define FANTY_A 12

left
right d
W up
down
N jump
M shot

#define CAN_FIRE_UP

#define MASKED_BULLETS

Workshop creates your own game of Spectrum (Chapter 8)

Almost without time to breathe are already here again the boys of Mojon Twins with his workshop of
the Churrera Maker. In this chapter, we will give Scripting. A world of possibilities that will force us to
put the batteries. The thing gets tough and we all know it, so you can get the knives out. Put it between
your teeth because at last the chapter begins that many were waiting for.

Chapter 8: Beginning with Scripting

First of all, download the package of materials corresponding to this chapter by clicking on this link:

http://www.mojontwins.com/churrera/churreratut-capitulo8.zip

Man, at last!

Yes, already. But now you're going to shit. Because this can be as thick and deep as you want. Nah,
seriously, it's nothing. Let's do it with Vaseline too. In this first chapter, we will explain how the system
is set up so that you understand what it does, what it is for, and how it works, and we will end up seeing
super simple examples of level 1, easy easy. The next chapter will end up making the script Dogmole
Tuppowski and, from there, explore, part by part, what can be done with the script. Because it can be
done a lot and varied.

Let's do it, then!

Voucher. What is a The Churrera Maker script? It is nothing more than a set of checks with associated
actions, organized into sections, which serve to define the gameplay of your Game. That is, the things
that happen, and the things that have to happen to make everything go cool, or for everything to go
wrong.

To see, without a script you have a basic gameplay. Take X objects to finish, kill X bugs ... Go beyond
that needs checks and related actions: if we are in such a place and we have done such thing, open the
castle door. If we enter the screen just talked with which character comes out the text "Hello you" and
sounds a little noise. That is what we mean.

The script serves you from to put a nice tile on the screen 4 and a text that put "you're home" up to
react to what you do on a screen, check that you have done other things, see that you pushed such tile,
And then turn on the timer or change the setting or whatever.

As soon as you know the tools you have for sure you can think of a thousand things to do. Many times
we discovered applications that we did not even know were possible when we started designing the
system, so you see.

This is really fun!

http://www.microsofttranslator.com/bv.aspx?from=&to=en&a=http%3A%2F%2Fwww.mojontwins.com%2Fchurrera%2Fchurreratut-capitulo8.zip

But it's programmed.

Sure, hell, but it's one thing to have to program a gameplay in C and put it in the engine and another
thing is to have a language specifically designed to describe a gameplay and that is so simple to learn
and master. Because I am sure that many or it will sound how it is mounted, especially if someday have
done an affair with PAWS or GAC or have I fretted with a game maker. Because to the Mojones we
love that of reinventing wheels, and it turns out that the super system that we devise is the most used
for these needs of all that exist. You will see.

Okay, tell me how it goes.

Agree. See if you can say in one breath, and then we're going disagree: a script consists of sections.
Each section is nothing more than a set of clauses. Each clause consists of a checklist and a list of
commands. If all are met and each of the findings of the list, will be executed, in order, each and every
one of the commands. The game engine will call the scripting engine on certain occasions, executing
one of those sections. Run a section means going clause by clause making checks your checklist
and, if satisfied, in order to execute commands your command list. That is the important concept
that must be understood.

To know which time the game engine calls the scripting engine. We have to understand what the
sections are and what types of sections there are:

ENTERING SCREEN n: with n being a screen number, run just as you enter a new screen, once
drawn the stage, initialized enemies, and placed hot-spots. You can use them to modify the scenario or
initialize variables. For example, associated with screen 3, we can place a script to check if we have
killed all the enemies and, if not, to paint an obstacle so that we can not pass.

ENTERING ANY: run for all screens, just before ENTERING SCREEN n. That is, when you walk
into the screen 3 is executed first section ENTERING ANY (if it exists in the script), and just after the
section ENTERING screen 3 run (if it exists in the script).

ENTERING GAME: runs once to start the game. It is the first thing that is executed. You can use it
to initialize the value of variables, for example. We'll see about this later.

PRESS_FIRE AT SCREEN n: with n being a screen number, runs on several assumptions being on
the screen n: if the player presses the button action to push a block if you have activated the
PUSHING_ACTION directive, or entering a zone special defined from scripting called "fire zone"
(already explain) if we have activated the ENABLE_FIRE_ZONE directive. We will usually use these
sections to react to the player's actions.

AT ANY PRESS_FIRE: it runs on all the above assumptions, for any screen, just before AT SCREEN
PRESS_FIRE n. That is, if you press action on the screen 7 clauses PRESS_FIRE AT ANY be
executed and then those of PRESS_FIRE AT SCREEN 7.

ON_TIMER_OFF: runs when the timer reaches zero if we activated the timer and have set to happen
with TIMER_SCRIPT_0 directive.

For version 3.99.2 these are the possible sections, although we will add more in future versions. For
example, by eliminating an enemy. But not now.

By the way, it is not mandatory to write all possible sections. The engine will execute a section only if
it exists. For example, if there is nothing to do on the screen 8 as there will not write any section of
screen 8. If there is no common action to enter all screens, no ENTERING ANY section. And so. If
there is nothing to execute, the engine does not run anything and anymore.

To see, sum up: for what so much fuss of sections and stuff? Very simple: on the one hand because, in
general, the checks and actions will be specific to a screen. This is a drawer. But the most important
thing is that we are in an 8 bit micro and we can not afford to be continuously doing all the checks. We
do not have frame time, so we have to leave them for isolated moments: no one will be stitched if it
takes a few milliseconds more when switching screens or if the action stops briefly when the action key
is pressed.

Saving values: flags

Before we can continue, we have to explain another concept: flags, which are just variables where we
can store values that we can later query or modify from the script.

Many times we will need to remember that we have done something, or counting things. For this, we
will have to store values, and for that, we have the flags. In principle, we have 16 flags, numbered from
0 to 15, although this number can be easily modified by changing a definition of definitions.h (search
#define MAX_FLAGS and change 16 by another number).

Each flag can store a value from 0 to 255, which gives us plenty of things. Most of the time we will
only be storing a Boolean value (0 or 1).

In the script, most checks and commands take numerical values. For example, IF
PLAYER_TOUCHES 4, 5 will evaluate to "true" if the player is touching the coordinate box (4, 5). If
we put a # to the number, we will be referencing the value of the corresponding flag, so IF
PLAYER_TOUCHES # 4, # 5 will evaluate to "true" if the player is touching the coordinate box stored
in flags 4 and 5, whatever This value.

This level of indirection (remember that word to say in the disco: the girls fall struck before the
programmers who know this concept) is really useful because this way you can save a lot of code. For
example, it is what allows, in Cadàveriön, that the control of the number of statues placed or to
eliminate the gate that blocks the exit of each screen can be made from a single common section: all the
coordinates are stored in flags and we use the operator # To access their values in the checks.

But do not worry if you do not get this now, that will be clarifying everything.

Enough?

A lot of information? I am aware of it. But as soon as you see it in motion, you will surely catch it.
Let's start with the simplest examples of scripting by looking at some of the sections we need for our
Dogmole, which we'll build little by little. In this, we will dedicate this chapter and the next one. Then
we will explain, in thematic form, all possible checks and commands that we can use.

How do I activate scripting? Where is it introduced?

To activate the scripting we will have to do two things: first, activate it and configure it in config.h, and
then modify our make.bat to include it in the project. Let's start with config.h. The directives related to
the activation and configuration of the scripting are these:

The first directive, ACTIVATE_SCRIPTING, is the one that will activate the scripting engine and
will add the necessary code to execute the correct section of the script at the right time. It is the one that
we have to activate yes or yes.

Of the next three, we have to activate only one, and they serve to configure which key will be the
action key, which launches the PRESS_FIRE AT ANY and PRESS_FIRE AT SCREEN n scripts.
The first one, SCRIPTING_DOWN, sets the "down" key. This is perfect for side perspective glows, as
this key is not used for anything else. The second, SCRIPTING_KEY_M enables the "M" key to
launch the script. The third, SCRIPTING_KEY_FIRE, sets the trigger key (or the joystick button) to
do so. Obviously, if your game includes shots, you can not use this setting. Well, if you can, but there
you are.

The following directive, ENABLE_EXTERN_CODE, will leave it normally disabled unless you are a
barbecue teacher. There is a special script command, EXTERN n, where n is a number, which is to call
a function of C located in the file extern.h passing that number. In this function, you can add the code
C you want and you need to do fun things. For example, D_Skywalk has used it in Justin and the Lost
Abbey to add the code that is painting the pieces of the sword that we have collected in the marker. If
you do not need to program your own behaviors in C, leave it disabled and save a few bytes.

Finally, ENABLE_FIRE_ZONE is used so that we can define a special rectangle within the playing
area of the current screen. Normally, we will use ENTERING SCREEN n to define the rectangle
using the SET_FIRE_ZONE command x1, y1, x2, and y2. When the player is within this special
rectangle, the PRESS_FIRE AT ANY and PRESS_FIRE AT SCREEN n scripts will be executed
from the current screen. This comes in really well in order to execute actions without the player having
to press the action key. It is what we use in Sgt. Helmet to put the bombs on the final screen or display
the message "I AM SELLING A SEMI-NUDE MOTORCYCLE". If you think you're going to need
this, enable this policy. If not, leave it unactivated and save a few bytes. Do not worry we'll explain this
more slowly.

The next thing is to configure make.bat well, activating compilation and inclusion of the script. If you
open make.bat and you are fixed, you will see that at the beginning there is a call to msc. This is the
script compiler, which gets the name of the script file, the output name (which will be msc.h) and the
total number of screens of your game:

#define ACTIVATE_SCRIPTING // Activates msc scripting and flag related stuff.
#define SCRIPTING_DOWN // Use DOWN as the action key.
// # define SCRIPTING_KEY_M // Use M as the action key instead.
// # define SCRIPTING_KEY_FIRE // User FIRE as the action key instead.
// # define ENABLE_EXTERN_CODE // Enables custom code to be run using EXTERN n
// # define ENABLE_FIRE_ZONE // Allows to define a zone which auto-triggers "FIRE"

The name of your script is the name of your game with a .spt as an extension. The file is located in a
script. If you enter script you will see a churromain.spt. Rename it to match the name of your game
(the same as your .c file dev). Do not forget about the number of screens, which is very important. If
you do not put it well the code of the script interpreter will be generated badly. For our Dogmole, the
file will devdogmole.spt, and the make.bat have to put:

Because our Dogmole has 24 screens.
If now you will script and open the file with the script (which was previously called churromain.spt and
have renamed with the name of your Game) you will see that it is empty, or nearly so. Just bring a
skeleton of a section. It has this look:

This is where we are going to write our script. Notice how it looks: that is there is the ENTERING
GAME section, which runs just start the game. Within this section, there is a single clause. This clause
simply a check: IF TRUE, it will always be true. Then there is a THEN and right there, and even the
END command starts the list. In this case, a single command: SET FLAG 1 = 0, which puts the flag
from 1 to 0.

This script is absolutely useless. In addition to doing nothing, it turns out that the system sets all flags
to 0 at the beginning, so you do not need to initialize them to zero. Why is it there? I do not mess with
it there was something. In fact, the first thing you're going to do is CLEAR IT.

Echo ### COMPILING SCRIPT ###
cd ..script
Msc dogmole.spt msc.h 24
Copy * .h ..dev

Silly title
Copyleft 201X your group roneón soft.
The Churrera Maker 3.1

Flags:
1 -

ENTERING GAME
IF TRUE
THEN
SET FLAG 1 = 0
END
END

Echo ### COMPILING SCRIPT ###
cd ..script
Msc cadaver.spt msc.h 20
Copy * .h ..dev

It is interesting to modify that header. The lines starting with # (does not have to be #, you can use, for
example, or 'or //, or whatever you want) are comments. Get accustomed to putting comments on your
own line. Do not put comments at the end of a check or a command, that the compiler is vague and can
interpret what is not. And above all, get used to putting comments. So you can understand what
changes you made three days ago, before the drunkenness and that affair with the brunette of reception.

As for now the variables (flags) are identified by a number (I have yet to improve the compiler to
define aliases, as well suggested D_Skywalk) is a good idea to make a list of each and every thing. I
always do, look:

You see? That comes great to know where you have to play.

My first clauses

Since we know where to play, let's start with our script. Let's look at the basic syntax. This is the look
of a script:

As we see, each section begins with the section name and ends with END. Enter the name of the
section and END are the clauses that make it up, which can be one, or may be several. Each clause
begins with a checklist, each on a line, the word THEN, a list of commands, each on a line, and END.
Then another clause may or may not come.

Cadàveriön
Copyleft 2013 Mojon Twins
The Churrera Maker 3.99.2

Flags:
1 - Tile trampled by the block being pushed
2, 3 - X and Y coordinates
4, 5 - X and Y coordinates of the tile "retry"
6, 7 - X and Y coordinates of the door tile
8 - number of finished screens
9 - number of statues to be placed
10 - number of statues placed
11 - We've already removed the gate
12 - Screen that we return to run out of time
13, 14 - Coordinates to which we return ... bla
15 - Floor
0 - stored value of 8
16 - I'm selling my new bike.

SECTION
CHECKS
THEN
COMMANDS
END
...
END
...

Remember the operation: running a section is to execute each of its clauses, in order. Running a clause
is to perform all checks on the checklist. If none, that is, all are true, all the commands in the list will be
executed.

To see it, we'll create a simple script that will insert ornaments on some screens. Let's extend the tileset
of Dogmole, including new tiles that will not place from the map (because we have already used the 16
that have at most), but will place from the script. This is our new expanded tileset:

(You know what to do: reorder, mount with the source, upload it to SevenuP, pass it to code, and move
it to /dev/tileset.h).

There are a lot of things we are going to post from scripting. The place to do are the sections
ENTERING SCREEN n screens we want to decorate and running when everything else is in place:
the bottom will already be drawn, so we painted over. Let's start decorating the screen number 0, which
is where you have to go to carry the boxes. We will have to place the pedestal, formed by tiles 22 and
23, and we will put more ornaments: vessels 29, a few shelves 20 and 21, a few boxes 27 and 28, armor
32 and 33) And a bulb hanging from a cable (30 and 31). We started creating section ENTERING
SCREEN 0 on our scriptdogmole.spt:

The painting of extra tiles is done from the list of commands of a clause. Since we want the clause to
always execute, we will use the simplest condition that exists: the one that always evaluates to certain
and we have already seen above:

This means that whenever we enter the screen 0, the commands in the list of commands of that clause
will be executed, since its only condition ALWAYS evaluates to certain.

The command to paint a tile on the screen has this form:

College Lobby
ENTERING SCREEN 0
END

College Lobby
ENTERING SCREEN 0
Decoration and pedestal
IF TRUE
THEN
END
END

Where (x, y) is the coordinate (remember, we have 15×10 tiles on the screen, so x can go from 0 to 14
and 0 to 9) and t is the tile number we want to paint. With the map open in front to count squares and
see where we have to paint things, we place the pedestal first and then all the decorations:

Okay, you wrote your first clause. It has not been so complicated, right? I guess for satisfaction to be
complete you will want to see it. Well: let's add some code that we will remove from the final version
and we will use it to go to the screen we want to start the game and try so we are doing everything
right.

If you remember, one of the possible sections that we can add to the script is the one that runs just at
the beginning of the game: ENTERING GAME, which is the one that was empty at the beginning and
we deleted because it was useless at all. Well, we are going to make an ENTERING GAME that will
serve us to go directly to the screen 0 at the beginning and to verify that we have put all the tiles cool in
the commands of the clause of the section ENTERING SCREEN 0. We add, therefore, this code (You
can add it wherever you want, but I usually leave it at the beginning. It does not matter where you put
it, but it's always cool to follow an order.)

College Lobby
ENTERING SCREEN 0
Decoration and pedestal
IF TRUE
THEN
pedestal
SET TILE (3, 7) = 22
SET TILE (4, 7) = 23
Decor
SET TILE (1, 5) = 29
SET TILE (1, 6) = 20
SET TILE (1, 7) = 21
SET TILE (6, 6) = 20
SET TILE (6, 7) = 21
SET TILE (7, 7) = 28
SET TILE (1, 2) = 27
SET TILE (1, 3) = 28
SET TILE (2, 2) = 29
SET TILE (2, 3) = 27
SET TILE (3, 2) = 32
SET TILE (3, 3) = 33
SET TILE (9, 1) = 30
SET TILE (9, 2) = 30
SET TILE (9, 3) = 31
END
END

SET TILE (x, y) = t

What does this do? It will cause the list of clauses to be executed at the beginning of the game, formed
by a single clause, which will always be executed (because it has IF TRUE) and what it does is to move
to the coordinate (12, 2) of screen 0, Because that is what the WARP command does:

It moves us to the screen x, and makes us appear in the coordinates (x, y).

What will happen? Ooooh, oooh. It's simple: when the player starts the game will run the section
ENTERING GAME. This section all it does is move the player to the position (2, 2) and switch to the
screen 0. Then the screen when entering 0, the ENTERING SCREEN 0 section, we painted tiles extra
run. We're going to try it! Compile the game and run it. If all goes well, we should appear on our screen
or decorated:

That's good. Let's do more. Let's paint more tiles to decorate other screens. Exactly in the same way
that we have decorated screen 0, we will also decorate screen 1, placing the Miskatonic University sign
(tiles 24, 25, and 26) and armor (tiles 32 and 33):

ENTERING GAME
IF TRUE
THEN
WARP_TO 0, 12, 2
END
END

WARP_TO n, x, y

Lets go see it! ENTERING_GAME changes the screen to jump to 1 instead of the screen 0:

Compile, execute ... et voie-la!

In the same way we add code to put more decorations on the map. The truth is that we get bored soon
and there is only decoration on screen 6 (a lamp) and screen 18 (an anchor on the beach). Why do not
you take advantage and put more? These are the ones that come in the original game:

College hall
ENTERING SCREEN 1
Miskatonic poster, etc.
IF TRUE
THEN
SET TILE (7, 2) = 24
SET TILE (8, 2) = 25
SET TILE (9, 2) = 26
SET TILE (1, 6) = 32
SET TILE (1, 7) = 33
SET TILE (13, 6) = 32
SET TILE (13, 7) = 33
END
END

ENTERING GAME
IF TRUE
THEN
WARP_TO 1, 12, 2
END
END

I think I'm picking it up

Well, it's time to leave. Try to absorb this knowledge well, soak them well. If you have not caught
something from here, do not be in a hurry and wait for us to follow, you will surely end up
understanding. And, as always, whatever you want to ask, ask it!

In the next chapter, we will introduce the seeds of the gameplay: we will detect that all sorcerers have
died to remove the stone from the entrance of the university, and we will program the logic to leave the
boxes in the vestibule.

Until then, work with this. In the file with the material in this chapter have the Dogmole with the script
half done with the things we have seen in this chapter.

ENTERING SCREEN 6
IF TRUE
THEN
SET TILE (10, 1) = 30
SET TILE (10, 2) = 31
SET TILE (10, 4) = 35
END
END

ENTERING SCREEN 18
IF TRUE
THEN
SET TILE (4, 8) = 34
END
END

Workshop Create your own game Spectrum (Chapter 9)

Here you have at last the new and feared chapter of the Workshop of the Churrera Maker: Basic
Scripting. In this ninth chapter, we will see in a fun, fun and detailed way the scripting system that will
allow us to fully customize our game with features of all kinds. It opens a whole world in front of your
keyboards. Make good use of "force". Ah! And remember that great power carries a great
responsibility.

Chapter 9: Basic Scripting

Basic Scripting?

That's it. In this chapter we define the gameplay of Dogmole Tuppowski and we will learn some basics
of scripting.

The scripting system of Churreras is very simple and seems quite limited, but you can solve problems
with some skill and get fairly complex things. In addition, in each version that we take out of the
Churrera Maker we expand it and every time it works better, so if you practice you can achieve in your
games quite complex gameplay designs. Dogmole rules are simple on purpose to illustrate a simple
behavior and learn. Later we will see the script of different games mojonos so that you see how we
have managed to do things.

The scripting system has many different commands and checks. Since I do not want to turn this course
into a reference to a list of endless things, I refer to motor_de_clausulas.txt file is in the folder /script
of the Churrera Maker: there is a list of everything that is able to compile msc. It's no big deal to kick
him out.

Let's refresh a little.

Recall that the script is made up of sections, and that each section includes clauses. Each clause is
nothing more than a checklist and a list of commands: if all the checks are true, the commands will be
executed.

We control which clauses will be executed by placing them in one or another section. Let's remember
the sections that exist and when they are executed:

ENTERING GAME: This section will run just start the game, and never again.

ENTERING ANY: This section will run on entering each screen, and also to step on an enemy. Yes, it
has no logic, but it is because it comes very well for certain things.

ENTERING n SCREEN: This section will run to enter the screen N.

AT ANY PRESS_FIRE: This section will be executed by pressing action, no matter what screen you
are.

N FRESS_FIRE AT SCREEN: This section will run the catch action if we are in the N screen, and
also to step on an enemy. Neither has logic, but also comes well.

ON_TIMER_OFF: This section will run if we have a timer, this reaches 0, and we have set in config.h
to happen.

Go for it!

Before we start we will recap, because it is important that we know what we are doing. Recall, then,
what was the design of our Dogmole Tuppowsky gameplay:

In the first place, the door of the university is closed, and to open it all monks must be killed. There are
20 monks placed all over the map, in the bottom (the two lower rows) and you have to load them all.
When they are all dead, we will have to remove the stone we place on the map at the entrance to the
university.

Then you have to program the logic of the pedestal, inside the university. If we touch the pedestal
carrying an object, we lose it and a flag will be incremented by counting the number of objects we have
deposited. When this number reaches 10, we will have won the game.

The script of this game will be very simple. The first thing we have to look at is what we will need to
store to allocate some flags for it. In our case, as the engine is already in charge of counting the monks
we have killed, we will only need to go counting the boxes that we are depositing and also need to
remember if we have removed the stone or not. Let's use two flags: 1 and 3. Why these two and not

others? Well, yes. Actually, it does not matter.

Recall that we mentioned in the previous chapter that it was interesting to point out what each flag did
at the beginning of our script:

Counting dead monks

What a title, huh? But it's cool. The first thing we are going to see is how to count the dead monks to
remove the stone from the screen. 2. First of all, we have to see what we are going to remove. Screen 2
is this, and I have marked the stone that we have to remove by scripting:

If we have a little, we realize that the Piedro occupies the coordinates (12, 7). We point them out.
We have said that we will use flag 3 to store if we have already killed all the monks or not. If flag 3 is
worth 1, it means that we have killed all the monks, and in that case, we would have to modify that
screen to erase the stone from the position we have written down. Why not start there? We therefore
create a clause for when we enter the screen 2:

Flags:
1 - general account of objects.
3 - 1 = open university door.

There is little again in this first clause of gameplay that we have written: it is about checking the value
of a flag. Instead of the IF TRUE we had used so far, we write IF FLAG 3 = 1 only evaluate to true if
the value of our flag 3 is precisely 1. In this case, the body of the clause will be executed: SET TILE
(12, 7) = 0 write the empty tile on the space occupied by the Piedro, eliminating it . Therefore, when
entering this screen with the flag 3 to 1, the stone will be erased and there will be no obstacle. Is the
concept caught?

Let's go, then. We have said that the flag 3 to 1 means that we have killed all the enemies, but the flag 3
is not going to put to 1 automatically. We need to create a rule that will actually set it to 1.

As on the screen where the stone appears, there are no monks, there will never be the situation of
killing the last monk on the screen of the stone. That is: we will always be on another screen when we
kill the last monk. Therefore, a good place to check that we've killed all the monks is to enter any
screen, that is, in our section ENTERING ANY. And better yet, the particularity that we mentioned
before ENTERING ANY also runs when we step on an enemy. Each time we enter a screen, we will
verify that the number of enemies eliminated is 20 and, if it is the case, we will put the flag 3 to 1:

University Entrance

 ENTERING SCREEN 2

 # Control of the university door.

 IF FLAG 3 = 1

 THEN

 SET TILE (12, 7) = 0

 END

 END

With this, we get just what we want. Note that there is new evidence: IF
ENEMIES_KILLED_EQUALS 20 will be true if the number of enemies eliminated (or monks)
worth exactly 20. If that is true, immediately afterward check the value of the flag 3 for that is 0. With
this we do Is to make sure that this clause will only be executed once, or it would otherwise be
executed upon entering each screen.

If everything has been fulfilled, we will put the 3 to 1 flag (which is what we wanted) in addition to
releasing a series of pitches. Yes, the SOUND command plays sound n n. These are the sounds of the
engine. You can look at what corresponds to each number in the file beeper.h the end.

With this we will have the first part of our gameplay ready: if all the enemies are dead, we put the flag
3 to 1. In screen 2, if the flag 3 is worth 1, we remove the pebble.

Logic of the boxes

Now we only have to define the second part of the gameplay. If you remember, we set the engine
ONLY_ONE_OBJECT. That means that the maximum of objects we can pick up is one, that is, we
can only carry one box.

The goal of the game is to take 10 boxes to the University counter, so we will have to program in the
script the logic that, if we take an object and activate the counter, we subtract that object and increase
the counter of objects delivered , Which we have said will be flag 1.

The counter is on display 0, if you remember: we've painted with SET TILE from our script in the
ENTERING SCREEN 0 section. The pedestal occupies positions (3, 7) and (4, 7).

Let's now write a piece of script that, if we press the action key on screen 0, it verifies that we are
touching the pedestal and that we take an object, to eliminate that object and to increase in one the
account.

The first thing we have to solve is the detection that we are touching the pedestal. If the pedestal
occupied a single tile in (x, y), it would be very simple:

 # Open University

 ENTERING ANY
 IF ENEMIES_KILLED_EQUALS 20
 IF FLAG 3 = 0
 THEN
 SET FLAG 3 = 1
 SOUND 7
 SOUND 8
 SOUND 9
 SOUND 7
 SOUND 8
 SOUND 9
 END
 END

IF PLAYER_TOUCHES x, y

If any pixel of the player touches the tile (x, y), that condition evaluates to certain. The problem is that
our pedestal occupies two tiles. One solution would be to write two identical clauses, one with a
PLAYER_TOUCHES 3, 7 and the other with a PLAYER_TOUCHES 4, 7, but that is not necessary
because we have other tools.

To check that we are inside an area we have two special checks:

The first one will evaluate to certain if the x-coordinate, in pixels, of the upper left corner of the picture
of our character's sprite is between x1 and x2. The second will do so if the y-coordinate in pixels of the
upper left corner of our character's sprite frame is between y1 and y2.

Let's look at it with a picture. Here we see an area delimited by x1, x2 y by y1, y2. The player will be
"inside" of that area if the pixel marked in red (the one in the upper left corner of the sprite) is "inside"
that area.

When we want to check that our character is within the rectangular area that occupies a set of tiles, we
must follow the following formula to calculate the values of x1, x2, y1 and y1. If (tx1, ty1) are the
coordinates (in tiles) of the upper left tile of the rectangle and (tx2, ty2) are the coordinates (also in
tiles) of the lower right tile, i.e.:

IF PLAYER_IN_X x1, x2
IF PLAYER_IN_Y y1, y2

 With the area defined here, the values of x1, x2 and y1, y2 that we will have to use in the script are
those that are obtained with the following formulas:

To see it, again, a little picture. Note that I have superimposed a sprite so that you see that to "touch"
the tiles must be in the rectangle defined by the coordinates (x1, y1) and (x2, y2):

X1 = tx1 * 16-15
X2 = tx2 * 16 + 15

Y1 = ty1 * 16-15
Y2 = ty2 * 16 + 15

Yes, if you are not accustomed to making numbers programming this is a mess of balls, but in reality, it
is not so much when you memorize the formula, or, better if you understand it. It is multiplied by 16 to
move from tile coordinates to pixel coordinates because tiles are 16×16 pixels. The addition and
subtraction of 15 is to make "collision per box" with the sprite.

I know we could have designed the scripting to hide some of these tweaks, but so, requiring the
programmer to do a couple of math operations on their own, we eliminated a lot of complexity in the
code since we are giving the engine the "chewed" data.

To finish seeing it, let us move to our case and make the necessary operations using the values of our
game. Here, the rectangle is formed only by two tiles in the coordinates (3, 7) and (4, 7). The tiles of
the corners are those two tiles, precisely, so that tx1 equals value 3, ty1 will be 7, tx2 will be 4 and ty2
will also be worth 7. Thus, following the formulas:

That is, to touch the counter, the sprite must be between 33 and 79 in the X coordinate and between 97
and 127 in the Y coordinate. Let's see it graphically: notice how the sprite is touching the counter, the
Upper left pixel of the square of your sprite (marked in red) must be within the area we have defined:

X1 = 3 * 16-15 = 33
X2 = 4 * 16 + 15 = 79

Y1 = 7 * 16-15 = 97
Y2 = 7 * 16 + 15 = 127

Also, we will have to check that we carry a box in the inventory. It would look something like this:

Here's what we've seen: First, we check Dogmole's position with IF PLAYER_IN_X and
IF_PLAYER_IN_Y. If everything is true, we find that we have an object picked up with IF
PLAYER_HAS_OBJECTS. If all we met three things: first, we will increase by 1 flag FLAG INC 1
by 1, 1. Then decrease 1 in a number of collected objects (so it will be 0, and can again pick up another
box) with DEC OBJECTS 1. Finally, we will play sound number 7.

This done, we only have one thing to do: check that we have taken the 10 boxes. A good place to do it
is just after the previous clause. As all clauses in a section are executed in order, just after counting we
will place the check that we have already put 10 to finish the game. Therefore, we extended the
PRESS_FIRE AT SCREEN 0 section with the new clause. It would stay like that:

PRESS_FIRE AT SCREEN 0
 # Detect pedestal.
 # We detect it by defining a rectangle of pixels.
 # We then check if the player has picked up an object.
 # If everything is true, decrement the number of objects and increase FLAG 1
 IF PLAYER_IN_X 33, 79
 IF PLAYER_IN_Y 97, 127
 IF PLAYER_HAS_OBJECTS
 THEN
 INC. FLAG 1, 1
 DEC OBJECTS 1
 SOUND 7
 END
 END

Again, very simple: if we have 10 boxes (ie, if flag1 is 10), we will have won. The WIN GAME
command causes the game ends successfully and the final screen is displayed.

Do you see that it has not been so much? Okay, the coordinates are a bit messy, but neither is it to cry.
Or yes, if you are a sensitive person.

Interesting Improvement

As we have configured our game, the player has to press action to activate the counter and deposit an
object. It is not a problem, but it would be more annoying if the player did not have to press anything.
Precisely for that, we introduced in the engine what we have called "the zone of fire", or fire zone. This
fire zone is nothing more than a rectangle on the screen, specified in pixels. If the player enters the
rectangle, the engine behaves as if it has pressed action. The fire zone is automatically deactivated
when switching screens, so if we define an ENTERING SCREEN n, only active while we are on that
screen.

This comes divinely for our purposes: if on entering the screen 0 we define a fire zone around the
counter, as soon as the player touches it will execute the logic that we have programmed in the script to
leave the object to carry and increase the counter.

The fire zone is defined by the SET_FIRE_ZONE command, which receives the coordinates x1, y1,
x2, and y2 the rectangle we want to use as a fire zone. If we want to match the fire zone with a
rectangle formed by tiles, as in our case, apply the same formulas as explained above. That is, we are
going to use exactly the same values.

The first thing we have to do is tell the engine that we are going to use fire zones. To do this, we have
to activate the appropriate policy in our config.h:

PRESS_FIRE AT SCREEN 0
 # Detect pedestal.
 # We detect it by defining a rectangle of pixels.
 # We then check if the player has picked up an object.
 # If everything is true, decrement the number of objects and increase FLAG 1
 IF PLAYER_IN_X 33, 79
 IF PLAYER_IN_Y 97, 127
 IF PLAYER_HAS_OBJECTS
 THEN
 INC. FLAG 1, 1
 DEC OBJECTS 1
 SOUND 7
 END

 # Game over
 # If we have 10 boxes, we have won!
 IF FLAG 1 = 10
 THEN
 WIN GAME
 END IF
 END

#define ENABLE_FIRE_ZONE // Allows to define a zone which auto-triggers "FIRE"

That done, we'll just change the ENTERING SCREEN 0 SET_FIRE_ZONE adding section x1 y2 at
the very end command, y1, x2:

The question you will ask is why #@!! Why did you did not put it in the game? Because this feature,
which was originally included in branch 4.0 (in the Hobbit game) was reintroduced with version 3.99.1.

I'm a little lost

I take responsibility. You have to make a little coconut to the operation of the script. I think it is ideal to
start with something very simple, even simpler than the Dogmole we have seen, and to progress.

I think something great: we were going to finish here the basic scripting chapter, but I think it would be
good for us to see the scripts together for some of our games. I will choose a few games with a simple
script, and we will explain step by step. It would be interesting that, in the meantime, you were playing
the game to see how the different clauses affect.

Cheril Perils

The game with which we released the scripting engine was Cheril Perils. Then everything was in
diapers and it was very simple. The Cheryl Perils script is the simplest script of all our script squeezes:
here you only do one thing: that we have killed all the enemies, in which case we remove the skewers
from the first screen. These spikes:

 # College Lobby
 ENTERING SCREEN 0

 # Decoration and pedestal
 IF TRUE
 THEN

 pedestal
 SET TILE (3, 7) = 22
 SET TILE (4, 7) = 23
 # Decor
 SET TILE (1, 5) = 29
 SET TILE (1, 6) = 20
 SET TILE (1, 7) = 21
 SET TILE (6, 6) = 20
 SET TILE (6, 7) = 21
 SET TILE (7, 7) = 28
 SET TILE (1, 2) = 27
 SET TILE (1, 3) = 28
 SET TILE (2, 2) = 29
 SET TILE (2, 3) = 27
 SET TILE (3, 2) = 32
 SET TILE (3, 3) = 33
 SET TILE (9, 1) = 30
 SET TILE (9, 2) = 30
 SET TILE (9, 3) = 31

 # Fire zone (x1, y1, x2, y2):
 SET_FIRE_ZONE 33, 97, 79, 127

 END
 END

In principle, it is very much like part of what we have done in Dogmole: upon entering the screen, we
find that we have killed all the enemies (there are 60 in total). If this is the case, print the empty tile on
the spikes:

But here something happens that did not happen in the Dogmole: there are enemies on the screen where
you have to remove the skewers. We are not worth detecting this when entering, since if we kill the last
bug on this screen (it can happen) we would need to exit and re-enter the screen to make the engine
sew. We need more code to detect that we killed the last bug and that it runs when we kill it. Recall that
there was a quirk in the engine: when we step on a bug the PRESS_FIRE AT SCREEN for the current
screen section runs. This comes great: put the same code in this section in ENTERING SCREEN
solve the problem.

Neither short nor lazy …

 ENTERING SCREEN 20

 IF ENEMIES_KILLED_EQUALS 60

 THEN

 SET TILE (2, 7) = 0

 SET TILE (2, 8) = 0

 END

 END

Now we are going to detect that we "left". If we did not do anything, leaving the screen 20 from the left
we fit the screen 19 ... That is also on the other end of the map. In the original game, this was fixed
with a pig hack, but with the current version of the Churrera Maker can be done well.

The first is to define a fire zone covering the left side of the screen, so that the section is run
PRESS_FIRE AT SCREEN 20 when we get to it. We add therefore the definition of the fire zone in
section ENTERING SCREEN 2 (we not also forget to activate the functionality inconfig.h). It looks
like this:

Is it clear? When entering the screen 20 two things happen: first it is checked if the number of enemies
is worth 60, in which case the tiles-rocks that block the exit are eliminated. Then, in any case (IF
TRUE) a fire zone covering the entire strip attached to the left of 15 pixels wide defined. As the player
enters this area (can not do if you have not removed the barrier: it simply can not happen), the
PRESS_FIRE AT SCREEN section 20 runs. Now we have to add code in the PRESS_FIRE AT
SCREEN section 20 to detect that the player is trying to get out on the left and, in that case, finish the
game successfully. It would stay like that:

PRESS_FIRE AT SCREEN 20

 IF ENEMIES_KILLED_EQUALS 60

 THEN

 SET TILE (2, 7) = 0

 SET TILE (2, 8) = 0

 END

 END

 ENTERING SCREEN 20

 IF ENEMIES_KILLED_EQUALS 60

 THEN

 SET TILE (2, 7) = 0

 SET TILE (2, 8) = 0

 END

 IF TRUE

 THEN

 SET_FIRE_ZONE 0, 0, 15, 159

 END

 END

PRESS_FIRE AT SCREEN 20
IF ENEMIES_KILLED_EQUALS 60
THEN

SET TILE (2, 7) = 0
SET TILE (2, 8) = 0

END
IF PLAYER_IN_X 0, 15
THEN

WIN
END

 END

Let's recap to make it clear. Let's see what would happen, step by step. Imagine that we got to the 20th
screen after having killed all the bad guys. Here is the sequence of events:

1. Upon entering the screen 20, after drawing and such, the section runs ENTERING SCREEN 20. In
it, we found that 60 killed enemies, which is true, and the barrier is removed. In addition, a fire zone 15
pixels wide on the left side of the playing area is defined

2. The main loop of the game is executed. The player plays and such and such sees the barrier open,
and heads to the left.

3. When the player enters the zone of fire, the section runs PRESS_FIRE AT SCREEN 20. In it, we
found that 60 killed enemies and the barrier is removed. This is redundant and could be avoided with a
flag, but we do not care ... not noticeable. What matters is what happens next: check that the X
coordinate of the player, in pixels, is between 0 and 15, which is true (as we have entered this section
for entering the fire zone, which is defined right in that area), so running WIN and shown us the end of
Game.

Is it caught? Do we see another? Do you want to see the flag to eliminate redundancy? Perfect.

We all free flags, so capture 1. The method is simple: we put it to 0 to enter the screen, 1 when we
eliminate the barrier and remove the barrier only PRESS_FIRE AT SCREEN 20 if 0. What I put
everything together, you should be able to follow him alone:

Now, let's see another.

Example: Sgt. Helmet Training Day

Let's now see a script a little longer, but equally simple. In this game, the mission is to collect the five
bombs, bring them to the computer screen (screen 0) to deposit them, and then return to the beginning
(screen 24).

There are many ways to do this. The one we use to assemble them is quite simple:

We can count the number of objects we carry from the script, so the pumps will be normal and current
engine objects. We place them with the setter as type 1 hot-spot.

When we get to the computer screen, we will make a cool animation by placing the bombs around. We
use the discussion this because it helps to know the coordinates of each square (if you put the mouse on
a square the coordinates come out at the top of everything) and we point at a paper where we are going
to paint them.

We will use flag 1 to check that we have placed the bombs. At the beginning of the game, it will be
worth 0, and we will put it to 1 when we put the bombs.

ENTERING SCREEN
IF TRUE

 THEN
 SET_FIRE_ZONE 0, 0, 15, 159
 SET FLAG 1 = 0

END

 IF ENEMIES_KILLED_EQUALS 60
THEN
SET TILE (2,7) = 0
SET TILE (2, 8) = 0
SET FLAG 1 = 1

 END
 END

 PRESS_FIRE AT SCREEN 20
 IF ENEMIES_KILLED_EQUALS 60
 IF FLAG 1 = 0
 THEN
 SET FLAG 1 = 1
 SET TILE (2, 7) = 0
 SET TILE (2, 8) = 0
 END

 IF PLAYER_IN_X 0, 15
 THEN
 WIN
 END
 END

When we enter screen 24, which is the main screen, we will check the value of flag 1, and if it is 1, the
game will end.

In addition, we will be printing texts on the screen with what we are doing. Recall that in config.h there
were three directives that we mentioned above makes some chapters:

They are used to configure where a line of text comes from which we can write the script with the
TEXT command. For this, we leave free space in the frame: notice how there is room in the row above
since we have configured the line of text in the coordinates (x, y) = (1, 0).

The first thing our script will therefore be to define a pair of messages that appear by default when
entering each screen, depending on the value of flag 1. We do this in the section ENTERING ANY.
This section, runs to enter each screen, just before the section ENTERING SCREEN n section.
Attention to this: will allow us to define a general text that can easily overwrite if needed for any
particular screen, because if we SCREEN n ENTERING text which overwrites ENTERING ANY
positions in the run later.

To print text in the defined text line, we use the TEXT command. The following text goes without
quotes. We will use the underscore character to represent spaces. It is also convenient to fill with spaces
so that if you have to overwrite a long text with a short one, delete it entirely.

 #define LINE_OF_TEXT 0 // If defined, scripts can show text @ Y = #

 #define LINE_OF_TEXT_X 1 // X coordinate.

 #define LINE_OF_TEXT_ATTR 71 // Attribute

The maximum length of the texts will depend on your playing frame and how you have defined your
position. In our case we have placed it in (x, y) = (1, 0) because we have border left and right, so the
maximum length will be 30 characters.

Let's write our ENTERING ANY section, then. We have said that we will print one text or another
depending on the value of flag 1:

There is no mystery, right? If the flag 1 is 0, that is, the situation at the beginning of the game (all flags
set to 0 at the beginning), entering each screen displays "Find 5 BOMBS AND COMPUTER" in the
area of the defined framework For the text line. If the flag 1 is 1, which will happen when we place the
bombs on the computer, the default text that appears when entering the screens will be "Mission
Accomplished! RETURNS TO BASE".

Let's make a sketch of the screen to see where the computer goes and the pumps:

ENTERING ANY
 IF FLAG 1 = 0
 THEN
 TEXT BUSCA_5_BOMBAS_Y_EL_ORDENADOR!
 END

 IF FLAG 1 = 1
 THEN
 TEXT MISSION_CUMPLED! _VUELVE_A_BASE
 END
 END

Let's go with the chicha now. The first thing we will do is write the conditions for the computer screen,
which is the screen 0. In this screen, we have to do several things. Let's get clear before we begin:

Whenever we enter we will have to paint the computer, which is composed of tiles 32 to 38 of the
tileset. We will do it as we have seen, with SET TILE.

In addition, we will have to define a fire area around the computer for the game to automatically detect
when we approach it.

If we re-enter the screen after having placed the bombs (can happen), we will have to cope with it and
also paint the bombs.

If we for the first time (we have not put bombs) help write a little message that says "GRAB THE
FIVE PUMPS AND RUN"

If we approach the computer, it will be necessary to make the animation cool to put the bombs, and also
place the flag 1 to 1.

Now that we have some experience, we will realize that the first four things are done when entering the
screen, and the last one when you press action (or enter the fire zone). Let's go one by one. Let's start
with the things to do when entering this screen. I like to start with the things that have to be done
always: paint the computer and define the fire zone:

ENTERING SCREEN 0
 # Always: paint the computer.
 IF TRUE
 THEN
 SET TILE (6, 3) = 32
 SET TILE (7, 3) = 33
 SET TILE (8, 3) = 34
 SET TILE (6, 4) = 36
 SET TILE (7, 4) = 37
 SET TILE (8, 4) = 38
 SET_FIRE_ZONE 80, 32, 159, 95
 END

If you look, we have used the formulas explained above to define a wide area around the computer.
Specifically, the area is the rectangle formed from the tile (x, y) = (5, 2) to (9, 5). That is a flange of a
tile around the six tiles that occupy the computer. Take a role of squares and you lease less.
We continue: if we enter after having placed the bombs (something that can happen) we will have to
leave and paint the pumps. Nothing simpler:

We have looked at the sketch, of course, to know the positions of the bombs. The bomb is on tile 17,
which is the tile used to paint objects if you remember.

Now it is only necessary to put a text of help if we have not yet placed the bombs. Note that happens
what we said, as this section is executed after ENTERING ANY, we print the text here will overwrite
the already had. That is why, in addition, we use blank spaces around: center the text and delete the
characters from the previous text, which is longer:

 # If not, message.

 IF FLAG 1 = 0

 THEN

 TEXT _PON_LAS_CINCO_BOMBAS_Y_CORRE_

 END

 END

If we have already put the bombs: paint them.

 IF FLAG 1 = 1

 THEN

 SET TILE (4, 4) = 17

 SET TILE (4, 2) = 17

 SET TILE (7, 1) = 17

 SET TILE (10, 2) = 17

 SET TILE (10, 4) = 17

 END

Ready. Now only react to the fire zone in PRESS_FIRE AT SCREEN 0 section. We will make some
checks and then we will make the animation:

Let's see it little by little, because there are new things:

The first thing is to check that we are where we have to be (the player can always press the action key
instead of entering the fire zone, and do not spring it if the player is anywhere). We do this as we have
seen: with PLAYER_IN_X and PLAYER_IN_Y and the same coordinates of the fire zone.

The next thing is to check that we have the five bombs, or what is the same thing, that we have five
objects. This is done with OBJECT_COUNT, representing the number of objects that the player wears
collected.

Finally, very important, we must check that we have not left the bombs, or fun things could happen.
If all these conditions are fulfilled, we will put the flag 1 to 1 (we have already put the bombs) and we
make the animation, which consists of painting the bombs one by one and playing a sound. You see
there the SHOW command, necessary because the changes we make on the screen will not be visible
until it is updated, which usually happens when returning to the main loop, but not in the middle of
executing a clause. As we want to see each pump just after paint, call SHOW. Each sound will also
stop the execution for a few moments (we are in 48K mode), which is great. Finally, we will print a
help text, again with spaces to the sides to complete the maximum 30 characters and erase what was
from the previous text.

And with this, we have finished all that had to be done on screen 0.

If we continue with our script, the next thing we had to do was return to the initial screen, which is 24.
What remains to be done is quite simple: it consists of checking, on entering screen 24, that flag 1 is 1

PRESS_FIRE AT SCREEN 0
 IF PLAYER_IN_X 80, 159
 IF PLAYER_IN_Y 32, 95
 IF OBJECT_COUNT = 5
 IF FLAG 1 = 0
 THEN
 SET FLAG 1 = 1
 SET TILE (4, 4) = 17
 SHOW
 SOUND 0
 SET TILE (4, 2) = 17
 SHOW
 SOUND 0
 SET TILE (7, 1) = 17
 SHOW
 SOUND 0
 SET TILE (10, 2) = 17
 SHOW
 SOUND 0
 SET TILE (10, 4) = 17
 SHOW
 SOUND 0
 TEXT ____AHORA_VUELVE_A_LA_BASE____
 END
 END

This will only happen if we have previously placed the bombs, so we do not need more ... We just
checked that and, if it is true, we finished the game successfully... Nothing simpler than doing this:

Hey! We already have the game programmed. In the script of Sgt. Helmet there is one more detail: our
usual "seeing motorcycle". But I leave that already, there is nothing special: print tiles, define fire zone,
detect position, and write a text. All that you know to do already.

I could go on, but we'd better leave it for now. In the next chapter we will see step by step examples,
but already with more complex scripts such as, for example, the Cadàveriön. Then we will continue to
see interesting things, such as 128K games, change the music and effects, compressed phases... Ugh,
we will never end.

Meanwhile, you remember in the motor_de_clausulas.txt file on /script can view a list of available
commands and checks, in case you are curious.

Until another!

 ENTERING SCREEN 23

 IF FLAG 1 = 1

 THEN

 WIN

 END

 END

Create your own Spectrum game Workshop(Version Changes)

Version 3.99.2

Come on, the churreras are going out like churros. We're breaking it, and We can think of new things
every day. We'll get them going as we We can think of games that take them.

These are the new things that are in this version of the churrera:

Timers

Added to the churrera a timer that we can use automatically Or from the script. The timer takes an
initial value, counts toward down, can be recharged, can be set every how many frames is decremented
Or decide what to do when it runs out.

TIMER_ENABLE includes the code required to operate the timer. This code will need some other
directives that specify the form of function:

TIMER_INITIAL specifies the initial value of the timer. The time, which are set with the setter as type
5 hotspots, will recharge the value specified in TIMER_REFILL. The maximum value of the timer,
both for the as recharging, is 99. To control the amount of time elapses between each decrement of the
timer, we specify in TIMER_LAPSE the number of frames that must pass.

If TIMER_START is set, the timer will be active from the beginning.

We also have some directives that define what will happen when the timing to zero. It is necessary to
uncomment those that apply:

Defining this, when it reaches zero the timer will execute a section script special, ON_TIMER_OFF. It
is ideal for carrying all the control of the timer by scripting, as it happens in Cadàveriön.

Defining this, the game will end when the timer reaches zero.

#define TIMER_ENABLE

#define TIMER_INITIAL 99
#define TIMER_REFILL 25
#define TIMER_LAPSE 32

#define TIMER_START

#define TIMER_SCRIPT_0

// # define TIMER_GAMEOVER_0

If TIMER_KILL_0 is set, a life will be subtracted when the timer reaches zero. If, in addition,
TIMER_WARP_TO is defined, it will also be changed to the screen the player appears in the
coordinates TIMER_WARP_TO_X and TIMER_WARP_TO_Y.

If this option is set, the timer will return to maximum after reaching zero automatically. If you are
going to perform the control by scripting, better leave it commented

If this is defined, in the case that we have defined either TIMER_SCRIPT_0 or well TIMER_KILL_0,
a "TIME'S UP!" Poster will be displayed. When the timer reaches zero.

Scripting:

As we have said, the timer can be administered from the script. Is interesting that, if we decided to do
this, let's activate TIMER_SCRIPT_0 so that when the timer reaches zero, the ON_TIMER_OFF
section of our script and that the control is total.

In addition, these checks and commands are defined:

Checks:

Which will be fulfilled if the value of the timer is greater than or equal to or less or equal than the
specified value, respectively.

Commands:

It is used to set the TIMER_INITIAL and TIMER_LAPSE values from the script.

It is used to start the timer.

It is used to stop the timer.

// # define TIMER_KILL_0
// # define TIMER_WARP_TO 0
// # define TIMER_WARP_TO_X 1
// # define TIMER_WARP_TO_Y 1

// # define TIMER_AUTO_RESET

#define SHOW_TIMER_OVER

IF TIMER> = x
IF TIMER <= x

SET_TIMER a, b

TIMER_START

TIMER_STOP

Control of push blocks

We have improved the engine so that more can be done with the tile 14 of type 10 (pushable tile) that
simply push it or stop the trajectory of the enemies. Now we can tell the engine to launch the
PRESS_FIRE section of the current screen just after pushing a pushable block. Besides, the number of
the tile that is "stepped" and the final coordinates are stored in three flags that we can configure, to be
able to use them from the script to do checks.

This is the system that is used in the script of Cadàveriön to control that put the statues on the
pedestals, to give an example.

Recall what we had so far:

The first one is necessary to activate the pushable tiles. The second obliges the player to press FIRE to
push and therefore is not mandatory. Let's see now the new directives:

Enabling ENABLE_PUSHED_SCRIPTING, the tile to be pressed and its coordinates will store in the
flags specified by the MOVED_TILE_FLAG,

MOVED_X_FLAG and MOVED_Y_FLAG. In the code shown, the tile is will store in flag 1, and its
coordinates in flags 2 and 3.

If we define this, in addition, the PRESS_FIRE AT ANY and PRESS_FIRE of the current screen.

We recommend to study the Cadàveriön script, which, besides being a good example of the use of the
timer and the pushbutton control, results be a rather complex script that employs a lot of advanced
techniques.

Check if we exit the map

It is advisable to put limits on your map so that the player can not exit, but if your map is narrow you
may want to take advantage of the screen. In that case, you can activate:

It will add checks and will not let the player leave the map. eye! If you can avoid using it, the better:
you will save space.

#define PLAYER_PUSH_BOXES
#define FIRE_TO_PUSH

#define ENABLE_PUSHED_SCRIPTING
#define MOVED_TILE_FLAG 1
#define MOVED_X_FLAG 2
#define MOVED_Y_FLAG 3

#define PUSHING_ACTION

#define PLAYER_CHECK_MAP_BOUNDARIES

Type of enemy "custom" gift

Until now we had left the type 6 enemies without code, but we have thought that it is not difficult for us
to put one, for example. It behaves like the bats of Cheril the Goddess. To use them, place them in the
Of enemies as type 6 and uses these directives:

The first one activates them, the second defines which sprite to use (minus 1, if you want the sprite of
enemy 3, put a 2. Sorry for the slut, but saving bytes). The third one says how many pixels you see
from far away. if he sees you, he follows you. If not, return to your site (where you've put it
With the setter).

This implementation, in addition, uses two directives of the enemies of type 5 to operate:

Define there the acceleration and the maximum speed of your type 6. If you go to also use type 5 and
you want other values, be a man and modify the engine.

Keyboard / joystick configuration for two buttons

There are side view games that are best played with two buttons. If you activate this directive:

The keyboard will be the following, instead of the usual one:

If joystick is selected, FIRE and M fire, and N skips.

Shooting up and diagonally for side view

Now you can let the player shoot up or diagonally. To do this define this:

This configuration works best with USE_TWO_BUTTONS, since this separates "Top" of the jump
button.

#define ENABLE_CUSTOM_TYPE_6
#define TYPE_6_FIXED_SPRITE 2
#define SIGHT_DISTANCE 96

#define FANTY_MAX_V 256
#define FANTY_A 12

#define USE_TWO_BUTTONS

A = left
D = right
W = up
S = down
N = jump
M = shoot

#define CAN_FIRE_UP

If you do not hit "up", the character will fire to where he is looking. Yes press "up" while shooting, the
character will shoot up. Yes, in addition, you are pressing an address, the character will shoot on the
diagonal indicated.

masked bullets

For speed, the bullets do not wear masks. This works fine if the background on which they move is
dark (few active INK pixels). But nevertheless, there are situations where this does not happen and
looks bad. In that case, we can activate masks for bullets:

Version 3.99.2mod

This was a special version with a thing that Radastan asked us, the...

Animated Tiles

Everything is based on tilanim.h. This file is included if config.h is defined in ENABLE_TILANIMS
directive. In addition, the value of this directive is what defines the number of smaller tile that is
considered animated.

In tilanim.h there are, in addition to the definition of data, two functions:

Void add_tilanim (unsigned char x, unsigned char y, unsigned char t) is called from the function that
paints the current screen if it detects that the tile that you are going to paint is >=
ENABLE_TILANIMS. Add an animated tile to the list tiles.

Void do_tilanims (void) is called from the main loop. Basically select a random animated tile among all
the stored ones, change the frame (from 0 to 1, from 1 to 0) and draws it.

To use it, you just have to define the ENABLE_TILANIMS directive in config.h with the smaller
animated tile. For example, if your last four tiles (8 in total) are animated, put the value 40. Then, on
the map, you have to put the smaller tile of the pair, that is, tile 40 for 40-41, the 42 to 42-43... If you
do not do that, funny things will happen. The code is (It has to be) minimal, do not check anything, so
take care.

By the way, this has not been proven. If you put it in your games, damages one touch.

Version 3.99.3

Animated Tiles

If it is defined:

If defined, animated tiles are enabled. // the value specifies first animated tile pair.

#define MASKED_BULLETS

#define ENABLE_TILANIMS 32 //

In config.h, tiles> = that specified index are considered animated. in the tileset, they come in pairs. If,
for example, "46" is defined, then the only pair of tiles 46 and 47 will be animated. The engine will
detect them and each frame will cause one of the tiles 46 to change state.

There can be up to 64 animated tiles on the same screen. If you put more, will choke.

128K Mode

You have to do a lot of manual work with this. I'm sorry, but it's like that. In first you will have to
create a make.bat that will build everything you need. For that you can rely on the file spare /
make128.bat and adapt it to your project.

The 128K mode is the same as the 48K but use WYZ Player and also supports several levels. You can
not have longer levels, but you can have several levels.

To use it, you need to activate three things in config.h:

In MAX_LEVELS you have to specify the number of levels you are going to use.

In churromain.c you have to change the position of the pile and place it below of the main binary:

Then you have to modify levels128.h, which is where the level structure is defined and is included in
128K mode. There you will see an array levels, with information about the levels. In principle, very
little information is included:

The first value is the resource number (see below) that contains the level. The second value is the song
number in WYZ PLAYER that should ring while is played at level.

To prepare a level, you have to use the new buildlevel.exe utility In / utils. This utility takes the
following parameters:

$ Buildlevel map.map map_w map_h lock font.png work.png spriteset.png
Extrasprites.bin enems.ene scr_ini x_ini y_ini max_objs enems_life behs.txt level.bin

#define MODE_128K // Experiment!
#define COMPRESSED_LEVELS // use levels.h instead of map.h and enems.h (!)
#define MAX_LEVELS 4 // # of compressed levels

#pragma output STACKPTR = 24299

// Level struct
LEVEL levels [MAX_LEVELS] = {
3,2,
(4.3),
{5.4},
{6.5}
};

• Map.map Is mappy mappy
• Map_w, map_h Are the dimensions of the map on screens.
• Lock 15 for autodetect locks, 99 if there are no locks
• Font.png is a 256x16 file with 64 ascii characters 32-95
• Work.png is a 256x48 file with the tileset
• Spriteset.png is a 256x32 file with the spriteset
• Extrasprites.bin you find it in / levels
• Enems.ene the file with the enemies / hotspots of colocador.exe
• Scr_ini, scr_x, scr_y, max_objs, enems_life level values
• Behs.txt a file with tile types, separated by commas
• Level.bin is the output file name.

When we have all levels built, we have to compress them with apack:

$ /utils/apacke.exe level1.bin level1c.bin...

When we have all levels compressed, we will have to create the images binary files that will be loaded
into the extra RAM pages. For that we use the utility librarian that is in the folder / bin. In fact, it is a
good idea to work Folder / bin for this.

The librarian utility uses a list list with the compressed binaries that should be getting into the binary
images that will go on the extra pages of RAM. The first thing we will have to put in is the title.bin,
marco.bin and ending.bin, in that order. If you do not have .bin you should use a length 0, but you must
specify it. Then we will add our levels. For example:

title.bin
marco.bin
ending.bin
level1c.bin
level2c.bin
level3c.bin
level4c.bin

There we added four compressed levels.

When you run librarian, you will be filling in 16K images destined to go in the Extra RAM. First it will
create ram3.bin, then ram4.bin and finally ram6.bin, according to I need more space.

It will also generate the file librarian.h, which we will have to copy to / dev. Here we can see the
resource number associated with each binary:

RESOURCE resources [] = {
 {3, 49152}, // 0: title.bin
 {3, 50680}, // 1: marco.bin
 {3, 50680}, // 2: ending.bin
 {3, 52449}, // 3: level1c.bin
 {3, 55469}, // 4: level2c.bin
 {3, 58148}, // 5: level3c.bin
 {3, 60842} // 6: level4c.bin
};

These resource numbers are the ones we will have to specify in the array levels mentioned above. In
particular, resources 3, 4, 5 and 6 are those containing the four levels.

With all this done and prepared, we will have to mount the tape. For this there are which create a
suitable loader.bas (you can see an example in /spare/loader.bas) and build a .tap with each block of
RAM (again, the example in /spare/make.bat builds the tape with binaries in RAM3 and RAM4).

You will also need RAM1.BIN to build RAM1.TAP, containing the player of WYZ with songs. For this
you have to modify /mus/WYZproPlay47aZX.ASM in / mus to include your songs. You have an
example in / spare.

As you can see, it's a bit tedious. I recommend that you build mini-projects in 48K as you make the
levels, and finally you build a 128K version with all.

In addition, you can use extra space to push more compressed screens, or even code to use passwords
to jump directly to levels. You can see examples of all this in Goku Mal 128.

Type 3 Hotspots

We have made this modification, proposed in the forum, fixed to blow of directive. If you define

The recharges will appear only and exclusively where you place them, using the type 3 hotspot.

Pause / Abort

If it is defined

Code is added to enable the "h" key to pause the game and the key "And" to interrupt the game. If you
want to change the assignment you will have to Touch the code in mainloop.h

Message catching objects

If it is defined

A message will appear with the items you have left each time you take one.

Version 3.99.3b

Minimal revision. It is arranged to be able to have 128K games with only one level (ie use
MODE_128K without COMPRESSED_LEVELS).

Right now there are two examples that can help you if you want to make a 128K game:

#define USE_HOTSPOTS_TYPE_3 // Alternate logic for recharges.

#define PAUSE_ABORT // Add h = PAUSE, y = ABORT

#define GET_X_MORE // Shows "get X more"

• Goku Mal: 128K with compressed levels. See this doc and the sources of the game.
• The new adventures of Dogmole Tuppowsky: 128K with only one level, more info in the forum

of mojonia.

Also, in spare I added the file extern-texts.h whose contents you can use in extern.h if you want an easy
way to display text on the screen using the EXTERN command n of the script.

Version 3.99.3c

Item Engine

You can use items and you can have the user select them with the "Z" key. To activate them, just have
the scripting enabled and define an ITEMSET section at the beginning of the script similar to this:

Then we will have checks and commands to handle the items:

EYE! The two previous ones put enough code of interpreter. It is better not to use them if it can be
avoided. There are better ways to manage inventory:

ITEMSET
Number of holes:
SIZE 6

Position x, y
LOCATION 1, 21

Horizontal / vertical, spaced
DISPOSITION HORZ, 3

Color and characters to paint the selector
SELECTOR 66, 8, 9

Flag containing which gap is selected
SLOT_FLAG 20

Flag containing what object is in the selected hole
ITEM_FLAG 21
END

* IF PLAYER_HAS_ITEM t
 Description: Evaluate to TRUE if the player has tile item T in their inventory.
 Opcode: 01 x

* IF PLAYER_HASN'T_ITEM x
 Description: Will evaluate to TRUE if the player does NOT have tile item T in their inventory.
 Opcode: 02 x

For more info, visit this forum thread:

http://www.mojontwins.com/mojoniaplus/viewtopic.php?f=9&t=1581

Shooting / stepping enemies disable

The possibility of enabling the firing / stepping enemies according to the value is added of a flag (to be
able to use it, shoot / step enemies must be activated in the engine, of course):

For example, imagine that you decide that the flag that controls this behavior is the flag 5. First we
would define this in config.h:

Then, in the script, we would make sure that flag is 0 at the beginning of the game (Or 1, if we want to
kill enemies from the beginning):

* IF SEL_ITEM = t
Description: TRUE if the selected item is T
Opcode: 10 ITEM_FLAG t
The generated code is equivalent to IF FLAG ITEM_FLAG = t

* IF SEL_ITEM <> t
Description: TRUE if the selected item is not T
Opcode: 13 ITEM_FLAG t
The generated code is equivalent to IF FLAG ITEM_FLAG <> t

* IF ITEM n = t
Description: TRUE if slot N is T
Opcode: 04 n t

* IF ITEM n <> t
Description: TRUE if slot N is T
Opcode: 05 n t

* SET ITEM n = t
 Description: Assign item t to slot n
 Opcode: 00 x n

* REDRAW_ITEMS
Description: Force a redraw of items
Opcode: E7

#define PLAYER_CAN_KILL_FLAG
#define PLAYER_CAN_FIRE_FLAG 1

#define PLAYER_CAN_KILL_FLAG 5

http://www.mojontwins.com/mojoniaplus/viewtopic.php?f=9&t=1581

Imagine that we want the player to start stepping on enemies when catch an object represented by the
tile 24 and located on the screen 6, position (7,5). We could do something like this:

ENTERING GAME
IF TRUE
THEN
SET FLAG 5 = 0
END
END

ENTERING SCREEN 6
If we have not picked up the object we draw it
IF FLAG 5 = 0
THEN
SET TILE (7, 5) = 24
END
END

PRESS_FIRE AT SCREEN 6
If we press ACTION on the object...
IF FLAG 5 = 0
IF PLAYER_TOUCHES 7, 5
THEN
We delete it from the screen
SET TILE (7, 5) = 0
We activate the ability to kill enemies
SET FLAG 5 = 1
END
END

