& HOBENEE
SN 4 /15]16/17]1819[20]
B > 1/22/23]24/25(26(27)

[28/29/30/31] | | |

The Electron is an early member of a new generation of micro-
computers. Unfortunately, most of the people who will be using
it either learned on a machine of the previous generation, or are
learning from someone whose ideas are influenced by that
generation. Yet using this computer like those of the previous
generation would be rather like only ever using the main cutting
blade on your Swiss army knife: it would be failing to recognise
its capabilities.

I would be the first to agree that the main cutting blade on a
Swiss army knife can be extremely useful. Apart from cutting; it
can undo screws, it can remove splinters, it can open cans and
bottles, it can trim fingernails, it can even remove corks — but
what a waste to use it for these things when the knife already has
a screwdriver, a pair of tweezers, a can-opener, a bottle-opener, a
pair of nail-scissors, and a little corkscrew!

By far the greatest difference between the Electron and its
forerunners is BBC BASIC, the language in which it is
programmed. Most microcomputers use a fairly standard dialect
of BASIC, a language which has done more to cripple people’s
ways of thinking than almost any other development in com-
puting. Devised as an easy language to learn, and a language
whose implementation takes up as little space as possible in a
computer, BASIC certainly served its purpose for many years.
Unfortunately, while advances in computers and computing
have since led to vastly superior languages, most people don't
want to make the effort of learning them. ‘I spent a long time
learning to use this cutting blade, and now I can do everything I
want with it. What could I possibly gain from learning to use your
new-fangled tweezers, scissors, screwdrivers, and the like?’ If
you share that attitude, you should view this book simply as a set
of interesting programs.

BBC BASIC, commissioned as part of the BBC's computer

2 Quality Programs for the Electron

literacy project, is not one of the vastly superior languages I
mentioned. Still somewhat limited by the amount of memory
required to implement it, it is nonetheless a big step in the right
direction. Perhaps one could even argue in its favour that with so
much apparent similarity to standard BASIC, people might be
tricked into thinking they’re still using the old cutting blade.

The key phrase to a proper use of BBC BASIC is “structured
programming’, a phrase which raises hackles everywhere among
experienced programmers. ‘I spent a long time learning to
program’, they say, ‘and now I can write programs to do anything
I want. What could I possibly stand to gain from learning your
new-fangled structured programming?’ This question is based
on a misunderstanding. Nobody who knows would suggest that
structured programming enables a programmer to do things (s)he
couldn’t otherwise do; it only enables him or her to do the same
things more easily, more quickly, more confidently, and more
comprehensibly.

If you would like to learn something about structured pro-
gramming, you should view this book as something of a tutor.
Look closely at the way the programs are written, read the com-
ments carefully, and try to design your own programs in the same
way. [don’t claim to be an expert in structured programming, but
I do claim that the programs in this book are a lot better structured
than many, perhaps even most, published programs. And that as
a consequence they are a lot easier to understand.

5o what is this wonderful programming technique? Well . . .
nothing, really! It's accepting that the solution to a problem can
be programmed without having to translate it into some esoteric
form, simply by writing it as you would do it if you didn’t have a
computer. Consider, forinstance, a program to draw a graph. The
program asks the user to type a number which indicates what is
to be done next. The programmer thinks ‘If the answer’s 2 we’ll
move the origin; if it's 3 we'll rescale the axes; if it's 4 we’ll plot a
graph; and if it's 5 we’ll provide a fresh sheet of paper’. So the
program does exactly the same: IF choice = 2 THEN PROCorigin
ELSE IF choice = 3 THEN PROCaxes ELSE IF choice = 4 THEN
PROCdraw ELSE IF choice = 5 THEN PROCpaper. The prefix
PROC simply indicates a procedure, or set of steps, for doing
something. A program in standard BASIC, though, might say

IF C1 = 2 GOTO 500

Introduction 3.

IF C1 = 3 GOTO 730
IF C1 = 4 GOTO 880
IF C1 = 5GOTO 1060

The first programmer, the one who wrote what (s)he thought,
now has several smaller tasks to take care of. The computer
doesn’t automatically know what is meant by PROCorigin,
PROCaxes, PROCdraw, and PROCpaper, so these will have to be
defined. But each is a nice small subproblem, independent of the
rest of the program. And if some aspect of a subproblem does
start to look a little complicated — we simply break it down in
turn into further subproblems.

The second programmer is really in much the same situation,
but it isn’t quite so obvious. First (s)he has to remember that CI
was the name used to indicate the choice (many dialects of BASIC
have names limited to one letter and one digit); then there is the
problem of remembering just what the various line numbers
were meant to represent. Anyone should admit that PROCdraw
is a much better indication of the programmer’s intention than
880.

Another important facet of structured programming is the
REPEAT statement. People seldom think of a problem’s solution
in terms of “do this, then if it isn’t time to stop, go back and do it
again’; they think ‘repeat this until it’s time to stop’. BBC BASIC
acknowledges this standard thought pattern by having a REPEAT
.. UNTIL . . facility, which is generally a lot easier to understand
than a sequence of statements followed by IF something THEN
GOTO the beginning again.

Let it not be thought that I will avoid the GOTO at all costs. I
have used several in this book. But my excuse is that I am using
them to simulate features of the better-structured languages
which are absent from BBC BASIC, and I remain proud to say I
have used ‘several’ in the book. Most program books of com-
parable size will have hundreds of the beasts. And the
programmer who uses GOTOs always has the problem of
ensuring that no stray GOTO throws the computer into the
middle of a lump of program when it thought it was going
somewhere else altogether. But, we are told, the discipline of
having to keep rigid track of line numbers is good for you. Yes, I
suppose all discipline is good for you in some way. Perhaps that’s
why some people seem to like being caned, or force marched, or

4 Quality Programs for the Electron

starved. Frankly, I'd rather dispense with the distraction of
discipline and get on with solving the problem. And for me, the
closer the language lets me stick to my own thought processes,
the easier the solution will be.

Related to all this is the question of readability. The easier a
program is to read and understand, the better it is. I'or a start, a
readable program is more easily modified than an unreadable
one: the first step in modifying anything is understanding what
it presently does, and how it does it. But do programs often need
modifying? Always. If you can think so well, so clearly, that none
of your programs ever needs any modification, you don't need a
computer. Programs need modifying when they go wrong,
which they often do early in their lifetimes; and when they are
expanded — a Startrek program has been working perfectly for six
months when somebody says ‘Why don’t you add Vogons, that
read their poetry to you if they catch you?’. In many cases the
answer is simple: because it would take me longer to ‘get back
into’ the program than it did to write it in the first place. Not a
good situation, and one so easily avoided by writing good
readable programs in the first place.

So how do we make programs more readable, apart from
structuring them according to the way we think? First, we use
meaningful variable names. Why use a name like ‘D’ to represent
a delay factor when we could call it “delay’? There’s no need to go
overboard — the number of starbases remaining would be much
better called ‘bases._left’ than ‘number_of starbases.remaining’
- but you should use names which are clear and unambiguous.

Second, we avoid abstruse programming tricks. It’s all very
well to write ‘delay = delay — finished’ if you happen to know
that ‘finished” is a boolean (i.e. logical) variable which can be
either true or false, and that TRUE is represented in the computer
by —1 and FALSE by 0. But isn’t it clearer to write ‘IF finished
THEN delay = delay + 1'?

And third, whenever we use a facility or technique which isn’t
obvious to a reader, we document it. This might mean keeping a
notebook with comments on the program, or it might mean using
the REM (remark) facility of BASIC to actually put comments in
the program. The latter course is better, because it reduces the
risk that the program and its documentation will become
separated, but the former is often more expedient. have used it in
this book, for instance, because I see no need to make you copy a

Introduction 5

program complete with several dozen REMs when I can just as
easily provide the same information in the text.

I really only have one more general comment on programming,.
You are not programming just for yourself and your computer.
You will at least show your programs to your friends and
relatives, perhaps even subjecting them to the programs the way
people are subjected to other people’s slide shows; and youmight
well want to go further and see the programs published. So they
must be fairly self-explanatory, they must be robust, and they
must use good English. The first of these means that they should
normally be provided with instructions; the second that
wherever possible they should anticipate the user’s actions, and
should be able to recover sensibly if the user does manage to do
something which wasn’t allowed for.

On both of these counts [must excuse myself with regard to
some of the programs in this book. When instructions are already
provided in the text, it seems a little wasteful both of your time
and of my publisher’s resources to include them in the programs.
I would like to think, though, that some of you will make the
effort to modify those programs so that they provide instructions
when run. As for robustness: well, I've tried, in most of the
programs. But, realist that I am, I know that many of you will
deliberately or accidentally find ways of making the programs go
wrong by giving them unexpected input. All that I can say to that
is ‘Congratulations! Now modify the program so that other
people can’t get away with doing the same thing.’

What about the third requirement? Why should computer
programs use good English? Because they are communicating
with people who speak English, and even people whose own
English isn’t perfect will have a slightly better regard for a
computer that says ‘What is the name of the first company?’ than
for one which says 'ENTER NAME1?". Remember that a lot of
people are still scared of computers, and that a lot of this fear is a
fear of the unknown. So long as computers (i.e. their program-
mers) continue to communicate in abrupt upper-case collections
of oddly abbreviated words, with question marks at the ends of
instructions and nothing at the ends of questions, computers
will remain unknown to those people. But make them a little
more familiar, make them seem a little less like something from
outer space and a little more like something from down the road,
and they are well on their way to being accepted as the useful tool
they undoubtedly are.

6 Quality Programs for the Electron

Copying the programs to your computer

By far the easiest way of getting these programs into your
computer is to buy the cassette, and LOAD them as required. End
of sales pitch. If you are going to copy them from the book to your
keyboard, here are a few tips.

Be patient. Some of the programs (notably Robot) are quite
large. Others (notably Hexagons) have atrocious collections of
meaningless numbers in them. Depending on how fast and how
accurately you type, it might be worth copying a program in
several sessions rather than running the risk of becoming tired
and increasing the number of mistakes you make.

You will make copying mistakes. You can’t expect to have one
eye on the page, one on the screen, one on the keyboard, and one
on the dinner, and get it all right - even if they did call you that
awful name at school. There’s really no hard and fast rule for
dealing with mistakes. The best I can suggest is that you try to
understand the program. Then if the computer tells you ‘Divide
by zero at line 400" or ‘No such variable at line 750’ you are a lot
better equipped to deal with the problem than if you come at it
totally blind. One further suggestion that might help, though, is
to watch the punctuation very carefully. Even when you manage
to copy all of the words and numbers correctly, it's very easy to
mistake a semi-colon for a colon, or to leave it out altogether —
with drastic effects on the way the program runs.

To suit the size of the printed page, the programs in this book
have been printed on a 60-character line. You will probably be
typing them in mode 6, with a 40-character line. Don’t let this
difference confuse you. So long as you copy the words, numbers,
and punctuation accurately, the lines will take care of themselves,
The main point to watch is that you press RETURN not when you
reach the end of a line on your screen, nor when you reach the end
of a line in the book, but when you reach the end of a line in the
book and the next line begins with a line number.

Most of the programs have line numbers starting from 100 and
increasing in steps of 10. This means that you don’t have to
bother copying the numbers: just type AUTO100 and the
computer will provide the numbers automatically. Do check
every few lines that you're copying the right line. It can be very
frustrating trying to work out how far back you missed a line. The

Introduction 7

AUTO feature also provides an apparent space between the line
number and the line itself, but this space is not stored as part of
the program. If you actually put the spaces in, they will be stored
with the program, taking up space that you might later want for
adding enhancements to the program. Don't worry that the
programs will look worse when you print them back on the screen
if the space isn’t there — just read about LISTO, and in particular
LISTO?7, in the User Guide.

Another point with regard to spaces. Spaces at the end of a line
will be stored. So if you're using the COPY key to amend a line,
don’t let it run on way past the end of the line — it will be taking
up valuable storage to keep track of aload of blank spaces that you
won’t even know are there.

The programs as printed have several blank lines in them, to
separate the procedures and other logical blocks of program from
one another. This is purely to enhance their readability, and as
you have printed copies in the book you're unlikely to spend
much time reading the programs on your screen, so feel free to
ignore the blank lines in your own version. If you are using
AUTO to enter the programs, the easiest way of ignoring the line
when its number comes up is simply to press RETURN. If you do
want to include the blank lines, you produce one by following the
line number with at least one space before pressing RETURN.

With regard to the layout of the programs, I must point out that,
constrained by the size of this book, I have deliberately overused
the multi-statement line, often joining several quite unrelated
statements on the same line. This is one practice which I hope
you won't learn to copy except under similar constraints.

A last tip on copying the programs. Whenever you save a
program on cassette, save it twice - preferably on two different
tapes. I was lucky: the first time I lost a program it was a little
30-line affair, so I hadn’t wasted a lot of effort. I have known
people lose programs bigger than any in this book, simply by
saving them in a hurry, not bothering to check or resave them,
and finding later that the recording had one bad block in it.
Believe me, the significantly reduced risk of program loss is well
worth the extra effort of taking backups.

And related to that, if you're going to try running a program
before you've copied it all in (just to see what you've got so far),
save it first. An incomplete program can sometimes cause a ‘Bad
program’ error, from which there seems to be no recovery. You

8 Quality Programs for the Electron

can’t even list the original program to continue copying it: all is
lost — unless you have a copy on tape.

Learning from the programs

After each of the programs in this book is a set of comments on
the particular features of BBC BASIC (or the Electron) which have
been used. The comments do not, indeed could not, exhaustively
explain every line of the program. But you must understand every
statement in every program if you are to make full use of this book
as an aid in learning BBC BASIC. Here the User Guide is com-
pletely indispensable. With every statement you see, ask yourself
if you understand it. Then see whether I've written a comment on
it. Then, if you don’t understand it, read the appropriate section
in the User Guide. Understanding will dawn, and you'll be well
on your way to mastering the language.

One of the best ways of learning is to modify. Each program is
furnished with a series of suggestions for changes you might care
to make. These are changes to what the program does, and you
should in no way feel that the list of suggestions is exhaustive. I
like to think of these programs as being ‘core’ ideas, ideas on
which you can build to produce bigger and better programs. You
might also find ways of changing how the program does things;
there are always many ways of achieving the same object in
programming, and I would be a fool to think that I have found the
best way in all of these programs.

In other words, the programs are now yours: make the most of
them, and of your Electron.

ection 1

pplications

[share a house with two others, and we each pay equal shares of
most of the bills. The telephone bill, though, requires special
treatment. Alison and Dean have no desire to subsidise my
occasional calls home to Australia, and neither Dean nor [
particularly wish to help fund Alison’s frequent calls to Ireland.
Clearly we need a fairly accurate way of calculating the costs of
any calls we make, be they 30-second local calls or 30-minute
long-distance ones.

One can buy for £40 or so a machine which will time telephone
calls, calculate their costs, and even assign the costs to any of
several individual records. This program will fulfil the first two of
those tasks admirably; the third is still left to trust. Of course it
would be silly to buy a computer just to calculate telephone costs,
but when one has the computer, it might as well be used to save
the £40.

My circumstances are by no means the only ones in which the
program will prove useful. Even if you only want to compare your
bill with your own estimates of use; even if you only want to see
how fast the pounds mount up as you idly chat long-distance in
peak time; even if you only want to make sure that you finish a
call just before the next 5p is added to your account: then this
program will help you.

To know how the program works, you must first understand
the telephone billing system. Any quoted prices like "74p for 3
minutes” are only approximate. In fact the whole system works
on a single ‘charge unit’ (which at time of writing is 4.3p plus
0.645p VAT in Britain), and each class of call has a particular time
allowed for the charge unit. For example, a local call made at the
cheap rate will get 8 minutes for one charge unit, while a long-
distance call in peak time will only have 12 seconds for the same
unit.

When you make a call, the first charge unit registers on your

12 Quality Programs for the Electron

account as soon as the ringing is answered. In effect, you have then
paid in advance for the first chargeable period, and this payment
stands even if you only use a small fraction of the time. When the
period expires, a second charge unit is added to the account, and
you have paid in advance for the second period. This charge-and-
wait loop continues until the call finishes. Although this
particular version of the program uses British TELECOM data,
readers in other countries should find that the system is the same
— all that will differ is the figures used as data.

Needless to say, the program’s details of charge unit and
allowed times will need to be updated whenever telephone
charges are changed (there’s optimism for you —I say ‘changed’
rather than ‘increased’). For that reason they are clearly docu-
mented, and you should have no difficulty amending them.
When charges are changed, all you need do is ask British
TELECOM for a copy of the free “Telephone Charges’ leaflet, in
which you will find complete details of the new costs or times.
The leaflet used for this version was issued in February 1982, and
became current on 1 May 1982.

Telephone Costs 13

How to use the program

Because people other than expert programmers are likely to want
to use this program, I have tried to make it fairly resilient. It tells
the user reasonably clearly what is required at each stage, and
goes a certain way toward recovering if it receives unexpected
input. In other words, all youneed do to use it is type RUN’, and
then do as it asks.

atha other'end,_and

As the minutes slip by . . .

Program listing

100 REM Telephone costs, by Simon.

110 MODE 1

120 unitcost=0.0494%5: REM Unit cost of 4.3p plus VAT.
130 DIM intervals%(4,3)

140 FOR 1i%=1 TO 4

150 FOR j%=1 TO 3

160 READ intervals%(i%, j%)
170 NEXT
180 NEXT

190 REM

14 Quality Programs for the Electron

200 REM FEXEERFAKAA KA XX EXFAXAXEAX XA

210 REM

220 REM Sets of unit cost intervals for peak, standard,
230 REM and cheap rates. Intervals, in seconds, from
240 REM British TELECOM's May 1982 leaflet.

250 REM

260 DATA 90,120,480: REM Local

270 DATA 30,45,144; REM A-rate

280 DATA 12,16,48: REM B-rate

290 DATA 15,20,60: REM Low-cost routes
300 REM

310 REM *¥¥HXERRKRRRKRHREK KR KKK IR KK KKK

320 REM

330 CLS: PRINT: PRINT
340 PRINT"I'1l keep track of the cost of a phone call as
you make 1it."

350 REPEAT
360 INPUT"Is this peak time (weekdays Yam-ipm), standa
rd time (weekdays B8am-9am or Tpm-6pm), or cheap time (a

nything else)",time$

370 t$=LEFT$(time$,1)

380 IF ASC{t$)>90 THEN t$=CHR$(ASC(t$)-32}

390 IF t$="P" THEN period%=1 ELSE IF t$="S" THEN period%
=2 ELSE IF t$="C" THEN period%=3 ELSE PRINT"Sorry, I don't u
nderstand. Please reply with P, S, or C.M

40O UNTIL t$="P" OR t$="S" OR t$="C"

410 PRINT'!'"There are 4 types of distance, for chargi
ng purposes:-"

420 PRINT"1 - 1local calls"”

430 PRINT"2 - a-rated trunk calls {(up to 56km)"

440 PRINT"3 - b-rated trunk calls (over 56km)"

450 PRINT"4 - gpecial advertised low-cost routes,'"'!

460 REPEAT INPUT"Which number (1 to 4) corresponds to £
his call",calltype%

470 UNTIL calltype%>=1 AND calltype%<=i

480 chargeperiod%=intervals%(calltype%,period%)

490 cost=unitcost

500 CLS: PRINT TAB(0,5);

510 INPUT"Press RETURN when the call is answered at the o
ther end, and 1'l11 start the clock.'" dummy$

520 TIME=0: prevtime=TIME

530 6%=&20206: REM To make pounds and pence print neatly.

540 COLOUR131: COLOURO: PRINTTAB(0,19)" (Press ESCAPE when

the call finishes.) ";

550 COLOUR130: PRINTTAB (4,12)SPC(30)TAB(4, 14)SPC(30}

560 PRINTTAB(4,13)" Cost so far is";SPC(13)

570 COLOUR1: PRINTTAB(25,13)"£ ";cost;TAB(L, 14);

580 ON ERROR GOTO 670: REM To trap the ESCAPE

590 REPEAT: REM Until ESCAPE is pressed.

600 REPEAT: REM Until a time unit expires.

610 IF TIME-prevtime>chargeperiod%*100/31 THEN prevtim
e=TIME: PRINT">",

Telephone Costs 15

620 UNTIL TIME>100*chargeperiod%: -REM Wait for the right
number of secs.

630 TIME=0: prevtime=0: REM Next period: restart clock.

640 cost=cost+unitcost

650 PRINT TAB(27,13);cost; TAB(4, 14)SPC(30)TAB(4,14);

660 UNTIL FALSE: REM An infinite loop till broken out of.

670 REM We get here when ESCAPE is pressed, and reset the
colours.

680 COLQUR128: COLOUR3

690 ON ERROR OFF

700 PRINT TAB(0,20): €%=10

710 REM And that's reset the normal number-printing mode.

720 END

Comments on the program

Being the first program in the book, this one will be analysed in
some detail. Many of the later programs will be looked at in rather
less depth.

1. Blocks of background colour.

Lines 540 to 570 show how easily blocks of colour can be used to
give impressive effects. If you change the background to a new
colour and PRINT something, it will appear in a block of that
background colour. This even applies to spaces, which are used
in line 550 to make the main box taller than a single line of print.

2. The use of @%.

The program’s calculation of the cost, in pounds, will generally be
a useless-looking number like 1.254623. We would like this to be
displayed as £1.25. There are several ways of achieving such a
goal (see, for example, IINchop in the fuel consumption
program), but the use of @%, the formatting variable, is the
easiest if the same format is to be used for all numbers output in a
particular program segment. Details of how to use @% are given
in the User Guide.

3. Program documentation — the REM statement.

BASIC - even BBC BASIC — is pretty difficult stuff to read. It is
seldom obvious what a program will do, let alone how it will do
it. So any program which is ever to be read (and [said my bit
about that in the introduction) must be well documented, either
in REM statements or in supporting text. This program is spread

10 SOIUMLLLY Progrdis JOr THeE CIectyon

fairly liberally with REMs. There are those which explain an
abstruse piece of programming (e.g. lines 530, 710); those which
help the reader to grasp the program’s structure (lines 590, 600);
those which explain the data used (lines 120, 220); and those
which simply help enhance the program’s layout (lines 190, 200,
210). Having a written copy in the book, you need not type in the
REMs if you don’t want to; but do adopt the practice of using
them at least as liberally in your own programs.

4. Input resilience.

To what lengths should one go to make a program accept and
recognise different forms of input? The answer is very much a
question of choice; but as a general rule, the more restricted the
program 1is in its ability to interpret input, the more trouble it
should take to tell the user what is required. Unfortunately, the
more trouble it takes, the longer it is, and the more space it takes
in the computer’s memory, and the longer it takes to type in in the
first place. Because this program is likely to be used by people
other than programmers, I have tried to make it fairly resilient.
There are still some possible inputs which will confuse it — but I
have assumed some common sense on the part of even the
- inexperienced user.

5. Use of integer variables.

Why bother to use integer variables? They’re such a bother to
type, with that siily shift character at the end. What’s more, they
actually take up more space than real variables, because of the
space taken by the % on the end of each one. The answer is
basically that they make the program just that bit more readable,
In making us realise that the variables in question can only ever
take whole-number values, the %s help us to grasp better the
program’s overall intention.

6. TheIF .. THEN .. ELSE . . statement.
In most versions of BASIC, the statement in line 390 would
consist of several lines; perhaps

3901F t$ = “P” THEN period % = 1: GOTO 410
3921F t§ = “S” THEN period % = 2: GOTO 410
3941F t$ = “C” THEN period % = 3: GOTO 410
396 PRINT “Please reply with P, S, or C.”: GOTO 360

Telephone Costs 17

What's wrong with this? Basically, the abundance of GOTOs
makes it much harder to follow even in such a small program
segment. In a larger one, it makes the whole thing virtually
incomprehensible. The IF . . THEN . . ELSE . . is a very powerful
programming tool when properly used. A word of warning,
though, especially to those who have learned programming in a
proper structured language: don’t try using IF . . THEN IF . .
THEN . . ELSE . . ELSE . . . The interpreter treats this one very
oddly: instead of trying to match the ELSEs with the IFs when a
condition fails, it simply scans the line for the next ELSE. So the
first ELSE will be executed if either IF fails, and the second one
will never be looked at. '

7. Tidying up at the end.

You should always take pains to reset any system setting that you
have changed in a program. The only relevant item here is @%.
To see the sort of thing that can happen if you don't reset it, try
leaving it out and running the program. Then type, say, PRINT 5
in the immediate mode (i.e. without a statement number).

8. The PRINT statement.

Did you notice the odd numbers of spaces in the PRINT and
INPUT statements? Look, for instance, atlines 360 and 410. If you
didn’t notice, the chances are that your program produces
messages with the words split at the ends of lines. An easier way
of regulating the lines, which will be used in later programs, is
the apostrophe. Notice the use of two apostrophes at the
beginning of line 410; this is to ask for two blank lines to be
output. It has exactly the same effect as the PRINT: PRINT of line
330. The same device can be used to great effect within a message,
as will be seen later. Another point to notice is the use of
semicolons within PRINT statements. These are used to avoid
unwanted spaces in output, and assist greatly in its precise
organisation.

Suggested amendments to the program

1. If you make overseas telephone calls you will want the
program to time these as well. The modification is extremely easy
(I've already made it to my own version); the relevant data comes

18 Quality Programs for the Electron

straight from British TELECOM's leaflet. So why didn’t I include
overseas data in this version? Because I didn’t imagine that many
readers would have any use for it, and it thus seemed to involve
unnecessary extra typing,.

2. 1f you don’t live in Britain, you will need to replace the data
with that relevant to your own charging system. As I remarked
earlier, I imagine the system will be the same — only the figures
should need changing.

3. Is it worth the effort of finding and loading the program
whenever you want to make a phone call? Yes, if you streamline
the process slightly. As a first way of reducing the bother, make
sure that the program is at the beginning of a tape, so that it can
be found easily whenever it is required. As a second and more
elaborate suggestion, try rewriting the program as a procedure,
which you can include in every program you write. Then it can
always be used simply by typing its name, no matter what
program you are currently working with. If you intend to do this,
I suggest that you dispense with the REMs and much of the input
resilience, to save space. You can compress all of the data on to one
line; and indeed many of the other statements can be combined
in multi-statement lines. You will also need the RESTORE
statement to ensure that the procedure always uses its own data.

4. It is often useful to know the elapsed time of a phone call as well
as the cost. Adapt the program so that it prints the elapsed time
when it changes the printed cost.

-~ Day of the Week
~ (and Birthday)

Given the trouble that we normally have when we try to
systematise any aspect of nature, we have a remarkably
systematic calendar. Granted, it was messed around a bit by the
jealousy of the Caesars — their original scheme simply alternated
months of 30 days with months of 31, except in leap years.
Granted, it became a little more awkward in 1582, when Pope
Gregory saw the need to reduce the number of leap years. But it's
still remarkably systematic — nature isn’t often so co-operative.

The essential system as it stands at present is that we have a
cycle of 400 years, of which 303 have 365 days each, and the other
97 (called leap years) have 366 days each. Because the purpose of
the leap years is to keep the calendar more or less in tune with the
actual seasons, they are spread out as evenly as possible. Every
year which is divisible by four is a leap year — except that if
divisible by 100 it isn’t aleap year— except that if divisible by 400
it is a leap year. Simple, isn't it? It means, for instance, that the
year 1900 wasn’t a leap year, but 2000 will be (or was, if this book
lasts that long).

One aspect of the calendar system which is generally over-
looked is the relationship between dates and days of the week.
The 400-year cycle just happens to have an exact number of
weeks, so day N of week M of one cycle falls on the same day of
the week as day N of week M of any other cycle, no matter what
values we give to N and M. Given other aspects of the system,
this makes it possible to work out the day of the week for any date
in the Gregorian calendar.

There are lots of ways of doing this. The method (or algorithm) I
have chosen is the one described by Martin Gardner in his book
‘Mathematical Carnival’. It is by no means the most compact
method for inclusion in a program. It just happens to be the one I
know, because it is simple enough to use mentally.

Because the actual algorithm is so simple, and because it might

20 Quality Programs for the Electron

be required in all sorts of situations, I have written it as a
function, FNwhichday, which simply returns a string containing
the standard 3-letter abbreviation of the day.

But knowing what the most likely use of the function will be —
to establish what day of the week a person was born on — [have
included (at no extra price) a program to accept a date of birth and
print the appropriate line of the old rhyme. This program has a
bonus, a fairly resilient date-input routine which might well
come in handy if you do anything at all with dates.

How to use the function

The function can be used independently of any program. Just
type it in (lines 9000 to 9120) and call it. Remember that a function
returns a value, so in calling it you must ask the computer to do
something with that value: print it, for instance. Try

>PRINT FNwhichday(7,2,51)

The computer should respond “WED”".

More normally, though, you will use the function within a
program. The program can make sure that the function is given
the information it requires in the form in which it requires it, and
can use the result as it sees fit.

There are various ways of incorporating the function in a
program. The easiest is to have the function in memory (having
typed it in or loaded it from tape), and then to type the rest of the
program and save the whole lot together.

If you already have the function and the program stored in
separate files, it seems a bit silly to have to type one of them again
after loading the other. In these circumstances what you should
do is *SPOOL the shorter of them (i.e. store it as a text file, rather
than as a BASIC program), LOAD the longer one, then *EXEC the
spooled one (read the text file as if it were being typed at the
keyboard). There will be a couple of syntax errors indicated, due
to odd extra bits (like >LIST) in the spooled file, but a LIST will
show that the two sections have been successfully merged. The
whole thing can then be saved, run, and anything else that one
normally does with programs. This technique is described in the
User Guide, in the chapter on merging two BASIC programs.

Day of the Week (and Birthday) 21

Two warnings if you use *SPOOL and *EXEC. First, make sure
that the line numbers in the two segments are different. Just as
typing a new line with the number of an old one will replace the
old one, so will “EXECing a new line with the same number as an
old one.

Second, don’t forget to turn the spooling off. When you type,
say, *SPOOL"WHICHDAY", you are asking the computer to
store in WHICHDAY everything that appears on the screen up to
and including the second *SPOOL command (this time without a
filename). So if you forget the second command, things will just
carry on being sent to the spooling file as you type them. I've
done this once or twice; the results are interesting, but not
particularly productive.

How to use the program

There is rather less to say about how to use the birthday program
which I have written with the function — it asks for what it wants
and prints a message. That’s all. If given input which isn’t in the
expected form, it has a pretty good try at interpreting it before
giving up.

It might be a useful exercise to type the function first and save it:
type the rest of the program and save it; and then merge the two
using *SPOOL and *EXEC. You'll get a feel for what merging
programs involves; and if you do manage to lose everything
through some mistake that I can’t envisage, at least you still have
the program in the book, and can try again.

Program listing

100 REM BIRTHDAY - a test program for FNwhichday.

110 MONTHS $= "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC™

120 MODE6: PRINT''"What date were you born on?"'!

130 INPUT'" day? "DD

140 IF DD<1 OR DD>31 THEN PRINT"That's odd — I normally on
ly get days'"'"between 1 and 31! Try again.": GOTO 130

150 INPUT'" month? "MM$

160 MM=VAL{(MM$)}: IF MM<>0 THEN GOTO 210

170 MM$=FNuppercase (MID$ (MM$,1,1)) +FNuppercase (MID$ (MM$,2,
1))+FNuppercase (MID$ (MM$,3,1))

22 Quality Programs for the Electron

180 FOR I=1 TO 12
190 IF MM$=MID$ (MONTHSS,3*(T-1)+1,3) THEN MM=I
200 NEXT
210 IF MM<=0 OR MM>12 THEN PRINT"That month doesn't exist.
Try again.™: GOTO 150
220 IF DD>FNdaysin(MM) THEN PRINT"There aren't that many d
ays in that"'"month. Try again.": GOTO 130
230 INPUT'" year? "YY$: YY=VAL(YY$): IF YY<=0 THEN PRINT"
That's not a year! Try again.'": GOTO 230
240 IF YY<100 THEN YY=YY+1900
250 IF DD=29 AND MM=2 AND NOT FNleap{(YY) THEN PRINT"Sorry,
that wasn't a leap year."'M Try again.": GOTO 130
260 DAY$=FNwhichday (DD,Mv, YY)
270 IF DAY$="MON" THEN PRINT'''Monday's child is fair of f
ace . . .Mt
280 IF DAY$="TUE" THEN PRINT''"Tuesday's child is full of
grace . ., ."
290 IF DAY$="WED'" THEN PRINT''"Wednesday's child is full o
f woe . . . ™
300 IF DAY$="THU" THEN PRINT''"Thursday's child has far to

go . . .M
310 IF DAY$="FRI" THEN PRINT''"Friday's child is loving an
d giving . . ™"
320 IF DAY$="SAT" THEN PRINT''"Saturday's child works hard
for amtn living e

330 IF DAY$="SUN'" THEN PRINT''"The child that is born on™'
f the sabbath day"'"Is bonny, and blyth, and
good, and gay.™

340 END

350

360 DEF FNdaysin (MONTH)

370 ON MONTH GOTO 400,380,400,390,400,390, 400,400,390, 400,
390, 400

380 =29

390 =30

400 =31

410
- 420 DEF FNuppercase (CHAR$)

30 LOCAL X$

W40 X$=LEFT$(CHARS,1)

W50 TIF ASC(X$)>90 THEN =CHR$(ASC(X$)-32) ELSE =X$

60

9000 DEF FNwhichday (DAY, MONTH, YEAR)

9010 LOCAL CLUE,DUMMY,CENTURY,KEY$,DAYSS

9020 KEY$="144025036146"

9030 DAYS$="SATSUNMONTUEWEDTHUFRI"

9040 CENTURY=YEAR DIV 100: IF CENTURY=0 THEN CENTURY=19: YE
AR=YEAR+1900

9050 TIF YEAR<1753 THEN PRINTMWARNING: The Gregorian calenda
r was"!"introduced in Europe in 1582, and in"'"English~speak
ing countries in 1752."!'"Dates before this will not be inter
~-"inreted correctly.®

Day of the Week (and Birthday) 23

9060 IF CENTURY=18 THEN DUMMY=2 ELSE IF CENTURY=19 THEN DUM
MY=0 ELSE IF CENTURY=20 THEN DUMMY=6 ELSE IF CENTURY=21 THEN
DUMMY=4 ELSE CENTURY=CENTURY-4 *SGN (CENTURY-19): GOTO 9060

9070 IF FNleap (YEAR) AND MONTH<3 THEN DUMMY=DUMMY~1

9080 CLUE=YEAR MOD 100

9090 DUMMY= (DUMMY+DAY+VAL (MID$(KEY$,MONTH,1))+CLUE DIV 12+C
LUE MOD 12+CLUE MOD 12 DIV 4)MOD 7

9100 =MID${(DAYS$,DUMMY*3+1,3)

9110
9120 DEF FNleap(YEAR)=YEAR MOD 4=0 AND YEAR MOD 100<>0 OR Y

EAR MOD 400=0

Comments on the program

1. DATA by any other name.

Functions and procedures often require information which is
unlikely to be floating around in the main program. To be com-
pletely self-contained, they should include such information in
some form. The first idea that might occur to us is to put the
information in DATA statements and READ it each time the
function is called.

'There are two problems with this approach. First, while we can
always use RESTORE at the beginning of a function, to make sure
the right data will be read, it's not so easy to ensure that the data
pointer is returned to the right place in the main program when
the function finishes. But if the function is to be usable in the
general program, it mustn’t do things like messing about with
the program’s data.

Second, if we were to have something like the number of days
in each month, or the name of each day, in a DATA statement, we
would probably read it into an array. The array would need
dimensioning within the function — it’s no good providing a
function which ‘can be used in any program just by typing its
name — so long as you also include these DIM statements in the
program, and make sure you don’t use these variable names in
the program, and . . .”. Such conditions would make the function
so messy to use that you'd never bother. But an attempt to execute
the same DIM statement twice will cause an error, so a function
with its own DIMs can only be used once in any run of a program.
That’s pretty restrictive. So we use a string to simulate an array.
The ‘array’ of key numbers, one for each month, is kept in
the string KEY$, and the Nth one is extracted by use of

24 Quality Programs for the Electron

MID$(KEY$,N,1). The array of day names is kept in DAYS$;
knowing that each name is 3 characters long, we extract the Nth
name with MID$(DAY$,N*3-+1,3) — a bit trickier, but still clear.
Of course it doesn’t matter how often we assign a value to a
string, even if it's the same value every time — so we have a nice
useful (and compact) way of writing data in functions.

2. Qutput from functions and procedures.

Generally speaking, it's not a good idea to have functions or
procedures print results. They should simply return the results to
the main program, which will deal with them as it sees fit.
Imagine a FNwhichday which prints something like “That day
was a Wednesday.” In some programs that would be fine, but
other programs (the birthday program, for instance) want to do
something a little different with the result. It isn’t difficult to
imagine a program which uses the day of the week without
printing it at all. So we don’t print results in functions and
procedures, we just return them to the program.

The exception to this rule is when an error occurs. Just as the
computer will stop running a program if it finds an error, so a
program can be permitted to do something exceptional if it finds
one. Hence the use of PRINT in line 9050: if the user (or the
program) is trying to do something which might lead to an
incorrect result being returned by the function, an unexpected
message on the screen is justified.

3. Local variables.

As I remarked above, functions should really be completely self-
contained; their only interaction with the program should be the
parameters (the values passed in in brackets) and the result which
is passed back. They certainly shouldn’t use variables used by the
main program — they might leave them with completely wrong
values.

This is why functions and procedures have local variables.
Even if we use a local name which has been used in the outside
program, the LOCAL ensures that the two will remain distinct.
The variable used in the main program will be inaccessible to the
function, and so cannot be corrupted by it. When the function
finishes, the local variable ceases to exist, and the original
variable is restored, with whatever value it had before the
function was called.

Day of the Week (and Birthday) 25

Ideally every function should use only local variables and its
parameters. In practice there are exceptions to this rule: first
through laziness, or the desire to save space, by using variables
which it is known the main program has no imminent use for;
and second because BBC BASIC gives us no way of returning
more than one value to the main program. A function can return
one value; but if we want several values returned we must simply
use the variables from the main program.

Fortunately this function only returns one value, so it need not
use any variables from the main program. Every variable used in
it is either a parameter or local.

4.1F...THEN .. ELSE. ..

Line 9060, in the function, shows a proper use of the [F . . . THEN
... ELSE. .. construct. There are several conditions, only one of
which can be true. Rather than testing each of them in turn, we
test in such a way that as soon as one is found to be true, no more
testing is done.

Lines 270 to 330 of the main program show the opposite situa-
tion: seven separate and distinct IF statements for seven mutually
exclusive conditions. Why? Because the language doesn’t allow
room in one statement for the more correct form. As with many of
the features of these programs, this is making the best of a less
than ideal situation.

Notice, too, the use of DAY$ in line 260. The result of the
function is to go through seven tests, but it would be silly to
compute that result seven times. So we call the function once,
store its result in DAY$, and then test DAY$ seven times.

5. Input resilience and GOTOs.

One of the least predictable aspects of any program is what the
user is going to type in to it. Look at the GOTOs between lines 140
and 250. Every one of them deals with an unexpected piece of
input. It is possible to deal with this kind of situation without
GOTOs, but it tends to make a program even more cumbersome
than it is with them.

6. Little functions: functions within functions.

There are three little functions within the program, one of them as
part of FNwhichday. Each of these functions is intended to avoid
the repetition of pieces of program. Line 170 would be extremely

26 Quality Programs for the Electron

awkward without the use of FNuppercase. It would also be more
difficult to read, simply because ‘uppercase’ is more meaningful
than the equivalent code.

FNdaysin is interesting. Programmers normally use an array to
store the number of days in each month, but it strikes me as the
ideal situation for a function with an ON . . . GOTO . . . state-
ment. Because the function ends as soon as the right statement
has been gone to, we don’t even need more GOTOs to bring
things back to the same point after their dispersion.

Notice that FNleap goes with FNwhichday, as a sort of function
within a function. It is also used by the main program, but of
course it need not be defined there as well. The same FlNleap can
be used by both.

Suggested amendments to the function

1. If you expect to use the function in a program in which a
printed warning about the Gregorian calendar would get in the
way, the fix is easy. Simply have the function return some special
string (“CAN"T TELL"”, for example) if the year is doubtful, and
have the program deal appropriately with such a string.

Difference

Compared with finding the day that a given date falls on, finding
the difference between two dates is quite difficult. First there is
the number of whole years between the two, taking account of
which ones are leap years. Then there is the difference between
each date and the year’s end, which must take account of the
different numbers of days in each month.

I don’t know of any nice little algorithm for computing the
difference. It's simply a matter of ploughing through an obvious
routine. This function does so in the most efficient way I know.
As with FNwhichday, it is written as a function so that it can be
used in any program without alteration.

Also as with whichday, the line numbers are fairly high, so that
the function is unlikely to have the same numbers as the program
it is to be used with. I have also made the numbers distinct from
those used in whichday, as it is quite conceivable that a program
would want to use both functions.

The function has enough REMs in it not to need further
explanation here.

How to use the function

You can use the function simply by loading it and then calling it:
something along the lines of

>PRINT FNdatediff(7,2,1951,14,10,1959)

(Notice that unlike FNwhichday, this function expects the year in
full; ‘59" will be taken to mean 59, not 1959.) .

You are likely to want something more from the function than
this, though. So it should be combined with whatever program

28 Quality Programs for the Electron

you think is suitable, either by loading it and then typing the
program, or by merging function file and program file in the -
manner described for FNwhichday.

Function listing

9500 DEF FNdatediff(D1,M1, Y1,D2,M2,¥2)
9510 REM By Simon. Finds the difference between two dates.
Assumes valid Gregorian dates.
0520 LOCAL M,DIFF
9530 REM DIFF will be the number of days, as calculated
at each stage.
9540
9550 REM If the dates are in the wrong order, swap them.
0560 TF Y2>Y1 THEN GOTO 9620 ELSE IF Y2<Y1 THEN PROCswapdat
es: GOTO 9620
9570 REM If we get here, the years are the same.
9580 IF M2>M1 THEN GOTO 9620 ELSE IF M2<M1 THEN PROCswapdat
es: GOTO 9620
9590 REM If we get here, years and months are the same.
9600 IF D2<D1 THEN PROCswapdates
9610
9620 REM Find difference as if dates were in same month.
If they're in the same month and year, that's it.
9630 DIFF=D2-D1
9640 IF M1=M2 AND Y1=Y2 THEN =DIFF
9650
9660 REM Subtract the whole months from the beginning of
the first year to the first date.
9670 IF M1>1 THEN FOR M=1 TO M1-1: DIFF=DIFF-FNdaysin(M): N
EXT
9680 REM We only subtracted 28 days for February - should
it have been 297
9690 IF FNleap(Y1) AND M1>2 THEN DIFF=DIFF-1
9700
9710 REM Add the whole months in the second year. Again,
check for 29 days in February.
9720 IF M2>1 THEN FOR M=1 TO M2-1: DIFF=DIFF+FNdaysin(M): N
EXT
9730 IF FNleap(Y2) AND M2>2 THEN DIFF=DIFF+1
9740
9750 REM If the dates are in the same year, that's it.
9760 IF Y1=Y2 THEN =DIFF '
9770
9780 REM Add the whole years between the two dates.
9790 DIFF=DIFF+365%(Y2-Y1)}
9800

Date Difference 29

9810 REM And a little fiddling to add the extra days for
any more leap years in that interval.

9820 IF NOT FNleap(Y1) THEN REPEAT Y1=Y1+1: UNTIL FNleap (Y1

} OR Yi=Y2

9830 IF Yi1=Y2 THEN GOTO 9900 ELSE DIFF=DIFF+(Y2-Y1-1) DIV 4

+1

9840 Y1=100%(Y1 DIV 100)+100

9850 IF Y1>=Y2 THEN GOTO 9900 ELSE DIFF=DIFF-(Y2-Y1-1) DIV
100 -1

9860 Y1=H00*((Y1-1) DIV 400)+400

9870 IF Yi<Y¥2 THEN DIFF=DIFF+(Y2-Y1-1) DIV 800+

9880

9890 REM That's all!

9900 =DIFF

9910
9920 DEF FNleap (YEAR)=YEAR MOD 4=0 AND YEAR MOD 100<>0 OR Y

EAR MOD 4#400=0

9930
g940 DEF PROCswapdates

9950 LOCAL DUMMY

9960 DUMMY=Y1: Yi=Y2: Y2=DUMMY
9970 DUMMY=M1: Mi=M2: M2=DUMMY
9980 DUMMY=D1: D1=D2: D2=DUMMY
9990 ENDPROC

10000

10010 DEF FNdaysin (MONTE)

10020 ON MONTH GOTO 10050,10030,10050,10040,10050,10040,1005
0,10050, 10040, 10050, 10040, 10050
10030 =28

10040 =30

10050 =31

Comments on the function

1. Avoiding repeated additions.
Just for curiosity I once wrote a function which calculates the
difference between two dates by adding days to the first until it
reaches the second. It's very simple — all it involves is recog-
nising when the added day has reached the end of a month, and
making the appropriate adjustment. The function took about 30
seconds to work through a year, so was taking times like 20
minutes to calculate somebody’s age in days. Not very useful.
Many date-difference algorithms are a little more sensible: they
add single days from the first date to the end of the first year, and

30 Quality Programs for the Electron

from the beginning of the second year to the second date; then add
the appropriate number of 365s; then adjust for leap years. But
there is still a lot of repeated addition involved, and the programs
still take a long time to run.

The next step is to avoid the adding of days within the two
partial years. As can be seen from this function, that isn’t really
difficult: lines 9670 and 9720 take care of it quite easily, for a
saving of up to a minute in each run.

But very few programs take the final step, that of avoiding
repeated additions for the leap-year adjustment. It is certainly
difficult to decide how many leap years are in a given span. Most
people, if asked the number of leap years in a six-year period,
would say one. But depending on the starting year, there could
easily be two (as, for instance, in the years 1983-1988 inclusive),
or even none (as in 1897-1902).

So adjusting for the leap years in a span of known length isn't
easy. We must first move the span to start at a leap year (line
9820); then calculate the number of leap years from there,
ignoring the odd turn-of-the-century years (line 9830); and then
use a similar technique to adjust for the ends of centuries (lines
9840-9870).

As a boost to my ego I have run this function in comparison
with one which does everything else in much the same way, but
which uses repeated additions, a year at a time, to compute the
number of leap years involved. Working on random pairs of dates
between the year dot and 4000, this function always ran in one or
two tenths of a second, while the other one (which came from a
published program) took up to 20 seconds.

(By the way, did you know that the year dot is so called because
the arabic symbol for zero is a dot?)

2. The standard swapping routine.

Some will consider it so obvious that it doesn’t deserve a
mention, but there are still lots of people who aren’t familiar with
the standard routine for swapping two objects. In real life it’s easy
enough to say ‘let X take the value of Y and Y take the value of X'.
But in a computer program, for the present at least, we can’t do
two distinct things simultaneously. So we must first say ‘let X
take the value of Y’, and then say ‘let Y take the value of X’. The
trouble with this is that by the time we get to the second
statement X no longer has its original value -~ it has been given

Date Difference 31

Y’s value. So ‘let Y take the value of X’ now means the same as ‘let
Y take the value of Y’.

Hence the dummy variable in PROCswapdates, and in any
routine whose purpose is to swap items. The variable is used to
hold the value which is going to be wiped out by the first of the
two assignments (an assignment is what we call a statement of
the form ‘let X take the value of Y’); and the second assignment
takes this saved value from the dummy.

3. A different version of FNdaysin.

FNdaysin in the birthday program returned a value of 29 for
February. The version in this function returns 28. Why the
difference? Because the birthday program uses FNdaysin to
check whether an input date has too many days in a month. It
must assume that February has 29 days, at least until it finds out
whether the year is leap. The adjustment to a possible 28 days is
made later.

In this function things are the other way round. It is first
assumed that February has 28 days, this being both more likely
and easier to deal with. The check for the 29th day is made once
the main calculation at that stage is over.

It is possible to use either one version of FNdaysin in both
programs, with suitable adjustment, but it would be awkward in
one of them. Of course if you want a program which both handles
date input cleverly, and calculates differences, you might decide
to accept that awkwardness. Alternatively, you could keep both
versions, giving one of them a different name.

4. Use of GOTOs.

As you might have gathered by now, I don’t like GOTOs. T still
use them in BBC BASIC, but] do like to see that each GOTO in a
program I write can be justified by pointing to a weakness in the
language.

The GOTOs in lines 9560 and 9580 can be ascribed to the lack of
an IF . . THEN IF . . THEN . . ELSE . . ELSE . . construct in the
language, as mentioned in comment 6 to the telephone costs
program. The one in line 9830 is because there are no compound
statements, and the segment being skipped is too big for a single
statement. (A compound statement is a whole series of state-
ments which “pretends’ to be one statement for purposes of
following an IF.) The one in line 9850 isn’t strictly necessary — a

32 Quality Frograms for tre Liectron

long statement could have been used — but it serves to
emphasise the parallel between that line and line 9830, and so
makes the function easier to understand.

Suggested amendments to the function

1. Leave out the REM statements. [t might be instructional to use
TIME to see how long the function takes for a given pair of dates
with and without the REMs.

