Just for a change, here’s a reaction-speed game. You are
controlling the movement of a snake in an enclosed area. The
snake is moving constantly — you can’t do anything to alter that;
what you can control is its direction. But even here the game
differs significantly from most direction-control games, in that
you control the snake’s direction from its point of view, rather
than yours. You use the left and right arrow keys, but they don't
mean screen-left and screen-right — they mean the snake’s left
and the snake’s right, regardless of which way the snake is facing.
This is a very good exercise in visualisation.

How to use the program

A page of instructions is displayed, and you are invited to press
any key to start. Before you do, make sure that you have fingers
on the left and right arrow keys: you won't have time to find the
keys once you've started the game. Now press a key; the ring will
be displayed, with the snake in the middle and moving upward.
If youdon’t turn it, it will crash straight into the top wall, and that
run will be over. So turn it.

Almost undoubtedly your first problem will be that you hit the
left key, then theright key, then the left key, then the right key; so
of course the snake turns to its left, then its right, then its left,
then its right — and ends up moving in the direction it started in.
You might have delayed it somewhat, but it's still crashed into
the wall. My solution to this sounds drastic, but I promise it
works: ignore one of the two keys. While you're getting the feel of
the game, decide on one direction, put one finger on the chosen
key, and ignore the other key. Whenever the snake is about to
crash, tap the one key — and lo and behold, you have the snake
going round and round within the ring, instead of crashing.

Snake 177

The snake starts off quite short . . .

= 147 TIME= 39,82 HIGH SCORE=137

*
*
*
*
*
*
*
*
™
*
*.

.. . but can become rather longer!

L/7o LJUuality Frograms jor the BElection

Having achieved that, you can start to think about the food.
There is generally alump of food in the ring (I think it’s hash), and
you add to your score by getting the snake to bump into the food.
Still turning in the same direction all the time, try to hit the food.
When you succeed, the snake will stop for as long as it takes to eat
the food, and will then set off again, refreshed — and bigger.
Eating makes it grow, just as it makes your score grow. Hating
also increases its survival time, which starts off at one minute. So
I think we can agree that eating is desirable.

Sooner or later the snake will get so long that, travelling in
ever-decreasing circles, it finally bumps into itself. Being such a
voracious creature, it promptly starts to eat itself — fatal at the
best of times. This is the point at which you need to start using
the other key and the other direction. You'll be surprised at how
easy it is after five or ten minutes on just one key.

Further stages in your development at this game are: learning
not to assume that the food will stay where it is until you've hit it;
learning to turn in tight corners; learning to do U-turns, in which
the snake doubles back on itself without any intervening spaces;
and learning to cope with the unpleasant delay which occurs
when the food is being changed, even if you’re about to make an
awkward turn.

As I write this, the highest known score is 260, achieved by
David Vines. Two other people, including myself, have beaten
200. I don’t expect these ‘records’ to last long once the program is
released, but they give you an idea of what sort of score we
presently consider to be pretty good. As often as not, a game with
that sort of score is lost when time runs out and the snake dies of
old age; you tend to spend so much time avoiding yourself that
you don’t really have time to go for the food any more.

Program listing

100 REM Snazzy Snake, by David Vines.
110 ON ERROR GOTO 250

120 MODE6

130 VDU23,1,0;0;0;0;: *FX4,1

140 PROCINIT

150 REPEAT

160 PROCSETUP: PROCSCREEN

170 REPEAT: PROCSNAKE: PROCNUMBER

S S o i

1
il

180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
130
440
b50
160
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

Snake 179

UNTIL FINTSHED% OR TIME>6000
PROCENDGAME

UNTIL FNEND

PROCCLEANUP: MODE6

END

REM ERROR HANDLING

PROCCLEANUP

REPORT: IF ERL>0 THEN PRINT" at line ";ERL
END

DEF PROCINIT

HIGHSCORE%=0: *FX11,0

max%=500: DIM xpos%(max%),ypos%(max%),D$(4)
vDuz23,255,255,255,255,255, 255,255,255, 255
VDU23,235,24,60,126,219,24 24 24 0: D$(1)=CHR$(235)
VDU23,234,0,24,24,24,219,126,60,24: D$(3)=CHR$(234)
VDU23,233,8,12,6,127,6,12,8,0: D$(2)=CHR$(233)
yDU23,232,16,48,96,254,96,48,16,0: D$(4)=CHR$(232)
PROCINSTRUCTIONS

ENDPROC

DEF PROCINSTRUCTIONS

LS

PRINT''SPC(5)"SNAZZY SNAKE, By David Vines"
PRINT''" This is a game for one player. The"
PRINT"game represents a snake, trapped in an'
PRINT"enclosed area, who has to keep eating"
PRINT"in order to survive. The snake eats"
PRINT"his food by hitting it."

PRINT'" The snake is controlled by the cursor"
PRINT"keys. The '"™";D$(4); """ key turns the snake to"
PRINT"its left, the "";D$(2); """ key turns it to"
PRINT"its right. The snake initially has one™"
PRINT"minute to survive, but each piece of"
PRINT"food he eats means that he can live"
PRINT"longer. The score is the total value of"
PRINT"food eaten by the snake."

PRINT "' *SPC(6 }"PRESS ANY KEY TO START ";

DUMMY=GET

ENDPROC

DEF PROCSETUP

SCORE%=0: TIME=0: NX%=4: NY%=4: value%=0: Head%=2
Length%=2: Real Length%=2: Tail%=0: DIR%=1
FINLSHED%=FALSE: REASON$=""

xpos%(Head%)=19: ypos%{(Head%)=10: xpos%(Head%-1}=19
ypos%(Head%-1)=11: xpos%(Tail%)=19: ypos%(Tail%)=12
ENDPROC

DEF PROCSCREEN

180 Quality Programs for the Electron

690 CLS: PROCTOPLINE: PRINT

fO00 FOR I=1 TO 39: VDU255: NEXT ,

710 FOR J=2 TO 21: VDU31,0,J,255,31,38,J,255: NEXT

720 PRINTTAB(0,22);: FOR I%=1 TO 39: VDU255: NEXT

730 VDU31,19,10,235,31,19,11,42,31,19, 12,42

740 ENDPROC

750

760 DEF PROCSNAKE

770 PROCTOPLINE: I$=INKEY$(O)

T80 IF I$<>"" THEN PROCNEWDIR(TI$)

790 IF Length%=Real Length% THEN PROCPOKE (xpos%(Tail%),ypo
s%(Tail%)," ")}: Tail%=Tail%+1: IF Tail%>max% THEN Tail%=0

800 IF Length%>Real Length% THEN Real Length%=Real Length%
+1 :
810 OHead%=Head%: Head%=Head%-+1: IF Head%>max% THEN Head%=
0

820 IF DIR%=1 THEN PROCadd (0,-1)} ELSE IF DIR%=2 THEN PROCa
dd (1,0) ELSE IF DIR%=3 THEN PROCadd(0,1) ELSE PROCadd(-1,0)

830 A%=FNPEEK (xpos%(Head%),ypos% (Head%))

840 IF A%=255 THEN FINISHED%=TRUE: REASON$="WALL" ELSE IF
A%=126 THEN FINISHED%=TRUE: REASON$="SELF™"

850 PROCPOKE (xpos%(OHead%),ypos%(OHead%), "*1r)

860 PROCPOKE (xpos%(Head%),ypos%(Head%),D$ (DIR%))

870 IF A%<>127 THEN ENDPROC

880 FOR I%=value%-1 TO 0 STEP -}

890 PROCPOKE (NX%,NY%,STR$(I%)): Length%=Length%+1

300 PROCWAIT(0.05): SCORE%=SCORE%+1 '

910 TIME=TTME~57: PROCTOPLINE

920 NEXT

930 value%=0

940 ENDPROC

950

960 DEF PROCNEWDIR(I$)

970 IF I$=CHR$(&89) THEN DIR%=DIR%+1: IF DIR%=5 THEN DIR%=

980 IF I$=CHR$(&88) THEN DIR%=DIR%-1: IF DIR%=0 THEN DIR%=

990 ENDPROC

1000

1010 DEF PROCadd (x%,y%)

1020 xpos%(Head%)=xpos%{(OHead%)+x%: ypos%(Head%)=ypos%(OHea
d% }+y%

1030 ENDPROC

1040

1050 DEF PROCNUMBER

1060 IF value%<>Q AND RND(120)<>%1 THEN ENDPROC

1070 FOR I%=-1 TO 1: FOR J%=-1 TO i

1080 IF NX%+I%<>xpoa%(Head%) OR NY%+J%<>ypos%(Head%) TH
EN PROCPOKE (NX%+I%, NY%-+d%, " 1)

1090 NEXT: NEXT

1100 REPEAT

Snake 181

| 1110 NX%=RND(35)+1: NY%=RND(16)+2: valid%=TRUE
; 1120 FOR I%=-1 TO 1: FOR J%=-1 TO 1
1130 valid%=valid% AND (FNPEEK(NX%+T%,NY%+J%)=0)

1140 NEXT: NEXT
1150 UNTIL valid% OR TIME>6000
1160 IF TIME>6000 THEN ENDPROC
: 1170 value%=RND(9)
1 1180 FOR I%=-1 TO 1: FOR J%==1 TO 1
) 1190 PROCPOKE (NX%+T%, NY%+J%, "£")
1200 NEXT: NEXT
; 1210 PROCPOKE (NX% ,NY%, STR$ (value%))
i 1220 ENDPROC
1230
1240 DEF PROCENDGAME
1250 VDU28,4,17,36,8: CLS
1260 PRINTTAB(10,3)" GAME OVER "
1270 IF REASON$="WALL" THEN PRINTTAB(O,1)" YOU'VE HIT A SID
E -~ CH DEAR 1 "
| 1280 IF REASON$="SELF" THEN PRINTTAB(0,1)}" YOU'VE HIT YOURS
i ELF - A BAD MOVE ™
N 1290 IF TIME>6000 THEN PRINTTAB(12,1)" TIME UP
1300 PROCWAIT(1): IF SCORE%>HIGHSCORE% THEN HIGHSCORE%=SCOR
E%
1310 ENDPROC
1320
1330 DEF FNEND: LOCAL B$
1340 PRINTTAB(O,6)" ANOTHER GAME? (PRESS 'Y' OR 'N')
1350 PRINTTAB(O,8)" (PRESS 'I' FOR INSTRUCTIONS) ": VDU26
1360 REPEAT
1370 B$=GET$
1380 IF B$="I'" OR B$="i" THEN PROCINSTRUCTIONS: B§="Y"
1390 UNTIL INSTR("YyNn",KB$)
1400 =B$="N" OR B$="n"
1410
1420 DEF PROCTOPLINE
1430 PRINTTAB(O,1);"SCORE= '";SCORE%:" TIME= :
1440 @%=&20205: PRINT;60-TIME/100;: €%=10
1450 PRINT" HIGH SCORE=";HIGHSCORE%;™ ";
1460 ENDPROC
1470
1480 DEF FNPEEK(X%, Y%)=?(HIMEM+Y%*320+X%*8+2)
1490
1500 DEF PROCPOKE (X%, Y%, X$)
1510 VDU3t, X%, Y%, ASC(X$)
1520 ENDPROC
1530
1540 DEF PROCWAIT(T): LOCAL oldtime
1550 oldtime=TIME
1560 REPEAT UNTIL TIME-oldtime>T*100
1570 ENDPROC
1580

Los LJuality rrograms for the Electron

1590 DEF PROCCLEANUP
1600 *FX12,0

1610 *FX4,0

1620 @%=10

1630 ENDPROC

Comments on the program

1. The *FX commands.
Two *FX changes are made in this program. We’ve met *FX4,1,
which robs the arrow keys of their normal function. The new one
is *FX11,0, which stops keys from auto-repeating: you can now
hold a key down for as long as you like, and only one character
will be produced. Needless to say, we want both the auto-repeat
and the arrow keys restored when the program finishes, so there
is a PROCCLEANUP which takes care of this either when the
program stops normally or when an error termination occurs.
Once, just once, I escaped from the program while it was
executing line 1440. The message: Escape at line 1440.00. So
we’ve reset the normal number-printing mode in PROCCLEAN-
UP, too, just in case it should happen again.

2. Character recognition.

The program makes much use of FNPEEK to establish which
character is at a given screen position. It could do this using the
character-recognition OSBYTE routine given in the User Guide,
but this would be too slow; instead it looks directly into the
memory, at the location corresponding to a single row of the
character. Why a single row? Because it’s quicker than all eight.
So long as we can be sure that the row we look at is different for
the different characters which we need to distinguish, there is no
problem. In fact FNPEEK looks at the third row of a character,
which is 0 for a blank space, 127 for a hash, 255 for a block in the
wall, and something else for asterisks and arrows.

A point which must be made about this technique is that it
assumes that HIMEM contains the pixel information for the top
left of the screen. This is certainly true immediately aftera MODE
command, but as soon as the screen is allowed to scroll the
mapping changes. So the technique only works here because we
know that no scrolling takes place.

——.

L
R e

Snake 183

3. A random time?

On running the program, you receive the impression that a lump
of food is put where it is for a certain random time. In fact this
isn’t strictly the case. What happens is that PROCNUMBER is
called whenever the snake has moved one position; but on each
call, if the food hasn’t been eaten there is only one chance in 120
that it will be replaced. The effect is the same, but the pro-
gramming is rather easier this way.

As you improve at the game you will observe that the longer
the snake gets, the longer PROCNUMBER takes to find a space
big enough for the food. You can in fact use this to your
advantage. If you can systematically direct a long snake so that
only a small part of the screen has large enough spaces, you can be
quite sure that the next food will appear in that part of the screen.
In effect, you can control the ‘random’ positioning of the food to
your own advantage.

4. Representing the snake.

You should realise without much effort that moving the snake
involves no more than replacing its head with a ‘body’ symbol (an
asterisk}, printing the new head, and removing the last character
of the tail. So we need to know the positions of the head and the
tail, and the current direction of movement. But of course every
time the tail is removed, the position of the adjoining symbol
becomes the new tail, so we also need to know that. And in fact to
move the snake over any distance, we need to know the position
of every character from its head to its tail. So we represent the
snake as two arrays of numbers, xpos for the x-coordinates and
ypos for the y-coordinates.

But this doesn’t mean that we have to move the coordinates of
every piece of the snake every time a move occurs. Comment 4 on
the tachistoscope program shows us a much more sensible way of
proceeding: we leave all of the coordinates exactly where they
are, and simply change our ideas of where in the array the head
and tail are stored. In effect, we cycle around the array. When we
‘remove’ the tail, we actually leave its coordinates exactly where
they were in the array, simply noting that we’re not going to use
them any more, and that we don’t even mind if the head
eventually comes back and replaces them with new values.

I don’t expect that everyone will understand this immediately;
for a start, haven’t made the effort to explain it fully. But if ever

164 Quanty Programs for the Electron

you think you have a need to keep shifting array elements one
position to the left or one position to the right, you should make
quite sure that you understand this technique. If necessary,
pretend to be the computer and work through a few moves with
pencil and paper. It can only be to your advantage.

The present size of the position arrays is 500. If you should start
getting scores in that region (although I can’t imagine that your
given minute will ever last long enough), you will need to
increase the value of max in line 310.

Suggested amendments to the program

1. In this age of video gamnes, television, hi-fi, and all the rest of it,
I quite like a silent game now and then. But I can readily see that
this game coutd make fairly effective use of sound. If you agree,
you could try adding a suitable eating sound when the snake hits
food, a crash when it hits the wall, and something else when it
hits itself. Aural cues often being faster than visual ones, you
might feel that the player would benefit from a beep when the
food is about to be changed.

You might even like the idea of a general slithering noise
accompanying the snake’s movement. Be careful, though: if you
issue a SOUND command every time the snake moves, you will
slow the action, and might well run into sound queuing
problems. See if you can work out how to issue an infinitely long
sound when the snake starts to move, and to chop it off when
movement stops.

.

Road
Runner

You're going for a drive in Devon, where the roads range from the
M5, a nice broad motorway, to narrow lanes bordered by high
hedges. It being Devon, the chances of poor weather are fairly
high, but you might be lucky.

This is another reaction-speed game. You are in full control of
the car, and must see how long you can keep it out of the hedges
and out of the path of the oncoming trucks. The motorway might
be easy, but just try getting up any speed in Back Lane, which
runs just behind Bradninch! Or rather, don’t. You earn good
driving points by covering distance, not by going fast. Even so, it
is rather gratifying to get out of first gear now and then.

How to use the program

The program starts by asking you which road you wish to drive
on. It digests your reply, then gives you a weather report and
displays its simple instructions before you start. There are only
four control keys: S to go slower, F to go faster, and the left and
right arrows to steer. Once you have started, the only way of
stopping without breaking out of the program is to crash. You
shouldn’t find that particularly difficult.

The control keys are tested for whether they are being held
down, rather than whether they have been tapped. The program
can’t be testing every control key all of the time, so it’s up to you
to hold the key until it seems to have had effect. Because the main
loop of the program is quite short, tapping the key will generally
do the trick — but don’t rely on it.

186 Quality Programs for the Electron

Driving up the A303, with trucks coming the other way . . .

%pavelled 3.§3 mlled, éndftheﬁ*"
s | P | §

shed at 165
h

apre gour' cras
iving: puxnts‘{;;

Hou want t__Hﬁ

.. but hitting the hedges is frowned upon

Road Runner 187

Program listing

100 REM Simon's Road Runner.

110 REM For the sake of speed, most variables used are
resident integer variables. A key to their meaning
is provided in the text.

120 PROCsetup: *FX4, 1

130 REPEAT

140 MODE4: vDU19,1,3,0,0,0

150 PROCstart: PROCdrive

160 UNTIL FNfinish: ¥*FX4,0

170 END

180

190 DEF PROCsetup

200 vDU23,254,15,15,15,15,15,15,15,15

210 vDU23,253,240,120,120,60,60,30,30,15

220 Vvbues,255,15,30,30,60,60,120, 120,240

230 VbU23,250,255, 255,255, 255,255,60,126,126

240 vpu23,251,60,255,255,126,126,255,255, 60

250 ENDPROC

260

270 DEF PROCstart

280 PRINT'"You're going for a drive in Devon, and"

290 PRINT"you have the choice of the following"

300 PRINT"roads:-"

310 PRINT'" 1> the M5"'t0 2> the A30"'!'" 3> the A303"

320 PRINT'"™ 4> the B3181"''" 5> the B3185"

330 PRINT'" 6> Back Lane (outside Bradninch).!

340 INPUT''"Enter the number of the one you want. '"road

350 IF road<1l OR road>6 THEN REPEAT INPUT road: UNTIL road

>=1 AND road<=6

360 Wh=10-road: L%=5000 DIV W%~3

370 C%h=19: D%=85: T%=0: B%=254: S%=0: P%=500

380 PRINT''"Weather report: ";: V%=FNvisibility

390 PRINT'!'"Your controls: S for slower, F for"

40O PRINT'"faster, left and right arrows to steer."

410 PRINT''"Tap any key to start . . .": dummy=GET

420 vDU23,1,0;0;0;0;

430 ENDPROC

40

450 DEF FNvisgibility

460 ON RND(10) GOTO 470,490,490,490,510,510,510,530,530,55

0

470 PRINT"raging blizzard."

480 PRINT''"Visibility ridiculously low.": =4

490 PRINT"dull and foggy."

500 PRINT'!'"Visibility poor.'": =7

510 PRINT"drizzling, of course."

520 PRINT''"Visibility reasonable.": =11

530 PRINT"surprisingly dry."

188 Quality Programs for the Electron

540 PRINT''"Visibility good.": =16
550 PRINT"dry and sunny!"
560 PRINT''"Visibility excellent.": =22
570
580 DEF PROCdrive
530 CLS: VDUS
600 FOR I%=1 TO 25
610 MOVEP%,1023~-32%I%: PRINTCHR$B%;SPC(W%); CHR$B%;
620 NEXT
630 REPEAT
640 S%=FNchange : B%=2544S%: P%=P%+0%
650 T%=T%+1: FOR I%=1 10 3¥D%: NEXT
660 TF INKEY(~68) THEN D%=D%-1 FLSE IF INKEY(-82) THEN D
%:D%+2
670 IF D%<0 THEN D%=0 ELSE IF D%>100 THEN D%=100
680 VDU5: MOVEP%,1020: PRINTCHR$B%;SPC(W%) ; CHR$B%;
690 IF RND(L%)=1 THEN VDUS,8,8,8,250
700 VDU4,30,11,31, C%,V%,32
710 TIF INKEY(~26) THEN C%=C¥%~1 ELSE IF INKEY(-122) THEN
C%= C%+1
720 VDU31, Ch,V%~1: Z%=FNreadch<>32: VDU251
730 PRINTTAB(0,31);105~D%; " mph";
740 UNTIL 7%
750 ENDPROC
760
T7Q DEF FNchange
T80 IF RND(10)>4 THEN ON 3%+2 GOTO 790,800,810 ELSE N%=RND
(3)-2: ON S%+2 GOTO 820,850,880
790 IF P%<50 THEN N%=1: GOTO 840 ELSE 0%=-16: =5%: REM L-L
800 0O%=0: =S%: REM U-U
810 IF P%>1190-32*W% THEN N%=-1: GOTO 890 ELSE 0%=16: =5%:
REM R-R
820 ON N%+2 GOTO 790,830,840
830 %=-16: =N%: REM L-U
840 0%=0: =N%: REM L-R
850 ON N%+2 GOTC 860,800,870
860 07:0: :N%: REM U-L
870 O%h=16: =N%: REM U-R
880 ON N%+2 GOTO 890,900,810
890 (%h=0: =N%: REM R-L
900 %=0: =N%: REM R-U
910
920 DEF FNreadch
930 A%=135: =(USR(&FFFL4) AND &FF00) DIV &100
940
950 DEF FNfinish: LOCAL ans$
960 SOUNDO,-15,4,15: PRINTTAB(0,25);
970 PRINT"You travelled ";T%/100;" miles, and then™
980 PRINT"crashed at ";105-D%; "mph."
990 PRINT'"Before your crash you earned ";

Road Runner 189

1000 PRINT;INT(T%/Wh"2/SQR(V%)*100);" good"

1010 PRINT"driving points.": PROCwait (2): *FX15,0
1020 PRINT'"Do you want to risk another drive? ";
1030 ans$=GET$: PRINT ans$

1040 = INSTR("Yy",ans$)=0

1050

1060 DEF PROCwait(n)

1070 TIME=0: REPEAT UNTIL TIME>n¥*100

1080 ENDPROC

Comments on the program

1. Reverse scrolling,.

The essence of this program is that the display scrolls down the
screen instead of up it, thus giving the impression that the road is -
coming toward you. Reverse scrolling is very easy to obtain once
you give it a little thought. All you have to do is go to the top line
of the screen, and try to move the cursor up one line. The com-
puter does it in the only way it can — by moving the rest of the
screen down one line. There are several ways of trying to move the
cursor up one line; you could, for instance, try to delete the first
character on the screen. But the most logically appealing way is
simply to issue a direct ‘move up one line’ command, i.e. a
VDU11.

There is one side effect which deserves comment. As the screen
moves down, the bottom line is momentarily displayed at the top
before being cleared. This can be something of a distraction
unless your TV obscures the top line, but there’s not a lot that can
be done about it. I have played around with ways of explicitly
clearing the bottom line, but they slow the program intolerably.

2. Speed in the inner loop.
It is obvious that the road must move quite quickly past the car if
the program is to be of any appeal. To this end, several tech-
niques are used to ensure that the repeated program section
between single movements is executed as quickly as possible.
First, the program makes full use of the resident integer
variables A% to Z%. Not only are integers dealt with faster than
real numbers, but the resident integers are some 10% to 30%
faster than other integers. Of course a program which uses these
variables rather than meaningful names is much harder to read

190 Quality Programs for the Electron

and understand, so the following table is provided to assist in
your interpretation.

A%: used only as necessary in a USR call.

B% (block): the ASCII number of the block used to draw the
road.

C% (car): the horizontal character position of the car.

D% (delay): controls the time spent in the speed-control loop.

1%: a counter in the speed-control loop.

L% (lorry): the chance that a truck will be plotted in any move.

N% (new): the new direction in which the road is to turn.

0% (offset): the amount by which the new road character is to
be offset from the present road character to ensure a neat
join.

P% (position): the horizontal graphics position of the road.

S% (sense): the sense (i.e. direction) in which the road is
turning; —1is left, 0 is straight ahead, 1 is right.

T% (tally): the number of units travelled.

V% (visibility): the car’s vertical distance from the top of the
screen.

W% (width): the road width in character positions.

Z.%: an indication of whether the car has crashed.

Second, there must be as little calculation as possible, and as
few statements as possible, within the inner loop. Examples of
calculations which must be done within the loop are the road
position, the car’s position, and whether to plot a truck. The
calculation of speed within the loop, for printing at the bottom of
the screen, is a small luxury. The calculation of a running score
would be excessive, given the complicated formula used to
decide on the points (line 1000). Every statement within the loop
must be examined thoroughly to see whether its effect could be
either dispensed with or achieved by an equivalent statement
outside the loop.

3. Beware of false economies.

It is easy to make incorrect assumptions in the search for program
“ speed. One such assumption that I made was thatit would help to

replace line 660 by the distinctly less comprehensible

660 D% = D% + INKEY(—68) — 2*INKEY(—82)

Road Runner 191

Fortunately, I thought to test the two statements before settling
on the change — and the second statement was some 10% slower.
Why? Because it has to do two additions and a multiplication
every time round, whereas the original, wordier, line generally
does nothing at all.

The moral? Whenever you think you've found a better or faster
way of achieving some goal, be sure to test it independently of
the rest of the program before being convinced.

4. Car positions and road positions.

The Snake program’s FNPEEK is no use here, because the
program uses scrolling. So I tried using POINT to determine
whether the car was about to crash, but I found that one has to
check a ridiculous number of pixels to be sure. In early versions of
the program, when I was simply checking the two front corners of
the car, it was not unknown for it to shoot straight through the
hedge and continue its journey in Farmer Chapple’s field. So this
version uses the character-recognition USR call mentioned in the
Snake program to check whether the new position has a blank
space in it. It's very slow, but at least it works.

The drawback of this approach, as compared with POINT, 1s
that it only works in the text cursor positions. That means that we
must keep the car in those positions, so any sideways move is a
sudden 32-pixel jump.

The road, on the other hand, must be drawn in graphics
positions with the help of VDUS. Given the characters used to
define the hedges, two consecutive bits of road must be either 0 or
16 pixels apart if they are to join neatly. This has the result, rather
significant on the narrow roads, that the trucks (which line up
with the road) can be very awkwardly positioned with respect to
the car.

5. An extreme use of ON . . GOTO . .

FNchange, which chooses the direction of the next bit of road, is
essentially unreadable. Its readability would be vastly improved
if it were written as a huge number of IF statements, but that
would make the program much too slow. | have tried to help by
adding brief REMs (e.g. L-U to indicate that the road is switching
from Left-moving to straight Up), but if you really want to follow
it you’ll just have to plough through it. Many of its lines look the
same apart from the REM, but there would be no gain in

192 Quality Programs for the Electron

efficiency by uniting them, so I have kept them separate to
indicate their separate meanings.

For each change of direction the function must calculate two
values, the new direction and the offset. Only one of these can be
returned as the function’s value, so the other is returned as a
global variable. Hence lines like 0% = 16: = N%.

6. Testing keys.

There are two reasons for using INKEY(—n) to test the control
keys. First, it allows the computer to recognise each key when
several are being depressed at the same time (e.g. when the user
is accelerating and steering left).

Second, any other form of test uses the keyboard buffer.
Imagine that the user had typed F/arrow/F/arrow/F/arrow. It
wouldn’t do to fail the test for an arrow key simply because the F
was the next key in the queue — but that is just what, say, GET
would do. INKEY(—n) only recognises the immediate present,
ignoring the queue of key-presses.

It will invariably be the case that users will still be holding a key
down when they crash. The two-second delay after a crash gives
them a chance to let go, and a *FX command then clears the
unwanted characters from the input buffer.

7. Delay without using TIME.

The smallest delay that TIME will recognise is one hundredth of a
second. This program wants much smaller delays than that, so it
reverts to a form of delay normally only found in more primitive
versions of BASIC — a simple counting loop. This form is not
recommended in any other type of situation, as it gives no
explicit control over the actual time of the delay.

Suggested amendments to the program

1. If the slowest speed is too fast or too slow for your liking, you
can change it without altering the fastest speed by putting a
different multiple of D% in the delay statement. Something like

650T% = T% + 1: FORI1% = 1TO D%: NEXT

Of course the slower you're going, the less frequently the keys are
being tested, and so the slower the response will be.

Road Runner 193

2. Almost anything you can think of doing to enhance this
program will slow it down. Some grandiose ideas which I have
discarded are: alimited fuel supply; the occasional service station
on one side of the road, which must be entered at 5mph; a police
car coming up behind when your speed becomes excessive; a text
window with a constantly changing display of fuel, distance
travelled, speed, and score.

INDEX

Entries in this index refer only to occurrences in the text; program features not
mentioned in the text are not indexed.

abnormal loop termination 82
absolute and relative plotting 59
abstruse programming tricks 4, 83,
190
actual and logical colours
105, 135
actual and notional pixels 57, 102
apostrophes in PRINT and INPUT
17
appending programs 20
arrays 71,183
boolean 174
of bytes 100
arrow keys 174,182
AUTO 6,41
auto-repeat of keys 182
avoiding repeated additions 29

62, 102,

backups of programs 7

bad program 7

BASIC 1,16,172

BBCBASIC 1,15

blank lines in programs 7

blocks of background colour 15

boolean variables 4, 127, 149, 174
as state-checkers 42

Browning, Robert 117

buffer-flushing, input 192

bytes 100

cassette files 35, 43,78

CHAIN 96

channel 0 noise 173

character recognition 182,191
characters, user-defined 56, 111, 112
CHR$ vs VDU 56,172

clearing the screen 70, 102, 135
clearing the text window 70

CLOSE# 43
COLOUR 102
colours, actual and logical 62, 102,
105, 135
comments in programs 4, 15, 32
compound statements 31
computers
and nature 53
and unsocijability 152
fearof 5,42
COPYkey 76,85
copying the programs 6, 101
cursor keys enabled and disabled
174, 182
cursor off 53, 148
cursor position 125, 191
cycling round arrays 71, 82, 183
cycling round colours 48, 102

data files on cassette 35, 43, 78
data in string form 23, 124
date input 20
decimal places
defining characters
DELETE key 174
digital watches and clocks 118

DIM 72

discipline 3

documentation of programs 4, 15, 32
dot (the year) 30

dragging out a computation 60
drawing solids with lines 160
drive-in cinemas 95

15,41
56, 111,112

editing keys 76, 85
ellipses 53
END 103

envelopes 173

196

error trapping 41, 81, 85, 160
ESCAPE trapping 81
EVAL 84,8589

false economies 190

fear of computers 5, 42

files on cassette 35, 43, 78
filling an area with colour 48,58, 160
flashing colours 173

flashing cursor 53, 148
flushing input buffer 192
forcing the choice 49
formatting numbers 15, 41
functions 20, 24, 25, 41, 70, 192
function keys 163

FX calls — see #FX

Gardner, Martin 19

GCOL 102,111, 161

GET and GET$ 70,73, 174

good English in programs 5, 151
GOTO 3,25,31,42, 148, 175
graphics, off-screen 84,103, 115, 154
graphics origin 84, 135

graphics resolutions 57

graphics window 84

half escapes 81
Hersee, Gill 44
HIMEM 101

I¥. 'THEN. .ELSE.. 2,16,25,149
indirection operators 101
infinite sound 184
infinity 85, 136
INKEY 70, 174, 192
INPUT 70,73,148, 174
INPUT# 43, 82
INPUT LINE 82
input resilience 5, 13, 16, 25
INSTR 135
instructions in programs 5
integer vs real variables 16, 60, 115,
189
inverting colours 59, 105
with GCOL 111, 161
with PLOT 61

keyboard auto-repeat 182

leap years 19, 30
LEFT$ 161

Leunig 53

Quality Programs for the Electron

line numbering 6, 21, 40

LISTO 7

LOCAL variables 24

logical and actual colours
105, 135

62, 102,

meaningful variable names 4, 127,
189

menu-driven programs

merging programs 20

message systems 150

MID$ 24

MOD 72

modes 48,57, 101

multiple-character shapes 112

multiple retwns from functions 26,
70

multiple-statement lines 7

35,64,76, 84

noise generator 173
nothing 136
notional pixels 57, 102

off-screen graphics 84, 103, 115, 154
ONERROR 81

ON. . GOTO.. 26,70,149, 191
OPENIN and input files 43
OPENOUT and output files 43
origin, graphics 84, 135

OSBYTE call 182, 191

PAGE 101
parameters 24,42, 113,127
pixels 57,102, 105
PL.OT 58
0,1,4,69, 86,87 59
3,69 103
85 58
POINT 162,191
POS 125
PRINT 17
PRINT# 43, 82
procedures 24,113, 127

program documentation 4, 15, 32
program layout 7

program readability 4, 16, 175, 189
program robustness 5,16

query indirection operator 101
question marks, suppression of 148

radial resolution 47
random numbers 56, 159, 173, 183

readability of programs 4, 16, 175,
189

reading character from screen 182,
191

real vs integer variables 16, 60, 115,
189

relative and absolute plotting 59

REMs in programs 4, 15, 32

RENUMBER 41

repeat loops 31, 40

repeated additions 29

reporting errors 81

resident integer variables 189

resolution 47,57, 105

RESTORE 18, 23

RETURN as a response 45, 49

returning from functions 26, 70

reverse scrolling 189

RND 56,72, 159

rounding error 48

saving data files 35, 78

screen graphics addresses
114

scrolling, reverse 189

semi-colons in PRINT and INPUT

17
SOUND 173,184
spaces in programs 7
speed of execution 60, 61, 115, 116,
137, 162, 189
state-checkers 42
strings as arrays/data 23, 124
structured programming 2,40, 175
suppression of question marks 148
swapping items 30
Swiss army knife 1

57, 106,

TAN and ENtan 136

Index 197
tape files 35,43,78

text at the graphics cursor 56, 89
text sizeinmodes2and 5 47

text window 47, 70, 125

tidying up at theend 17, 182

TIME 32,192

TOP 101

trapping ESCAPE 81

triangles in graphics 48, 58

undrawing 59, 111, 113
uniformity of procedures 113
user-defined characters 56, 111, 112
USR 191

VAL(GET$) 73
variable names 4,127, 189
VDU 56,160, 172
4and5 56,191
11 189
19 62,102
23,26,28,30 160
29 135
Vines, David 178
VPOS 125

warbling in channel 0 173
weather 33,53, 95, 185
windows 47,70, 84,125
wraparound 89, 90

#EXEC 20
*+EX

4 174,182
1land 12 182
15 192
*SPOOL 20

@% 15,17,41

First published 1984 by

Micro Press

Castle House, 27 London Road
Tunbridge Wells, Kent

© Simon 1984

All rights reserved. No part of

this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, recording

or otherwise, without the prior

permission of the publishers.

British Library Cataloguing in Publication Data

Simon
Quality programs for the Electron.
1. Electron (Computer)—Irogramming
I. Title
001.6425 QA76.8.E/

ISBN 0-7447-0004-3

Typeset by Keyset Composition, Colchester, Essex
Printed by Mackays of Chatham Ltd

For Donna and Alexis, with regret that [haven’t been
fully able to return the support they have given me.

Acknowledgements

Thanks are due to Robert Browning and David Vines for
permission to include their programs in this book; and to
everyone else who has helped with fruitful discussion or useful
criticism, in particular Stephen Goudge, Robert Horton, Adrian
Easton, Dean Skilton, and Gill Hersee.

TH E ELECTR.N -

18 programs to help you make full use of the Electron’s - =
facilities; but not just listings — detailed epranatlons of . =
these structured programs are given to help you Iearn sound an
programming techniques, and increase the power and
creativity ofyourown programmang S - >

There are SCaptavatmg GAIVIES o
e GROAN ° DRIVING e SNAKE :
e ROBOT e ARTILLERY R

and 4 Imagmattve GRAPHICS programs
e RUBIK'S CUBE e SPIDER
° HEXAGONS e KALEIDOSCOPE
to help stretch your Electron S capabllltles to the fuII

But it doesn’t stop there: useful home: and small busmess
APPLICATIONS can be achieved using programs dealmg W|th .
telephone costs, petrol consumption and pie charting; and

the Electron can be a powerful EDUCATIONAL tool with
programs on Phases of the Moon, Speed Readmg and
Flashcards e

All 18 of the qualrty programs in this book are of Iastmg use,
and will be of great value in helpmg you to make the-:most of
yourEIectron s o G

The Author . -

Slmon WELE: Iecturerm ComputerScnenc : _

Exeter from 1979 to 1983. He has now returned to his

Australra to wrlte and Iecture HIS broad. experlence_ _
walks of life expresses ltself |n h|s informal but inform tlve., -
style of wrltlng -

GB £ NET +00L.H5
t ISBN O0-7447-0004-3

I

