Fuel
Consumption

[am, I confess, something of a fanatical keeper of records. I write
a diary, [keep track of how much I earn and how much Ispend, I
take brief note of the day’s weather (so that when I return to
sunnier climes I won't forget what it was really like) — and I
record everything I spend on my car. Once the spending is
recorded, it seems silly not to analyse it; so [spend a little time
each month or two working out things like fuel consumption,
cost per mile, and total amount spent on the car.

The fuel consumption, apart from being a constant reminder of
the price one pays for comfort, can be a useful indicator of things
starting to go wrong. The cost per mile is nice, because it con-
sistently confirms my belief that a cheap second-hand car is
cheaper than a new one, despite what all the motoring reports try
to tell me. And the total amount spent can be pretty over-
whelming.

If you're interested in using this program to help you gather
your own figures, you'll need to have the patience to keep a
logbook. Each time you buy petrol you must record: the
milometer reading; whether the tank was filled; the price of the
petrol (pence per gallon or litre); and the actual cost. You should
also keep a separate note of other costs: repairs, tax, MOT
inspections, insurance, and so on. Figure 1 shows a sample page
from my logbook.

Negative costs are also possible. Refunds for work-related
driving, payments from insurance companies, proceeds of
selling the car, should all be entered as negative costs. And
speaking of selling the car, it's my opinion that the only
meaningful depreciation is the difference between buying price
and selling price; so I wouldn’t recommend trying to allow for
depreciation among the other costs. |

The essence of a logbook as used by this program is the con-
tinuation figures. As well as giving results for a page of entries, the

34 Quality Programs for the Electron

program uses previous totals to produce a set of updated totals.
So there must be a starting set of ‘previous totals’. If you start the
logbook when you acquire the car, that's easy. The total cost is the
initial cost of the car, including its purchase, insurance, tax, and
whatever else one pays when buying a car. All other totals (miles
travelled, gallons of petrol, etc) are zero.

The more likely case, though, is that you want to start alogbook
when you have had the car for some time. Things are a little more
difficult in this case. You must estimate all the previous totals,
getting them as accurate as possible. The major costs won’t be
difficult: you should remember how much you paid for the car,
and for any major repairs carried out. The mileage shouldn’t be

Date Mileage . Comment Petrol Other
Cost Costs
9 Dec81 (04707 | Fillat34.3 |14.68
15 Dec 81 | 04886 Fill at 33.5 |13.03
11 Jan 82 |05054 Fill at 33.1 |13.00 +84 | 1AL oil
15Jan 82 |05209 | Fillat33.5 |11.65 Lots of snow driving
16Jan 82 105429 | Fillat158 |14.42
19Jan 82 05662 | Fillat33.1 |14.31
26Jan 82 |05844 Fillat32.2 |12.50 MOT work ticket (including 126.12
3 Feb 82 {06061 Fillat32.2 {14.03 steering bits, 2 new front tyres)
12 Feb 82 | 06268 at165 | 5.00 TAX 70.00
12 Feb 82 (06275 | Fillat32,3 | 9.71 '
20 Feb 82 | 06484 Fillat31.5 |12.54
25 Feb 82 {06696 Fillat31.1 {12.52
4 Mar 8206835 | Fillat30.6 | 8.30 +10| ¥2L oil
5 Mar 82107024 Fill at30.7 | 8.60 Service (plugs, points, 25.00
condenser, grease, oil)
9 Mar 82 | 07237 Fill at 138.9| 11.24 New exhaust 33.81
17 Mar 82107433 | Fillat 150 |13.80
27 Mar 82 | 07641 at34.2 |10.00
16 Apr82 |07803 | Fillat34.9 |14.50 Now advanced, running very lean
26 Apr 82108042 (Fillat35.8 [15.14 2 new rear tyres 39.90
22 May 8208240 Fill at 34.0 {13.70
This page: miles: 3730 km: 6002 Ouerall: miles: 23340 km: 37560
petrol: 161.43 gals, 23.1 mpg; petrol: 767.5 gals, 24.07 mpg;
12.21./100 km 11.73 L/100 km
Qil: 1L; 3730 m/L; 6002 km/L. Qil: 2%21; 9336 m/L: 15024 kan/L
Running Cost: £244.41 Running Cost: £1331.15
Running Expense: 6.55 p/m; 4.07 p/km Running Expense: 5.70 p/m; 3.54 p/km
Total Cost: £539.24 Total Cost: £2686.10
Total Expense: 14.45 p/m; 8.78 p/km Total Expense: 11.51 p/m; 7.15 p/km

Figure 1. A sample page from a logbook. The figures at the bottom were

computed by this program.

Fuel Consumption 35

too difficult: you should be able to estimate how far you travel
each week (or month, or year) and multiply it by the time you've
had the car.

But how do you estimate your running cost (how much you've
spent on petrol and oil), and how many gallons you have used? If
you could do that properly you wouldn’t need this program. I can
make two suggestions, and leave you to decide. First, do your
best. Bear in mind how many miles you've travelled, and what
you think your fuel consumption might be, and the average price
of petrol over the time you've had the car, and you might do quite
well. Or second, pretend that you've just bought the car. Assess
your total costs to date, but pretend you've travelled no miles. In
other words, make a fresh start.

There is one more requirement if the program is to give you
reasonable consumption figures in the short term. You should fill
the tank once, noting the mileage, before starting the logbook
proper. The program assumes that the car starts with a full tank,
and calculates the consumption accordingly, so all purchases will
be referred back to this initial full tank. When the program asks
you for the last recorded mileage on the previous page, you
should type the mileage at this pre-logbook fill.

This program gives you the option of saving data on tape from
one run to the next. It's hardly necessary: there are only six
numbers to be saved, and you will have written those in the
logbook anyway. But it will serve as a useful example of a tape
file; and if things are going to go wrong, you might as well
discover it with a nice small file. Of course you don’t have to use
the file option if you don’t want.

How to use the program

This is a menu-driven program. When you start it running, it
presents a list of options and asks which you want next. It takes
steps to ensure that you don’t try an option for which it doesn’t
yet have the necessary information.

So long as you have started a logbook in the format described
above, and can read instructions, the program is self-explanatory.
If you intend to make use of the cassette file facility, I recommend
that you locate the file directly after the program on the tape. The
first time you record the data, and when you read it on sub-

36 Quality Programs for the Electron

sequent runs, the tape will be in the right position; and you will
be reminded to reposition it before recording on subsequent
runs. Then again, if you don’t have a tape counter perhaps you
should allow space for the data file at the beginning of the tape;
then you are less likely to overwrite part of the program with data.

One feature of the program’s use deserves special mention. The
most tedious part of the program, entering details from the
current page of the logbook, is also the most error-prone, so there
are several checks on this. First, you are asked to check and
confirm each entry after making it; do not overlook this important
step. Second, every time you fill the tank you will be shown
an approximate fuel consumption since the last fill. You shouldn’t
worry if this figure seems a little out — that could be due to an
incompletely filled tank — but if it is grossly wrong you should
check the whole entry with particular care. Third, if you enter a
mileage which is higher than the last mileage on the page, you
have obviously made a mistake, so the procedure will finish and
pass you back to the main menu to try again.

These vesults are taken straxght Fram
the previous totals._ _

Miles travelled: 19618 -
Kilometres travelled: 31358

Petrol consumed: 899,1 gals
24.3 ewpo: 11.6 1/7108kmnm

0il consumed: 1.3 litres
13873 miles/lztre,- 21835 km/lltr

- Running cost: £1386,?4_. .
. Running expense:}ﬁj_pfmiie,ya,dp/km

Total cost: £2146.86
- Total expense: 13,9pfmzle, 6 apfkm

Press RETURH to.:g, back tu the menu..__-_:ff

The kind of results the program produces

Fuel Consumption 37

Program listing

100 REM Fuel consumption program, by Simon.

110 MODE6: totals=FALSE: current=FALSE

120 REPEAT

130 CLS: PRINT!'"Fuel consumption program, by Simon."
140 PRINT'" 1. Read from a file the totals from"

150 PRINT™ the previous page of your logbook."
160 PRINT'" 2, Type in the totals from the prev-"
170 PRINT" ious page of your logbook.™

180 PRINT'" 3. Enter details of latest fuel"

190 PRINT" purchases and other costs.™”

200 PRINT'Y }4, See the breakdown of figures for'"
210 PRINTM the previous totals."

220 PRINT'" 5. See the results of this run."

230 PRINT'" 6. Save the results of this run in a"

240 PRINT™" file."

250 PRINT'" 7., Finish."

260 INPUT "' "Which would you like to do now? "choice

270 TF choice=1 THEN PROCfiletotals ELSE IF choice=2 THE
N PROCbooktotals ELSE TIF choice=3 THEN PROCentries ELSE IF ¢
hoice=4 THEN PROColdresults ELSE IF choice=5 THEN PROCscreen
results ELSE IF choice=6 THEN PROCfileresults

280 UNTIL choice=TY

290 CLS

300 END

310

1000 DEF PROCbooktotals

1010 CLS: totals=TRUE

1020 PRINT''"Please enter the following items from"

1030 PRINT"the previous page of the logbook:-"

1040 PRINT!'"First, the mileage reading at the last”

1050 INPUT"petrol purchase: '"miles]

1060 PRINT'"And now the overall totals:-"

1070 INPUT''"Miles travelled: "totmiles

1080 INPUT"Gallons of petrol: "totpetrol

1090 INPUT"Litres of oil: "totoil

1100 INPUT"Running cost: E£"totruncost

1110 INPUT"Overall cost: £"totcost

1120 PROChold

1130 ENDPROC

1140

1500 DEF PROCfiletotals

1510 CLS: totals=TRUE

1520 file=OPENIN"FUELDAT"

1530 INPUT#file,milest,totmiles,totpetrol,totoil,totruncost
,totcost ,

1540 PRINT'"Here's the data I've read from the"'"file. It s
hould correspond to data on"'"the previous page of your logb
ook . " 1"If you don't think it's right, you'll"'"nave to ente
r the totals yourself"!"{option 2)."

38 Quality Programs for the Electron

1550 PRINT'"Mileage at the last purchase: ";miles?

1560 PRINT'"Overall totals:-"

1570 PRINT'"Miles travelled: ";totmiles

1580 PRINT'"Petrol consumed: ";FNchop(totpetrol,1);" gallons

1590 PRINT"Oil consumed: ";totoil;" litres™

1600 PRINT"Running cost: £";totruncost

1610 PRINT"Overall cost: £":;totcost

1620 CLOSE{#file

1630 PROChold

1640 ENDPROC

1650

2000 DEF PROCentries

2010 CLS: IF totals THEN current=TRUE ELSE PRINT''"You can'
t do that until I've been given"'"the previous totals (optio
n 1 or 2).": PROChold: ENDPROC

2020 INPUT'"'"Turn to the current page of your log-"'"book.
What is the milometer reading on"'"the last entry? "miles?2:
IF miles2<10000 AND miles1>90000 THEN miles?2=miles2+100000
2030 PRINT'"Now enter the following details for"t"each time
you bought petrol ="

2040 cumgals=0: runcost=0: fillgals=0: fillmiles=miles1
2050 REPEAT

2060 INPUT '"Mileage: "odometer: IF odometer<10000 AND mil
e31>90000 THEN mileage=odometer+100000 ELSE mileage=odometer

2070 INPUT"Filled? (Y or N) "fill$: IF fill$="y" THEN fil
l$:nyn

2080 INPUT"Price (pence) per gallon or litre: "price: pri
ce=zprice/100: IF price<t THEN price=price*}4.546

2090 INPUT"Cost (in pounds and pence): £"cost: IF cost<>0

THEN thisgals=zcost /price

2100 IF £i11§="Y" THEN PRINT"Approx short-term consumptio
n: ";FNchop ((mileage-fillmiles)/(fillgals+thisgals),2); "mpg.
"

2110 INPUT'"Check that entry. Is it OK? (Y or N) "ans$: a
ns$=LEFT$(ans$,1): IF ans$="y" THEN ans$="Y"

2120 IF ans$<>"Y" THEN PRINT'"ALlL right, I've cancelled i
t. Try again.'": mileage=0 ELSE cumgals=cumgals+thisgals: run
cost=runcost+cost: IF fill$="Y" THEN fillgals=0: fillmiles=m
ileage ELSE fillgals=fillgals+thisgals

2130 UNTIL mileage>=-miles?2

2140 IF mileage>miles2 THEN PRINT '"Hmmm. That milometer rea
ding is higher"'"than what you said was the last"'"recorded
mileage on the page."'"Perhaps you should start option 3 aga
in.": PROChold: ENDPROC

2150 INPUT''"Fine. Now how many litres of oil were"!'"used o
n this page? "oil

2160 IF 0il>0 THEN INPUT"At what total cost? £"oilcost: run
cost=runcost+oilcost

2170 othercost=0: PRINT''"Last, please enter all other cost

s, "' "finishing with zero."

Fuel Consumption 39

2180 REPEAT INPUT™" £''cost

2160 othercost=othercost+cost

2200 UNTIL cost=0

2210 PROChold

2220 ENDPROC

2230

2500 DEF PROColdresults

2510 CLS: IF NOT totals THEN PRINT''"You can't do that unti
1 I've been given'"!"the previous totals (option 1 or 2).": P
ROChold: ENDPROC

2520 IF totmiles=0 THEN PRINT'"The previous total of miles
driven is"!''zero. I'm not going to.waste my time"'"working o
ut a performance for that!": PROChold: ENDPROC

2530 PRINT'"These results are taken straight from"'"the pre
vious totals.'";

2540 IF current THEN PRINT" They take no'"'"account of the ¢
urrent entries you'"'"have typed in via option 3."

2550 PROCoutput (totmiles,totpetrol,totoil,totruncost,totcos
t)

2560 PROChold

2570 ENDPROC

2580

3000 DEF PROCscreenresults

3010 CLS: IF NOT (totals AND current) THEN PRINT'!'"You can'
t do that until I've been given"'"the previous totals (optio
n 1 or 2) and"!'"the current details (option 3}.": PROChold:
ENDPROC

3020 CLS: PRINT''"Right. Here are the results."''""First, fo
r this page alone:-"

3030 PROCoutput (miles2-milest,cumgals,oil,runcost,runcost+o
thercost }

3040 INPUT''"Press RETURN for the remaining results."ans$:
CLS

3050 PRINT''", . . and now for the period since the"'"logbo
ok was started:-"

3060 PROCoutput(totmiles+mile52nmiles1,totpetrol+cumgals,to
toil+oi1,totruncost+runcost,totcost+runcost+othercost)

3070 PROChold

3080 ENDPROC

3090

3100 DEF PROCoutput (dist,pet,o0il,rcost,tcost)

3110 PRINT''"Miles travelled: ";dist

3120 PRINT"Kilometres travelled: ";FNchop(dist*1.60926,0)
3130 PRINT'"Petrol consumed: ";FNchop(pet,1);" gals™

3140 PRINT FNchop(dist/pet,1);" mpg; ";FNchop(pet*282.49/d
ist,1);" 1/100km"

3150 PRINT'"0il consumed: ";: IF 0il=0 THEN PRINT"nil" ELSE
PRINT:;0il;" litres"'FNchop{(dist/oil,0);" miles/litre; ";FN

chop (dist*1.609/0i1,0);" km/litre"

3160 PRINT'"Running cost: £";FNchop(rcost,2)'"Running expen
se: ";FNchop (rcost*100/dist,1);"p/mile, It FNchop (rcost *62. 14
/dist,1);"p/km"

40 Quality Programs for the Electron

3170 PRINT'"Total cost: £";FNchop(tcost,2)'"Total expense:
"sFNchop (tcost *¥100 /dist,1); "p/mile, ";FNchop (tcost*62.14/dis
t,1);"p/km"

3180 ENDPROC

3190

3500 DEF PROCfileresults

3510 CLS: IF NOT (totals AND current) THEN PRINT''"You can'
t do that until I've been given"'"the previous totals {(optio
n 1 or 2) and"'"the current details (option 3).": PROChold:
ENDPROC

3520 PRINT''"Don't forget to position the tape'"!'"correctly
if you're using cassettes.™®

3530 £ile=0PENQUT"FUELDAT"

3540 PRINT#file,odometer,totmiles+miles2-milesl,totpetrol+c
umgals,totoil+oil, totruncost+runcost,totcost+runcost+otherco
at

3550 CLOSEffile

3560 PRINT!''"0K, the values have been saved.™

3570 PROChold

3580 ENDPROC

3590

4500 DEF PROChold: LOCAL dummy$

4510 INPUT'"Press RETURN to. get back to the menu."dummy$

4520 ENDPROC

4530

5000 DEF FNchop(x,n): LOCAL factor,whole

5010 REM To chop x to a rounded number with n decimal place
8.
5020 factor=10"n: whole=zINT (x*factor+0.5)
5040 =whole /factor

Comments on the program

1. Program structure and line numbering.

This is a well-structured program. The menu is presented in a

repeat loop in the body of the program, and each of the menu

options is dealt with by its own procedure. There are two

additional program segments, PROChold and FNchop.
PROChold, which is called before control is returned to the

menu from any procedure, is designed to allow the user time to
read any messages displayed by the procedure before they are
wiped out by the menu. It is written as a procedure to avoid
repetition: one procedure and eleven calls are significantly easier
to write (and to read) than eleven repetitions of the same piece of
code, even if it is only one line.

Fuel Consumption 41

FNchop is a function which will come in handy in many
different programs. It’s all very well messing about with @% (see
comment 2 to the telephone costs program) if all numbers are to
be output in the same format, but if we want some numbers to
show two decimal places, some one, and some none, this
function makes things a lot easier. It takes two arguments
(another word for parameters), and returns the value of the first
argument, chopped to a value whose number of decimal places is
given by the second argument.

In fact the word ‘chop’ is a little misleading, as the function
ensures that the returned value is correctly rounded, rather than
truncated. The addition of 0.5 in line 5020 takes care of this. If you
don’t see how, try working a few examples with pencil and paper.

Now what about the line numbering? It's rather pretty: a
different range of 500 numbers for each procedure. But what does
it achieve? In my view, very little. It certainly helps make the
program’s structure a little clearer; but if the program is properly
written that shouldn’t be necessary. And, oh dear, the trouble it
causes if you want to alter the program! You can’t selectively
renumber bits of the program, so you just can’t use RENUMBER
without completely destroying the scheme. If you know for a fact
that the program will never require any alteration, perhaps you'll
find this type of scheme justified; but who can ever know that
about any program without being hopelessly static?

If it’s any consolation, there are no GOTOs in the program. If I
were you I'd type it in on AUTO numbering, and ignore the line
numbers I've used here.

(Talk about learning from the mistakes of others!)

2. Going round the clock.

The IF statements in lines 2020 and 2060 serve only to deal with a
car which ‘goes round the clock’, or passes from 99999 to 00000.
Don’t laugh. My present car went round the clock two years ago,
and my previous car (in Australia) went round for the second
time in the early '70s. Of course you should feel free to dispense
with the statements if you don’t go in for such reliable and
long-lasting transport.

3. User-friendly error avoidance.
The message in line 2520 sounds friendly enough. What user
would know that it really means ‘If I proceed I'll be dividing by

42 Quality Programs for the Electron

zero, which isn’t nice, so I'll stop here’? The fear which many
people have of computers can be greatly diminished by personal-
sounding comments like this. They're worth the little effort
which goes into thinking them up.

4. Boolean state-checkers.

Sounds difficult, but it isn’t. In a sense, this program can be seen
as passing through various states, some of which cannot be
entered until certain prerequisite states have been passed. For
instance, the results cannot be calculated if either the previous
totals or the current entries have not been input. Yet the program
has good reason for displaying the same menu each time. So it
must take responsibility for checking whether the prerequisites
have been satisfied for a chosen menu option.

This responsibility is assigned to the boolean (i.e. logical or
true/false) variables called current and totals. In any procedure
which uses the previous totals, a check is made on totals: if it is
TRUE, the procedure can proceed, otherwise a suitable message is
displayed and the procedure is aborted. Similar checks are made
on current in procedures which require the current entries to
have been input.

Notice that the action taken if one of these checks fails is an
ENDPROC. Many programmers fall too easily into the use of
GOTOs in such circumstances, despite the fact that ENDPROC
is actually a lot more meaningful.

5. What parameters to pass.

The previous totals totmiles, totpetrol, totoil, totruncost and
totcost are never actually updated, although one might have
thought that this was the entire purpose of the program. The
reason is that the user must always be able to start any phase of
the program again, and must be able to use correctly option 4 at
any stage. Consider the careful user who wants to type the
current entries twice and compare the results: (s)he obviously
wants the current totals to be added to the same previous totals
each time. But this wouldn’t happen if the totals were actually
updated in the course of the program.

Notice what is done instead. PROCscreenresults makes two
calls to its subsidiary PROCoutput, one with the current figures
and one with expressions combining the previous totals and
the current figures. The new totals will be displayed, and if the

Fuel Consumption 43

user wants to believe that the program has replaced the old totals
with new ones, who are we to object? PROCfileresults uses a
similar device when it writes results to the file.

6. Data files on cassette.

See how easy it is to store data on tape, or read it back into the
program? All that is required is an OPENIN or OPENOUT
command, which uses the filename and returns a numeric value
called the channel number; an INPUT# or PRINT# which refers
to that channel number; and a CLOSE# which also uses the
channel number. Care must of course be taken to ensure that the
tape is correctly positioned before the program saves data; other-
wise valuable program might be destroyed.

Suggested amendments to the program

1. If you don’t live in Britain, you will need to change currency
and perhaps other units. The changes are fairly easy to make.

2. BEven if you live in Britain you will eventually have to start
thinking in kilometres and litres and the like. Perhaps as a first
step you should change the program so that it gives these units
first and the old imperial units as secondary. Whether you do this
entirely is more likely to depend on the instruments in your car
and your garage than on how forward-thinking you are.

3. The program takes great care to allow the user to change his/her
mind about details of a petrol purchase, but makes no allowance
for error with regard to oil. Perhaps you could write a user check
there, too. The ‘other costs’ section isn’t too bad — an erroneous
cost can be wiped out by entering the negative of the same
amount — but it would still look nicer with a user check and
confirmation.

Pie
Chart

The pie chart is one of the most common representations of a-
breakdown of figures — perhaps because so many people find it
easy to digest. This program uses six colours in mode 2 to draw a
pie chart from figures input by the user.

Unfortunately, there’s so little to drawing a pie chart that the
program hardly seemed to merit a place among the others in this
book — until Gill Hersee suggested the touch that it needed:
drawing comparative pie charts. If you're interested in seeing
how changes in individual figures affect the overall picture, you
just input the changes. A new pie chart will be drawn inside the
original one, so that you can compare the two. You can follow
these with a third, a fourth, and even a fifth pie chart— although
by the time you get to the fifth the chart is pretty small.

How to use the program

The program starts by asking for the names and associated values
of the items you want to chart. There is a limit of ten items, so that
they will all fit together on the screen when the chart is drawn in
mode 2. For the same reason, names will be limited to seven
characters when the chart is drawn; you should bear this in mind
when entering them. |

When you have entered the items the program switches to
mode 2 and draws the chart. As each sector is drawn, the name of
the item appears in a text window at the left of the screen, along
with its percentage of the total. You will soon appreciate that the
sectors are drawn anticlockwise, starting from the positive x-
axis; but to help you sort out which item corresponds to which
sector of the pie, the percentage is shown in the same colour as
the sector.

You will now be asked whether you want to ‘Quit, Alter, or

Pie Chart 45

New chart?’. A reply of Q will stop the program; N will start it
again; and A will present each of the values in turn and ask
whether you wish to change it. If you don’t want to alter a
particular value, a RETURN is the easiest way of saying ‘No, let’s
go on to the next one’. When all of the items have been listed for
alteration, a new chart will be superimposed on the first one, but
with a smaller radius, so that you can compare the two.

A pie chart revised a couple of times for comparison

Program listing

100 REM Pie Chart, by Simon.

110 max=10: DIM value (max),name$(max)

120 xcen=896: ycen=512: pies=0: degree=PI/180

130 REPEAT

140 IF pies=0 THEN MODE6: PROCinput: MODE2: VDU28,0,31,7
,0 ELSE PROCalter

150 PROCdraw: VDU26,31,0,30

160 IF pies=5 THEN PRINT"Quit or New chart?"; ELSE PRINT
"Quit, Alter, or New chart?";

170 a$:GET$

180 IF pies=5 THEN IF INSTR("Aa'",a$) THEN a$="N"

40 Quality rrograms for the Liectron

190 IF INSTR("Nn'",a$) THEN pies=0 ELSE IF INSTR("Aa",a$)
THEN PRINTTAB(0,30)SPC(35);: VDU28,0,31,7,0

200 UNTIL INSTR("NnAa",a$)=0

210 END

220

230 DEF PROCinput: LOCAL I,A

240 VvDU19,0,4,0,0,0

250 PRINTTAB(4,1)"Pie Chart Program, by Simon."

260 PRINT'"Please input the name and value of each"

270 PRINT"item you want charted. To finish, enter"

280 PRINT"an asterisk instead of a name."

290 VDU28,0,24,39,7: REM A text window.

300 radius=364: I=1: number=0

310 REPEAT

320 PRINT'" Ttem ";I: INPUT"Name? "name$(I)

330 IF name$(I)="¥" THEN number=I-1: I=max ELSE INPUT"Va
lue? "value(I)

340 I=T+1

350 UNTIL I>max

360 IF number=0 THEN number=max: PRINT'!'"I hope that's all
- I haven't allowed™'"for any more."''!"Pregs a key to see
the chart.": A=GET

370 ENDPROC

380

390 DEF PROCdraw

100 CLS: PROCcircle: pies=pies+i

410 total=0: theta=0: colour=0: MOVExcen+radius,ycen

420 FOR I=1 TO number: total=total+value(I): NEXT

430 FOR [=1 TO number: PROCsegment (I): NEXT

40 MOVExcen,ycen: PLOT85,xcen+radius,ycen

50 ENDPROC

460

70 DEF PROCcircle: LOCAL phi

h8o
430
500

510
520
530
540
550
560
570
580
590
600
610
620
630
640
650

GCOLO,7: MOVExcen+radius+8,ycen
FOR phi=0 TO 2*PI STEP degree¥*3
DRAWxcen+(radius+8)¥C0S (phi),ycen+(radius+8)*SIN (phi

NEXT
ENDPROC

DEF PROCsegment (J): LOCAL angle,phi,fraction
fraction=value (J)/total: angle=2*PI¥fraction
PRINT'LEFT$(name$(J),7): colour=colour+1
TF colour=7 THEN colour=1: IF J=number THEN colour=4
GCOLO, colour: COLOURcolour
PRINT;INT (fraction*100); "%"
FOR phi=theta+degree TO theta+angle STEP degree*3
MOVExcen,ycen
PLOT85, xcen+radius *COS (phi),ycen+radius*SIN(phi}
NEXT: thetaz=theta+angle: COLOURY
ENDPROC

Pie Chart 47

660 DEF PROCalter: LOCAL I,ans$

670 CLS: radius=radius-60

680 FOR I=1 TOC number

690 PRINT'LEFT$(name$(I),7}';value(I)!"Alter?": ans$=GET

700 IF INSTR("Yy",ans$) THEN INPUT"New val?"value(I)
710 NEXT
720 ENDPROC

Comments on the program

1. Text windows.
In PROCinput the program prints a heading and some instruc-
tions, and then sets a text window to exclude them. This means |
that any subsequent text (viz. the names and values input by the
user) will scroll within the window, leaving the heading and
instructions where they are.

A second type of text window is used by the main program, in
lines 140 and 190. This window restricts text to the leftmost eight
character positions, thus ensuring that the chart will not be
spoiled by names, percentages, or anything else that might be
written.

Notice that neither of these windows is explicitly removed.
Instead, the program takes advantage of the fact that a MODE
command restores all windows to the full screen, which it then
clears. |

2. Text size in modes 2 and 5.

The program must use mode 2 to have the benefit of colour, but
this means that it must accept the double-width mode 2 char-
acters. Notice what a limitation this is. There would be no hope of
actually writing the item names on the chart, nor even of writing a
code number there. It is left to the user to make the correct
associations between the items and the sectors of pie. Even here
the program is hindered: the item names and percentages are
displayed in a text window at the left of the screen, but their
number and length are drastically limited by the character size.

3. Radial drawing and resolution.
A common way of drawing circles is to increase x in constant
steps, find the corresponding y, and plot them. But this program

clearly needs to increase the angle in constant steps, so that it can

48 Quality Programs for the Electron

apportion the whole circle according to the fraction required by
each item. No problem, once we realise that a line of length r
which makes an angle of 6 with the x-axis goes to the point
x = rcos 8, y = rsinf. We simply invent the angle, start it at O,
and keep adding to it in constant steps (three degrees in this case)
until it reaches 27, the full extent of the circle.

One problem with such radial drawing is that it really shows
up the relatively poor resolution of mode 2. Seen from well back,
the circle looks quite reasonable, but close up, it becomes
extremely ragged. That said, it might be encouraging to know
that drawing the charts in steps of three degrees is pushing the
resolution to its limits. You can get a somewhat faster chart with
only slightly worse resolution by plotting it in greater angular
steps.

4. Solid shapes with triang]les.

Notice how the program uses triangles of colour to make the
segments of a circle. To fill in each triangle, it moves to the centre
from the last point plotted on the circumference, and then uses
PLOTS5 to fill the triangle between those two points and the
required new point. It isn’t difficult to envisage a circle as
comprising lots of thin triangles emanating from the centre, and
this program makes practical use of that image.

When the fractional representation of each item is calculated,
and is then turned into a whole number of degrees for plotting, a
little bit of it, the bit after the decimal point, will be lost in the
~ process. (This is an instance of ‘rounding error’, once greatly
feared in scientific computing circles.) By the time the whole
circle has been plotted, the net effect of these missing bits might
be enough to leave a very small gap at the end of the chart. The
easiest way of dealing with this is to explicitly fill in the triangle
between the finishing point and the starting point, whether it
needs it or not. This is taken care of in line 440.

5. Watching for adjacent colours.

Cycling round the colours from 1 (red) to 6 (cyan), there is no
risk of plotting two adjacent colours — unless the colour of the
last sector is the same as the colour of the first. So whenever the
colour is changed back to 1, the program checks whether it is
about to plot the last sector, and uses a different colour if it is. I
have chosen colour 4, but it could have been anything other than
1, the one we're avoiding, or 5, the most recently plotted colour.

Pie Chart 49

6. Forcing the choice.

The main loop in lines 130 to 200 is designed to repeat when asked
to alter the present chart or draw a new chart. To limit the number
of charts to 5, it gives the user a different prompt when that many
have been plotted — but a different prompt isn’t enough. A sly
user could still try typing ‘A’ when prompted ‘Quit or New
chart?’. So the program checks for such a response, turning it to
‘N’ if it finds it.

Why bother? Why not let the user continue with smaller and
smaller charts, at the expense of his or her eyesight? Because the
charts don’t keep getting smaller and smaller. As each altered
chart is plotted, the radius is decreased by 60. After six charts it
would become negative: the pies would start growing again, and
would be plotted the other way round — not really conducive to
serious comparison. By all means take out the forced decision for
the purpose of investigation, but I'd be inclined to leave it in the
final version of the program.

7. RETURN as a response.

The wording of line 690 implies that a response of “Yes” or 'No” is
required. A quick look at the code, though, shows that while the
positive response is indeed ‘Y’, any other key will be taken as a
negative response. | find that I generally have a finger resting on
the RETURN key, so [use that key to reply ‘No’. Many programs
which seem to require a Y/N reply only test for one of them. If you
write programs in this way, you should make sure that the
answer which requires special action is the one which is tested;
otherwise a sloppily struck key will make the program perform
the special action, which is hardly a desirable state of affairs. In
this program, for instance, it is quite reasonable to ask you to tap
a particular key if you wish to alter an entry; but it would be most
unreasonable to specify a particular key, say N, as meaning ‘don’t
alter’, and then to take any other key as a request to alter.

Suggested amendments to the program

1. The program presently calculates the total from the items
entered. Many pie charts, though, deal with several main items
and a predefined total, and put aside a section for ‘Other’ items.
This program could easily do this if modified to accept a total

o0 Quahty Programs for the Electron

before asking for the items and their values. You could then
subtract the sum of the values from the given total to establish the
size of ‘Other’.

Well, I had to leave something for you to do!

Section 2
Educational

ha Ses Of the

I don’t know whether it is true of Britain as a whole; people keep
trying to persuade me that itisn’t. But it is certainly true of Devon
that one doesn’t see the moon any more than about three nights a
month. The rest of the time it is thoroughly obscured by cloud.
(Shades of hankering for Australia!)

Consequently, or so it seems to me, the people here know very
little about the moon’s phases. This program can help put that
right. What’s more, it can show in about ten minutes what it
would take twenty-nine clear nights to see in nature.

Not, mind you, that I intend the computer to supplant nature.
[am reminded of a drawing by the superb Australian cartoonist
Leunig, in which a man proudly shows his son a magnificent
sunrise on television while an equally magnificent sunrise goes
unnoticed at the window behind them. No, my intention is
rather to show the user an aspect of nature which is too seldom
seen here — perhaps even whetting his or her appetite for a place
where the real thing can be relied on to show itself now and then.

The moon’s phases are mathematically easy to model. One side
of the lighted part of the moon always appears to us as a semi-
circle, and the other side as half an ellipse. (An ellipse is like a
circle seen from an angle; the circle itself is a special case of the
ellipse. A spinning coin will at any instant have an apparent
shape which is elliptical.) When the moon is waxing (growing),
the changing ellipse is on the eastern side; when it is waning
(shrinking), the ellipse is to the west.

How to use the program

This program requires nothing of the user once it is running.
Type it in, type RUN, and sit back and watch. The flashing cursor
is turned off (it would be about as welcome in the night sky as a

54 Quality Programs for the Electron

. . . and shows the phases night by night

Phases of the Moon 55

jumbo jet in its landing pattern), the stars are drawn, the full
moon appears; and then the night-by-night progression of the

phases begins.

Program listing

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
40
420
430

440
450
460
470
480
490

REM Phases of the moon, by Simon,
MODE4
vDU 23,1,0;0;0;0;: REM Cursor off
xcentre=640: ycentre=512: radius=432: steps=-8
PRINT TAB(11,14);“PHASES OF THE MOON"
PRINT TAB{11,17);"A program by Simon"
PROCwait (3)
REM A new character.
VDU23,240,24,24, 24,24, 24 24,24 2}
VDU5: MOVE 1140,900: PRINT" Y
MOVE 1140,892: PRINT CHR$(240);"N": VDU4
REM Plot some stars.
FOR I=1 TO 150+RND(150)
PLOT 69, RND(1280),RND(1024)
PLOT1,0,RND(4): PLOT1,RND(4),0: PLOT1,0,-RND(H4)
NEXT
PROCwalt (5)

PRINT TAB(Q,3);"NIGHT 1"
MOVE xcentre,ycentre+radius: PLOTO0,0,0
FOR Y=radius TO -radius STEP steps
REM The x-~coordinate of a circle.
X=SQR(radius *radius-Y*Y)
PLOT 85,xcentre-X,ycentre+Y
PLOT 85,xcentre+X,ycentre+Y
NEXT
PROCwait (5)

REM The moon wanes for 14 nights.
FOR N=t1 TO 14
PRINT TAB(6,3);N+1
MOVE xcentre,ycentre+radius: PLOTO0,0,0
FOR Y=radiug TO -radius STEP steps
REM The x-coordinates of last night's and
tonight 's ellipses.
X1=8QR(radius*radiua-Y*Y)*COS (N*PI/14)
X2=8QR(radius*radius-Y*Y)¥COS ((N-1)*PI/14)
REM Take away the difference.
PLOT 87,xcentre+X1,ycentre+Y
PLOT 87,xcentre+X2,ycentre+Y
NEXT

56 Quality Programs for the Electron

500 PROCwait (5)

510 NEXT

520

530 REM The moon waxes for 14 nights.

540 FOR N=15 TO 28

550 PRINT TAB(6,3);N+1

560 MOVE xcentre,ycentre+radius: PLOTO0,0,0
570 FOR Y=radius TO -radius STEP steps

580 REM The x-coordinates of last night's and
tonight's ellipses.

590 X1=SQR(radius*radius-Y*Y)*COS (N¥PI /14)

600 X2=SQR(radius*radius-Y*Y)*COS((N-1)¥PI/14)

610 REM Plot in the difference.

620 PLOT 85,xcentre-X2,ycentre+Y

630 PLOT 85,xcentre~X1,ycentre+Y

640 NEXT

650 PROCwait (5)

660 NEXT

670 VDU23,1,1;0;0:;0;: REM Cursor on

680 END

690

700 DEF PROCwait(n)
710 TIME=0: REPEAT UNTIL TIME>100*n
T20 ENDPROC

Comments on the program

1. VDU 4 and VDU 5.

To make a north-pointing arrow, I have combined the standard
arrowhead character with a user-defined shaft (character 240,
defined in line 180). The correct relative positioning of these two
is somewhat beyond the capabilities of the text cursor, restricted
as it 1s in mode 4 to 32 lines. So we use VDU 5 (shorthand for
PRINT CHR$(5)) to enable text to be written at the position of the
graphics cursor; position that cursor with the MOVE command;
print the characters; and use VDU 4 (shorthand for PRINT
CHR$(4)) to ensure that any further text will be written at the text
cursor.

2. Playing with random numbers.

The random number generator is used in two different contexts
in this program. First, used alone, RND(x)} is simply used to
generate a random number between 1 and x. That’s fine for the
circumstances in which I want a random number between 1 and

b
L
P
i
b
:

Phases of the Moon 57

x. But when deciding on a random number of stars to plot (no
more than about 300), the same device doesn’t work: a random
number between 1 and 300 might well be a mere one or two. And
one or two stars do not a night sky make, except perhaps in
London or Melbourne, So I chose a minimum number of stars,
too, and simply randomised the difference. Hence the use of 150
+ RND(150). I did actually toy with the idea of making a genuine
northern night sky, but I doubt that anyone would want to type
in all the data if I did.

3. Notional and actual pixels.

The idea of what I choose to call notional pixels is one which
didn’t come across to me very clearly when I read the user guide,
so I shall expound it here. Pixel, by the way, is a word used to
indicate the smallest meaningful element of a picture.

The graphics screen is addressable in 1280 X 1024 points. The
address of a point on the screen has a first coordinate which can
be any number between 0 and 1279, and a second coordinate
which can be any number between 0 and 1023.

We know, though, that different modes have different
graphics ‘resolutions’. Mode 5 has 160 X 256 graphics points;
mode 4 has 320 X 256. So each of these graphics points, or
plottable points, corresponds to several screen address points. In
mode 5, for instance, a graphics point corresponds to 8 X 4 screen
points (1280/160 X 1024/256); in mode 4, a graphics point cor-
responds to 4 X 4 screen points. These graphics points are the
actual pixels in a given mode. But so far as addressing is con-
cerned, the computer always believes that it has 1280 X 1024
pixels. These screen addresses I shall call notional pixels. Any
graphics effects which we create will use actual pixels; but any
addressing that we do will be to the notional pixels —a fact which
confused me at first.

Let us concentrate on mode 4 for the time being. One of its
actual pixels, the second from the left at the bottom of the screen,
consists of the 16 notional pixels whose addresses are (4,3),
(4‘12)1 (411)1 (4r0)’ (513)1 (512)1 (511)r (5!0)1 (6r3)! (6,2), (611)1 (610)1
(7,3), (7,2), (7,1), and (7,0). All of these addresses refer to exactly
the same point on the mode 4 graphics screen.

In plotting my stars, I decided to give the appearance of different
intensities by plotting different numbers of adjacent points. One
point (or actual pixel) would be the dimmest star, and four points,

58 Quality Programs for the Electron

in the shape of a square, the brightest. But given that one has
gone to a random notional pixel (which must of course be in an
actual pixel), how far must one move in order to get to the next
actual pixel? Consider that the graphics cursor is in the notional
pixel whose address is (7,2). This is in the actual pixel described
above. To get to the next actual pixel to the right, we need only
move one notional pixel, to (8,2). To move one actual pixel to the
left, though, we must move four notional pixels, to (3,2). Like-
wise, to move up we must move two notional pixels, to (7,4); and
to move down we must move three notional pixels, to (7, —1)
(yes, it does exist, even though it isn’t on the screen). Clearly, the
furthest we need move to ensure a place in the next actual pixel is
four notional pixels; but unless we know where we are in the
actual pixel, we don’t know how many fewer than four will do the
same trick.

What I have done, then, for the stars, is first to plot a random
point. That takes care of the one pixel. I then move upward a
random number of notional pixels, four at the most, which might
or might not take me to the next actual pixel. I do the same sort of
move to the right, and the same sort of move downward. And at
the end of it all I have just what I wanted: a star consisting of one,
two, three, or four plotted pixels.

4. The PLOT command.

The PLOT command is extremely versatile, and so takes quite
some getting used to. It's worth the effort. This program uses it in
five different ways — five of the 64 presently available. Let us look
at those five, by way of starting.

PLOT 85,x,y draws a solid triangle in the foreground colour
(white in this instance) between the point (x,y) and the last two
actual pixels (this is most important) visited by the graphics
cursor. As this is the only easy way of filling in areas on the
screen, it is what we use for circles, ellipses, squares, and any
other shapes we want filled in. As we have already seen in the
pie-chart program, it is not difficult to envisage a circle as being
composed of triangles —we need merely approximate the circle’s
curve with lots of little straight edges. If you look very closely at
any of the curves produced by this program, you will see the
edges of the triangles. You could even put in an extra delay after
each triangle (345 PROCwait(0.5), for instance) to see how the
triangles combine to produce the curves.

i%:
;4§.
E
&
i
o

Phases of the Moon 59

PLOT 87,x,y is almost the same. It draws solid triangles too,
but in the background colour — black in this program. It is used
here to ‘undraw’ bits of the moon, night by night.

PLOT 69,x,y is used to plot a single point in whichever actual
pixel contains the notional pixel (x,y). This is used for the first
(and possibly only) point in a star.

PLOT 1,x,y is used in a significantly different context from the
three versions of PLOT looked at so far. It draws a line from
wherever the graphics cursor is, not to the point (x,y), but to the
point which is (x,y) away from the starting point; that is, to the
point which is x units away horizontally, and y units vertically.
This is what the User Guide means when it says ‘draw line
relative” as opposed to ‘draw line absolute’. This is clearly what I
want to do when, having plotted a random point, I want to move
so many notional pixels up, so many across, and so many down.

PLOT 0,x,y is another of the relative movements, and in fact it
is just a movement, with no plotting. When building a ‘ladder’ of
triangles of the sort you will see if you put in that extra delay in
line 345, the last two pixels visited are automatically taken care of
— they are the closest side of the last triangle drawn. But we must
have two appropriate starting points for the first triangle. The
first one is easy: it is the top centre of the moon, to which we
MOVE the graphics cursor (and MOVE, by the way, is simply
PLOT 4 in disguise). The second point might be easy, too, but the
way [have calculated the subsequent triangles makes it difficult
for me to make it another point of the first triangle. SoI cheat, and
visit the'same pixel again, with PLOT0,0,0. Thus the first triangle
will actually be the straight line formed between these two iden-
tical points and the next one plotted — a little bit of cheating
which will go quite unnoticed in the overall picture.

You might wonder why [have made two separate operations of
plotting foreground and plotting background, instead of plotting
them both as the inverse of what is already there (PLOT 86,x,y).
The easiest answer is ‘try it and see’. The point is that the
triangles plotted are not mutually exclusive; any two adjacent
triangles share a common edge. Consider the case in which the
dark side of the moon is replacing the light side. The common
edge of two triangles will first be inverted from white to black, as
expected, when the first triangle is inverted. Then the second
triangle, including the black edge, is inverted — and the edge
becomes white again. Pretty, but not quite the desired effect.

60 Quality Programs for the Electron

5. Dragging out a computation.
Lines 440, 450, 590, and 600 could have been dispensed with, and
their calculations performed in the PLOT lines. For example

470 PLOT 87, xcentre + SQR(radius*radius — Y*Y)
“COS(N*PI/14),ycentre +'Y

Why wasn’t this done? Because I feel that it would have
unnecessarily confused two operations — the calculation of the
appropriate x-coordinate, and the plotting of the point relative to
the centre. It seemed to me that the separation of these two
operations would make the program’s intentions easier to grasp.

Many programmers, though, go much too far in this dragging
out of computations. All too often one sees a computation like the
one in question rendered

440 X1 = radius*radius
441 X1 = X1~ Y*Y

442 A1 = N/14

443 A1 = AT*P1

444 A1 = COS(A1)

445 X1 = SQR(X1)

446 X1 = X1*Al

470 X1 = xcentre + X1
471 Y1 = ycentre + Y
472 PL.OT 87,X1,Y1

To my way of thinking, this achieves nothing but confusion. Do
- people do it because they are unable to grasp the overall mathe-
matical expression? Hardly! They must have understood the
expression to translate it into the form used. Why, then, do they
do it? I can only see it as an evil practice passed down from the
days of assembly-code programming (in which such dragging
out is indeed necessary). I can only hope that this paragraph
helps persuade some people that the dragging out of computa-
tions should be practised only so far as is needed to make the
program more comprehensible; when it starts to make it less
comprehensible, it becomes reprehensible.

6. No integer variables.
__ Why haven’t I used integer variables for the x- and y-coordinates
of the pixels? Because to me, curve-plotting is always something

3i{§5
i A
i
L
L
i
%
Es
iz

Phases of the Moon 61

involving real numbers. This might well be regarded as a throw-
back to my days as a physicist and mathematician, butI certainly
don’t feel that the use of integer names would have made the
program the slightest bit easier to understand.

It would, however, improve the speed. If all of the variables in
the program are made integer, it takes some 20% less time to run,
despite the deliberate delays. But why should anyone want it to
run faster? Like a proud father on sports day, I think it runs at just
the right speed.

7. No stars behind the moon.

Some people in England think I'm rather rude in suggesting that
they don’t see enough of the moon. They then immediately
support my thesis by asking why I haven’t put any stars in the
‘undrawn’ area. If you're wondering the same thing, think about
what that undrawn area actually represents.

Suggested amendments to the program

1. If you haven't already done so, try the suggestions made in
comment 4 above: putting in a delay between triangles, so as to
see their shape and size; and changing the PLOT 85 and PLOT 87
commands of lines 470, 480, 620, and 630 to PLOT 86. You should
notice an interesting effect with this second one: while one pass
of inversion will produce the lines in the wrong colour, the
second pass will look fine. That’s because on the second pass,
lines of the wrong old colour are inverted twice, leaving them in
the right new colour.

Sadly, what you should observe and what you do observe are
different. I haven’t quite worked out why vyet.

2. The program can be made to run faster, at the expense of
resolution, by altering the step size (the variable ‘steps’). The
picture is still quite reasonable with steps at —16 - try it. You can
even go the other way — better resolution and a slower program.
But steps should always be a multiple of —4, otherwise itwon’t be
moving a whole number of actual pixels.

You could also speed things up by skipping more than one
night at a time; the rest of the program won’t mind.

62 Quality Programs for the Electron

3. Feeling ambitious? Try giving the moon some craters, or at least
some shade. You might be able to do this with random black
dots, as I used random white dots for the stars. But to give an
effect anything like that of craters, the dots will have to be
clustered. Not difficult, once you see how. |

4. I have quite deliberately used black for the night sky and white
for the moon and stars. If you want other colours, try working out
the appropriate VDU19 commands. You will need to change
logical colour 0 to actual colour 4 if you want a blue sky, and
logical colour 1 to actual colour 3 if you want yellow moon and
stars. I don’t recommend it.

[achistoscope

For most people reading is essentially a matter of pattern-
recogniton. We read a word by looking at the whole thing in one
glance, rather than by looking at each letter in turn. Having taken
in the overall pattern of letters, we refer to a table in our memory
to see what word it corresponds most closely to. Whether we
recognise the word depends on two things: how accurately we
have registered the pattern for checking in the table; and how
comprehensive the table is. It is generally the case that we don’t
register the pattern particularly accurately. We getarough idea of
what it was, and then rely on the table-checking area of our minds
to find something which is close, if not exactly the same.

Did you notice that the word ‘recognition” was misspelt in the
previous paragraph? The chances are that you didn’t. You saw a
pattern of letters, sent it off for processing, and your mind replied
‘Ah yes, that was the pattern for “recognition” . Why bother you
with the information that the pattern was a little wrong? That sort
of thing happens all the time; and in fact the ability to recognise
different patterns as instances of the same thing is one of the
positive features of the mind which computer scientists are
having great trouble trying to emulate with machines and
programs.

Some people read phrases, and even sentences, in the same
way: all at once, rather than word by word or letter by letter.
Others go to the opposite extreme: each letter is read in its own
right, and the mind is then asked to string the letters together to
spell a word. If a pattern isn’t recognised by the table-checker, we
all resort to this letter-by-letter reading.

A tachistoscope (the stress is on the second syllable, and the
‘ch’ is pronounced ‘k’) is an instrument which can be used to test
and improve reading habits. It flashes a word or phrase on a
screen for a very short time, and you are then asked to say what it
was. Those who read letter by letter are unlikely to answer

64 Quality Programs for the Electron

correctly: the display is too brief for the whole word or phrase to
be absorbed. Those who read word by word or phrase by phrase
are much more likely to take in the whole display.

If you are a letter reader, you can use the tachistoscope to help
you become a word or phrase reader. Keep trying it at low speeds
and you will soon become familiar with the 100 or so phrases
in its vocabulary. Then you can start working on recognising a
phrase rather than reading it. Improvement can be drastic.

If you already read a phrase in one gulp, you shouldn’t have
much difficulty getting the tachistoscope to its top speed. (But be
careful: I have deliberately included several pairs of similar
words or phrases, so you do still have to absorb the whole of each
display.) You will probably also be able to take in the smaller
numbers in one go. But try yourself on bigger numbers — up to
seven digits. You might be surprised at how much harder it is to
read a 7-digit number than a 20-letter phrase. The trouble is that
numbers, while making perfect sense to read, can’t be stored in a
table for checking: there are too many of them. Besides, there’sno
need to keep mental tables of things whose meanings relate so
closely to their form. So if we can’t read numbers by recognition,
we have to read them a digit ata time, or perhaps a group of digits
at a time, which makes them much slower than words.

Still not convinced? Try yourself on ‘jumbles of letters” —
meaningless collections of letters, of about the size of along word
or a short phrase. These jumbles are almost totally unreadable
(i.e. unrecognisable as patterns) and I've yet to meet anyone who
can get the tachistoscope anywhere near maximum speed on
them. If you are very good on the phrases and numbers options,
the jumbles could prove a very useful exercise in pattern
memorisation and recall.

How to use the program

The program is menu-driven. It will present you with a list of five
options, and ask you to choose one by typing its number.
Pressing ESCAPE at any time will return you to the menu. To
finish, you must choose the ‘finish’ option from the menu.

You will probably find it easiest to start with words and
phrases. Choose option 1, and the tachistoscope will be ready for

‘
e
&
|
g

Tachistoscope 65

you. An arrow will appear in the upper left of the screen, and you
will be told to press any key to trigger the display. Clearly, when
you are being given only a few hundredths of a second to see a
phrase, you must know exactly when it is going to appear; or, as
in this case, you must be able to tell it when to appear. Watch the
space to the right of the arrow and press a key. A word or phrase
will appear for one second, and you will be asked what it was.

When typing what you thought you saw, you must be sure to
get it exactly as it was. If the program displays "THIS WON"T DO’
and you type “THIS WONT DO’ you will be marked wrong. The
program doesn’t try to assess how close you were — it compares
the two strings of characters, and marks you right only if they are
exactly the same. A particular point worth noting in this respect
is spaces. If you have too many or too few spaces in your guess,
you will be marked wrong. An extra space on the end of your
guess will be thoroughly confusing, producing a dialogue which
looks like this:

What was it?
COMPUTERS ARE FUN
No. It was COMPUTERS ARE FUN.

So be sure to put just one space between two consecutive words,
and no spaces before or after your answer. You will of course have
to press RETURN at the end of your answer, to send it to the
program for checking.

If your answer was right, the next phrase will be displayed for
two-thirds as long. If you were wrong, the next phrase will show
for one-and-a-half times as long. There is a maximum display
time of three seconds (nobody should have trouble reading
phrases at that speed) and a minimum of one hundredth of a
second (any faster and there isn't time to show the whole phrase
on a normal television before it’'s wiped off again). When you
want to finish a particular option, either to finish the program or
to try another option, press ESCAPE to return to the menu.

If there are other people trying to read the phrases with you,
don’t feel too smug if they can’t keep up with you — you’re the
only one who knows exactly when you're going to press the
trigger!

66 Quality Programs for the Electron

> READING IS FUH

A phrase is flashed on the screen . . .

Tachistoscope, by Simon,

What was it7?

READING IS FUN _ _

That’s Plght. : ' B RREEREEEN
The next one will be dxsplaued far_“'
8 hundredths of a second.~:_._ C

Press ESCAPE to stop, ¢
to trzgger-the o splag;'

. did you register it correctly?

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

300

310
320
330
340
350
360
370
380
390
400
310
420
. 430
440
h50
460
470
480
490
500
510
520
530
540

Tachistoscope 67

Program listing

REM Tachistoscope, by Simon.
MODE6

PROCinitialise

PROCinstruct

REPEAT PROCmenu: UNTIL finish
MODE6: PRINT'!"Bye for now,"'!
END

DEF PROCinitialise
ON ERROR GOTO 140
PRINT "' " Tachistoscope, by Simon."
yDU28,0,24,39,5: REM Set a text window.
maxphrases=100: DIM phrase$(maxphrases)
DIM recent (4)
FOR cycle=0 TO 4: recent (cycle)=0: NEXT
cycle=0: numphrases=0
REPEAT

numphrases=numphrases+1

READ phrase$(numphrases)
UNTIL phrase$(numphrases)="¥" OR numphrases=maxphrases

IF numphrases=maxphrases THEN PRINT''"There are too ma

ny phrases. Reset the''"value of maxphrases in line 220.%": P
ROCwait(2) ELSE numphrases=numphrases-1

ENDPROC

DEF PROCinstruct: LOCAL dummy

PRINT"This program can be of use in improving"
PRINT"your pattern-recognising speed."
PRINT'"I'11l display a word, phrase, or number™
PRINT"in the upper left of the screen, and"
PRINT"you try to recognise it."

PRINT '"You will type what you think it was,™
PRINT"and I'1l tell you whether you're right."
PRINT'"If you are right, the next word,"
PRINT"phrase, or number will only be shown"
PRINT"for two-thirds as long (unless you've"
PRINT"reached the maximum speed).”

PRINT'"If you are wrong, L'll increase the"
PRINT"display time by 50% (unless you've"
PRINT"reached the minimum speed I'll allow)."
PRINT '"Press any key to continue.";

dummy=GET

ENDPROC

DEF PROCmenu
CLS: finish=FALSE: words=FALSE
smallnums=FALSE: bignums=FALSE: jumbles=FALSE

68 Quality Programs for the Electron

550 PRINT'"What would you like to do now?"

560 PRINT''"1> Test your speed on words and phrases"

570 PRINT''"2> Test your speed on smallish numbers™"

580 PRINT''"3> Test your speed on bigger numbers"

590 PRINT''"4> Tegt your speed on jumbles of letters™

600 PRINT'"5> Finish™"

610 PRINT''"Please type the appropriate number. ";

620 choice=VAL(GET$)

630 IF choice=1 THEN words=TRUE ELSE IF choice=2 THEN smal
Inums=TRUE ELSE IF choice=3 THEN bignums=TRUE ELSE IF choice
=4} THEN jumbles=TRUE ELSE finish=TRUE: ENDPROC

640 PROCtest

650 ENDPROC

660

670 DEF PROCtest: LOCAL delay,dummy,string$,guess$,units

680 CLS: delay=100

690 REPEAT

700 PRINT TAB(0,5);">";TAB(0,18);

710 PRINT"Press ESCAPE to stop, or any other key"

720 PRINT"to trigger the display.'";: dummy=GET

730 string$=FNstr (choice}: CLS

740 PRINT TAB{0,5);"> ";string$;TAB(0,10)

750 PROCwait (delay)

760 CLS: PRINT TAB(0,10)"What was it?"

770 INPUT""guess $

780 IF guess$=string$ THEN delay=delay*2/3: PRINT FNrepl

y(guess$) ELSE delay=delay*3/2: PRINT "No. It was ";string$;

H. L1}

790 IF delay<! THEN delay=1 ELSE IF delay>300 THEN delay
=300

800 IF delay<2 THEN unit$=" hundredth" ELSE unit$=" hund
redths"

810 PRINT"The next one will be displayed for™"

820 PRINT;INT(delay);unit$;" of a second.";

830 IF delay<2 THEN PRINT " {The maximum"'"speed.)" ELSE

IF delay=300 THEN PRINT " (And I'm not going any slower!)"

840
850
860
870
880
890
900
910
920
930
940

950
960

UNTIL FALSE
ENDPROC

DEF FNreply({x$)

IF x$="T MISSED IT" THEN ="But you didn't, did you?"
IF x$="WHAT WAS IT?" THEN ="I can't fool you, can I?"
IF x$="T DON'T KNOW" THEN ="Oh yes you do!"

="That's right."

DEF FNstr{class): LOCAL num, I,good, jumbl$

REM Chooses the next string for display, according to
class. Class 1 is words and phrases, 2 is small
numbers, 3 is big numbers, 4 is jumbles.

ON class GOTO 1040,980,1010,1150

Tachistoscope 69

70 REM Small numbers.

980 =STR$(RND(9999))

990
1000 REM Big numbers.
1010 =STR$(RND(9999999))
1020
1030 REM Words and phrases.
1040 REPEAT good=TRUE
1050 num=RND(numphrases)
1060 FOR I=0 TO 4
1070 IF num=recent (I) THEN good=FALSE
1080 NEXT
1090 UNTIL good
1100 cycle=(cycle+1) MOD 5
1110 recent (cycle }=num
1120 =phrase$(num)
1130
1140 REM Jumbles of letters.
1150 jumbl$=FNrandletter+FNrandletter
1160 FOR I=1 TO RND(3): jumbl$=jumbl$+FNrandletter: NEXT.
1170 IF RND(2)=1 THEN jumbl$=jumbl$+" ": num=5 ELSE num=3
1180 FOR I=1 TO RND{num): Jjumbl$=jumbl$+FNrandletter: NEXT
1190 =jumbl $
1200
1210 DEF FNrandletter=CHR$(64+RND(26})
1220
1230 DEF PROCwait(n)
1240 REM To wait for n HUNDREDTHS of a second.
1250 TIME=0: REPEAT UNTIL TIME>=n
1260 ENDPROC
1270
1280 DATA GREETINGS, GET FLICKED, THE BABY CRIED, THE BABY
CRAPPED, UP THE CREEK, OMNISCIENT, TO THE SHOPS, TO THE SHOR
E, PROGRAMMERS
1290 DATA T MISSED IT, I DON'T KNOW, WHAT WAS LIT?, MY BRAIN
HURTS, HE GOES FIRST, HE GOES FAST, IF YOU CAN READ THIS YO
U'RE SITTING TOO CLOSE
1300 DATA WATCH IT!, WATCH OUT!,FLY UNITED, FLY UNTIED, STU
FF THE TURKEY, IN THE MOOD, IN THE NUDE, THIS IS NICE, THIS
IS NAUGHTY, AT THE TOP
1310 DATA COUP DE GRACE, CUT THE GRASS, MOI AUSSI, I'M AUST
RALIAN, SUIVEZ LA PISTE, FOLLOW THE INTOXICATED WOMAN
1320 DATA COMPUTERS ARE FUN, COMPUTERS ARE FINE, READING IS
FUN, READING IS GOOD, I LIKE READING, NUMBERS ARE HARDER, A
FIRM DATE, DONNA IS GORGEOUS
1330 DATA COME AND SEE ME, THROUGH THE NIGHT, THROUGH A GLA
35, I THOUGHT SC, IN ALL WAYS, LOOK AT THIS, NOT A CHANCE, T
HEY ARE GREEN, THEY ARE GREAT

1340 DATA ON THE MOVE, IT'S YOUR ROUND, NEVER ON A SUNDAY,
OMNIPOTENT, ARTHUR, ALEXIS, A DREAM COME TRUE, TROUBADOUR, C
ONSCIENCE, GAS BILLS, DUCK BILLS

70 Quality Programs for the Electron

1350 DATA SIMPLE SIMON, FURTHER READING, SOFT ACORNS?, CURT
AINS, CRETINS, LAGER, LARGER, ROTUND, ROTUNDA, I LIKE TEACHE
R, SUPERCALIFRAGILISTICEXPTALIDOCIOUS

1360 DATA IT'S YOUR FAULT, IT'S YOUR TURN, GRATEFULLY ACKNO
WLEDGED, DEVIANT, DEFIANT, DEFOLIATED, ROOM FOR MORE HERE, P
ROGRAMS, PROGRAMMES, WORKS OF ART

1370 DATA SO MANY WORDS, SO LITTLE TIME, TELEVISION, SOCKET

TO ME, ATROCIOUS, INFERIOR QUALITY, GRATEFULLY ACCEPTED, TR
Y AGAIN, T CAN'T THINK OF ANY MORE, * '

Comments on the program

1. More on text windows.

The program sets up a heading at the top of the screen, and then
sets a new text window (using VDU28) to exclude the area with
the heading in it. As we have already seen, this ensures that any
further text display commands will leave the heading untouched.
PRINT TAB(0,5) now means print at the beginning of the sixth
line of the text window, not the sixth line on the screen; CLS
means clear everything within the text window, not everything
on the screen.

2. GET as a trigger.

There are three obvious ways of using a touched key as a trigger:
GET, INKEY, and INPUT. The disadvantage of INPUT (as used in
the telephone costs program) is that if it is to respond to a single
key-press, the key must be RETURN. I find that I do use RETURN
as a trigger in this program — my finger is still resting there after
inputting my answer— but I see no reason to restrict users to this
key.

The disadvantage of INKEY is the time limit it imposes. Users
should be able to leave a program like this for as long as they like,
and still expect to find it as they left it. There wouldn't seem to be
much point in insisting that the display be triggered within the
next so many seconds.

5o we use GET. It will wait for ever (barring power failures),
and will respond instantly to a touch on any key.

3. Multiple returns from functions.
This point was touched on in comment 6 to FNwhichday. When a

Tachistoscope 71

function is being evaluated, the first time a dangling '=" is
encountered (i.e. an equals sign without a variable name to its
left) the value of the expression to its right is made the value of the
function, and control is returned to the statement which called
the function; none of the following statements in the function is
interpreted. It is thus possible to have many different returns
from a function, each to be used in different circumstances. This
program shows two different ways of arranging; this.

FNreply is used to decide what reply to make if the user has
answered correctly. It is quite definitely a frill to the program.
There would be nothing wrong with replying ‘That’s right’ every
time; it’s just a little more fun to have aresponse which is relevant
to the phrase being tested. (The idea came to me when I saw
somebody correctly type IMISSED IT’, and watched the program
reply ‘That’s right.” My pedantry insisted that I step in and
change something.) The function makes three separate tests for
specific phrases. If the first of these tests succeeds, the first reply
is returned and the function ends. If it fails, control simply passes
to the next line of the function, and the second test is made.
Things proceed in this way either until one of the tests succeeds,
or until we reach the last line of the function — a dangling "=’
with no test — at which point the general reply is returned and
the function ends.

ENstr is used to produce the next string of the appropriate class
(note that even the numbers are treated as strings in this
program). Depending on the class, the function has four com-
pletely different things to do, so an ON GOTO is used. The
function then consists of four distinct blocks of code, each ending
with its own dangling ‘=’. As I remarked in the note to
FNwhichday, this is the ideal situation for an ON GOTO, in that
we don’t have to use GOTOs at the end of each block to return
control to some common point.

4. The cycle of recent phrases.
The array called ‘recent’ is used to ensure that a selected word or
phrase is not one of the five most recently used. It is used only for
the words and phrases; the other classes of string are quite
random, and their duplication is so unlikely that it isn’t worth
testing for.

The commonest way of organising such an array is to keep the
most recently used phrase in position 5, the next most recent in

72 Quality Programs for the Electron

position 4, and so on. This entails five assignments in each pass;
something like

FORI=1TO4
recent (I) = recent (I + 1)
NEXT

recent (5) = current

A little thought dispenses with three of the assignments. We use
a counter which cycles around the elements of the array; on each
pass we need only work out the correct value for this counter, and
change the one array element to which it points.

The easiest way to have a value cycling round a given set of
numbers (like the hours on a clock - one to twelve and then
starting again at one) is to use MOD. But because MOD gives us a
number from zero to some top value, we take advantage of the
fact that an array DIM(n) actually has n + 1 elements, from the
Oth to the nth. We give recent a dimension of 4, and use the 5
elements recent(0) to recent(4).

We often ignore the zeroth element of an array. This is notjusta
bad habit: look at the array ‘phrase$’, whose main use is in
providing a randomly chosen phrase. We use RND(n), which
gives us a random number between 1 and n. Certainly we could
use RND(n) — 1 to get a number between (t and n — 1, but it’s
more cumbersome. So we just ignore the zeroth element, and
pretend that the array goes from phrase$(1) to phrase$
(maxphrases). Whether we use the zeroth element in an array will
almost always be dictated by the sort of operations (like MOD
and RND) we will be using on it.

5. A different PROCwait.
Many of the programs in this book use a PROCwait which waits a
given number of seconds. Because the whole essence of this
program involves timing in hundredths of a second, it makes
sense to use a suitably modified procedure rather than play
around with delays like 0.04. For one thing, integer delays are a
lot easier to print nicely.

It should be pointed out that a stated delay of one hundredth of
a second is in fact significantly longer than that. The procedure
delays for one hundredth, but the actions of calling the pro-
cedure, interpreting the BASIC, clearing the screen, and so on
add perhaps a few more hundredths. You should learn to

Tachistoscope 73

interpret the specified delays with a pinch of salt when they reach
the region of a few hundredths of a second.

6. A question on the layout of the menu.

If you have copied the program correctly (or if you have it on tape)
you will notice that option 5 on the menu is printed with only one
apostrophe, while all of the other options are printed with two.
But the options are evenly spaced when the program runs. Why?

7. How the jumble works.

Some moderation must be exercised in the formation of a jumble
of letters for presentation to the user. A ‘word’ of 20 random
letters would be impossible for all but the gifted few. I have
settled on a minimum length of four letters. If the jumble is split
by a space, the first part is three to five letters long and the second
part is one to five letters long. If there is no space, the whole
jumble is from four to eight letters in length. Given that inform-
ation, you should find it fairly easy to understand the relevant
segment of the function.

8. VAL(GETS).
In line 620 the expression VAL(GETS$) is used to interpret a value
typed in by the user. What does this expression do?

GET returns the number of a pressed key. GET$ returns the
string containing the character of a pressed key. VAL produces a
number from a string. So isn’t VAL(GET$) the same as GET? No,
because VAL and GET produce different types of number. GET
produces the ASCII number of the character, while VAL assumes
that a string consists of digits, and produces the number for
which those digits are the written form. So if, say, the ‘3" key is
pressed, GET will return a value of 51, GET$ will produce a value
of /3" (the string, not the number), and VAL(GET$) will produce
avalue of 3.

Wouldn't it be easier just to INPUT the number? Yes, but then
the user would have to remember to press RETURN after typing
the number — something which isn’t really necessary in this
context.

9. Offensive words and phrases.
Not wanting to offend anyone, I have deliberately omitted certain
common phrases which are in my own version of the program.

74 Quality Programs for the Electron

That works to an extent, but I disclaim all responsibility if
anyone is offended by a word or phrase produced as a random
jumble of letters. |

Suggested amendments to the program

1. If you don’t like the words and phrases I have used, replace
them with your own. If you do like them, add some more of your
own. Don’t forget the advisability of having some similar pairs of
phrases, to ensure a certain accuracy of recognition.

2. As a fairly major project, turn the program into a spelling
checker. You will need to replace the data with half a dozen
variants (one of them the right one) of various words you have
difficulty with, set the display to a fairly fast constant rate, and
amend the program so that it asks ‘Did I spell that correctly?” Of
course it will then have to make the necessary checks on the
answer. It might also keep a score of right and wrong answers;
and perhaps even ask for the correct spelling of an incorrectly
displayed word.

3. If you want the jumble of letters to reflect English a little more
closely, change FNrandletter so that it has different chances of
producing different letters. It might, for instance, produce E 20%
of the time, A 15%, I 12%, and various other probabilities
ranging to 1% orless for Z, X, and Q. If you're not sure how to do
this, look at FNhowmany in the GROAN program.

4. If you always run this program in the same circumstances, i.e.
without having used the random number generator since turning
the computer on, you will find that it always comes up with the
same sequence of words and phrases. To avoid this, you must
‘randomise’ the random number generator; one way of doing this
is used in the Artillery program, and mentioned in comment 1 to
that program.

