=lashcards

Flashcards are a very common and useful aid in learning things
which come in pairs. Vocabulary for a foreign language, con-
version from one measurement system to another, geographical
data, history dates, authors of books . . . the list is long. With a
foreign language the pairs of things might be equivalent words in
English and the other language: the house, la maison; the town,
la ville; me, moi; love, 'amour; to love, aimer; and so on. With
history (the only history I was ever taught at school was when —
nobody seemed to care much about how or why) the pairs of
things might be events and dates: battle of Hastings, 1066;
invasion of Australia, 1788; war, forever; first man on the moon,
1969; Spanish armada, 1588; Columbus and the new world, 1492;
birth of Donna Mayhew, 1959; great fire of London, 1666; and so
on.

In their non-computing form, flashcards are pieces of card,
with one piece of information on one side and the equivalent
piece on the other. The person who is supposed to have learned
the equivalences looks at one side of a card and tries to say what is
on the other side. The card is then turned over to see whether the
right answer was given. When all of the cards can be answered
without error, the material has been learned (whatever that
actually means).

With this program you can set the computer up as a set of
flashcards. You can create sets of cards, save them on tape, read
them back later; you can test yourself on them either way (e.g.
English to French or French to English), or you can try both ways
at once, with the program choosing which side to show you each
time it picks a card.

What you choose to put on your flashcards is entirely up to you.
To make full use of the program you will probably have several
sets of cards, stored in different files. You might have sets of
vocabulary in various foreign languages, sets of dates and events,

76 Quality Programs for the Electron

a set showing the capital cities of various countries, a set with
your friends’ telephone numbers if you like memorising that sort
of thing.

One idea which mightnot occur to you (well, this program is in
the educational section) is to have a set of riddles on cards. You're
not so likely to use these cards for learning the riddles, but it
could be fun using them to ‘ask’ a friend the riddles.

How to use the program

When you set the program running you will be presented with a
menu. The first thing you must do is create some flashcards, so
you should choose option 1. Be sure to keep all the information of
one type on side a of the cards, and all of the other type on side b.
The program can still test you on randomly chosen sides if you do
that; but it can’t be told, say, to seek out the French side every
time if you've put some English and some French on side a.

When you have a reasonable number of cards (half a dozen or
s0) you should try the other options, to be sure that they work
before you start typing in bigger sets. It wouldn’t do to type in 300
cards and then find that you can’t save them. You tell the program
that you've created enough cards by typing an asterisk for side a
of a new card.

Now try testing yourself on the cards. As with the tachisto-
scope, you will see that you must get the answer exactly right —
capital letters, punctuation, and all. So long as the cards are right
this is a good test of your spelling and punctuation as well as your
memory. If the cards are wrong it is downright annoying.
Imagine being asked the English for ‘la maison’, replying ‘the
house’, and being told ‘No. It's the huose.” This is where option 2
comes in. It shows you each card in turn and asks whether you
want to change it. As with the Pie Chart program, keep tapping
RETURN until you find a wrong card; then type Y and you will be
able to correct it. If the old card is almost right you can use the
editing keys to copy the correct bits, just as you dowithalineina
BASIC program.

When you are sure that the cards are right you should try
saving them in a file, using option 5. This should be fairly
straightforward, unless you normally have trouble saving
programs on your tape recorder. Just in case, the program offers

Flashcards 77

The information is entered card by card . . .

.. and you can then test yourself on it

78 Quality Programs for the Electron

to go back and check the file, so that you can be sure the cards are
safe before leaving the program. Don't forget to position the tape
correctly before saving anything: you don’t want to overwrite a
program. If you expect to have several files of cards, it might be
worth having one tape dedicated to them. You should also leave
large gaps between card files if you expect that they might be
expanded later.

To make the most of option 4 you should create a second set of
cards; save it, too, then use option 4 to recall the first set. If all this
works, it's time to expand the sets to a better working size.
Option 3 lets you add new cards to a set. Having done this, you
will want to save the expanded set. Eventually, of course, you will
have to use option 7; all good things must come to an end. But
having saved the cards in files you can go back to them again and
again without having to recreate them each time.

Program listing

100 REM Flashcards, by Simon.

110 MODE6

120 ON ERROR IF ERR=17 THEN GOTO 160 ELSE REPORT: PRINT" a
t line ";ERL: PROChold: GOTO 160

130 maxcards=100: DIM card$(2,maxcards)

140 DIM recent(4)}: cycle=0

150 FOR I=0 TO 4: recent(I)=0: NEXT

160 REPEAT CLS

170 PRINT'® Flashcards"

180 PRINT ' by Simon."

190 PRINT'!"What would you like to do now?"

200 PRINT'"1> Create a new set of cards."

210 PRINT'"2> Alter some of the current cards."

220 PRINT'"3> Add new cards to the current set."

230 PRINT'"4> Load a set of cards from a file."

240 PRINT'"S> Save the current cards in a file."

250 PRINT'"6> Test yourself on the current cards."

260 PRINT'"7> Finish."

270 PRINT''"Please type the appropriate number.";

280 option=VAL(GET$)

290 IF option=1 THEN numcards=0: PROCaddcards ELSE IF op
tion=2 THEN PROCalter ELSE IF option=3 THEN PROCaddcards ELS
E IF option=4 THEN PROCload ELSE IF option=5 THEN PROCsave E
LSE IF option=6 THEN PROCtest

300 UNTIL option<i OR option>6

310 MODE6: PRINT''"See you next time!n!'!

Flashcards 79

320 END

330

340 DEF PROCaddcards: LOCAL I

350 CLS: I=znumcards

360 PRINT TAB(0,24)"{(Put an asterisk on side (a) to finish
)1]‘;

370 VDpU28,0,22,39,0: REM Text window.

380 REPEAT I=I+1

390 PRINT''"Card ";I;":="

400 INPUT LINE"a) "card$(1,I)

10 IF card$(1,I)<>"¥" THEN INPUT LINE"b) "ecard$(2,I)

420 UNTIL card$(1,I)="*" OR I=maxcards

430 YDU28,0,24,39,0: REM Restore normal text window.

440 IF card$(1,I)<>"¥" THEN PRINT'"You can't have any more
cards unless"'!'"you reset the value of ""maxcards'" in"'"lin
e 130 of the program.": numcards=maxcards: PROChold ELSE num
cards=I-1

450 ENDPROC

U460

470 DEF PROCalter: LOCAL I,ans$

480 CLS

490 FOR I=1 TO numcards

500 PRINT''"Card ";I;":="tra) ":card$(1,I)

510 PRINT"b)} ";card$(2,I)

520 PRINT'"Do you want to change this one? ",

530 ans$=GET$: PRINTans$

540 IF ans$="Y" OR ans$="y" THEN PRINT'"Right. Type in t
he new card.": INPUT LINE"a) "card$(1,I}: INPUT LINE"b) "car
d$(2,I)

550 NEXT

560 ENDPROC

570

580 DEF PROCload: LOCAL I,file,file$

590 CLS: PRINT'!"What is the name of the file you want"

600 INPUT"to read flashcards from? "file$

610 file=OPENIN(file$)

620 INPUT{#file,T

630 IF I>maxcards THEN PRINT'"That file has more cards in

it than are"!tpresently allowed for. You'll have to"''reset
the value of ""maxcards"" in line"'"130 to at least ™;I;".™":
CLOSE#file: PROChold: ENDPROC ELSE numcards=I

640
NEXT
650
660
670
680
690
700
y2$
710

FOR I=1 TO numcards: INPUT#file,card$(1,I),card$(2,I):
PRINT''"OK, the cards in the ";file$;" file"
PRINT"have been read in."

CLOSE#ffile: PROChold

ENDPROC

DEF PROCsave: LOCAL I,checknum,file,file$,dummy1$,dumm

CLS: PRINT'"Remember to position the tape correctly.”

80 Quality Programs for the Electron

720 PRINT''"What is the name of the file you want"
730 INPUT"to save the flashcards in? "file$
T4O file=OPENOUT(file$)
750 PRINT#file,numcards
760 FOR I=1 TO numcards: PRINT#file,card$(1,I),card$(2,I):
NEXT
770 CLOSE#file
780 PRINT''"QOK, the cards have been saved in the"
790 PRINT"file called ™;file$;"."
800 PRINT'"Would you like me fto check the file? ";
810 dummy1$=GET$
820 IF dummy?$<>"Y" AND dummyt$<>"y" THEN ENDPROC
830 PRINT''"Don't forget to rewind the tape."
840 £ile=OPENIN(file$)
850 INPUT#file,checknum
860 IF checknum<>numcards THEN PRINT'"No, there's been an
error in recording.": CLOSE#file: PROChold: ENDPROC
870 FOR I=1 TO numcards: INPUT#file,dummyl$,dummy2$: IF du
mny 1 $=card$(1,I) AND dummy2$=card$(2,I) THEN NEXT ELSE PRINT
'"No, there's been an error in recording.": CLOSE#file: I=nu
mcards: NEXT: PROChold: ENDPROC
880 PRINT''"Yes, I can read the file, and it"
890 PRINT"contains the right information."
900 CLOSE#file: PROChold
910 ENDPROC

920
930 DEF PROCtest: LOCAL I,J,type,side,char,tested,score,ni

n,good,answer$
940 CLS: PRINT'!'"Do you want to be tested:-"
950 PRINT'"1> From side a to side b of the cards?"
960 PRINT'"2> From side b to side a of the cards?"
970 PRINT'™"3> A mixture of the two?"!
980 REPEAT type=VAL(GET$): UNTIL type>0 AND type<l
990 tested=0: score=0
1000 IF numcards<6 THEN min-numcards-1 ELSE min=5
1010 REPEAT CLS
1020 REPEAT good=TRUE

1030 I=RND(numcards)

1040 FOR J=0 TO min-1

1050 IF I=zrecent(J) THEN good=FALSE
1060 NEXT '

1070 UNTIL good

1080 cycle=(cycle+1) MOD min: recent{cycle)=I

1090 IF type=3 THEN side=RND(2) ELSE side=type

1100 PRINT TAB(0,5)card$(side,I)

1110 tested=tested+1

1120 INPUT tanswer $

1130 IF answer$=card$(3-side,I) THEN PRINT!'''!'"That's rig
ht t": score=score+1 ELSE PRINT''''"No, it 's"'card$(3-side,)

1140 PRINT''"Press Q to stop, or any other key"

Flashcards 81

1150 PRINT"to continue. ";: A$=GET$
1160 UNTIL A$="Q" OR Ag$="qg"
1170 CLS: PRINT'''"You scored "jscore;" out of ";tested;"."

1180 PROChold

1190 ENDPROC

1200

1210 DEF PROChold: LOCAL dummy$

1220 INPUT'!'"Press RETURN to go back to the menu."dummy$
1230 ENDPROC

Comments on the program

1. Half escapes and ON ERROR do lots of things.

Like the tachistoscope, this program is set up to return us to the
menu if ESCAPE is pressed. This can be very useful if, for
instance, you type the wrong option number. You've just typed
in 50 flashcards; you think you've typed option 5, to save the
cards, and you see that you're being asked ‘What is the name of
the file you want to read flashcards from?” Obviously you want to
escape from that situation; but you certainly don’t want to escape
from the whole program and lose your 50 cards. The program
acknowledges this; the return to the menu when ESCAPE is
pressed might be called a "half escape’.

Unlike the tachistoscope, though, this program is open to
many ‘errors’ other than escape. An error can be caused by any
problem in reading or writing a file (failure to read properly, file
still open, etc); and we certainly wouldn’t want a simple return to
the menu in such circumstances. So the error trap must distin-
guish between escape (a ‘good’ error) and any other error. The
distinction is that escape is overlooked, while anything else is
reported for the user’s information.

Fortunately the ON ERROR statement is capable of a lot more
than the GOSUB and GOTO with which it is normally associated.
ON ERROR can be followed by any statement, including a
multiple statement. Line 120 shows a use of this kind.

This is a good time to recall that if an error does occur, all loops,
procedures, functions, and so on are left. So no matter how deep
in aloop or a procedure the error happens, the statement to which
control is then transferred must be at the program’s top level.

82 Quality Programs for the Electron

2. INPUT LINE.
Having no idea what sort of text or numbers will be put on the
cards, we must allow for anything. In normal input, a comma will
be taken as the end of a string, but you might want flashcards
which have commas as part of their strings. So we use INPUT
LINE; unlike INPUT, this command accepts into a string every-
thing typed in, regardless of commas, until the next RETURN.
There is no need to use INPUT LINE when reading from a file.
INPUT# reads any string which was written using PRINT#.

3. Reviewing the cards.

There is no specified option for reviewing the cards. You might
want to do this just from curiosity; you might want it to see the
contents of a file of cards you have just read in; or you might want
it to check what cards are already in a set before adding to it. The
reason the option is not explicitly provided is that it is already
available in option 2, altering the cards. If you run through this
option without altering any cards, you have an effective review of
the whole set.

4. Abnormal loop termination.

Line 870 is a loop which reads flashcards from the file and checks
them against the cards in memory. If there is a mismatch, a
suitable message is printed and the loop is terminated. Notice
that a simple GOTO or ENDPROC would not be enough to break
out of the loop — the computer must be made to believe that the
loop has finished. So we set the loop counter to the value we told
it to stop at, and provide a NEXT to fool it.

I suspect that this facility will never in fact be used. If there is a
recording or playback error, it is far more likely to show itselfin a
real error (Data? or Block? or the like) than in a misread line. But
['m not sure, so I've put in the extra trap just in case.

5. The recent cycle again.

When testing, flashcards uses the same sort of cycle of recently
used cards as the tachistoscope. There is a problem, though.
Tachistoscope simply made sure not to repeat the five most recent
phrases, but flashcards can’t be sure that there are as many as five
cards. So it uses aminimum value, set in line 1000, to allow for the
possibility of fewer cards.

Flashcards 83

6. The ‘3-I" trick.
[generally dislike programming tricks which use obscure
arithmetic to achieve simple results. They tend to shorten
statements, replacing a complicated IF statement with a simple
arithmetic one, but they make a program much harder to read.
There is one such trick, though, which is so neat that it
deserves to survive my displeasure. In the case where we have
either 1 or 2, and want the other,] = 3 — Iis much easier than IF
I = 1THEN J = 2 ELSE J = 1. I have overcome my qualms and
used this trick in line 1130.

Suggested amendments to the program

1. When cards are being added to the set, the program completely
ignores the possibility that a ‘new’ card might already be there. If
you intend to use the program for big sets of cards, get it to check
each new card to see whether it is already present.

2. It can be a little distressing to have ‘the house’ marked wrong
because the answer is “THE HOUSE’, or vice versa. You could
quite easily add a function which turns both the flashcard and the
answer into upper case before comparing them (without actually
changing the card itself).

With a lovely function like EVAL, the Electron is crying out for a
graph-plotting program. Not one which plots points input by the
user, but one which accepts and plots a mathematical function.
Some people have heard the cry and responded to it, but sur-
prisingly few have actually bothered with things like neatly
marked axes or a facility for changing the scale — the essentials of
any graph-plotter. It isnt enough simply to use EVAL; one must
ask what sort of things a user might want to do with the program.

How to use the program

The program starts by displaying a set of axes in a graphics
window and a menu in a text window. The first menu option is
self-explanatory, but the others could do with alittle elaboration.

Move origin. The origin of the graph (i.e. the point where the
axes meet) is defined in terms of the normal graphics screen
addresses, and is initially set at (200,200). The value of the current
origin will be displayed before you are asked for a new location. It
is permitted to have an origin off the screen (at (—500,400), for
instance), but one or both axes will then also be drawn off the
screen. Moving the origin will remove any plot which is present,
but option 6 can help restore it.

Rescale axes. In the initial picture the x-axis covers a range of 20
and is marked in steps of 2, and the y-axis covers a range of 10
and is marked in steps of 1. Note that a range of 20 does not
mean from 0 to 20: the low value and the high value are deter-
mined by where the origin is. As an example, a range of 18 with
the origin in the centre would give values from —9 to 9, whereas
the same range with the origin one-third of the way across the
screen would give values from —6 to 12. Be aware of this when

Graph Plotter 85

you input the ranges you require. Like moving the origin,
rescaling will remove a current plot.

Plot a function. You will be asked what function you want to
plot, and prompted “Y='. The point of the prompt is to remind
you that the function must be given in terms of X if EVAL is to be
able to evaluate it. You can’t even use ‘x’; the name-must be in
upper case. You can plot several functions on the same sheet,
simply by repeated calls to option 4. This permits you, for
instance, to plot SQR(X) for X from 0 to 10, then —SQR(X) for X
from 0 to 10. To assist in this sort of use, the current function will
be displayed, and you can use the cursor and COPY keys to help
define the new function. When you have defined the function
you will be asked what starting and finishing values of X you
want the plot to cover, and what size steps you want the plotter to
use. This last feature is most important: try plotting SIN(X) in
steps of 2, then in steps of 0.2, and you'll see that the former
gives a most misleading impression of what the function looks
like. If you don’t particularly want to specify the step size, just
press RETURN, and the program will select the smallest size
meaningful in terms of mode 4 resolution (i.e. will give you the
highest-resolution plot it can manage). If you do want to specify
step size, note that like the low and high values of X, it is specified
in terms of X and the axes, not in terms of screen addresses.

New sheet. This option simply gives you a clean sheet of graph
paper with the same origin and same axes as before. It should be
used when the old sheet is becoming cluttered, or when you have
plotted something silly (like SIN(X) in steps of 2) which is
obscuring the plot you want to see. Options 1and 2 automatically
give you a new sheet.

Replot the function. A luxury — but there was a spare slot in the
menu. If you want to plot the same function as before (on a new
sheet, for instance), this option saves you the bother of using
option 4 and the COPY key to redefine the function.

The program is highly subject to user errors. You might try to
plot something which goes to infinity, or the square root of
something negative, or whatever. If such an error does occur, all
is not lost. The program simply reports the error and returns you
to the menu, where you can try again. Any plotting program
which does otherwise is begging to be crashed!

86 Quality Programs for the Electron

S

s

os | 5% JemE——

- 0?9_?"191“5

Rescale axe

unction is —-SQRCX)D
- now?

- but this one requires two separate plots

Graph Plotter 87

Program listing

100 REM Simon's Graph Plotter.

110 ON ERROR VDUU4: REPORT: PRINT '"Press a key to continue:
i dummy=GET: GOTO 130

120 MODEY4: PROCsetup

130 REPEAT

140 PROCask

150 IF choice=2 THEN PROCorigin ELSE IF choice=3 THEN PR
OCaxes ELSE IF choice=4 OR choice=6 THEN PROCdraw ELSE IF ch
oice=5 THEN PROCpaper

160 UNTIL choice=1

170 END

180

190 DEF PROCsetup

200 xcentre=200: ycentre=200: xrange=20: yrange=10

210 xmark=2: ymark=1:; PROClimitg: functiong=""

220 VDU24,0;0;1279;863;: VDU29,xcentre;ycentre;

230 VpU28,0,4,39,0: COLOURO: COLOUR129: CLS: PROCpaper

240 ENDPROC

250

260 DEF PROCask

270 CLS: PRINT™1> Quit™;SPC(13);'"4> Plot a function"

280 PRINT"2> Move origin";SPC(6);"5> New sheet"

290 PRINT"3> Rescale axes';SPC(5);"6> Replot function”

300 PROCfunc: PRINT"What now? ";: choice=VAL(GET$): CLS

310 IF choice=1 OR choice=l OR choice=6 THEN PROCfunc

320 ENDPROC

330

340 DEF PROCfunc

350 IF function$<>"" THEN PRINT"(Function is ";function$;"

360 ENDPROC

370

380 DEF ‘PROCorigin

390 PRINT"Present origin is at (";xcentre;",";ycentre;"}"
400 PRINT"Where do you want the new origin:-"

410 INPUT"X? "xcentre: INPUT"Y? "ycentre

4§20 vDU29,xcentre;ycentre;: PROClimits: PROCpaper

430 ENDPROC

440

450 DEF PROCaxes

460 PRINT"(Don't give high and low values - give"

470 PRINT"their difference.)"

480 INPUT"What range of X-values on the page? "xrange
4oy INPUT"X-axis marked in steps of? "xmark

500 INPUT"What range of Y-values on the page? "yrange
510 INPUT"Y-axis marked in steps of? "ymark

520 PROClimits: PROCpaper

530 ENDPROC

540

88 Quality Programs for the Electron

550 DEF PROClimits

560 xscale=1280/xrange: yscale=864/yrange

570 xtop={1280-xcentre)/xscale: ytop=(863-ycentre)/yscale
580 xbot=-xcentre/xscale: ybot=—ycentre/yscale

590 ENDPRCC

600

610 DEF PROCdraw: LOCALxhigh,xinc,X,¥,scrx,scry

620 IF choice=4 THEN INPUT"Function? Y="function$

630 INPUT"X starting at? "X: Y=EVAL(function$)

640 MOVEX ¥xscale, Y¥yscale: INPUT"and going to? "xhigh

650 INPUT"in steps of? "xinc: IF xinc=0 THEN xinc=4/xscale

660 IF xhigh<X THEN xinc=-ABS(xinc}

670 FOR X=X TO xhigh STEP xinc

680 Y=EVAL(function$): scrx=X*xscale: scry=Y¥yscale

690 IF scrx>-xcentre AND scrx<1280-xcentre AND scry>-yce
ntre AND scry<86i-ycentre THEN DRAWscrx,scry ELSE MOVEscrx,
scry

700 NEXT

710 ENDPROC

720

730 DEF PROCpaper: LOCALx,y,xplot,yplot

740 CLG: VDU5

750 MOVE-xcentre,0: DRAW1279-xcentre,O

760 MOVEQ,-ycentre: DRAWO,863-ycentre

770 FOR x=xmark TO xtop STEP xmark

780 xplot=x¥*xscale: MOVExplot,12

790 DRAWxplot,-12: MOVExplot-16,-24

800 IF xplot<i296-xcentre~32*LEN(STR$(x)) THEN PRINT;x;

810 NEXT |

820 FOR x=-xmark TO xbot STEP -xmark

830 xplot=x*xscale: MOVExplot,12

840 DRAWxplot,-12: MOVExplot-32,-24: PRINT;x;

850 NEXT

860 FOR y=ymark TO ytop STEP ymark

870 yplot=y*yscale: MOVE12,yplot: DRAW-12,yplot

880 offset=20+432*LEN(STR$(y))

890 MOVE-offset,yplot+16: PRINT;y;

00 NEXT

910 FOR y=z-ymark TO ybot STEP -ymark

920 yplot=y*¥yscale: MOVE12,yplot: DRAW-12,yplot

930 of feet=204+32 *LEN(STR$(y))

940 MOVE-offset,yplot+16: PRINT;y;

950 NEXT: VDU4

960 ENDPROC

Graph Plotter 89

Comments on the program

1. The great EVAL.

EVAL is a very powerful feature of BBC BASIC. Graph plotting is
perhaps the most obvious of its uses, but there are many more.
What it does is assume that its argument, a string, is a valid
BASIC expression, and return the value of that expression. Need-
less to say, if the string isn’t a valid expression an error occurs.
Errors will also be caused, as usual, by the presence in the string
of undefined variables, which is whythe input function must be
in terms of X. X is the variable in the program which keeps being
given new values along the x-axis, and so X must appear in the
function string if the values of the function are to be different at
different points. It would be possible to let the user specify the
name of the variable (s)he wanted to use, but that would be
troublesome both for the programmer and, in the long run, for
the user.

2. A procedure of convenience.

There is nothing in the logical structure of the program to explain
why PROCfunc is a procedure, rather than just a line in other
procedures. The reason for putting it apart is not structural at all:
it'’s simply easier to write the line once and make several pro-
cedure calls than to write the line several times. Of course this
would not be the case if the line were of approximately the same
size as the procedure call.

3. Marking the axes.

Each axis is marked in two separate FOR statements, one for the
positive side and one for the negative side. Why not simply have
one FOR loop, starting at the bottom of the negative side and
going to the top of the positive side? The answer isn't necessarily
obvious when you look at the loops as they are, but it should
become clear if you try writing such a loop — or at the very worst,
if you try running it.

Notice the offset calculated for numbers on the y-axis. This
simple calculation uses the length of the number to be printed to
ensure that it is neither too near nor too far from the axis. A
similar calculation could have been made to centre the numbers
on the x-axis, butIdidn’t feel that there was such a problem here,

One problem that does arise with the x-axis is wraparound. Try

90 Quality Programs for the Electron

to print a number too close to the right edge of the graphics screen
and it will wrap around to the left edge. Line 800 tests this
possibility, and only prints the number if it is clear of the edge.

4. Graphics wraparound.

The graphics screen also undergoes wraparound from top to
bottom, although there is a large apparent gap between a line
which goes off the top of the screen and its continuation at the
bottom. To see this effect, change line 690 to DRAWSscrx,scry and
plot X"3 for X from 0 to 16. Now you know why a check is made to
see whether a point is on the screen before plotting it.

5. Specifying plotting limits.

Why make the user specify the starting and finishing values of X
for a plot? Wouldn’t it be easier simply to plot from the X-value on
the left edge of the screen to the X-value on the right edge of the
screen? No, because not all functions exist at every X-value
shown. Try plotting SQR(X) from —2 to 5, for instance.

6. The top line of the display.
Most of the programs in this book tend not to use the top line of
the display, because on many setups this line is above the top of
the screen. If you have this problem, the ideal solution is to adjust
the frame height on your television; this should be a fairly simple
adjustment in the back. In fact most television pictures are
slightly out of proportion one way or the other, so although the
newsreaders might look a little odd after you have adjusted the
height, you have probably brought them more into proportion.
If you don't feel like adjusting the television, you might have to
alter this program so that the text window is one line lower, and
the graphics window is accordingly smaller.

Suggested amendments to the program

1. Depending on what you use this program for, the initial
settings of screen and axes might be constantly wrong. If, for
instance, you are forever plotting SINs and COSes, you would
prefer an origin closer to the centre and a rather smaller range on
the y-axis. If this is the case, modify PROCsetup to give more
suitable values.

T PR et et e — e e

%
i
g

Graph Plotter 91

2. If you plot a graph whose origin isn’t on the paper, you draw
axes anyway. This program doesn’t, but it wouldn't take a lot of
effort to modify PROCpaper suitably. If xcentre is less than 0 or
greater than 1280 you will have to plot a different sort of y-axis,
and if ycentre is less than 0 or greater than 864 (the top of the
graphics window) a different x-axis is called for.

3. Going back to the idea of comment5, perhaps you'd be willing
to accept the odd error for the benefit of not having to specify the
plotting limits. If so, modify PROCdraw to produce a default
value of the edge of the graph if RETURN is pressed. It won't be
quite as easy as the default value for the step size. There,
RETURN is interpreted as zero, an otherwise unacceptable input,
and so is unambiguous. But zero is a perfectly acceptable plotting
limit, so you would need a different form of the INPUT statement
to distinguish between it and RETURN.

4. If you have any serious use for graph plotting, you probably
also have a use for log-scaled paper. It will take a little thought to
include log scales in this program, but it can certainly be done.

SRR

: exagons

Britain doesn’t seem to have drive-in cinemas. In winter it’s so
cold that nobody would dream of sitting outside in the car for
several hours; in summer the light lasts so long in the evening
that nothing would show on the screen; and it's almost always
too wet anyway.

I used to enjoy going to the drive-in in Australia. It's cheaper
than the normal cinema, the atmosphere is much less stuffy, you
can dress as you please (not that I don’t normally, but my friends
feel obliged to dress up for the indoor cinema), and you see two
full feature films rather than one.

But the best thing about the drive-ins, or some of them
anyway, is the interval. After they’'ve finished showing those
dreadful slide-and-monologue adverts (which you ignore by
getting something from the cafeteria), they show the most
delightful, relaxing, soothing display I've ever seen outside
nature. Everyone else is busy queuing, eating, talking, or
whatever else one does in the interval; butI sit there hypnotised,
my eyes glued to the screen, until the second film starts.

What, you demand, is this captivating display? It's very
simple, but none the less beautiful for it. They project coloured
light through bobbly glass (the sort bathroom windows are made
of), and very, very slowly turn the wheel holding the colour filter.
Another colour gradually starts to seep across the screen — but
not just coming in from one side, as you might expect; the
refraction effects of the glass scatter the incoming colour across
the screen, bobble by bobble. The effect is superb.

It has long been my intention to acquire a slide projector, a bit
of bobbly glass, an electric motor geared way down, and a wheel
holding various filters, so thatI could repeat the effect in my own
home. I haven’t managed it yet, but I have acquired a computer.

This program uses a repeating pattern of hexagons and
diamonds to simulate the glass. Its regularity is rather unrealistic,

96 Quality Programs for the Electron

but you try doing something like this without regularity! Each
basic unit (one hexagon and one diamond) is made up of 596
mode 5 pixels, excluding the lines defining the shapes. The
program simulates the seeping light by making 20 passes
through each unit, filling in a few more pixels each time,

Unfortunately, the decision as to which pixels should be filled
in on which pass is almost impossible to program. The incoming
colour must satisfy lots of rules which are not very easy to specify.
It must, for instance, start by affecting the far side of each unit,
and leave the near side until quite late. While it is theoretically
possible to program all such constraints, and then let the
computer randomly choose pixels which satisfy them, there are
two reasons for not doing it this way. First, it would take the
programmer too long to appreciate and specify all the constraints;
and second, it would take the computer too long to do— it would
spend more time discarding unsuitable pixels than it would
filling in the new colour.

So I have decided for myself how many pixels should be
affected in each pass, and even which ones they are. That
information must be passed to the program as data. I apologise
for the quantity of it, but assure you that the effect is worth the
time you will spend typing it in and proofreading it. (Of course if
you have the cassette of the programs, there’s not a lot of effort
involved.)

By a historical accident, Hexagons was first written as two
programs (the accident was that it was written for the model A
BBC micro, which doesn’t have enough storage to run it as one
program). Although the Electron could easily handle it in one go,
I have left it as two programs because of two interesting points
which this raises. First there is the fairly minor matter of one
program automatically calling another, with the CHAIN
command. And second there is the fact that the first program
stores information for the second program to use, in such a way
that it isn’t destroyed when the second program is loaded.

How to use the programs

Type in the first program and save it on tape. Type in the second
program and save it. You don’t have to use the names that I've
used for the files, but you must be sure that the name you use in

Hexagons 97

the CHAIN command in the first program is the same as the name
you use for the file the second program is SAVEd in.

Rewind the tape to a spot before the first program, LOAD it and
RUN it (or simply CHAIN it). It will search for the second

program on the tape when it is ready.
The program will run until broken into with ESCAPE or

BREAK. It takes about 30 minutes to complete a full cycle. I see it
as fulfilling the same sort of function as a goldfish bowl —
something soothing to look at now and then, rather than

something to concentrate on.

Pkm%mnaasadmkmcdmﬂdﬁﬁmmnn&mnﬂwkﬁ

Program listing

e
-
e
P
E
i
=
o
E
&
?;9
&
L
i

100 REM HEXAGONS - the first phase of the hexagons program
- by Simon.,

110 DATA6,0,6,34,8,35,15,19,15,23,16,9,16,12,16,14,16,16,1
6,22,17,18,17,19 '

120 DATA5,3M,6,35,7,0,7,3&,13,12,13,15,14,10,14,14,15,11,1
5,14,15,17,16,8,16,11,16,17,16,25,17,12

98 Quality Programs for the Electron

130 DATA3,33,4,2,4,32,5,0,5,33,13,19,14,12,14,16,14,18,15,
8,15,9,15,13,15,18,16,10,16,13,16,18,16,19,16,23,17,10,17, 14

140 DATAZ,4,2,30,3,3,5,2,6,1,12,%,13,5,13,29,14,6,14 7,14,
26,14,29,15,6,15,22,15,26,15,28,16,7,16,21,16,24,16,26,17, 4,
17,8,17,24,17,26

150 DATAO,5,2,3,2,32,4,1,4,31,4,33,6,12,6,15,7,35,12,6,13,
4,13,6,14,5,14,21,14,23, 14,24, 14,28,15,7,15,10,15,25,15,27, 1
6,15,16,20,16,27,17,9,17,11,17,21,17,25

160 DATA1,3,1,6,3,0,3,4,5,1,5,32,6,33,7,13,8,9,8,15,11,2,1
1,32,12,26,12,27,12,29,12,31,13,8,13,24,13,26,13,27,13,30, 14
ég,1&,22,1u,25,1u,27,15,12,15,21,15,2u,17,13,17,16,17,23,17,

170 DATAO,27,0,28,1,28,2,29,3,30,3,31,4,3,5,18,6,17,6,19,7
,11,8,11,8,18,9,13,9,18,9,21,10,1,10,2,10,32,10,33, 11,4, 11,1
5,11,17,11,21,12,3,12,18,12,30,13,9,13,16,13,21,13,25, 14, 15,
15,1,16,5,17,17,17,20

180 DATAO,30,1,5,1,29,2,31,2,35,3,15,3,32,4,9,4,11,4,34,5,
13,5,1“,6,7,6,16,7,9,7,16,7,22,8,10,8,28,9,7,9,10,9,25,10,7,
10,12,10,14,10,27,10,30,11,3,11,12,11,25,11,31,12,5,12,22, 12
,28,13,7,14,0,14,13,15,34,17,22,17,33

190 DATAO,7,1,1,1,15,1,31,1,32,1,34,2,2,2,33,3,2,3,16,3,35
,5,10,5,17,6,9,6,2&,7,5,7,27,8,6,8,16,8,21,8,24,9,4,9,5,9,8,
9,11,9,14,9,19,9,24,10,3,10,8,10,25,10,26,10,31,11,8,11, 10, 1
1,24,11,28,11,29,12,8,12,10,12,11,13,28,13,35,16, 1

200 DATAO,1,0,2,0,6,0,31,1,0,1,2,1,33,1,35,2,0,2,34,3,20,4
!17:41191412015!11s5:2055,2316!21;716$79717r2017’2618:538:13

205 DATAS,29,9,15,9,16,9,17,9,29,9,30,10,4,10,17,10,19,10,
20,10,22,10,23,11,14,11,18,11,19,11,23,11,30,12,13,12, 14,12,
20,12,23,12,25,13,22,14,35

210 DATAO,4,0,29,0,32,0,33,4,35,5,22,6,13,6,14,6,20,6,23,6
,25,7,14,7,18,7,19,7,23,7,30,8,4,8,17,8,19,8,20,8,22,8,23

215 DATA9,0,9,1,9,22,9,32,9,33,10,5,10,13,10,29,11,6,11,7,
11,20,11,26,12,21,13,11,13,20,13,23,14,17,14,19,14,20,15,20,
16,0,16,34,17,0,17,2,17,33,17,35

220 DATAO,35,2,1,5,28,5,35,6,8,6,10,6,11,7,8,7,10,7,24,7,2
8?7’29!8!3!8!8’812538’2658’31!9?2!9!3!9!9!9!2319!2719!31!9$3
4,10,6,10,16,10,21,10,24,11,5,11,27,12,9,12,24,13,10,13, 17, 1
5,2,15,16,15,35,16,2,16,33,17,1,17,15,17,31,17,32,17T, 34

230 DATA0,3,1,22,1,23,3,34,4,0,4,13,5,7,6,5,6,22,6,28,7,3,
7,12,7,25,7,31,8,7,8,12,8,14,8,27,8,30,9,12,9,26,9,28,10,10,
10,28,11,9,11,16,11,22,12,7,12,16,13, 13,13, 14, 14,9, 14,11, 14,
34,15,15,1%,32,16,31,16,35,17,5,17,29

240 DATAO,33,0,34,1,17,1,20,2,5,3,1,4,15,5,9,5,16,5,21,5,2
5’6!3!611816’30’71)437’}517!17!732118!1’8’2!8!32)8!33!9!6!9!7
,9,20,10,11,10,18,11,11,12,17,12,19,13,18,14,3,15,30,15,31, 1
6,29,17,28

250 DATA%,13,1,16,1,23,1,30,3,12,3,21,3,24,4,8 4,22, 4 25 4
27,5,8,5,24,5,26,5,27,5,30,6,26,6,27,6,29,6,31,7,2,7,32,10,
9,10,15,11,13,12,33,13,1,13,32,15,0,15,4,17,3,17,6

Hexagons 99

260 DATAO,0,1,9,1,11,1,21,1,25,2,15,2,20,2,27,3,7,3,10,3,2
5,3,27,4,5, M 21 it 23 M 2M ,4,28,5, 4 5,6 6 ,0 11 y35,12,12, 12 15
14 1, 14 31, 1M 33 16,3,16, 32

270 DATA1,”,1,8,1,24;1,26,2,7,2,21,2,2“,2,26,3,6,3,22,3,26
,3,28,&,6,&,7,&,26,“,29,5,5,5,29,6,&,12,1,13,2,15,3,16,&,16,
30

280 DATA1,10,1,14,2,10,2,13,2,18,2,19,2,23,3,8,3,9,3,13, 3,
18,4,12,4,16,4,18,5,19,13,0,13,33,14,2,14,32,15,33

290 DATA%,12,2,8,2,11,2,17,2,25,3,11,3,14,3,17,4,10,4,14,5
,12,5,15,11,0,11,34,12,35,13,34

300 DATA1,18,1,19,2,9,2,12,2,14,2,16,2,22,3,19,3,23, 10,35,
12,34,12,0

310 MODEb

320 REM Read all the data points, and store them as

bytes just below HIMEM,

330 START%=HIMEM-1240

340 FOR I%=0 TO 1199

350 READ A%

360 START% ?1%= A%

370 NEXT

380 CHAIN"HEX-2"

390 END

100 REM HEX-2 - the second phase of the hexagons
program - by Simon.

110 REM First transfer the bytes to a position below
the MODE 5 HIMEM.

120 UPSTART%=HIMEM~1240

130 START%=UPSTART%-9*1024

140 FOR I%=0 TO 1199

150 START% 71%=UPSTART% 71%

160 NEXT

170 MODES

180 DIM num%(20)

190 FOR I%=1 TO 20: READ num%(I%): NEXT

200 REM The number of points in each pass.

210 DATA12,16,20,24,28,32,36,00,44,48 48 44 40,36,32,28,24

,20,16,12

220 GCOL0,0: COLOUR129: CLS

230 VDU23;8202;0;0;0;: REM CURSOR OFF

240 REM Plot the hexagons themselves.

250 FOR x%=-76 TO 1220 STEP 144

260 FOR y%=66 TO 1074 STEP 144

270 MOVEx%,y%-32: PLOT3,0,~72: PLOT3,72,-36
280 PLOT3,72,36: PLOT3,0,72
290 PLOT3,~72,36: PLOT3,-72,-36

300 NEXT: NEXT

100 Quality Programs for the Electron

310 REM SHADE% is the actual colour to be used; it will
be assigned to logical colour NUE%.

320 SHADE%=1

330 REPEAT SHADE%=SHADE%+1: IF SHADE%>6 THEN SHADE%=1
340 NUE%=SHADE% MOD3+1 o
350 VDU19,NUE%, SHADE%,0,0,0 |
360 GCOLO, NUE% @
370 FOR PASS%=1 TO 32

380 FOR DIAG%=0 TO 12

390 PHASE%= PASS%-DIAG%

400 IF PHASE%>0 AND PHASE%<21 THEN PROCphase (PHASE%,
DIAG%)

410 NEXT: NEXT

420 UNTIL FALSE

430 END

o

450 DEF PROCphase (T%,DIAG%)

U160 Xh=144 *DIAGC%-508 : S%=START%

470 REM Work out where to find the points for this phase.

480 IF I%>1 THEN FOR K%=1 TO I%-1: S%= S%+2 fium% (K%) : NEXT

490 REM And plot them in the hexagons on a staggered
diagonal.

500 FOR K%=7 TO 1 STEP -2

510 IF ¥%<~100 OR ¥%>1250 THEN GOTO 600

520 Y%h=570+K%*72

530 FOR J%=0 TO 2*num%{1%)-2 STEP 2

540 PLOT69 , Xob+8*S% 7 0% , Yoot ¥5%2(J%+1)
550 NEXT

560 Y%h=570-K%*72

570 FOR J%=0 TO 2*num%(I%)-2 STEP 2
580 PLOT6G , X% +8*S% 2% , Yo%=4 *S% 2(J%-+1)
590 NEXT

600 X% =X%+ 144

610 NEXT

620 ENDPROC

Comments on the programs

1. Storing bytes.

The data numbers are the coordinates of points within a hexagon-
diamond pair. The pair occupies an area of 18 X 36 actual pixels
in mode 5, so none of the numbers is greater than 35 (they start at
zero). A byte in the computer consists of 8 bits, and can hold a
number up to 255. So each number can be stored as a byte, rather
than as a 4-byte integer.

Hexagons 101

The storage of bytes is managed by the query indirection
operator, which is described in the User Guide. In effect, we have
a sort of array of bytes, and we know the starting address,
START%, of the array (in fact we set it ourselves, an appropriate
distance below HIMEM). We can then access the byte which is N
beyond the start byte simply by saying START%?N. If this is
unclear, a quick look at the first program should help.

Where are these bytes to be stored? When a new program is
loaded, it takes as much space as it needs, starting at an address
called PAGE. The position of the end of the program is called TOP;
there is then some free space up to an address called HIMEM,
beyond which is the memory needed for the graphics. The User
Guide has a short chapter on these addresses, which includes a
helpful diagram. '

The stored numbers must clearly occupy the free space
between TOP and HIMEM. If they are below the TOP of the
second program they will be destroyed when it is loaded; if they
are above HIMEM they will corrupt the screen graphics.
Unfortunately, HIMEM is different in different modes. The first
program, the one with all the data, is in mode 6, but the second
program relies on mode 5 for its graphics. So the first program
loads the numbers just below the mode 6 HIMEM, and the second
program shifts them down below the mode 5 HIMEM before
calling mode 5.

Incidentally, how will you know if you've copied the data
correctly? As a first guide, make sure that each data statement has
the right number of numbers in it. Phase 1, whose data is in line
110, has 12 points, so there should be 24 numbers (12 x-y pairs) in
line 110. Phase 2 has 16 points, so there should be 32 numbers in
line 120. The number of points in each phase is given in the data
statement (line 210) in HEX-2; and the relationship between
phase number and DATA line number is simple: the data for
phase n is in line 100 + 10n. (Which is why lines 205 and 215 are
there — lines 200 and 210, for phases 10 and 11, both have too
much data for one line.)

If the data statements all have the right number of numbers,
and the numbers all seem right to you, they probably are. You'll
know for sure when you run the programs: if the incoming colour
completely fills each hexagon and each diamond before yet
another colour starts to take over, the numbers are all correct. If

102 Quality Programs for the Electron

some points are left in the old colour, and change suddenly when
anew colour starts arriving, you've made mistakes with the data.

2. COLOUR and GCOL.

All of this program’s output is graphical. There is no text. Yet I
have used the text commands COLOUR 129 and CLS. The reason
is simple: [am setting the text background to red, and clearing the
text screen, because it’s so much faster than setting the graphics
background to red and clearing the graphics screen. Try it.

3. Cycling the colours.

The program runs in a 4-colour mode, but displays 6 different
colours apart from the black lines. It does that by assigning
different actual colours (SHADE%) to the logical colours available
in mode 5 (NUE%). There are four logical colours. Logical colour
0 is kept for the black lines, and logical colours 1 to 3 take it in
turns to display the actual colours 1 to 6. The VDU 19 statement
makes the connection between SIHADE% and NUE%, and the
GCOL statement then makes logical colour NUE% the graphics
foreground colour.

4. Phases, passes, and diagonals.
My first version of the program had the new colour moving in
column by column. It was sweeping in rather than seeping in. 50
at a little more computational expense I replaced the columns
with staggered diagonals. You'll see the effect readily enough.
There are 13 staggered diagonals covering the 10 X 8
hexagons. Each pass over the screen plots points of one phase in
one diagonal, the previous phase in the next diagonal, and so on.
The arrangement is such that there must be two separate checks
for unnecessary plotting: first, in line 400, we make sure that only
actual phases are plotted; second, in line 510, we make sure that
only real hexagons on a staggered diagonal are plotted (some
diagonals contain hexagons off the edge of the screen).

5. Pixel size.

The actual pixels in mode 5 are 8 X 4 notional pixels in size. This
explains the multipliers of 8 and 4 in lines 540 and 580. The rest of
the graphics plotting numbers are decided by the positions of the
hexagons. The numbers in lines 460, 510, 520, 560, and 600 are all
dependent on those in lines 250 and 260, in which the actual
background lines are plotted.

Hexagons 103

6. PLOT 3 and 69.
PLOT 69,x,y we have already met: it plots a single point (i.e. a
single actual pixel) at the absolute screen address given by x and
y.
PLOT 3,x,y is another of the relative plotting commands: it
plots a line, in the background colour, to the point which is (x,y)
away from the present cursor position. Notice how much easier it
is to use this than it would be to specify the absolute coordinates
of all the hexagons.

7. Off-screen graphics.

You should notice that the repeating pattern starts and finishes
off the screen, and that the program plots ‘non-existent’ points:
the very first point plotted by the program is (—76,34), which is to
the left of the left edge of the screen.

Although the graphics screen ranges from (0,0) to (1279,1023),
it is possible to plot any point that can be expressed. This can be
very useful; as, for instance, in this program, where it means that
I didn’t have to work out explicit edge effects for the hexagons —I
just drew hexagons with bits hanging over the edge.

8. A cosmetic END.

When it occurs in the middle of a program, END is an extremely
useful statement: it tells the Electron to stop, rather than to go on
and try to execute the subsequent procedures. At the end of a
program it is rather more aesthetic; it certainly isn’t necessary,
because the Electron will stop anyway when it has executed the
program’s last statement. Nonetheless, it will be executed, and
will tell the computer that the program has finished.

But the END in the first of these two programs is entirely
cosmetic. The Electron will never reach it, because the previous
line tells it to load and run another program instead. Thus its only
real purpose is to help make the program a little more readable —
to tell the programmer, rather than the computer, that the
program is intentionally concluded at that point.

Suggested amendments to the programs

1. Having digested the points about byte storage and chaining,
rewrite the two programs as one. It's not very difficult.

104 Quality Programs for the Electron

2. Because the hexagons in a staggered diagonal are filled in one at
a time, the colour still doesn’t really seem to seep across the
picture. If you change the order of the loops in lines 500 to 610,
you can plot a single point in each hexagon on the diagonal, then
the next point in each hexagon on the diagonal, and so on.
Changing the order of the loops is not entirely straightforward —
you have to take account of lines 510, 520, 560, and 600. The
program will run a little more slowly, and it will be almost
impossible to detect which hexagons are being changed. The
effect will be almost exactly like the one the program set out to
model.

A spider drops from the top of the screen. It hangs in the middle
for a few seconds, then sets about spinning a web across the
screen. Simple? No. Feasible? Certainly.

The first problem is the spider itself. The best way of moving an
object around on the screen is to define it as a character, but there
are two difficulties with this approach. First, a single character is
so small that it doesn’t really show up very well on the screen.
Second, an 8 X 8 character doesn’t have enough points in it to
permit the design of a spider of high enough resolution. These
difficulties are resolved by defining the spider as four separate
characters, to be printed in adjoining positions. Instead of 8 X 3,
or 64 pixels, it is now 16 X 16, or 256 pixels. This gives a much
better resolution and a much bigger figure.

The second problem is that of maintaining the web. As the
spider moves around, it will pass over web which it has already
spun. It's easy enough to draw the spider on top of the web; but
how do we know where to put the web back once the spider has
gone? This problem is overcome by a trick with the logical
colours.

The program uses four logical colours to represent only three
actual colours: we have green, white, and two different blacks.
These colours are set up in such a way that one black is the inverse
of green and the other is the inverse of white. Given a screen
consisting only of green background and white web, if we draw
the spider in whatever colour is the inverse of the colour already
present, it will appear as black. What will be hidden from the
observer is that it will be drawn in two different logical colours —
the inverse of green where there was background, and the
inverse of white where there was web. And of course if it is then
redrawn in exactly the same place, again as an inverse, the two
different blacks will revert to the green and white from which
they came, and the web will be restored.

106 Quality Programs for the Electron

A feature which this program has in common with many
graphics programs is that it seems to be full of numbers. You'll
understand what I mean if you've just typed in the hexagons
program. The reason for this profusion of numbers is that
anything relating to particular points on the graphics screen must
be explicitly directed. Even then, a completely regular, repetitive
program can be coded quite simply, whereas any departure from
regularity tends to require rather a lot of code.

Once you have a feel for how the program does what it does
(i.e. once you've typed it in and watched it run) have a look at
how much of it is devoted to the very beginning of the spider’s
activity, the setting up of three strands on which to build the rest
of the web. Then look at the amount of code required to make it
spin the rest of the web. I think you'll agree that there is
something of a disproportion. This is a point to bear in mind
when writing graphics programs of your own: the more regular a
program is, the shorter it is — often surprisingly so.

Spider 107

How to use the program

This is another ‘load and run’ program. Once you have it
running, there is nothing for you to do but sit back and watch —
or even find something else to do, and look back now and then to
see how it's going. It takes about 17 minutes to run to completion.

The spider contemplates the arduous task before her

Program listing

100
110

REM Spider, by Simon.
DIM xinc%(8),yinc%(8),xp%(4,8),yp%(4,8),ch%h(4) newx%b (4

) ,newy%(4),0ldx%(4),0ldy%(4)

120

136
140
150
160
170
180

REM First define the 4 characters for each of 8
different orientations.

REM S

vDU23,224,31,35,71,137,8,8,8,0

vpU23,225,0,112,8,5,35,83, 143,7

VDU23,226,248,196,226,1M5,16,16,16,0

VDU23,227,0,1H,16,160,196,202,2M1,22M

REM ESE

108

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

430

440
450
%60
b70

480

h90
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

Quality Programs for the Electron

VDU23,228,241,248,240,32,32,48,12,128
VDU23,229,16,224,0,135,152,240,236,250
vDU23,230,63,195,135,157,17,17,17,0
yDU23,231,4,9,9,4,4,6,15,15

REM ENE
yDU23,232,128,12,48,32,32,240,248,241
yDU23,233,250,236,240,152,135,0,192,32
ypu23,234,0,17,17,17,157,135,195,63
Vypu23,235,15,15,6,4,4,9,9,4

REM N
VDU23,236,0,16,16,16,145,226,196,2U48
VpU23,237,224,241,202,196,160,16,14,0
ypU23,238,0,8,8,8,137,71,35,31
vyDU23,239,7,143,83,35,5,8,112,0

REM WNW
yDU23,240,1,48,12,4,8, 15,31, 143
vDU23,241,95,55,15,25,225,0,7,8
yDU23,242,0,136,136,136,185,225,195,252
VDU23,243,240,240,96,32,32, 144, 144,32

REM WSW

VyDU23,2U44,143,31,15,4,4,12,48 1
VDU23,245,4,3,0,225,25,15,55,95
VDU23,246,252,195,225,185,136,136,136,0
VDU23,247,32, 144,144 ,32,32,96,240,240
REM E
VDU23,248,2U40,224,160,158,128,64,32,16
vDU23,249,31,15,19,34,68,72,68,2
vDU23,250,16,32,64,128,158,160, 224,240
vyDU23,251,2,68,72,68,34,19,15,31

REM W

vDU23,252,8,4,2,1,121,5,7,15
yDU23,253,64,34,18,34,68,200,240,248
vDU23,254,15,7,5,121,1,2,4,8
vyDU23,255,248,240,200,68,34,18,34, 64
REM That's all!

FOR I%=1 TO 8

READ xinc%(I%),yinc%{I%)

FOR J%=1 TO 4

READ xp%(J%,1%),yp% (%, %)

NEXT
NEXT
DATA 0,-16,-32,-20,-32,12,0,-20,0,12
DATA 16,-8,16,~8,16,2L,-16,-8,-16,24
DATA 16,8,16,40,16,8,-16,40,~16,8
DATA 0,16,0,52,0,20,-32,52,~32,20
DATA -16,8,-48,40,-48,8,-16,40,-16,8
DATA -16,-8,-48,-8,-48 24,-16,-8,-16,24
DATA 16,0,20,0,-12,0,20,32,-12,32
DATA -16,0,-52,32,-20,32,~52,0,-20,0

Spider 109

700 MODEN

710 YDU19,1,0,0,0,0: VDU19,2,2,0,0,0

720 GCOLY4,0: GCOLO,130: VDUS: CLG

730 PROChold (1,640,1012,5): PROCleap (x%,1024,%x%,760,1)
740 PROCleap (x%,y%,x%,544,3): PROCleap (x%,y%,x%,52,2)
750 PROCdraw (640,52,640,0): PROChold (7,648,32,0.5)

760 PROCgo (FALSE,7,1192,32,0): x%=1240

770 PROCgo (FALSE,%,1240,800,0.5): PROCdiagonal (1)

780 PROCgo (FALSE,3,48,216,0): PROCgo (FALSE,Y,x%,808,0.5)
790 PROCdiagonal (2): PROCgo (FALSE,5,608,528,0)

800 PROChold (6,%%,y%,0.5): PROChold (1, x%,y%,1)

810

820 FOR ring%=1 TC 15

830 PROCleap (x%,y%,x%,y%-32*ring%,0.5)

840 FOR sense%=2 TO 6

850 PROCgo (TRUE, sense%, x%+2*ring%¥*xinc% (sense%) ,y%+2*r
ing%*yinc%(sense%),0.5)
860 NEXT

870 IF ring%<15 THEN PROChold(8,x%,y%,0.5): PROChold(5,x
%,y%,0.5): PROCgo(FALSE,5,x%-32,y%+16,0): PROChold (8,x%,y%,0
.1): PROChold (1,x%,y%,1)

880 NEXT

890 PROChold (1,x%,y%,1): PROCgo (FALSE,2,608,528,1) |

900 PROCsit(1,640,528): VDU4

910 END

920

930 DEF PROCgo (spin%,dir%,nx%,ny%,delay)

940 PROCsit (dir%,x%,y%)

950 FOR i%=1 TO 4: ch% (i%)=223+4%(dir%~1)+i%: NEXT

960 REPEAT

g70 x%=x%+xinch (dir%): y%h=y%+yinc%h(dir%)

980 FOR i%=1 TO 4

990 ol dx%(i%)=x%-xinc%(dir%)+xp%(i%,dir%)
1000 01 dy% (1%)=y %~y inc%(dir%k)+yp%(i%,dir%)
1010 newx%(i%)=x%+xp%(1%,dir%)

1020 newy%h{i%)=y%+yp%(i%,dir%b)

1030 NEXT

1040 FOR i%=1 TO 4

1050 MOVE o0ldx%(i%},0ldy%(i%): VDU ch%(i%)
1060 MOVE newx%(1i%),newy%(i%): VDU ch%(i%)
1070 NEXT

1080 IF spin% THEN GCOLO,3: MOVE x%-xinc%(dir%),y%-yinc(
dir%): DRAW x%,y%: GCOLM,1

1090 PROCwait (0.1)

1100 UNTIL x%=nx% AND y%=ny%

1110 PROCwait (delay): PROCsit (dir%,x%,y%)

1120 ENDPROC

1130 .

1140 DEF PROCleap {x0%,y0%,nx%,ny%,delay)

1150 IF x%<>x0% THEN PROCwipe (x0%,y0%,%x%,y%)

1160 x%=nx%: y%=ny%

110 Quality Programs for the Electron

1170 PROCsit (1, x%,y%): PROCdraw (x0%,y0%,x%,y%)

1180 PROCwait (delay): PROCsit(1,x%,y%)

1190 ENDPROC

1200

1210 DEF PROCdiagonal (time%)

1220 LOCAL x0%,y0%,x1%,%x2%,x9%,%gap%,main%,angle%

1230 y0%=832

1240 IF time%=1 THEN x0%=1280: x1%=1240: xgap%=48: main%=8:
angle%=3: PROChold (main%,1276,y0%,2) ELSE x0%=0: x1%=32: xg
ap%=-48: main%=T: angle%=5: PROChold (main%,0,y0%,2)

1250 x9%=1280-x0%: x2%=1264-x1%

1260 PROCleap (x0%,y0%,x1%,y%,1): PROCleap (x0%,y0%,x%,400,1)

1270 PROCleap (x0%,y0%,x%,52,1): PROCwipe (x0%,y0%,x%,y%)
1280 PROChold (main%,x%,32,0)

1290 PROCdrag (time%,main%,x2%+xgap%,32,0): x%=x2%

1300 PROCdrag (time%,U,x2%,208,0)

1310 PROCdraw (x9%,192,x0%,y0%): PROChold{angle%,x9%,192,1)
1320 ENDPROC

1330

1340 DEF PROCdrag(time%,dir%,nx%,ny%,delay)

1350 LOCAL x0%,y0%

1360 y0%=832: IF time%=1 THEN %x0%=1280 ELSE x0%=0

1370 PROCdraw (x0%,y0%,x%,y%): PROCsit (dir%,x%,y%)

1380 FOR i%=1 TO 4: ch%(i%)=223+4*(dir%-1)+i%: NEXT
1390 REPEAT

1500 x%=x%+xinc%(dir%): y%=y%+yinc%{(dir%)

1410 FOR i%=1 TO 4

1420 01dx%(i%)=x%-xinc% (dir%)+xp%(i%,dir%)

1430 01dy%(i%)=y%-yinc%{dir%)+yp%k(i%,dir%)

1440 newx%(i%)=x%+xp%{i%,dir%)

1450 newy%(i%)=y %+yp% (i%,dir%)

1460 NEXT

1470 IF time%=1 THEN crit%=2 ELSE crit%=4

1480 FOR i%=1 TO 4

1490 MOVEoldx%(i%),0ldy%(i%): VDUch%{(i%)

1500 IF i%=crit% THEN PROCwipe (x%-xinc%{(dir%),y%-yinc%(
dir%),x0%,y0%): PROCAraw(x0%,y0%,x%,y%)

1510 MOVEnewx%(i%),newy%{(i%): VDUch%(i%): NEXT

1520 TF time%=1 AND x%<640 THEN PROCdraw (640,1024,640,0)
1530 TF time%=2 THEN PROCdraw(1280,832,0,192): IF x%>640
THEN PROCdraw (640,1024,640,0)

1540 PROCwait (0.1)

1550 UNTIL x%=nx% AND y%=ny%: PROCwait (delay}

1560 PROCsit (dir%,x%,y%): PROCwipe (x0%,y0%,%x%,y%)

1570 ENDPROC

1580

1590 DEF PROChold{dir%,nx%,ny%,delay)

1600 x%=nx%: yh=ny%

1610 PROCsit (dir%,x%,y%)

1620 PROCwait (delay)

Spider 111

1630 PROCsit (dir%,x%,y%)

1640 ENDPROC

1650

1660 DEFPROCsit {(dir%,nx%,ny%)

1670 x%=nx%: y%=ny%

1680 FOR i%=1 TO 4

1690 ch%(1i%)=223+4*(dir%-1)+i%
1700 newx%(i%)=x%+xp%(i%,dir%)
1710 newy%{(i%)=y%+yp%(i%,dir%)
1720 NEXT

1730 FOR i%=1 TO 4

1750 MOVEnewx%(i%),newy%{(i%): WDUch%(i%)
1750 NEXT

1760 ENDPROC

1770

1780 DEF PROCdraw (x1%,y1%,x2%,y2%)
1790 GCOLO,3: MOVEx1%,y1%: DRAWx2%,y2%: GCOLL,0
1800 ENDPRCC

1810

1820 DEF PROCwipe (x1%,y1%,%x2%,y2%)
1830 MOVEx1%,y1%: PLOTT,x2%,y2%

1840 ENDPROC

1850

1860 DEF PROCwait (n)

1870 TIME=0: REPEAT UNTIL TIME>n¥*100
1880 ENDPROC

Comments on the program

1. Programmable characters.
Although there are 128 undefined characters (numbers 128 to
255), only 32 of these (numbers 224 to 255) can normally be used at
one time. As we want 4 characters to represent a spider, and want
to draw that spider in 8 different orientations, there are our 32
characters.

Having defined the 32 characters, the program establishes its
directions in such a way that the characters for a given direction
can be selected via a simple formula, as in lines 950, 1380, and

1690.

2. GCOLA4,0.
The normal way of inverting a colour already present on the

screen is to use the appropriate PLOT command — PLOTZ,
PLOTS86, etc. But the spider is a collection of characters, and we

112 Quality Programs for the Electron

can’t PLOT characters. S0 we achieve the inversion with
GCOLA4,0, which says ‘everything drawn at the graphics cursor
from now on is to be drawn in the colour which is the inverse of
that already there’.

Notice that the 0 at the end of the command has no effect; it
could be any number. The reason it is there is that the other four
forms of GCOL (GCOLO,x to GCOL3,x)} require a colour to be
specified, and it’s easier to leave the ‘colour’ there with this fifth
form than to make an exception for it.

3. Observations on a multiple-character shape.

The spider consists of four characters, of which we can print only
one at a time. There are two obvious ways of moving it: rub out all
four characters, then redraw them in the new positions; or rub
out one, redraw it, rub out another, redraw it, and so on. The first
way is easier, but it tends to leave the screen blank for too long.
With the second way there is always at least three-quarters of the
spider on the screen, but there are disadvantages.

First, we must be sure to move the spider’s quarters in a
specific order. Remember that we are printing the characters in
inverse colour. If we were to let the characters overlap atany time,
the area of overlap would be inverted twice, and so would show
in the wrong colour. So the leading characters must be moved on
first, leaving a gap into which the following characters can be put.
To ensure this, the four characters for each orientation of the
spider are defined ‘front-first’ rather than left-first or top-first.

It is convenient to have a single point which is used to
represent the spider’s position. For this the program uses the
point from which the web emerges — I hesitate to be more
specific. The arrays xp% and yp% hold the ‘plotting” positions of
the four characters (i.e. their top left positions) with respect to
this single point for each of the eight orientations.

The second problem with moving individual characters is that
it tends to give a disjointed effect. In fact I rather like this — it
makes the spider seem to crawl — but it must be kept under
control. Specifically, there must be as little time as possible
during which there is a gap showing in the middle of the spider.

This is achieved by separating the positional calculations from
the plotting. In procedures PROCgo and PROCdrag there are two
consecutive loops with 1% ranging from 1 to 4. In the first loop
(while the spider sits on the screen), the arrays oldx%, oldy %,

Spider 113

newx%, and newy% are filled with the appropriate plotting
positions for the old and new characters. The second loop simply
undraws the old characters and draws the new ones. If the two
loops are combined, with the old and new positions being calcu-
lated as they are to be plotted, the actual redrawing of the spider
is slowed down significantly by the calculations which take place
between character movements.

One last point on the undrawing and redrawing of individual
characters. When the spider is dragging web across the screen to
set up its diagonal anchor lines, there are times when its legs
overlap the web. If the web is drawn on top of the legs, little black
spots will be left behind when the spider moves on and the web
itself is inverted. This is rather unsightly, and easily mis-
interpreted. To avoid such odd inversions, the program adopts
the convention that the web will always be there when the spider
is drawn or undrawn.

For a given diagonal it is always one particular quarter of the
spider which causes the problem. This ‘critical’ quarter (called
crit% in the program) is the back right one when the first diagonal
is being produced, and the back left one for the second diagonal.
The other three quarters are simply undrawn and redrawn; but
when dealing with crit% something more is involved. The
character is undrawn, restoring any web which it overlaps; the
whole strand of web is undrawn using procedure PROCwipe; the
new strand is drawn in using procedure PROCdraw; and the new
character is drawn over the web. The effect of this extra compu-
tation is quite evident: when the diagonals are being spun the
spider often gives the appearance of being only three-quarters
there, as the fourth quarter is absent for so long.

4. Uniformity of procedures.

Several different procedures draw the spider in different
contexts. Remember that each time it is drawn in a certain
position it must be undrawn (i.e. re-inverted in that same
position) before being drawn anywhere else. It is a lot easier to
ensure this if each procedure can make the same assumptions
about what it will find. [have chosen the convention that all of the
main movement procedures (PROCgo, PROCdrag, PROCleap)
and the utility procedure PROChold will assume that the spider
isn’t drawn to start with, and will leave it undrawn when they
finish.

114 Quality Programs for the Electron

A further utility procedure, PROCsit, simply plots a spider
once in the specified position. This procedure will sometimes be
called twice in succession, to draw and undraw the spider; but
will more often be called once, to either put the spider in place at
the start of a procedure or wipe it out at the end.

It is always worth a little effort to ensure that the same sort of
information is passed to different procedures which have similar
functions. This is even further enhanced if the similar parameters
are given the same names in the different procedures.

All of the spider-plotting procedures have at least dir%, nx%,
and ny% as parameters. The first of these specifies which orien-
tation of the spider is required; nx% and ny% are the new x- and
y-coordinates for the spider, which will be moved in the
appropriate manner to the point specified; the global values x%
and y% will then take on the new values nx% and ny%.

All of these procedures other than PROCsit have a parameter
called delay%; the spider is so often required to sit for a while
after a move, collecting her strength for the next stage, that this
‘while” has been built into the procedures.

And finally there are the special requirements. PROCgo has a
boolean parameter to indicate whether web is being spun as the
spider moves; PROCleap has the x- and y-coordinates of the
point at which the web is anchored when the spider jumps; and
PROCdrag has an indication of which time (first or second) the
web is being dragged, so that we can know details like which is
the spider’s critical quarter. |

Look at the way the parameters to these procedures are
organised, and look at the similarity from one procedure to the
next. If you can learn to incorporate such features into your own
programming, you are well on the way to writing readable
programs.

5. The need for accuracy in specifying points.
Look at my standard PROCwait, which appears once more in this
program. Notice that it waits not until TIME = n*100, but until
TIME>n*100. This is because TIME might be less than the target
one time it’s tested, and greater than the target the next time. No
test would ever show it to be exactly equal to the target, so it
would just wait for ever.

But when the spider is moving to a particular positional target
—in PROCgo, for instance — the test for stopping is whether the

Spider 115

x- and y-coordinates are exactly equal to the target coordinates. It
certainly makes more sense to test for relationships like ‘greater
than’, but it just can’t be done here. If the spider is moving
diagonally up and right we can certainly stop it when its position
is greater than or equal to the target position; but if it is moving
down and left we are looking for coordinates less than or equal to
the target ones; and other directions of movement involve com-
binations of the two relationships.

In the end, it's alot easier to say ‘stop when the coordinates are
equal to nx% and ny%/". Unfortunately, this can involve us in the
same sort of situation as testing whether TIME = n*100. If the
spider overshoots the target, she’ll just keep going for ever. This
is particularly fun to watch when a diagonal strand is being
dragged across the screen. The spider walks off the edge of the
screen, and the angle of the web just keeps increasing and
increasing until you escape. Try it!

It is thus most important that all target positions be specified
exactly. The arrays xinc% and yinc% show how far the spider
moves in the x and y directions for each of the eight orientations.
In direction 5, for instance, one step will move the spider —16
notional pixels in the x direction and 8 notional pixels in the y
direction; the numbers are in the data on line 650. Any move in a
given direction must be to a target which is a multiple of these
increments from the present position. As a simple example, a
move in direction 5 from (900,100) to (100,500} will work, but
moves to (99,500) or (100,300) will fail to stop. The numbers are all
accurately specified at present, but you will need to pay this point
very close attention if you want to change the web in any way.

6. Integers for speed.

By the time you have typed this program in to the computer you
will be thoroughly sick of the % character, and wondering if
there’s really any point in having it there. As with the phases of
the moon program, I have made the change for testing purposes.
With all of the integer variables and arrays turned to reals by the
removal of the % characters, the program takes almost 25 minutes
to run instead of the present 17. Justification enough?

Lo Luaiity Frograms for the Electron

Suggested amendments to the program

L. People keep asking me if the spider can move any faster. It can,
but why? If all you want is a lightning picture, why not simply
draw the whole web and plonk the spider in the middle of it? But
all right, some of you don’t want to watch a program like this for
nearly 20 minutes. One thing you can do is have the spider move
in bigger steps. This is achieved by changing (doubling, for
instance) the xinc% and yinc% values at the beginnings of the
DATA lines.

Of course there’s a problem. Change the amount by which the
spider moves at each step, and it might no longer land exactly on
the target positions specified in the program. You'll have to
respecify some of the targets, either by working them out in
advance or by running the modified program and noting where
the spider overruns the targets. I can recommend this as a good
exercise if you want to experience a fraction of what I went
through in writing the original.

2. If you find the web's symmetry offputting, try to find a way of
‘de-regularising’ it. I promise you it won’t be easy.

3. A fly might be nice. Buzzing in at the end and flying into the
web. You could reuse some of the definable characters once
you're sure that the spider has finished travelling in a certain
direction. There isn’t a lot of memory left, but there’s probably
enough for that. The problem is where to stop. Tt might also be
nice to have sunset, night-time, storms, people blundering into
the web, little birds flying by. . . .

Rubik’s
Cube

It's not very long since the craze for Rubik’s Cube swept the world
(or our part of it, anyway). I myself was involved as a teacher: on
holiday in the south of France I taught people to solve the cube in
five different languages (none of them a computer language).

The craze has diminished now, but the cube still remains as a
highly ingenious and entertaining (or frustrating) puzzle. This
program demonstrates the Electron’s graphics capability by
modelling the cube. A condensed version of a full cube solver
written by Robert Browning, it permits the user to twist the cube
at will, or to set it rotating randomly.

I imagine that its uses will fall into three main categories:
random twisting for its own sake, as a graphics display; random
twisting to attain a scrambled cube, which can then be solved by
controlled twisting; and controlled twisting from the start, to
produce specific patterns. It does have one advantage not found
on real cubes: the ability to reset the cube at will.

How to use the program

The program first asks whether you have a colour monitor (or
television). It you say you have, the subsequent display will be in
colour; if not, it will be in black and white, with the colours
represented by their initials. You can of course lie if you want to
see the other effect.

The cube will then be displayed, and you will be prompted
‘Next —’. If you want the cube to twist at random, press RETURN.
It will keep twisting (and showing the names of the moves it
makes) until you stop it by pressing any key. For any other
response, you must be at least vaguely familiar with the termin-
ology normally used for the cube.

118 Quality Programs for the Electron

The cube’s faces are labelled according not to colour but to their
position relative to the user. The front face is that closest to the
user; the back face is the most distant one; the left and right faces
are defined in the obvious way; and the remaining two faces are
called up and down. The faces are referred to by their initial
letters: F, B, L, R, U, and D.

Any twist of any face has a ‘sense’ which is either clockwise or
anticlockwise. In a few more years, when the spread of digital
watches and clocks has had its effect, those terms will need
explaining; for the present, though, I shall assume that you can
find out what they mean if you don’t already know. Now, and
this is most important, the sense of a twist is always given from
the point of view of the face, not from the point of view of the
user. If the left face is turned clockwise, its top comes towards you;
if the right face is turned clockwise, its top moves away from you.
If the front face is turned anticlockwise, its top moves to your left;
if the back face is turned anticlockwise, its top moves to your
right. The sense of amove is vital to any attempt to work with the
cube. If you don’t understand the examples given above, play
with a cube (real or imaginary) and the ideas until they become
clear. |

Now to the notation. A clockwise twist of a face is indicated
simply by the name of the face: ¥, U, etc. If you like, you can
follow it with the letter C to indicate clockwise.

An anticlockwise twist of a face is indicated in several possible
ways. The name of the face must of course be given; this can then
be followed by A, ’, or —1. In my normal dealings with the cube I
use the second of those choices, and make moves like F' or L', but
with this program I find it easier to use the A: it only involves one
key, whereas the others require two (" is a shift character).

A face can also be twisted through 180 degrees. This is equi-
valent to either two clockwise twists or two anticlockwise twists
(but not one of each!), and is so common in cube play that it
merits a notation of its own. It is represented by the name of the
face, followed by either 2 (for obvious reasons) or H (implying
half of a full 360-degree twist).

Apart from twisting faces, we must also be able to turn the
whole cube. A little thought will show that any turn of the cube
can be described as being in the same sense as a twist of a face.
Rolling the cube so that the top comes towards you is turning it in
the L (or R’) sense; turning it so that the top stays on the top, but

Rubik’s Cube 119

et e

CLRTDUBF LR

... or for colour

120 Quality Programs for the Electron

turns clockwise, is turning it in the U (or D’) sense. Such turns of
the whole cube are indicated by the same notation as that for
twisting faces, but preceded by an asterisk — *B, for example.

Moves can be entered one at a time, pressing RETURN after
each. If you know what you're doing, though, this can become
very tedious; so the program allows you to enter a complete
sequence of moves (a ‘process’) before pressing RETURN. Within
one process, several moves after an asterisk are all taken to be
whole-cube moves; so we must have a way of reverting to single-
face moves. This function is filled by the slash (/).

Here are two example processes which you might care to try:

LR'DUBFLR’
L/U2D2R2U2D2R2 U2 L2 R2 U2 L2 R2 7L

As you can see, if you do choose to type a process on one line it
can be typed with or without spaces.

Finally, you might want to reset the cube to its starting position
without going to the effort of solving it; this can be done by
typing ‘RESET’. And you might eventually want to leave the
program; this can be done by typing ‘BYE’. The program will not
accept lower-case versions of these or any other commands.

Program listing

100 REM Rubik's Cube, by Robert Browning. This program is
condensed from a full cube-solving program.

110 MODE 2

120 PROCSETUP: PROCCONTROL

130 END

140

150 DEF PROCSETUP

160 LOCAL A%

170 DIM CUBE%(6,3,3), TEMP%(6,3,3),PX%(3,3,3),PY%(3,3,3)

180 VERTADJ=0.92

190 CHARS$="FRUDLB/* ": MDS$="CHA 2' 2-'": COLS$="RBYGWO"

200 F$="0000324536416215126531464235

210 L$="0000341222223111331344443214

220 PRINT TAB(4,5);'"Rubik's Cube

230 PRINT TAB(0,10);"Do you have a colour"

240 REPEAT .

250 INPUT TAB(O0,12)"monitor? ™ A$: A$=LEFT$(A$,1)

260 IF A$<>"YM AND A$<>"N™ THEN PRINT'"Answer Yes or No.

270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

Rubik’s Cube 121

UNTIL A$="Y" OR A$="N"
vpu23,1,0;0;0;0;

CHARSO%= (A$="N"): HOLDO%=TRUE: CLS
PROCCUBE (250,370,468)

PROCRESETCB

ENDPROC

DEF PROCCONTROL

LOCAL S$

VDU 28,0,31,19,22: CLS

REPEAT
VDU23,1,130;0;0;
INPUT ' "Next - " S$

VDU23,1,030;0;0;
TF S$="BYE" OR S$="RESET" THEN PROCRESETCB: CLS ELSE

IF ASC{(S$)=~1 THEN PROCRAND ELSE PROCEXEC(S$)

420
430
Hho
450
460
70
'180
490
500
510
520
/2}
530
540
,BLY)
550
560
570
580
590
600
610
620
630
64O
650
660
670
680
690
700
710
720
730
740

UNTIL S$="BYE"
ENDPROC

DEF PROCCUBE (MX%,MY%, HSIZE)

LOCAL VSIZE,BLX,BLY

VSIZE=HSIZE*VERTADJ

IF CHARS0% THEN GCOL 0,7 ELSE GCOL 0,6

BLX=MX%: BLY=MY%

PROCGRID (1, BLX,BLY,BLX , BLY+VSIZE, BLX+HSIZE+1, BLY)
BLX=MX%+HSIZE

PROCGRID(2, BLX,BLY,BLX, BLY+VSIZE,BLX+HSIZE/2, BLY+VSIZE

BLX=MX%: BLY=MY%+VSIZE
PROCGRID(3,BLX,BLY,BLX+HSIZE/2,BLY+VSIZE/2,BLX+HSIZE+1

ENDPRGC

DEF PROCGRID (F%,BLX,BLY,TLX, TLY,BRX,BRY)
LOCAL TXV,TYV,TXH, TYH, T%, %, MX, MY
TXV=(TLX-BLX)/3: TYV=(TLY-BLY)/3
TXH= (BRX-BLX)/3: TYH=(BRY-BLY}/3
FOR 1%=0 TO 3
MOVE BLX+I%*TXV,BLY+I%*TYV
DRAW BRX+I%*TXV,BRY+I%*TYV
MOVE BLX+I%¥*TXH,BLY+I%*TYH
MX=TLX+I%¥TXH: MY=TLY+I%*TYH
DRAW MX, MY
FOR J%=0 TO 3
PX%(F%, I%: J%):I"D(: PY%(F%r I%! J%):MY
MK=MX-TXV: MY=MY-TYV
NEXT J%: NEXT 1%
ENDPROC

DEF PROCRESETCE
LOCAL F%, X%, Y%, CH%

122 Quality Programs for the Electron

750 FOR F%=1 TO 6: CH%=ASC(MID$(COLS$,F%,1))

760 FOR Y%=1 TO 3: FOR X%=1 TO 3

770 TEMP% (F%, X%, Y%) = Cli%

780 NEXT X%: NEXT Y%: NEXT F%

790 PROCLABELCB

800 ENDPROC

810

820 DEF PROCLABELCB

830 LOCAL X%, Y%, F%, V%, %

840 Vh=VPOS: H%=P0OS

850 vbU 28,0,31,39,0

860 FOR F%=1 TO 6: FOR Y%=1 TO 3: FOR X%=1 TO 3

870 IF TEMP%(F%,¥%,Y%)<>0 THEN PROCCHANGE(F%,X%, Y%, TEMP%
(F%, %%, Y%)): TEMP% (F%, X%, Y%)=0

880 NEXT X%: NEXT Y%: NEXT F%

890 VDU 28,0,31,39,22

900 PRINT TAB (H%,V%);

910 ENDPROC

920

930 DEF PROCCHANGE (F%, X%, Y%, CH%)

940 IF CUBE%(F%,X%, Y%)=CH% THEN ENDPROC

950 LOCAL NX%, NY%,MX%,MY%,N,M

960 CUBE%(F%, X%, Y%)=CH%

970 IF F%>3 THEN ENDPROC

980 MX%:PX%(F%a X'y""] 1Y%“"1)“PX%(F%) X%,Y%)

990 MY%=PY% (F%, X%~1, Y%—1)-PY%(F%, X%, Y%)

1000 IF CHARS0% THEN GOTO 1120

1010 NX%=PX% (F%, X%, Y%-1) ~PX% (F%, X%-1, Y%)

1020 NY%=PY%(F%, X%, Y%~1)=PY%{(F%, X%~1, Y%)

1030 M=0.1: N=1-M

1040 GCOL O, FNV{"143275", INSTR{COLS$, CHR$(CH%)))

1050 MOVE PX% (F%, X%, Y%)+M*MX%, PY%(F%, X%, Y%)+M*MY%

1060 MOVE PX%(F%, X%=1, Y%)+M*NX%, PY%(F%,X%~1, Y%)+M*NY%

1070 PLOT 85, PX%(F%, X%, Y%)+ N*MX% , PY%(F%, X%, Y%)+N*MY%

1080 MOVE PX%(F%,X%-1,Y%)+N*¥NX%, PY%(F%,X%~-1,Y%)+N*NY%

1090 PLOT 85, PX%(F%, X%, Y%)+M*MX% , PY%(F%, X%, Y%)+M*MY%

1100 ENDPROC

1110

1120 VDU 5: MOVE PX%(F%, X%, Y%)+X%+MX% /2+33, PY%(F%, X%, Y%)+MY
%/2+12

1130 VDU 127: PRINT CHR$(CH%): VDU 4

1140 ENDPROC

1150

1160 DEF PROCRAND

1170 HOLDO%=FALSE: PRINT

1180 REPEAT

1190 PROCTURN (FALSE,RND(6),RND(3))

1200 UNTIL INKEY(1)<>-1

1210 PRINT: HOLDO%=TRUE

1220 ENDPROC

1230

Rubik’s Cube 123

1240 DEF PROCEXEC(S$)

1250 LOCAL CUBEQ%, CH%, F%, T%, L%

1260 CUBEQ%=FALSE: S$=S$+" ": L%=LEN(S$): I%=1

1270 REPEAT

1280 CH%=INSTR(CHARS$,MID$(S$,I%,1))

1290 IF CH%=0 THEN PROCERRMES: GOTO 1370

1300 T%=1%+1

1310 IF CH%>6 THEN CUBEO%=(CH%=8): GOTO 1370

1320 F%= CH%: CH%:INSTR(MDS$+CHARS$,MID$(S$,I%,1))

1330 IF CH%=0 THEN PROCERRMES: GOTO 1370

1340 IF CH%>9 THEN CH%=1 ELSE I%=I%+1: IF CH%=9 THEN 1%=1
%+1

1350 CH%= ((CH%~-1) MOD 3}+1

1360 PROCTURN (CUBLEQ%, F%, CH%)

1370 UNTIL I%>=L%

1380 ENDPROC

1390

1400 DEF PROCERRMES

1410 PRINT'"t'":MID$(S$,1%,1);"" not accepted.”

1420 IF I%<L%-1 THEN PRINT'"Enter the rest of the process
again."

1430 I%=L%

1440 ENDPROC

1450

1460 DEF PROCTURN (CUBE0%, F%,SIZE%)

1470 SIZE%= (STZE%+4) MOD 4

1480 IF SIZE%=0 THEN ENDPROC

1490 LOCAL X1%,%2%,F1%,F2%,L1%,L2%, 1%, J%, Mk, RO%

1500 PROCUPDATERES (CUBE0%, F%, SIZE%)

1510 PROCTURNFACE (F%, F%, SIZE%)

1520 IF CUBE0% THEN PROCTURNFACE (7-F%,7-F%,4~SIZE%)

1530 FOR X1%=1 TO 4

1580 X2%= FNM(X1%+STZE%)

1550 F1%=FNF(F%,X1%): F2%=FNF (F%,X2%)

1560 L1%=FNL{F%,X1%): L2%=FNL (F%,X2%)

1570 IF CUBE0% THEN PROCTURNFACE (F1%,F2%, (L2%-L1%+4) MOD
4): GOTO 1680

1580 RO%= ({L1%>2)= (L2%<3))

1590 IF L1%=2 OR L1%=4 THEN M%=2: L1%=5-L1% ELSE Mk=1

1600 IF L2%=2 OR L2%=4 THEN M%=5-Mh: L2%=5-L2%

1610 FOR T%=1 TO 3

1620 TF RO% THEN J%=l-T% ELSE J%=T% ,

1630 IF M%=1 THEN TEMP% (F2%,I%,1.2%)= CUBE%(F1%, %, 1,1%)
1640 IF M%=2 THEN TEMP%(F2%,T%,L2%)=CUBE%(F'1%,L1%, J%)
1650 IF M%=3 THEN TEMP% (F2%,L2%,I%)=CUBE%(F1%,L1%, J%)
1660 IF M%=4 THEN TEMP% (F2%,L12%,T%)=CUBE%(F1%, 5%, L1%)

1670 NEXT I%
1680 NEXT X1%
1690 PROCLABELCB
1700 ENDPROC
1710

124 Quality Programs for the Electron

1720 DEF FNF(F%,D%)=FNV(F$,4 ¥F%+D%)

1730

1740 DEF FNL(F%,D%)=FNV(L$,4 *F%+D%)

1750

1760 DEF FNM{D%)={(D%+3) MOD 4)+1

1470

1780 DEF FNV(S$,X%)=VAL (MID$(S$,%X%,1))

1790

1800 DEF PROCUPDATERES (CUBEQ%, F%, STZE%)

1810 IF HOLDO% THEN ENDPROC

1820 LOCAL SZ$,RES$

1830 IF POS>15 THEN PRINT

1840 SZ$=MID$(" 2", STZE%,1)

1850 RES$=MID$(CHARSS,F%,1)+SZ2+" "

1860 IF CUBEO% THEN RES$="¥ "4 RES§+ 1/

1870 PRINT RESS$;

1880 ENDPROC

1890

1900 DEF PROCTURNFACE(F1%,F2%,SIZE%)

1910 LOCAL X%, Y%,X1%, Y1%

1920 FOR X%=1 TO 3: FOR Y%=1 TO 3

1930 IF SIZE%=0 THEN X1%=X%: Y1%=Y% ELSE IF SIZE%=1 THEN
X1%=4=Y%: Y1%=X% ELSE IF SIZE%=2 THEN X1%=4-X%: Y1%=4-Y% ELS
E XW:Y%: Y1%:M—X%

1940 TEMP% (F2%,¥1%, Y1%)=CUBE% (F1%, X%, Y%)

1950 NEXT Y%: NEXT X%

1960 ENDPROC

Comments on the program

1. Program outline.

Space does not permit me to comment fully on the ideas and
techniques of cubistry which have been incorporated into the
program. I shall have to restrict myself to brief explanations of the
procedures and variables, in an effort to make the program easier
to understand. If you still don’t understand it, don’t blame the
programmer — the blame lies rather with the complexity of the
task he undertook to commit to code.

PROCSETUP dimensions the arrays for the program, sets up a
few variables, and establishes whether a colour display is
required. It also presents us with several rather odd-looking
strings. These contain data in string form, to be extracted as
required with the string-handling functions. (If that doesn’t ring
a bell with you, take another look at comment 1 to the day-of-the-
week function.) Some of the strings we can recognise — CHARS

Rubik’s Cube 125

contains the principal input characters, MD$ the various sense-
indicating characters, and COL$ the colours — but others are
meaningless at this stage.

Some variables which are established in PROCSETUP are
VERTAD]J, to allow for the difference between horizontal and
vertical pixel size; HOLID0%, to indicate whether the moves are
to be printed or held back; and CHARS0%, to indicate whether
the cube is to show characters or colours.

PROCCONTROL sets up a text window at the bottom of the
screen, leaving the rest for graphics, and finds out what the user
wants to do next. |

PROCCUBE(MX% MY% HSIZE) draws the framework of a
cube of width HSIZE, with its bottom left corner at MX% ,MY %.
It draws three separate grids for the three visible faces, by making
three calls to PROCGRID. PROCGRID takes as parameters the
bottom left X- and Y-coordinates, the top left X- and Y-
coordinates, and the bottom right X- and Y-coordinates. Using
these, it draws the grid in correct perspective, with the help of
local variables representing one third of the vertical and
horizontal sizes (ITXV, TYV, TXH, TYH). It also fills the arrays
PX% and PY% with the vertexes of the individual squares on the
visible faces.

PROCRESETCB resets the cube to its starting state. It is a fairly
simple procedure, but gives us a certain insight into the rest of
the program. It shows us that procedures will often have F%
varying from 1 to 6 to indicate the six faces of the cube, and X%
and Y% varying from 1 to 3 to indicate positions on a face. It
shows us the program’s first use of string-type data extraction,
with the face colours being extracted from COL$. And it shows us
TEMP%, the array which is used to hold temporary values for the
cube.

PROCLABELCB checks each value of TEMP%. When it finds a
non-zero value it calls PROCCHANGE to update the cube, and
resets the value to zero. Notice that it starts by remembering
where the cursor was (with calls to VPOS and PPOS), then resets
the text window to encompass the whole screen in case the cube
is being labelled with letters. After updating the cube it brings
back the smaller text window and returns the cursor to wherever
it was.

PROCCHANGE(F% ,X%,Y%,CH%) replaces whatever is at
position X%,Y% on face F% with the colour represented by

126 Quality Programs for the Electron

CH%. If CUBE%(F%,X%,Y%) is already CH%, it has nothing to
do; otherwise it changes the former value. If F% is greater than
three the face is not a visible one, so there is no more to do; but if
the face is visible the change must be made on the display as well
as in the CUBEY% array. This involves calculating the position at
which the new value is to be plotted, then either plotting it as a
pair of coloured triangles (note the way FNV is used to extract the
appropriate colour from the string “143275”) or printing it as a
character.

PROCRAND is a nice simple little procedure which sets the
cube turning randomly until a key is pressed. It turns HOLD0%
off when it starts: when the user types in amove or a process there
is no need for it to be printed again as it is executed, but when the
program is making random moves it prints them for the user’s
information.

PROCEXEC(S$) executes the move or process contained in S$.
It applies a fairly intricate analysis on the string to extract each
move (which face, the sense of the move, and whether to turn the
face alone or the whole cube) and then sends the moves off to
PROCTURN to be acted upon. |

PROCTURN(CUBE0%,F%,SIZE%) is the meat of the program
as regards cube manipulation. It sets up TEMP% with all of the
necessary new values to represent a SIZE%-sized turn of face F%,
or of the whole cube about face F% if CUBE0% is true. First it
calls PROCUPDATERES to update the printed display of moves
made. Then it turns the face F% itself, and if the turn is a
- whole-cube turn it turns the opposite face in the opposite sense
(and thus in the same direction). Next it considers the four
intervening sides, and works out the necessary changes for each,
again taking account of whether the face or the whole cube is
being moved. I don’t imagine that anyone but a keen student of
cube theory will understand quite how this procedure works, sol
shan’t waste our time trying to explain it. Suffice it to say, for
those keen students, that FNF(F%,D%) gives the index of the
face adjacent to F% in the direction D%; FNL(}%,D%) gives the
direction of face F% from the face given by FNE; FNM(D%)
moderates the direction D% to a number in the range 1 to 4; and
ENV(S5$,X%) gives the value of the digit in position X% of the
string S$. And if you understand all that, you can also work out
the purpose of those odd strings F$ and L$ in PROCSETUP.

PROCUPDATERES prints the moves being made if HOLD0%
is false. Its workings should be fairly clear.

Rubik’'s Cube 127

And PROCTURNFACE(F1%,F2%,SIZE%) sets up on face F1%
of TEMP% a copy of face F2% of CUBE%, rotated 0, 1, 2, or 3
turns according to SIZE%.

There! Simple, isn’t it?

2. A type-related naming convention.

BBC BASIC already has the convention that integers and real
numbers have different-looking names to distinguish them.
Boolean variables, however, are just lumped in with the
numbers. This program goes one step further in using names to
distinguish the types of variables: real numbers have ordinary
names; integers have names ending in %; and booleans have
names ending in 0%. It's just a convention decided on by the
programmer, but it certainly helps at times when you’re trying to
read the program.

3. More support for procedures.

Some people will remain ardent supporters of standard BASIC for
a long time yet. If you think you might be among those people,
just imagine replacing the procedures in this program with
GOSUBs. Of course it could be done — almost anything that can
be done in one language can be done in another — but there
would be a ridiculous amount of work involved in ensuring that
the right values were given to the right variables before calling
the subroutines. One of the beauties of procedures is that
different values can be ‘passed in’ to them as parameters without
the need to alter variables in the outer program.

Suggested amendments to the program

1. If the cube looks a little out of proportion on your screen, you
will need to adjust the value given to VERTAD] in PROCSETUP. I
can’t tell you what value to give it—you'll just have to play with it
until it looks right.

2. There’s not a lot else that I can suggest here. If you're feeling
really ambitious, you could try using this program as a basis for
an automatic cube solver. I suspect that you would have to
dispense with the full-colour display, and move to mode 5 to give
you an extra 10K of usable memory.

