Being something of a pedant, I have always been perturbed by
programs with misleading names — among the most perturbing
of which are programs called ‘Kaleidoscope’. I was a child once
(still am, really). I have had several kaleidoscopes, and I have a
pretty fair recollection of what they looked like. And none of the
kaleidoscope programs I've seen even attempts really to model
the effect. They just present some sort of pattern, generally
symmetrical, and tell you it’s a kaleidoscope.

That isn’t good enough for me. I have a powerful micro-
computer and an even more powerful brain (I hope), and I ought
to be able to combine the two to produce something at least
vaguely like a real kaleidoscope.

First question: what is a real kaleidoscope like? I went out and
bought one. It is a tube containing two long mirrors, set at such
an angle to each other that the image at one end is reflected eight
times; add the direct unreflected image to those eight, and we
have a full circle of nine images. Eight of those images form
reflecting pairs, and the eye is tricked into believing that there are
really five reflecting pairs of ten images. (The manufacturer of my
kaleidoscope had actually played on that trick by drawing several
ten-fold pictures on the side of the instrument.)

At the end of the tube is a ‘lens’ containing lots of coloured
beads and two longer pieces of coloured plastic. This lens can be
rotated independently of the tube, thus causing different
patterns of beads and bars to show in the ‘window’ - the area
between the two mirrors, and thus the area which will form the
picture. Needless to say, if the beads and bars reach such an angle
that they can no longer resist gravity, they will fall into a new
pattern toward the bottom of the lens.

Not only can one turn the lens, but one can also turn the tube,
affecting the angle at which the window looks onto the lens. As
extreme examples, first imagine the window ‘right way up’, with

Kaleidoscope 129

its angle at the top and its widest part at the bottom. Assuming
that the beads are in the bottom of the lens, they will all show in
the wider part of each image, and the overall circle will have
beads all around the outside, but none in the middle. Now
imagine the window upside down, with its angle at the bottom.
All the beads will show in the narrow part of each image, and the
overall circle will have beads in the middle, with none around the
outside.

But the beads and the bars are of course subject to friction, so
they don’t simply sit at the bottom of the lens. As it is turned,
they turn with it for a surprisingly long time before succumbing
to gravity. I have seen the beads ‘lying’ all to one side of a vertical
line, and the bars showing an actual overhang,.

So there’s quite a lot to model in a kaleidoscope program. We
must know the angle of the window; the angle of the ‘level’ of the
beads; the angle of each bar, and an indication of where in the
lens the bar is; and we must be able to simulate turning the lens or
turning the tube.

Apart from the fact that the nine-fold picture is rather annoying
once you see it for what it is, it is also rather difficult to portray on
a cartesian (x- and y-coordinate) system such as the graphics
screen on the micro. A little experimenting with mirrors showed
me that an eight-fold picture is readily attainable. This being
much easier to portray, I decided that my kaleidoscope would be
an eight-fold one.

Next came the big problem. I can easily choose one segment of
the eight, and reflect its image in the other seven: but how do |
know what appears in the one? I must decide what shows in the
window, and suitably rotate it from the window’s angle to the
angle of the segment I am plotting. Figure 2 shows the two ideas
side by side. On the left, the window looking onto the lens; on
the right, that window translated onto the chosen segment of the
eight-fold picture. :

The transformation is easy if you know enough geometry and
trigonometry, and impossible if you don’t. If you like that sort of
thing, it’s worth the effort of trying to see how it works; but I
wouldn’t waste any sleep over it if it doesn’t interest you.

I haven't gone so far as to show the actual turning taking place.
That would require a machine-code program whose size and
sophistication would be well beyond the scope of this book. The
program shows the first image on the screen; asks what kind of

12U Quanty rrograms for tne Liectron

Window angle is
4.00 radians

Figure 2. A point is translated from the window (on the left) to one sector of the
image (on the right). .

turn to make next; clears the screen (the kaleidoscope screen);
then shows the image which would result from that turn. It is, I
grant, much slower than a real kaleidoscope — but at least it
shows the right sort of pictures!

How to use the program

There’s not a lot to running the program. After a picture has been
drawn, you will be asked ‘Random, Quit, Tube, End, or Whole
Thing?’. Reply with the first letter of your answer. R sets the
kaleidoscope rotating randomly (you can interrupt random
rotation by pressing any key); Q stops the program; T models a
45-degree clockwise rotation of the tube; E models a 10-degree
clockwise rotation of the end (it isn’t really a lens); and W models
a 45-degree rotation of the end and tube together.

Be patient while the kaleidoscope screen clears between
pictures: it takes longer than it looks.

Kaleidoscope 131

. .. and some turns later

132 Quality Programs for the Electron

Program listing

100
110
120
130
140
150
160
170
180
190
200
210
220
230
2h0
250
(2)
260
270
280
290
300
310
320
330
340
350
360
370
380
390
Loo
510
420
h30
440
450
h60
470
480
490
500
510
520
530
540
550
560

REM Kaleidoscope, by Simon.
MODEZ2
PROCsetup
REPEAT
PROCscreen
PROCbar(1}: PROCbar(2)
PROCbeads
PROCask
UNTIL finish
END

PEF PROCsetup

VDu23,1,0;0;0;0;

VDU29,636;428;: REM A new origin below centre-screen,
vpou19,8,0,0,0,0: REM A new logical colour 8, black.
DIM barang (2),barx(2),bary(2),barcolour (2),x{4),y(4),c

finish=FALSE: random=FALSE: infinity=9E9
nothing=1/infinity: radius=400: turnpt=radius/SQR(2)
beadang=0: numbeads=5*SQR(radius): windang=0
xcentre=radius /2*SIN(PI/8)
yeentrez-radiug /2*¥C0S (PI/8)
barlength=radius*1.5: barwidth=radius/10
barang (1)=PL/2: barx(1)=0: bary{1)=z-radius
barang (2)=0: barx(2)=z=-radius: bary(2)=0
barcolour(1)=4: barcolour(2)=3
message$="Simon's Kaleidoscope"

ENDPROC

DEF PRCCscreen: LOCAL newrad,arcpt,T

FOR I=1 TO 8: VDU19,I1,7,0,0,0: NEXT

PRINTTAB (0, 1)SPC(86)TAB(O, 1)message$

newrad=radius+20: GCOLO,TY

MOVE-radius,0: MOVE-newrad,O

FOR x=z-newrad TO newrad STEP 24
IF x>=newrad THEN y=0 ELSE y=SQR(newrad?*newrad-x*x)
PLOT85,x,y: PLOT85,x,~y

NEXT

FOR I=1 TO 6: VDU19,I1,1,0,0,0: NEXT: VDU19,8,0,0,0,0

GCOLO, 8: arcpt=newrad/SQR(2)

MOVE-newrad,0: DRAWnewrad,O

MOVEO,newrad : DRAWO,-newrad

MOVEarept,-arcpt: DRAW-arcpt,arcpt

MOVEarcpt,arcpt: DRAW-arcpt,-arcpt

ENDPROC

DEF PROCbar(n): LOCAL dum,m,perp,topx,topy,slope
topx=FNx(barx(n),barlength,barang(n))

Kaleidoscope 133

570 topy=FNy{(bary(n),barlength,barang(n))
580 x(1)=FNxtrans(barx(n),bary(n))
530 y(1)=FNytrans (barx(n),bary(n))
600 x(2)=FNxtrans(topx,topy): y(2)=FNytrans (topx,topy)
610 IF x(1)=x(2) THEN m=infinity*SGN{y(2)=y (1)) ELSE m=(y(
2)-y (1)) /(x(2)-x(1))
620 slope=ATN(m): perp=-ATN(1/FNtan(slope))
630 c(1)=y {1)-m*x(1)
640 x(3)=FNx(x(1),~barwidth,perp)
650 y(3)=FNy (y(1),-barwidth,perp)
660 x(4)=FNx(x(2),-barwidth,perp)
670 y(4)=FNy(y(2),-barwidth,perp)
680 c(2)=y (3)-m*x(3)
690 PROCupdate(1,2,c(1)): PROCupdate(2,1,c(1))
700 PROCupdate (3,%4,c(2)): PROCupdate (4,3,c(2))
710 GCOLO, barcolour (n)
720 FOR I=-1 TO 1 STEP 2: FOR J=-1 TC 1 STEP 2
730 MOVEI*x(1),J*y(1): MOVEI*x(2),J*y(2)
TU0 PLOT85,I*x(3),J*y(3): PLOT85,I*x(4), ¥y (L)
750 PLOT85,I*x(1),J*y(1)
760 MOVEI*y(1),J%x(1): MOVEI*y(2),J*x(2)
770 PLOT85,I*y(3),Jd*x(3): PLOT85,I*y(4),J*x(4)
780 PLOT85,I*y(1),J*x(1)
790 NEXT: NEXT
800 ENDPROC
810
820 DEF FNx(oldx,length,slope)=zoldx+length*COS{slope)
830
840 DEF FNy (oldy,length,slope)=oldy+length*SIR{slope)
850
860 DEF FNxtrans(x,y)=xcentre+x*C0S (windang-5*PL/8)/2+y¥SI
N(windang-5*PL/8)/2
870
880 DEF FNytrans (x,y)=ycentre+y*C0S(windang-5*PI/8)/2-x¥*3I
N{windang-5*PL/8)/2
890
900 DEF PROCupdate (one,two,c)
910 IF x(one)<0 AND x{(two)>0 THEN x(one)=0: y{one)=c
920 IF x{one)<-y{one) AND x(two)>-y (two) THEN x(two)=—-c/(m
. +1): y(two)=—x(two)
. 930 ENDPROC
940
- 950 DEF FPROCbeads: LOCALm,c,bead,x,y
960 m=FNtan{beadang-windang-~3*PI/8)
970 c=-radius*CCS(PI1/8)/2-m*radius*SIN(PL/8)}/2
980 FOR bead=1 TC numbeads
990 y=RND(radius)
1000 IF y<turnpt THEN x=RND(y) ELSE x=RND(SQR{radius”2-y~
2))
1010 IF (COS{windang)>=0 AND -y>m*x+c) OR (COS(windang)<0
AND -y<m¥*x+c) THEN PROCeightbeads (x,-y)

154 Quality Programs for the Electron

1020 NEXT

1030 ENDPROC

1040

1050 DEF PROCeightbeads (x,y): LOCAL colour

1060 colour=RND(7): IF colour=7 THEN colour=8

1070 GCOLO, colour

1080 FOR I=-1 TO 1 STEP 2: FOR J=-~1 TO 1 STEP 2

1090 PROConebead (I*x,J¥*y): PROConebead (I*y, J¥*x)

1100 NEXT: NEXT

1110 ENDPROC

1120

1130 DEF PROConebead{(a,b)

1140 MOVEa,b: MOVEa,b+10: PLOT85,a-10,b

1150 PLOT85,a,b-10: PLOT85,a+10,b: PLOT85,a,b+10

1160 ENDPROC

1170

1180 DEF PROCask: LOCALans$

1190 IF random AND INKEY(O)=-1 THEN ans $=MID$ ("ETW",RND(3),
1)} ELSE VDU23,1,1;0;0;0;: REPEAT PRINT TAB(0,1)"Random, Quit
, End, "t"Tube, or Whole"''"thing?": ans$=GET$: UNTIL INSTR
("RQETWrqetw",ans$): random=FALSE: VDU23,1,0:;0;0;0;

1200 IF INSTR("Ee",ans$) THEN PROCturnend (PI/18): message$=
"Erd . . .M

1210 IF INSTR("Tt',ans$) THEN windang=windang-PI/4: message
$="Tube . . ."

1220 IF INSTR("Ww",ans$) THEN windang=windang-PI/4: PROCtur
nend (PT/4): message$="Whole thing . . ."

1230 IF INSTR("Qq",ans$) THEN VDU23,1,1;0;0:0:: finish=TRUE

1240 IF random THEN PROCwait(5)

1250 IF INSTR("Rr",ans$) THEN random=TRUE: PROCturnend (PI/1
8): message$="Random turning . ."

1260 IF windang<0 THEN windang=windang+2*PI

1270 ENDPROC

1280

1290 DEF PROCturnend (angle): LOCALr,aign,theta

1300 beadang=beadang-angle: IF beadang<RAD(RND(10)-85) THEN
beadang=RAD(~5-RND(25 })

1310 FOR I=t TO 2

1320 r=SQR(barx(I}*2+bary (I)r2)

1330 IF bary(I)=0 THEN sign=1 ELSE sign=SGN(bary(I))

1340 theta=ACS (barx(I)/r)¥sign

1350 barang (I)=barang(I)-angle: theta=theta-angle

1360 barx{L)=r*C0S(theta): bary(I)=r*SIN(theta)

1370 IF barang (I)<RAD(RND(15)=100) THEN barang(I)=RAD(110
~RND(30)): barx(I}==50+RND(100): bary (I)=-radius

1380 NEXT

1390 ENDPROC

1400

1410 DEF FNtan(theta)

1420 IF theta=0 THEN =nothing ELSE IF theta=PI/2 THEN =infi

Kaleidoscope 135

nity ELSE IF theta=zPI THEN =nothing ELSE IF theta=3*PI/2 THE
N =—infinity ELSE =TAN(theta) .
1430
1440 DEF PROCwait (n)
1450 TIME=0: REPEAT UNTIL TIME>n*100
1460 ENDPROC

Comments on the program

1. A new graphics origin.

In the model of the kaleidoscope, all coordinates are calculated
relative to the centre of the circle. It would be possible to translate
them to the graphics screen (plotting every point XY at
X+636,Y+428), but it's a lot easier to shift the centre of the
graphics screen to this new conceptual centre, and plot all points
directly. This is taken care of with the VDU29 statement in line
230.

2. INSTR to check alternative answers.
We have seen various ways of checking for alternative acceptable
inputs from the user. Some programs turn lower-case answers to
upper case before checking them; others make checks like UNTIL
ans$<>"Y"” AND ans$<>"y". Here we see yet another way: IF
INSTR("Yy” ,ans$) THEN . . .

It is of course your choice which, if any, of these methods to
use, but I can thoroughly recommend this last one where there
are lots of possibilities to be tested, as in line 1190.

3. Clearing’ the screen.
It would be nice to be able to define a circular graphics window,
and simply clear it with one instruction between displays. Not
being able to do this, we have to redraw the circle to clear it. But
how can we redraw the circle without having to watch the pain-
fully slow process? Simple: we turn all the logical colours in the
kaleidoscope to actual colour white, so that they seem to have
disappeared (line 390); we slowly redraw the circle in logical
colour white (lines 430 to 460); then we return the logical colours
to their previous values (line 470).

That explains why we seta new black, logical colour 8; we don’t
want the background, logical colour 0, to turn white, but we do

136 Quality Programs for the Electron

want the black lines and beads to turn white. So we have two
different logical blacks.

Note the new radius to which the circle is drawn, 20 units
beyond the normal radius. Without this difference, beads and
bars drawn right on the edge of the circle would actually overlap
it, and the picture would look much less tidy.

4. Nothing and infinity.

Much of the program uses equations of the form y = mx + c to
represent lines. Geometry tells us that if such a line makes an
angle of 6 with the horizontal, m is tanf. Now the tangent of 7/2
(or 90 degrees) is infinity, as is the slope of a vertical line; and the
computer doesn’t like the idea of infinity (try asking it to PRINT
TAN(PI/2)). So we have to invent an infinity which isn't really,
but which is close enough. We also need a nothing which isn’t
quite zero, so that we can divide by it to get infinity rather than an
error message. Then we use these in a special function FNtan,
which gives the value of tanf even if it's nothing or infinity.

5. The actual model.

Ourmodel kaleidoscope keeps track of the window formed by the
mirrors, changing its angle every time the tube is turned. For
each of two bars it records an angle and the location of one end
(which it can then use to find the other end). For the beads, it
assumes that they all lie ‘below’ a straight line (which need not be
horizontal), and records the angle of that line.

The beads are easy to work with. To plot one, the line below
which they lie is adjusted according to the angle of the window
and the angle of the segment into which it is to be put; this line is
expressed in the form y = mx + c (lines 960 and 970); a random
point is chosen in the appropriate segment of the image (lines 990
and 1000); and if that point lies ‘below’ the line, a bead is plotted
there and in the appropriate positions in the other seven
segments. Notice that by the time the angles have been translated
as required, ‘below’ might actually mean above.

The bars are a little more difficult. The trick with the beads is
that their line is assumed to pass through the centre of the lens —
an assumption which cannot be made with the bars. So we must
translate the actual position of the bottom of the bar into the
plotting segment of the image. This is done by FNxtrans and
ENytrans. Of course the bottom of the bar might not actually be

T P R e,

Kaleidoscope 137

within the window; likewise the top. This is taken care of by
PROCupdate: if an end of the bar is outside the window, this
procedure replaces the end with the point where the bar crosses
the window’s edge. Just as in the real kaleidoscope, bits of the bar
which are outside the window will not be seen.

Of course a bar is not just one point, it is four. But given one
corner and an angle, the other three corners can be calculated
quite easily. This process makes use of FINx(oldx,length, slope)
and FNy(oldy,length,slope), which find the coordinates of a
point which is on the same line as (oldx,oldy), with the same
slope, and a distance length away.

Enough of how it is drawn; what criteria does the model use?

The window, i.e. the tube, is always turned through 45
degrees. Theoretically, if it were turned through a smaller angle
the lines on the picture would have to be redrawn — they are
totally dependent on the angle of the window. It's easier not to
have this extra angle to keep track of.

Consequently the end is also turned through 45 degrees if it is
turned with the tube. If it is turned independently, though, an
angle of 10 degrees is permitted. Of course turning the end means
turning the beads and the bars, and accepting that they might
fall. If the angle of the beads gets to within about 5 degrees of the
vertical, they will tumble to a new angle about 20 degrees from
the horizontal. The bars can attain an overhang of 10 degrees in
the extreme; then they will tend to fall straight down, starting
close to the vertical again, but with their other end at the bottom.
The actual angles and positions are of course governed by
random numbers.

And there you have a kaleidoscope!

Suggested amendments to the program

1. There are various ways of making the program run alittle faster
should you so desire. First, you could try making the circle
smaller. All other relevant values (the length and width of the
bars and the number of beads) are calculated in terms of the
radius, so all you need do is alter the value of the radius in line
270. A value of 300 still gives quite a presentable picture. This
idea of tying many of the program’s values to one obvious one 1s

138 Quality Programs for the Electron

well worth incorporating into your own programs where possible
— it can save a lot of painful alteration.

You could make the bead plotting faster by reducing the
number of beads, in line 280.

And you could reduce the delay between displays, at the
expense of resolution, by increasing the step size in line 430, in
the circle-drawing section.

2. I have said that a bar consists of four points, but this is not
always true. If one of the four corners lies outside the window,
the window should cut the bar in such a way as to leave it with
five edges, and so five corners. And if two corners lie outside the
bar in two different directions (which can only happen in the
centre of the kaleidoscope), it can actually consist of six edges.
The program takes no account of these possibilities, and so
sometimes shows rather odd ends to the bars. That could prove
an interesting problem to tackle.

Groan!

Have you ever tried playing craps against a computer? It's
incredibly boring. (In case you're wondering, craps is an
American dice game.) [once wrote a computer craps game. Then
realised how mindless it was, and decided I'd better do some-
thing more interesting with the dice-rolling routines, so as not to
waste them. That was when somebody showed me this game.

Groan is a little difficult to describe, but it’s really very easy to
play once you've had a game or two to get the idea. It’s a good
combination of luck and judgement — a thoroughly enjoyable
game.

There are two players-— you and the computer — each of whom
is trying to score a prearranged total with the dice. Hach player
has a ‘cumulative score’, and there is a ‘running score’ for
whichever player is currently in possession of the dice. While the
player with the dice keeps rolling them, the numbers which show
on them are added to the running score. The alternative to rolling
the dice is to pass them to the opponent, in which case the
running score is added to the player’s cumulative score.

So why would a player ever bother to pass the dice? Because
there is a risk in rolling them. If either of the dice rolls a one, the
running score is lost, and the dice automatically pass to the
opponent. The idea is to roll until the running score contains
something worth saving, and then to save it by passing the dice.

Once your opponent has the dice, you have nothing to do
(except bite your nails, if you're that way inclined) until either the
opponent wins or the dice come back to you. Remember,
winning means getting to the goal score or above it. You don't
have to have all of the points in your cumulative score; the
computer is smart enough to know when the sum of cumulative
and running scores has reached the goal.

Oh yes, one small point. If you're silly enough to throw a
double one, you lose not only the running score but also your
cumulative score. In other words, you start again from nothing.

142 Quality Programs for the Electron

How to use the program

The program will first ask you what goal you'd like to play for. As
a general guide, goals of less than 50 tend too much to let the first
player (who is chosen at random) win, and goals of more than 100
tend to be rather fraught with double ones. At least until you get
the idea of the game, I'd stick to goals within this range.

When you have the dice, you will be asked whether you wish to
roll them or pass them. You should reply R or P. When you lose
the game (oh, all right— or win it) you will be asked whether you
would like another game. That’s all there is to it.

In a close game, the computer loses the dice . . .

Groan!

i, ... who still goes on to win

143

144 Juanaty 'rograms for the Liectron

Program listing

100 REM Groan, by Simon.

110 MODE 4

120 DIM m${17)

130 m${1)="Your play. Roll the dice, or pass them to me?
(Ror P) "

140 m$(2)="Your play. Rolling . . .™-STRING$(40,")

150 m$(3)="0K, I'll take over."+STRING$(45,")

160 m$(4)="Tt's my play. I think I'll roll them."+STRING$(
27’H H)

170 m§(5)="It's my play. I think I'll roll them again."
+STRING$ (18, 1t)

180 m§(6)="It's my play. I think I'l1l pass them to you. ™S
TRING$ (20, ")

190 m$(7)="0h, look! You've rolled a one."+STRING$ (34, ™ ")

200 m$(8)="Snake's eyes! You have to start again from sc
ratch, "+STRING$ (11,1)

210 m$(9)="GROAN! I seem to have lost that one."+STRING$ (2
8,11 Tl)

220 m$(10)="DOUBLE GROAN! All my score down the drain!
14 STRING$ (17, M)

230 m$(11)="DOUBLE GROAN! Still, T didn't lose a lot, d
id TI?"+STRING$ (13, n)

240 m$(12)="Hah! Made it! My game, I believe."+STRING$(31,
I oar

)

250 m$(13)="0h dear, you've won. Still, it has to happen
now and then. a

260 m$(14)="Fancy another game? (Y or N) "

270 m$(15)="Sorry, I missed that. Please reply with either
Ror P. "

280 m$ (16)=STRING$ (63, ")

290 m$(17)=1m

300 VDU 23,1,030;0;0;: REM Cursor off.

310 mygames%=0: yourgames%=0

320 CLS: PRINT TAB(14,4);"GROANI";TAB(14,5);

330 PRINT"zz====";TAB(8,7);"(A program by Simon)"

340

350 REPEAT

360 PRINT''"A goal of 50 to 100 seems to make for an';

370 PRINT"exciting game. What goal shall we play"

380 INPUT"for this time? "goal%

390 mycum%=0: yourcum%=0: running%=0: gameover%:=FALSE

400 PRINT'''"On a totally random choice . . ."'1SPC(20);

410 PROCwait (3)

420 IF RND(2)=1 THEN PRINT". . . I start.": PROCwait(3):
PROCscoreboard ELSE PRINT". . . you start.": PROCwait(3): P
ROCscoreboard: PROCupdate (17,1): PROCyourgo

430
Ny
50
460
470
480
490

Groan! 145

REPEAT

IF NOT gameover% THEN PROCmygo

IF NOT gameover% THEN PROCyourgo
UNTIL gameover%: PROCupdate (17,14)
VDU 23,1,1;0;0;0;: REM Cursor on.
INPUT""reply $: reply$=LEFT$(reply$,1): CLS
Vbu 23,1,0;0;0;0;: REM Cursor off.

500 UNTIL reply$<>"Y" AND reply$<>iy®

510

520 MODE 6: REM To restore the cursor.
530 IF mygames¥b=yourgames% THEN PRINT'!'"Hey, we drew! ";m

yegames%;

" each!"

540 IF mygames%>yourgames®% THEN PRINT''!''"Needless to say,
I beat you."'"The games score was ";mygames%;" to ":;yourgame

S%; "non

550 IF mygames¥%<yourgames% THEN PRINT'''!'"That's right; qui

t while

you're ahead !'"'"The games score was ";mygames%;" to

" yourgamesdb; M. "
560 PRINT''"Bye for now!'"!
570 END

580

590 DEF PROCmygo
600 numrolls%:=FNhowmany : count%=0

610 message%=4: rollover%=FALSE
620 REPEAT
630 TF count%>=numrolls% THEN mycum%=mycum%+running%: ru

ming%=0:

PROCupdate (6,1): rollover%=TRUE: GOTO 750: REM I p

ass the dice.

640

IF count%=0 THEN PROCupdate (17,message%) ELSE PRCCup

date (16 ,message%)

650
660
670
680
690
%=0
700
710
720

PROCwait (2)

count%=count%+1: scorel%=FNroll

IF score%>2 THEN GOTO 720

REM I've thrown a double one,

IF mycum%=0 THEN message%=11 ELSE message%=10: mycum

running%=0: PROCupdate (message%,1)
rollover%=TRUE: GOTO 750
IF one% THEN running%=0: PROCupdate(9,1)}: rollover%s=

TRUE: GOTO 750: REM I've thrown a one.

730
THO

PROCwait (2): running%=running%+score%: message%=5
IF mycum®%+running%>=goal% THEN gameover%=TRUE

750 UNTIL rollover% OR gameover%
760 IF gameover% THEN PROCupdate (12,16): mygames%h=mygames%

+1

770 ENDPROC

780

790 DEF PROCyourgo
800 rollover%=FALSE
810 REPEAT

820

vypu 23,1,1;0;0;0;5: REM Cursor on.

146 Quality Programs for the Electron

830 INPUT""reply$: IF reply$="P" OR reply$="p" THEN your
cumb=yourcumb+running%: running%=0: PROCupdate(3,16): rollov
er%=TRUE: GOTO 910

840 IF reply$<>"R" AND reply$<>"r" THEN PROCupdate (16,15
Y+ GOTO 830

850 vDbU 23,1,0;0;0;0;: REM Cursor off.

860 REM You 've chosen to roll.

870 PROCupdate (17,2): score%=FNroll: PROCwait(1)

880 IF score%=2 THEN yourcum%=0: running%=0: PROCupdate (
§,16): rollover%=TRUE: GOTO 910

890 IF one% THEN running%=0: PROCupdate(7,16): rollover%
=TRUE: GOTO 910

900 running%=running%+score%: IF yourcum%+running%>=goal
% THEN gameover%=TRUE ELSE PROCupdate(16,1)

910 UNTIL rollover% OR gameover%

920 VDU 23,1,0;0;0;0;: REM Cursor off.

930 IF gameover% THEN PROCupdate(13,16): yourgames%=yourga
me s %-+1

940 ENDPROC

950

960 DEF PROCupdate (one%,two%)

970 REM To update the scoreboard, and put messages numbers

one% and two% in the two message spots.

980 PRINT TAB(23,26);mycum%;" ";TAB(25,30);yourcumb;" ";

990 PRINT TAB(36,28);running%;" ;
1000 PRINT TAB(0,14);m${one%)
1010 IF two%=15 THEN PRINT TAB(0,17);m$(16)
1020 PRINT TAB(0,17);m${two%);
1030 ENDPROC
1040
1050 DEF PROCscoreboard
1060 REM Initialise dice positions, draw scoreboard.
1070 CLS3: REM Here are the origins of the two dice.
1080 xone%=2: yone%=3: xtwo%=12: ytwo%:=3
1090 MOVEOD,368: DRAW1280,368
1100 PROCdie (xone%,yone%): PROCdie (xtwo%,ytwo%)
1110 PRINT TAB(0,23); "SCOREBOARD: (The goal is ";goal%;"
YU TAB (0,24) ;v o -
1120 PRINT TAB(0,26); "My cumulative score is ";
1130 PRINT TAB(0,30);"Your cumulative score is ¥;
1140 PRINT TAB(15,28);"The running score is ";
1150 ENDPROC -
1160
1170 DEF PROCdie (x%,y%): LOCAL tlx%,tly%
1180 REM Convert from text positions to top-left-x and y
graphics positions.
1190 t1lx%=32*x%-16: tly%=1040~32%y%
1200 MOVEt1x%,tly%: DRAWL1x%,tly%-256
1210 DRAWt1x%+256,£1y%-256 1 DRAWt1x%+256,t1ly%
1220 DRAWt1x%,t1ly%

ey

1230
1240
1250
1260
1270

Groan! 147
ENDPROC
DEF FNhowmany: LOCAL x%

x%=RND(100)
IF x%=1 THEN =0 ELSE IF x%<6 THEN =1 ELSE IF x%<16 THE

N =2 ELSE IF x%<41 THEN =3 ELSE IF x%<66 THEN =4 ELSE IF x%
<76 THEN =5 ELSE IF x%<81 THEN =6 FLSE =50

1280
1290
1300

1310
1320
1330
1340
1350
1360
1370
1380
1360
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

1530
1540
1550
1560
1570
1580
1590

1600
1610
1620
1630

1640
1650
1660

DEF FNturn (n%,x%,y%,count%)

REM Turn the die at posn x%,y% so that it shows n%;
return count¥%+1.

LOCAL x1%,x2%,%x3%,y1%,y2%,y3%

REM These are the spot positions

X1%=x%+1: x2%=x%+3: X3%=x%+5

y1%=y%+1: y2%=y%h+3 1 y3%=y %+5

ON n% GOTO 1370,1L00,1420,1450,1480, 1500

REM Clear a six, show a one.

PRINT TAB(x1%,y1%);" STAB (%1%, y2%) ;" ¥,

PRINT TAB(x1%,y3%);" ns: GOTO 1530

REM Clear a one, show a two.

PRINT TAB(x1%,y2%);"¥ ¥ GOTO 1530

REM Clear a two, show a three.

PRINT TAB(x1%,y2%);" * MsTAB(x1%,y3%);"*";

PRINT TAB(x3%,y1%);"*";: GOTO 1530

REM Clear a three, show a four.

PRINT TAB(x2%,y2%);" ";TAB(x1%,y1%); "*",;

PRINT TAB(x3%,y3%);"*¥";: GOTO 1530

REM Clear a four, show a five.

PRINT TAB(x2%,y2%);"*";: GOTO 1530

REM Clear a five, show a six.

PRINT TAB(x1%,y2%);"* ku.

REM Function returns incremented counter, after a
suitable delay.

PROCwait (0.04)

=count %+1

REM END of FNturn.

DEF FNroll
LOCAL num1%,num2%,val1%,val2%,count1%,count2%,i1%,i2%
REM Roll the dice, return the score. Set one% to
true if a one is rolled.
num1%=6+RND(24) : num2%=6+RND (24)
vall%=num1% MOD 6 +1: val2%s (num2%+3) MOD 6 +1
count1%=-1: count%=~1: 11%=1: i2%=l
REM num is the number of turng; count counts them;
val is the result; i tells which number to display

next .
"PRINT TAB(tho%+5’YtWO%+1);”*”;TAB(xtwo%+1,ytwo%+3);
PRINT™" W TAB (xtwo%+1, ytwodk+5); "* "
REPEAT

148 Quality Programs for the Electron

1670 IF count1%<numi% THEN count 1%=FNturn (i1%,xone%,yone%
yeount 1%): i1%=11%+1: IF i1%=7 THEN i1%=1

1680 IF count2%<num2% THEN count2%=FNturn (i2%,xtwo%,ytwo%
;count2%): 12%=1i2%+1: IF i2%=T7 THEN 12%=1

1690 UNTIL count1%=num1% AND count?%=rum2%

1700 one%=vall%=1 OR val2%= 1

1710 REM FNroll finishes by assuming the value of the roll.

1720 =vali%+val?%

1730

1740 DEF PROCwait (n)

1750 REM Wait n seconds.

1760 TIME=0: REPEAT UNTIL TIME>n*100
1770 ENDPRGC

Comments on the program

1. Suppression of question marks on INPUT.

Being a pedant, I don't like the question mark prompt put out by
BASIC when it expects input. Even when my program has just
asked a question, I dislike the prompt— because there is no space
between it and the user’s answer, and we all know that every
punctuation mark should be followed by a space. So I almost
always suppress the question mark, by using the form ‘INPUT
“Some string’’ variable’. In lines 480 and 830 I even have the gall
to use the empty string! The question mark will only appear if
there is no string, or if there is a comma between the string and
the variable name.

2. The flashing cursor.

The flashing cursor quite spoils the effect of the dice rolling, so it
should be turned off for that; but it should certainly be on when
the user is being asked a question. In all, this means turning it on
or off in six different parts of the program. Messy, but it's worth it
for the neat effect produced.

3. Excuses for GOTOs.
[f BBC BASIC had while-loops, case statements, and compound
statements I would very seldom use the GOTO. As it is, I try to
keep its use as infrequent as possible. Let us consider the GOTOs
in this program.

Lines 630, 710, 720, 830, 880, 890: within a REPEAT loop within

Groan! 149

a procedure, it suddenly becomes apparent that somebody’s turn
is over. Jumping straight to the other player’s turn would be
criminal. Instead we jump to the end of the loop, having set a
.special variable to indicate the situation.

Line 670: the GOTO here is needed because of the impossi-
;bility of using an IF . . THEN IF . . THEN . . ELSE . . ELSE . .
structure in the next line. For further enlightenment see comment
6 to the telephone costs program.

Line 840: all right, I could have used a REPEAT loop. But the
resulting code would have been so cumbersome. . . .

Lines 1380, 1400, 1430, 1460, 1480: the trouble with ON ..
GOTO . ., as opposed to the ‘case’ statement of more powerful
languages, is that having gone to . . ., one then continues from
there. If this is not the desired effect, a whole load more GOTOs
are needed to undo the spreading of the initial statement.

4. More about the IF statement.

Generally speaking, it's bad programming practice to test for a
condition which we already know to be false. Lines 530, 540, and
550 should really be one statement of the form IF mygames% =
yourgames% THEN .. ELSE IF mygames%<yourgames9o
THEN . . ELSE . ., but the line length doesn’t permit it, so we
settle for second-best,

5. Boolean variables.
~ The use of boolean variables makes the program much easier to
read. IF gameover% THEN . .; REPEAT . . UNTIL gameover% or
rollover%; IF one% THEN . .; and so on. Note, too, that assign-
ments to boolean variables need not be of the form VAR% =
TRUE or VARY% = FALSE. In line 1700 we are saying IF
~vall% =1 OR wval2% =1 THEN one% = TRUE ELSE
one% = FALSE — but we say it in a much more logical and
compact way.

6. The dice.

Notice that the program uses variable names for the origins of the
two dice. This means that the dice can easily be moved, simply by
- changing the values in one line (line 1080), rather than having to
look through the whole program for anything relating to their
positions. The variables are being used to hold a value fixed
throughout the program; some languages have ‘constants’ for
this purpose.

150 Quality Programs for the Electron

The actual rolling of the dice would be easier to explain if there
were only one of them. Each die has its own starting number (the
first die starts on 1, the second on 4), to make the picture look a
little more interesting. From that starting number, the die will roll
a random number (between 7 and 30) of times. The lower bound,
7, is because any fewer rolls would look silly. The range from
which the random number is chosen is a multiple of 6, to ensure
an equal chance of rolling any number. The die has a counter to
stop the rolling when the right number of rolls have taken place.
(Note that the counter starts at —1, so that it will show zero after
the starting number has been displayed.) And because the dice
start on different numbers, each has a variable to keep track of
which number is to be shown on it next.

Starting as it does on a 1, the first die needs no special con-
sideration for whatever was there before: the routine which
places the 1 assumes that it first has to cleara 6, and in so doing, it
clears whatever number was displayed. The second die is not so
lucky. If the previous roll leaves it showing 1, 2, or 6, it will not be
properly set up by the ‘clear a 3’ routine. Hence the special
treatment in lines 1640 and 1650,

7. The computer’s strategy.

The computer’s strategy, which cost me hours of research with
real dice, at first seems quite an unlikely one. It is certainly not the
intuitive strategy I use myself — for a start, ['m not very good at
generating random numbers. All the program does is decide at
the beginning of its turn how many rolls to try. The decision is
made quite independently of its own score, its opponent’s score,
or the goal. It's simply a question of 1% of the time, pass the dice
straight back; 5% of the time, try for one roll; 10% of the time, try
for two rolls;” and so on. Why pass the dice straight back? A
player might do it if (s)he had a premonition that a double one
was due. A computer program might do it to puzzle its opponent.
As I said, an unlikely strategy; but it seems pretty effective. And
given the random nature of dice, I can’t see any theoretical
argument against it.

8. The message system.

The program uses two notional message slots, into which any of
15 different messages are put. The reason for using this system,
rather than explicitly writing the messages when they are

Groan! 151

required, is that the program often enters a particular phase
without knowing where it has just been. (Surely BASIC doesn’t
need a COMEFROM statement?) In that phase, it might not be
sure which message is applicable; but an appropriate variable, -
set in the previous phase, can easily tell it. The use of message
slots also ensures that all messages are output in consistent
places. A problem which arises here is that of message-clearing: a
short message must be sure to clear away a longer preceding
message, or the tail of the longer message will still show after the
short one. Further, the user might have corrupted the message
area by holding a key down and making it repeat in response to a
question. That is why most of the messages have spaces on the
end of them. The questioning messages are shorter, so that the
answer will appear in the appropriate place; and so we also have a
special clearing message, m$(16), to be used when necessary
before one of these.

All of the message-handling is done by the procedure
PROCupdate, which also updates the scoreboard. Because
PROCupdate is there, it is used as a message-passer even when
the scores haven’t changed. Further, because the procedure
handles two messages at a time there is a null message, m$(17),
for situations in which only one message is to be displayed.

A last point on message-clearing: note the blanks printed
after the numbers in lines 980 and 990. These are to ensure that a
large number is properly removed when a smaller number takes
its place — for instance when your cumulative score is 237 and
you roll a double one. (I've seen it happen!)

9. Giving the program a personality.

Computers should be fun to use. No matter how exciting a
particular game is, there’s not a lot of fun in two-word block-
capital messages: YOUR GO; MY GO; YOU WIN; YOU LOSE.
Yet most programmers use such messages all the time —
generally without any punctuation. For the little extra effort
involved in thinking up some personal-sounding comments, it
can be very rewarding to hear your friends cackling at the cheeky
machine.

152 Quality Programs for the Electron

Suggested amendments to the program

1. I had to play with the various delays for some time before they
suited me. Adjust them to suit yourself if they don't already do
SO.

2. The program keeps track of the games score, but only displays
it at the end. ['ve left a nice little area at the top right of the display
where you could put a progressive games score if you wanted.

3. have played this game with a friend, real dice, and pencils and
paper. It’s a great bind trying to keep score — there’s lots of
crossing out to do. But computers shouldnt be allowed to
promote unsociability. So modify the program to allow the
option of two real players, in addition to the present player/
computer pairing. It isn't difficult.

Artillery

This game is for two players, each of whom is in charge of a gun.
The guns are on opposite sides of the screen, generally with some
interesting terrain between them, and each player is trying to hit
the other player’s gun. Before the missile can be fired the player
must decide how much powder to put in the gun, and what angle
to fire at.

There is rather a lot of thought involved in the game: random
shots are extremely unlikely to succeed. If there is a high hill
between the guns the shots must be fired at a very steep angle
(perhaps as steep as 80 degrees), and so will need a lot of powder
to carry them any horizontal distance. If one of the guns is higher
than the other, the two players have completely different
problems to solve. And both players must take account of the
wind, which varies from shot to shot, and which can have quite a
strong effect on the missiles.

Even once you become good at judging roughly what angle and
powder to use, you will find that in each game you have to use a
refinement technique for your shots. Remember the wind
strength on your previous shot, and what angle and powder you
used, and where the shot landed; then use all of this information,
along with the current wind speed, to try to get closer this time.
So the game involves memory as well as mental computation or
guessing. I have found it extremely difficult to play the parts of
both players: even when I do manage to remember the details of
the last shots, I still seem to get confused over which was which.
A beginner can even find it confusing to hear the other player
thinking aloud about angles and powder.

104 uality Programs for the Llectron

How to use the program

If there’s only one of you, try to find somebody else. When you
start the program running you will be asked your names. Then
the terrain will be drawn, the guns will be placed, and a player
will be chosen to start.

The player will be told the wind speed and direction, and asked
how much powder to put in the gun. Five pounds will produce a
feeble little shot which will get hardly anywhere unless the
terrain and wind are exceptional; fifteen pounds will be enough
to overshoot grossly in most situations. Values outside this range
will not be accepted. Once you have fired several shots and are
starting to get close to the opponent’s gun, you will probably be
glad to know that the program is quite happy with real numbers;
10.55 pounds is just as acceptable as 12 pounds. Decide how
many pounds you want to try, type the number, and press
RETURN.

Next you will be asked what angle to fire the gun at. In case you
don’t know about these things, 0 degrees is horizontal and 90
degrees is vertical; angles outside this range will not be accepted.
You don’t have to worry about whether the gun is pointing left or
right: the 0-90 range assumes that your gun is pointing toward
your opponent’s. Decide on an angle, type it in, and press
RETURN, watching carefully.

The missile will leave the barrel of your gun and set off at the
angle you have given it, with a speed controlled by the powder
you have used. Take note of where it goes. Don’t despair if it goes
up off the top of the screen — what goes up must etc. This is
another example of off-screen graphics: the computer is quite
happily plotting the missile’s trajectory way up there where
screen there never was. Wait patiently, and you’ll probably see
the missile come down again. If not, it has gone off the side of the
screen. You'll know that this has happened when the other player
is asked for firing details. Watch the shot carefully, remembering
what the wind was, and what powder and angle you used. That’s
what you have to go on to formulate your next shot.

A word of warning: don’t let your inexperience at the game
persuade you that it doesn’t work properly. When you’ve fired at
such alow angle that you're just skimming the top of a hill, yet the
missile sails on over the opponent’s head, you feel that the only

Artillery

the
s ey raid g e

... but this time Donna has a little more protection

155

156 Quality Programs for the Electron

way to score is to fire lower. This is where you need to do exactly
the opposite — fire higher, so that the shot doesn’t carry as far
horizontally. In situations like this you might need to fire as high
as 80 degrees to score a hit.

Players fire alternately until a gun is hit (you can hit your own
gun if you're stupid enough or clever enough or pacifist enough).
The score is amended, and you are asked whether you want
another game. The terrain has a large random element in it, so
you should see a different scene each time you play.

When you choose not to play again, the final scores will be
shown before the program finishes.

Program listing

100 REM Artillery, by David Vines.
110 MODE1: PRCCINIT

120 REPEAT

130 PROCDRAWRILL

140 REPEAT

150 PLAYER=3-PLAYER: PROCGETARGS: PROCFIRE

160 UNTIL FNHIT

170 PROCSCORE

180 PRINTTAB (0,2 }"Another game? (Y/N) ": A$=GET$
190 UNTIL NOT (A$="Y"™ OR A$="y")

200 MODE6: PROCFINALSCORES

210 END

220

230 DEF PROCINIT

240 X=RND(-TIME)

250 DIM NAME$(2),SCORES(2)

260 VDU23,240,3,6,12,24,56,252,254,254

270 VDU23,241,192,96,48,24,28,63,127,127

280 vDU19,0,4,0,0,0: VDU19,1,0,0,0,0: VDU19,2,2,0,0,0
290 PRINT''SPC{6)}"ARTILLERY, by David Vines™

300 PRINT'"'"This is a game for two players.”

310 PRINT'"The game simulates two guns firing at’
320 PRINT"each other across a hill or slope."”

330 PRINT'"The gunner needs to know two things:"

340 PRINT '™ 1 - the angle of elevation of the"
350 PRINT™ gun; "

360 PRINT" 2 - the number of pounds of"

370 PRINT™ gunpowder to use."

380 PRINT'"The angle of elevation must be between"
330 PRINT"O & 90. The number of pounds of"

k0O PRINT"gunpowder must be between 5 & 15."

410 REPEAT

420
430
440
450
460
470

Artillery 157

PRINT '"What are your names?"!'

REPEAT INPUT"Left player: "NAME$(1)

UNTTL NAME$(1)<>nm

REPEAT INPUT"Right player: "NAME$(2)

UNTIL NAME$(2)<>n

IF NAME$(1)=NAME$(2) THEN PRINT"The names are the sa

me. Please re-enter.”

480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
T4O
750
760
770
780
790
800
810
820
830

UNTIL NAME$(1)<>NAMES$(2)
SCORES(1)=0: SCORES(2)=0: PLAYER=RND(2)
ENDPRGC

DEF PROCDRAWHILL: LOCAL T
X1=RND(1): X2=RND(1)
IF X1>X2 THEN T=X2: X2=X1: X1=T
REM The max of FNF(X) is 800 and the min is 200.
CL.S: GCOLO,2
MOVEQ,O: MOVEQ, FNF(X1)
P1L,OT85,128,0: PLOT85,128,FNF(X1)
FOR X=132 TO 1148 STEP 4
MOVEX,0: DRAWX,FNF((X-~128)/1024*(X2~-X1)+X1)
NEXT
MOVE1152,0: MOVE1152, FNF (X2)
PLOT85,1280,0: PLOT8%,1280,FNF(X2)
PROCBOTLINE: VDU28,0,5,39,0: GCOLO,1: WIND=RND(61)-31
GCOLO,1: MOVE32, FNF(X1)+32: VDU5,240
MOVE1216, FNF (X2)+32: VDU241,1
ENDPROC

DEF FNF(X): LOCAL T1
T1=X %l %P1
=300 *(SIN(T1)+SIN(T1%3)/3)+400

DEF PROCBOTLINE
COLOUR1: COLOUR131
PRINTTAB(1,31)LEFT$(NAME$(1),13)": ;SCORES(1);
PRINT" ; "LEFT$(NAME$(2),13)": ";SCORES(2);
COLOUR3: COLOUR128

ENDPROC

DEF PROCGETARGS

WIND=WIND+RND (7)-4

IF ABS(WIND)>50 THEN WIND=50 *SGN(WIND)

VDU30 : PRINT 'NAME$(PLAYER)'"The wind is ";ABS(WIND);"

from the 'f;

840
850
860
er?
870
880

IF WIND<O THEN PRINT"right ." ELSE PRINT"left."
REPEAT
PRINTTAB(0,5)SPC(39)TAB(O, 3)"How many pounds of powd
e
y
INPUTTAB (27,3) POUNDS
IF POUNDS<5 THEN PRINTTAB(O,5)"Not enough powder to

fire the shot.";: PROCWAIT

IO VULt Y FTOLTHS JOT 11E LIeCiYor

890 IF POUNDS>15 THEN PRINTTAB(0,5)"That would destroy t
he gun.';: PROCWAIT

300 UNTIL POUNDS>=5 AND POUNDS<=15

910 REPEAT

920 PRINTTAB(O,5)SPC(39)TAB(Q,4)"At what angle? ",

930 INPUTTAB(15,4)ANGLE

940 IF ANGLE<O THEN PRINTTAB(0,5)"The gun will not depre
ss that far.'";: PROCWAIT

950 IF ANGLE>90 THEN PRINTTAB(0,5)"The gun will not elev P
ate that far.":: PROCWAIT .

960 UNTIL ANGLE>=0 AND ANGLE<=90 L

970 ANGLE=RAD(ANGLE): CLS

980 ENDPROC

990

1000 DEF PROCFIRE: LOCAL LANDED

1010 SOUNDO,-15,4,3

1020 YVEL=PQUNDS*SIN (ANGLE)

1030 IF PLAYER=1 THEN XP0S=z68: YPOSzFNF(X1)+40: XVEL=POUNDS
*COS (ANGLE) FLSE XP0S=1211: YPOS=FNF(X2)+40: XVELsz-POUNDS*CO
S (ANGLE)

1040 GCOLY4,0: PROCPLOT

1050 REPEAT

1060 PROCPLOT: PROCMOVE: LANDED=FNLAND

1070 IF NOT LANDED THEN PROCPLOT

1080 UNTIL LANDED

1090 PROCLAND

1100 GCOLO, 1

1110 ENDPROC

1120

1130 DEF PROCPLOT

1140 FOR I=-4 TO 4 STEP 4: FOR J==4 TO 4 STEP 4

1150 PLOT69,XPOS+I, YPOS+J

1160 NEXT: NEXT

1170 ENDPROC

1180

119G DEF PROCMOVE

1200 XVEL=XVEL+WIND/500: YVEL=YVEL-1/3

1210 XPOS=XPOS+XVEL*Y : YPOS=YPOS+YVEL*4

1220 ENDPROC

1230

1240 DEF FNLAND: LOCAL TEMP

1250 IF XPO3<4 OR XP0S>1275 THEN =TRUE ELSE IF YPOS>1000 TH
EN =FALSE

1260 TEMP=FALSE

1270 FOR I=XPOS-4 TO XPOS+4 STEP L

1280 FOR J=YPOS-4 TQ YPOS+4 STEP 4

1290 IF POINT(I,J)<>0 THEN TEMP=TRUE

1300 NEXT

1310 NEXT

1320 =TEMP

1330

Artillery 159

1340 DEF PRCCLAND

1350 IF XPOS<4 OR XP0S>1275 THEN ENDPROC

1360 GCOLO,0: SQUNDC,-15,5,5%

1370 MOVEXPOS-8, YPOS: MOVEXPOS, YPOS~8

1380 PLOT85,XP0S, YPOS+8: PLOT85,XP0S+8, YPOS

1390 ENDPROC

1400

1410 DEF FNHIT: LOCAL XT

1420 IF XP0OS<100 THEN XT=X1 ELSE X7T=X2

1430 =(XP0OS>23 AND XPOS<72 AND YPOS>FNF(XT)-32) OR (XPOS>1
207 AND XP0OS<1256 AND YPOS>FNF (XT)-32)

T440

1450 DEF PROCSCORE: LOCAL P

1460 CLS: IF XPOS<100 THEN P=2 ELSE P=1

1470 IF PLAYER=1 AND P=2 OR PLAYER=2 AND P=1 THEN PRINT"You
idiot, you've hit yourself !" ELSE PRINT"Well done, you've h
it your opponent."

1480 SCORES (P)=SCORES (P)+1

1490 VDU26 : PROCBOTLINE: PROCWAIT

1500 ENDPROC

1510

152C DEF PROCFINALSCORES: LOCAL DIFF

1530 PRINTTAB(O,11)NAMES$(1)": ";SCORES(1);"™ ; ';

1540 PRINTNAME$(2);": Y“;SCORES(2);TAB(0,3);

1550 IF SCORES(1)=SCORES(2) THEN PRINT"The game was a draw.
"TAB(0,15): ENDPRGC

1560 PRINT"The winner was ";

1570 IF SCORES(1)>SCORES(2) THEN PRINT NAME$(1) ELSE PRINT
NAMES(2)

1580 DIFF=ABS (SCORES(1)-SCORES(2))

1590 IF DIFF=1 THEN PRINT'"by one point.'" ELSE PRINT'"by ',
DIFF;" points."”

1600 PRINTTAB(0,15)

1610 ENDPROC

1620

1630 DEF PROCWAIT

1640 T=TIME: REPEAT UNTIL TIME-T>250

1650 ENDPROC

Comments on the program

1. More uses of RND.

So far we have only seen RND used to produce an integer
between Tand its argument. This program shows two other uses.
RND(1), inline 530, gives a random real number between 0 and 1;
and RND(—TIME), in line 240, resets the random number

160 Quality Programs for the Electron

generator to a new sequence whose starting point depends on
whatever TIME is when line 240 is executed. I have never found
the random numbers seeming to repeat themselves in different
runs of a program, so [don’t usually bother with this option; but
it’s as well to know that it’s there.

2. Error trapping.

This program is a superb demonstration that different pro-
grammers think of different things, and thus that no one
programmer is likely to be able to think of everything that might
happen in a program. Perhaps I'm wrong, butI can’t imagine that
[would have thought of checking whether two players had given
identical names. Yet the game could be quite odd if this were
allowed to happen.

Whenever you write a program for others to use, try to think of
all the odd things they might do to it, then try to write it to allow
for those things. You'll never think of everything, but you'll be
better off than the programmer who thinks of nothing.

3. VDU commands.
We have already met VDU4 and VDUS. The interesting thing
about their use (in lines 650 and 660) is that they do not stand
alone. VDUS5,240 means ‘do whatever VDUbS implies, then print
CHR$(240)". Similarly, VDU241,4 means ‘print CHR$(241), then
do whatever VDU4 implies’. You must remember that VDU
followed by a string of numbers simply means print the
characters corresponding to those numbers; and that some
‘characters’ are special, in that ‘printing” them produces special
effects, rather than actually printing anything on the screen.
We've also met VDU23, for defining characters, and VDU28 for
defining a text window. Two new uses, though, are VDU30 (line
830) which returns the text cursor to the top left of the text
window, and VDU26 (line 1490) which restores text and graphics
windows to their original values. You can see that the VDU
command is much too versatile to learn completely, but you
should be sure that you have a fair idea of the range of uses to
which it can be put.

4. Drawing solids with lines.
We normally use triangles to fill areas with colour. But when very
fine resolution is required, we can draw the whole shape as a

Artillery 161

series of adjoining lines. This is what PROCDRAWHILL does,
using the DRAW command in line 600.

5. LEFT$ to limit string size.

PROCBOTLINE prints a games score on the bottom line of the
screen. If the printed line is too long, the score continues onto the
next line, bumping up the whole screen picture and making a
mess of the display. So we use LEFT$ to limit the length of each
name, in an attempt to prevent this. The point to notice is that
there is no problem if the string is shorter than the length to
which we are limiting it, even though we are actually saying “take
the leftmost N characters of the string’; LEFT$("Simon”,20) is
simply Simon.

6. The mathematics of the program.
There are two main mathematical aspects to this program: the hill
and the trajectory. The trajectory is easier, so we'll take it first.

The missile’s velocity is considered in two components, the
horizontal (x) and the vertical (y). The initial velocity is entirely
dependent on the powder and firing angle (lines 1020 and 1030).
Then each time the missile moves, the horizontal velocity is
reduced or increased according to the wind, and the vertical
velocity is reduced to simulate gravity (line 1200). The new
position is then calculated according to this new velocity (line
1210).

The method by which the hill is generated is far from obvious,
so it deserves a little explanation here. The function sin(x) +
sin(3x)/3, where x varies from 0 to 4m, has a delightfully
convoluted shape. The program starts by picking two random
points in the range 0 to 1 (lines 530 and 540). It then draws the hill
between the guns as the appropriate section of the curve,
produced and scaled by FNF so that (a) the 0-1 range is increased
to become 0—47, and (b) the height is something between 200
and 800, to suit the graphics screen. If the two random points are
quite close together the hill will be almost non-existent; if they
are well separated there will be something like a mountain range
drawn between the guns.

7. Plotting the missile.
The missile is plotted in a way which is probably quite familiar to
you now. GCOIL 4,0 says that all plotting is to invert what 1is

1o uality Programs for the Liectron

already there; then the missile is drawn twice in the same place,
once to display it and once to remove it.

FNLAND tests whether the missile has landed by using the
function POINT to see if there is anything other than blue where
the missile is about to be drawn. Notice that it must be called
while the missile is in an undrawn state, or the missile itself
would show as white.

You might sometimes see the missile burying itself quite
deeply in the ground. If it has a high downward velocity then
each position is quite a long way from the previous position; one
position is still above ground, and the next is well below the
surface. In extreme cases this might actually allow a shot to drop
right through the opponent’s gun without registering a hit, but
you’d have to be unlucky.

Suggested amendments to the program

1. The missile moves terribly slowly, despite the fact that it
already moves in bigger steps than it should. This is a classic
example of the Electron’s trade-off between colour and speed.
The easiest way of speeding up the program is to transfer it to
mode 4: the sky would be in the background colour, and every-
thing else (hill, guns, sky, missile, writing) in the foreground
colour. In other words, you would leave out all VDU19,
COLOUR, and GCOL commands. You might be surprised at the
extra speed the program gains if you make these changes.

2. If you have an interest in mathematics, experiment with other
functions to see what sorts of terrain you can produce. If nothing
else, it will give you a use for the graph-plotting program.

In the far future, the sport of the rich is electronic gladiatorial
combat. One particularly nasty form of this involves throwing a
human into an arena with a robot which is programmed to kill
him orher. In this program you are that human. The robot will try
to kill you by jumping up and down on you if it gets close enough
— and it weighs nearly half a ton — or by shooting at you with its
laser if it can get into line with you. It isn’t a very good shot —
otherwise there’d be no sport in it — so you might survive a few
hits. But give it enough chances and it'll eventually shoot you
dead.

To give you a remote chance of survival, there are large blocks
in the arena; these cannot be moved through or fired through.
And there is an exit-— a gate in the wall, through which you can
escape from your evil adversary. But there are also the mines:
hidden here and there under the sand, and totally undetectable
until either you or the robot steps on one. Messy in either case,
but the crowd particularly loves to see little bits of human flying
about.

A word of advice: if you are typing the program in, rather than
loading it from the tape, you would do well to make full use of the
function keys. Just as you already have keywords like LOCAL
and REPEAT on the alphabetic keys to assist in the typing of
programs, you would be greatly assisted in this program by keys
with the common variable names such as rows%, cols%, ri%,
1j%, pi%, and pj%. You can set these up using the *KEY
command.

How to use the program

Like Artillery, this game has the advantage of not being a
reaction-speed game. Such games are all very well for people who

104 uaily rograms for the Liectron

are used to games and keyboards, but can be a bit overwhelming
for beginners. In Robot the player and the robot take turns to
move, and thereis no time limit or penalty on the player’s moves.

Once the arena has been set up, you will be asked what your
move is. You can move one space at a time, horizontally,
vertically, or diagonally. To move left, right, up, or down, press
the appropriate arrow key and then press RETURN. To move
diagonally, press first one appropriate arrow key and then the
other, in either order, and press RETURN. To move diagonally
down and right, for example, you could press the down key and
then the right key, or you could press the right key and then the
down key. If you press any wrong key, the computer will beep
and refuse to accept it. You are free to DELETE any move until
you commit yourself by pressing RETURN.

You should get into the habit of moving diagonally whenever
practical. The reasons become clear when you realise that a
diagonal move is really two moves in disguise. For a start, the
robot will almost always move diagonally, and so is more likely to
catch youif you don’t. And second, in moving diagonally you are

e blocks.' Z_~ S

_ the letter S,.x
and I’ll ‘mark the'robut with an R. g
Press RETURN to eont:nue;g-, | .

Instructions at the beginning of a game

prrn

Robot 165

- Here’s the robot{kimnueg- }fF

¥ou‘re in the robot‘s firing line . . .

A shot by the robot is safely blocked

1 Those mines can be very annoying!

106 (Jualty t'rograms for the Electron

probably going to pass over fewer positions, and so are less likely
to step on amine.

Note particularly that you can move diagonally between
blocks. I've gone to all the effort of drawing them without corners
just to emphasise that there is a diagonal gap between them —-
and it can often prove a lifesaver!

Your move will now be made (unless you're trying to move
through a block). If you have moved into line (horizontally or
vertically) with the robot, it will shoot at you. If you survive, it's
the robot’s turn to move — after which it gets another chance to
shoot at you if you're in line. Be prepared for this: you can be shot
at twice each time you move.

It is conceivable, though not likely, that the blocks will have
completely blocked off the escape gate. If this happens, I
recommend that you get the robot to kill you. If it happens to get
blown up, you will be reduced to marching systematically around
the arena in the hope of stepping on a mine.

Program listing

100 REM Robot, by Simon. (I think that's the right way rou
nd.)

110 DIM PITCH(23),TYME(23)

120 FOR I%=1 TO 23: READ PITCH(I%),TYME(I%): NEXT

130 DATAH?,3,41,2,M1,1,M1,3,53,2,M9,1,49,2,M1,1,41,2,41,1,
41,4

140 DATA109,1,117,5,121,1,117,1,121,1,117,1,121,1, 117, 1,11
7,0.5,117,0.5,117,1,117,6

150 rows%=15: cols%=15

160 DIM block%(cols%,rows®h),mine%(cols%,rows%),message%(6)

170 ENVELOPE1,3,1,-1,0,1,1,1,126,0,0,-126,126,126

180 VDU23,255,255,255,255,255,255,255,255,255: Wh=255

190 VDU23,254,3,6,12,24,48,96,192,0: L%=254

200 VDU23,253,192,96,48,24,12,6,3,0: R%=253

210 VDU23,252,24,24 24,24 24 24 2k 0: y%4=252

220 VDU23,251,0,0,0,126,0,0,0,0: H%=251

230 VpU23,250,60,126,255,255,255,255,126,60: B%=250: Mh=42

240 VDU23,235,24,60,126,219,24,24 24,0
250 VDU23,234,0,24,24,24 ,219,126,60,24
260 VDU23,233,8,12,6,127,6,12,8,0

270 VDU23,232,16,48, 96,254 ,96,48,16,0

280

Robot 167

290 MODE4: VDU23,1,0;0;0;0;: *FX4,1

300 REM Cursor off and arrow keys disabled.

310 PRINT TAB(12,4);'"*** ROBOT ¥¥x0.-TAB(10,8);"A program
by Simon.";TAB(O, 14);

320 INPUT"Hello. What's your name? "name$

330 player%=ASC(name$): IF player%>90 THEN player%=player%

-32

340

350 REPEAT: REM A long loop, right to the end of play.

360 *FX15,1

370 REM Clear input buffers.,.

380 (CLS: PROCmess(1,"This is the arena . . .")

390 FOR I%=0 TO cols%

400 PROCboard (T%,0,Ws): block%(I%,0)=TRUE

10 NEXT

k20 FOR J%=1 TO rows%-2

430 PROCboard (cols%,J%,W%): block%(cols%,J%)=TRUE
4hQ NEXT

450 FOR I%=cols% TO O STEP -1

460 PROCboard (1% ,rows%,Wh): block%(1%,rows%)=TRUE
o NEXT

480 FOR J%=rows%-1 TO 1 STEP -1

490 PROCboard {0, J%,Wh): block%(0, J%)=TRUE

500 NEXT: PROCwait (1)

510 PROCmess (2," . . . here's the escape gate . . .")

520 PROCflash(cols%,rows%-1,L%)
530 block%(cola%,rows%-1)=FALSE: PROCwait (1)

540 PROCmess(3," . . . and here are the blocks.")
550 FOR I%=1 TO cols%-~1: FOR J%=1 TO rows%-1
560 IF RND(10)=1 THEN block%(I%,J%)=TRUE: PROCboard (I%

,J% . B%) ELSE block%(T%,J%)=FALSE

570 NEXT: NEXT

580 FOR I%=0 TO colg%: FOR J%=0 TO rows%

590 mine% (1%, J%) =FALSE

600 NEXT: NEXT

610 FOR I%=0 TO RND{15)

620 mine% (RND{cola%-1),RND(rows%~1))=TRUE

630 NEXT

640 PROCmess (4, "I'll represent you with the letter "+CHR
$(player%d)+", ")

650 REPEAT pi%=RND(cols%-3): pj%=RND{rowa%-3)

660 UNTIL NOT(block%{(pi%,pj%) OR mine%{pi%,pj%))

670 PROCwait (1): PROCflash(pi%,pi%,player%): PROCwait (1)

680 IF player%=82 THEN robot%=65: PROCmess (5, "and the ro
bot is marked with an A (for android).") ELSE robot%=82: PR
OCmess (5, "and I'll mark the robot with an R.")

690 REPEAT ri%=RND{cols%~3): rj%=RND{(rowa%-3): UNTIL NOT
(block%(ri%,r j%) OR mine%(ri%,r3j%) OR (pi%=ri% AND pj%=rj%})

700 PROCwait (1): PROCflash(ri%,r j%,robot%)

16o (Juality trograms for the tiectron

710 PROCwait (1): PROCmess (6, "")

720 INPUT "Press RETURN to continue."dummy$

730 FOR I%=1 TO 6: PROCclmess(T%): NEXT

740 stillgoing%=TRUE: robgoing%=TRUE: strength%=25
750 '

760 REPEAT

770 FROCplayermove

780 IF stillgoing% AND robgoing% AND (pi%=ri% OR pj%=r
j%) THEN PROCshoot

790 IF stillgoing% AND robgoing% THEN PROCrobotmove

800 TF stillgoing% AND robgoing% AND (pi%=ri% OR pj%=r

J%) THEN PROCshoot
810 UNTIL NOT stillgoing%
820 *FY15, 1
830 PROCmess (6, "Would you like another game? ")
840 reply$=GET$
850 UNTIL reply$<>"Y" AND reply$<>nyn
860
870 *FX4,0
880 MODE6: REM Restoring the cursor and the arrow keys.
890 PRINT ‘TAB(0,3);"Thanks for playing. Come again!"!
900 END
910
920 DEF PROCplayermove
930 PROCclmess(2): PROCclmess (3)
940 IF robgoing% THEN PROCclmess (4)

-850 PROCmess (1, "What 's your move? ")

960 PROCinmove: pinew%=pi%: pjnew%=pj%: move%=movel%

970 FOR C%=1 TO 2

980 IF move%=136 THEN pinew%=pi%-1 ELSE IF move%=137 THE
N pinew%=pi%+1 ELSE IF move%=138 THEN pjnew%=pj%+1 ELSE IF m
ove%=139 THEN pinew%=pj%-1

990 move%=movel2%

1000 NEXT .

1010 PROCflash (pinew%,pjnew%,player%)

1020 IF NOT block%(pinew%,pjnew%) THEN GOTO 1050 ELSE IF pi
new%=0 OR pinew%=cols% OR pjnew%=0 OR pjnew%=rows% THEN PROC
board (pinew%,pjinew%,Wt) ELSE PROCboard (pinew%,pjnew’%,B%)

1030 PROCmess (2, "Idiot! You can't move through blocks! Fo
r that, you lose your move!"): PROCwait(3): ENDPROC

1040

1050 PROCboard (pi%,pj%,32): pi%=pinew%: pj%=pjnew%

1060 IF pi%=cols% AND pj%=rows%-1 THEN PROCvictory: stillgo
ing%=FALSE: ENDPROC

1070 PROCboard (pi%,pj%,playerd)

1080

1090 IF NOT mine%(pi%,pj%) THEN GOTO 1130 ELSE SOUNDO,-15,5
,8: SOUNDG,-15,6,30

1100 PROCsunflash(pi%,pj%,M%): IF robgoing% THEN PROCmess (3
y"Oh dear! You stepped on a mine!"): PROCmess (4, "Never mined
y 1t was quick and painless.'"): GOTO 1170

Robot 169

1110 PROCclmess (5): PROCmess (3, "Tee hee! Who needs robots t
¢ kill you?"): PROCmess(}, "Still, full credit for entertaini
ng the masses."): GOTO 1170

1120

1130 IF NOT(pi%=ri% AND pj%=r3i%) THEN ENDPROC

1140 PROCsunflash (pi%,pj%,robot%)

1150 PROCmess (3, "Suicide - walked right under a robot!")

1160

1170 PROCflyaway (pi%,pj%,player%): stillgoing%s=FALSE

1180 ENDPROC

1190

1200 DEF PROCinmove: LOCAL m%

1210 move1%=88: move2%=88

1220 m%=GET: IF m%=13 THEN ENDPROC

1230 IF FNin(m%,136,139) THEN VDUFNarrow (m%): move 1%=m% ELS
E VDU7: GOTO 1220

1240 m%=GET: IF m%=13 THEN ENDPROC ELSE IF m%=127 THEN VDU1
27: movel%=88: GOTO 1220

1250 IF (FNin(move1%,136,137) AND FNin(m%,138,139)) OR (FNi
n(m%,136,137) AND FNin(move1%,138,139)) THEN VDUFNarrow (m%):

move2%=m% ELSE VDUT: GOTO 1240

1260 m%=GET: IF m%=13 THEN ENDPROC ELSE IF m%=127 THEN VDU1
27: move2%=88: GOTO 1240 ELSE VDUT: GOTO 1260

1270 ENDPROC

1280

1290 DEF FNin (n%,a%,z%)= n%>=a% AND n%<=z%

1300

1310 DEF FNarrow (X%)=X%+96

1320

1330 DEF PROCrobotmove

1340 IF (pj%<rj% OR pi%<ri%) AND RND(10)<6 THEN PROCclmess (
3): PROCclmess(4): PROCmess (1, "The robot isn't moving this t
ime."): PROCwait (2): ENDPROC

1350

1360 IF pi%>ri% THEN rinew%=ri%+1 ELSE IF pi%<ri% THEN rine
Wh=ri%-1 ELSE rinew%=ri%

1370 IF pj%>rj% THEN rinew%=rj%+1 ELSE IF pJ%<rj% THEN rjne
wh=rj%-1 ELSE rjnewlh=rj%

1380 IF rinew%=ri% AND block%(ri%,rjnew%) THEN rinew%=ri%+1
: IF block%(rinew%,r jnew%) THEN rinew%=ri%-1

1390 IF rjnew%=r3j% AND block%(rinew%,r3j%) THEN rinew%b=r j%+1
: IF block%(rinew%,r jnew%) THEN rjnew%hzr j%-1

1400 IF NOT block%{rinew%,rjnew%) THEN PROCmove (rinew%,r jne
wk) ELSE IF NOT block%(rinew%,rj%) THEN PROCmove (rinew%,r j%)

ELSE IF NOT block%(ri%,r jnew%) THEN PROCmove (ri%,r jnew’)

1410 IF pi%=ri% AND pj%=rj% THEN PROCclmess (4): PROCsunflas
h(pi%,pj%,robot%): PROCmess (3, "Squelch! Jumped on by half a

ton of impasasive robot!"): PROCflyaway(pi%,pj%,player®):
stillgoing%=FALSE: ENDPROC
1420

1430 IF NOT mine%(ri%,rj%) THEN ENDPROC

170 Quality Programs for the Electron

1440 SOUNDO,-15,5,8: SOUNDO,-15,6,30: PROCsunflash(ri%,rj%,
Mb): PROCclmess(3)

1450 PROCboard (pi%,pj%,player%)

1460 PROCmess (4, "You lucky sod! The robot's stepped on a
mine.")

1470 PROCflyaway (ri%,r j%,robot%): robgoing%=FALSE

1480 PROCboard (pi%,pj%,player%)

1490 PROCmess (5, "Now - can you make it to the gate with- ou
t stepping on another one?")

1500 mine%{ri%,rj%)=FALSE: ri%=0: rj%=0

1510 ENDPROC

1520

1530 DEF PROCmove (i%, j%)

1540 PROCclmess(3): PROCclmess (4)

1550 PROCmess (1, "Here's the robot's move . . .")

1560 PROCflash (i%, j%,robot%)

1570 IF i%<>ri% OR j%<>rj% THEN PROCboard (ri%,r j%,32)

1580 ri%=i%: rj%=j%

1590 ENDPROC

1600
1610 DEF PROCshoot: LOCAL i%, j%,k%,vert%,step%
1620 PROCmess (3, "You 're in the robot's firing line ., . .")

1630 PROCwait (1): SOUNDO,1,4,45

1640 IF pj%<rj% THEN vert%=TRUE: step%=-1 ELSE IF pj%>rj% T
HEN vert%=TRUE: step%=1 ELSE IF pi%<ri% THEN vert%=FALSE: st
ep%=-1 ELSE vert%=FALSE: step%=1

1650 FOR k%=1 T0 5

1660 PROCwait (0.1): blocked%=FALSE

1670 IF vert% THEN FOR j%=z=rj%+step% TO pj%-step% STEP ste
p%: PROCtrace(ri%, j%,Vs): NEXT ELSE FOR i%=ri%+step% TO pi%-
step% STEP step%: PROCtrace (i%,rj%,Hk): NEXT

1680 PROCwait (0.2): blocked%=FALSE

1690 IF vert% THEN FOR j%=rj%+step% T0 pj%-step% STEP ste
p%: PROCtrace (ri%, j%,32): NEXT ELSE FOR i%=ri%+step% TO pi%-
step% STEP step%: PROCtrace (i%,r j%,32): NEXT

1700 NEXT
1710 IF blocked% THEN PROCmess (4, "Zap! But the block does i
ts work . . ."): PROCwait(2): ENDPROC

1720 strength%=strength%-RND(12)

1730 IF strength%>0 THEN PROCmess (4, "Ouch! Zapped, but stil
1 alive . . ."): PROCwait(2): ENDPROC

1740 *FX15,0

1750 PROCmess (U, "Aaaargh! Thud! A fatal shot . . .")

1760 SOUNDQ,-15,6,4: SOUNDO,-15,5,10: PROCsunflash(pi%,pi%,
player%)

1770 PROCboard (pi%,pi%,32)

1780 PROCflyaway (pi%,pj%,player%): stillgoing%=FALSE

1790 ENDPROC

1800

1810 DEF PROCtrace (i%, j%,ch%)

1820 IF blocked% OR (i%=pi% AND j%=pj%)THEN ENDPROC ELSE IF

. ~TRo

—

Robot 171

block%(i%, j%) THEN blocked%=TRUE ELSE PROCboard (1%, j%,ch%)
1830 ENDPROC

1840

1850 DEF PROCsunflash(i%, j%,ch%): LOCAL k%

1860 FOR k%=1 TO 10

1870 IF pi%=ri% AND pj%=rj% THEN SOUNDO,-15,5,3

1880 PROCboard (i%-1, j%-1,R%)

1890 vbuv%,L%,10,8,8,8,H%,ch%,H%,10,8,8,8, 1%, V%, R%

1900 PROCwait (0.1): PROCboard (i%-1, j%-1,32)

1910 vbu3z,32,10,8,8,8,32,32,32,10,8,8,8,32,32,32

1920 PROCwait (0.05)

1930 NEXT: PROCboard (i%, i%,ch%)

1940 ENDPROC

1950

1960 DEF PROCflyaway (i%, j%,ch%): LOCAL x%,y%

1970 x%=1%+5: y%=j%+1: REM Convert from arena to screen.
1980 FOR I%=1 TO 1t: SOUND1,1,PITCH(I%),6*TYME(I%): SOUND1,
0,0,1: NEXT

1990 VDU31, x%-1,y%-1,R%,32,L%: PROCwait (0.3)

2000 VDU31, x%~1,y%=1,32,1%,ch%,R%: PROCwait (0.2)

2010 FOR y%=y%-1 TO 1 STEP -1

2020 vDU31, x%,y%,32,ch%,32,31,x%,y%-1,R8%,32, L%

2030 x%=x%+1: PROCwait (0.2)

2040 VbU31, x%,y%,32,31,x%-1,y%-1,32,L%,ch%,R%: PROCwait (0
.2)

2050 NEXT: VDU31,x%,0,32,32,32

2060 ENDPROC

2070

2080 DEF PROCvictory: LOCAL i%

2090 FOR i%=1 TO 6: PROCclmess (i%): NEXT

2100 PROCboard(pi%,pj%,32): PROCboard (pi%+1,pj%,R%)

2110 PROCboard (pi%+1,pj%+1, player%): VDUT

2120 PROCwait (0.5): PROCboard (pi%+1,pj%+1,32)

2130 FOR i%=1 TO 8

2140 PROCboard (cols%+i%+1,rows%-i%, player%)

2150 IF i% MOD 2 =0 THEN VDUT

2160 PROCwait(0.5): PROCboard (cols%+i%+1, rows%-i%,32)
2170 NEXT: PROCboard (cols%+9,rows%-8,player%)

2180 FOR I%=12 TO 23: SOUND1,1,PITCH(I%),4*TYME(I%): SOUND1
,0,0,0: NEXT

2190 PROCsunflash(cols%+9,rows%-8,player%)

2200 stillgoing%=FALSE

2210 IF robgoing% THEN PROCmess (3, "Congratulations. The rob
ot grinds to a halt, muttering something nasty about"): PRO
Cmess (4, "wingnuts. But it'1l still be there next time - it's
a very, very, patient robot!"): ENDPROC

2220 PROCmess (3, "Well done! You didn't let the robot's de
mise go to your head. But don't get"):PROCmess (U, "too smug.
There's an endless supply of the beasts in the outer store
room!")

2230 ENDPROC

172 Quality Programs for the Electron

2240

2250 DEF PROCboard (i%, j%,ch%)

2260 VDU31,5+i%,1+j%,ch%

2270 ENDPROC

2280

2290 DEF PROCmess (n%,mess$)

2300 PROCclmess (n%): PRINT TAB(O,16+2*n%);mess$;
2310 message%(n%)=TRUE

2320 ENDPROC

2330

2340 DEF PROCclmess (n%)

2350 IF NOT message%(n%) THEN ENDPROC

2360 PRINT TAB (O, 164+2%n%);SPC(79);: message%(n%)=FALSE
2270 ENDPROC

2380

2390 DEF PROCflash(i%, j%,ch%): LOCAL k%
2400 FOR k%=1 TO 7

2410 PROChoard (i%, j%,ch%): PROCwait (0.1)
2420 PROCboard (i%, j%,32): PROCwait (0.05)
2430 NEXT: PROCboard (i%, j%,ch%)

2440 ENDPROC

2450

2460 DEF PROCwait(n)

2470 TIME=0: REPEAT UNTIL TIME>n*100

2480 ENDPROC

Comments on the program

1. Characters represented by numbers.
Having defined so many of our own characters, it seems easier to
represent them by their numbers than as strings of the form
CHR$(number). PROCboard takes advantage of this to use a
VDU command instead of the more cumbersome PRINTTAB.
Now although it makes sense to use variable names for the
numbers (in a more structured language these ‘variables” would
be ‘constants’), the names crop up so often that they must be kept
short, so I have made them all single-letter integer names. As this
makes them harder to interpret, here is a key: W% is the wall; L%
a left slash; R% a right slash; V% a vertical; H% a horizontal; B%
a block; and M% a mine. Another common argument to
PROCboard is 32, which represents a space.

Would you believe most versions of BASIC insist that all
variable names be at most two characters long? No wonder
people can’t normally read BASIC!

Robot 173

2. Sound and envelopes.

There isn’t room here to analyse the SOUND and ENVELOPE
commands in detail, but the odd sound effects deserve a little
discussion. The program uses sound for music, for explosions,
for shooting, and to simulate the sound of your lifeless body
dropping to the sand of the arena. Of course the music must be
played in one of the pure-tones channels; it doesn’t matter which,
and I have chosen channel 1. The envelope here serves to give the
music a little body, by playing it with a slight vibrato effect. The
other sounds make use of the noise provided in channel 0.

Now channel 0 is a whole new kettle of fish. Designed to
produce white noise, it in fact produces strange warbling sounds
if the processor is doing anything else at the time. To hear the
intended sound effects, try the lines in immediate mode (i.e.
outside the program, and without line numbers). The explosion
is in line 1090, the shooting in line 1630 (notice that it, too, uses
the envelope), and the falling body in line 1760. Now try them
again, followed by REPEAT UNTIL FALSE on the same line, and
you will hear the warbling. I have left the sounds in for two
reasons: because it might be argued that even warbling is better
than no sound in a program like this; and because, who knows,
later versions of the Electron might even overcome the problem.

3. Our own flashing.

It’s very nice of the micro to provide flashing colours, but they're
not a lot of use in a two-colour mode, so we have to devise our
own flashing colours. PROCflash flashes a single character, and
PROCsunflash a ‘sunburst’ group of characters, simply by
printing them and removing them several times in quick
succession.

4. Two different randomising techniques.

Have alook at the different techniques used to put the blocks and
the mines in the arena. For the blocks, each position is
considered in turn, and is given a straight 10% chance of having a
block put on it. But for the mines, a suitable number of mines is
selected, then a random position is chosen for each mine. The
former method is suitable where we want a large number of
locations giving a fair coverage of the area; the latter where we
want a fairly small number, and don’t much care about coverage.
Of course we could use the same technique for both situations,
but why not experiment?

/7% Juality Frograms [or the Eilectron

Information about both blocks and mines is represented in
boolean arrays. This is quite an inefficient way of storing the
information, but is very easy to use (IF block%(pi%,pj%) THEN
.. .). As the program isn’t short of space, we stick with this easy,
comprehensible representation.

5. Special treatment for the arrow keys.

The keyboard has arrow keys, so it seems a shame not to let
people use them to indicate directions. Z and X are all very well
for reaction-speed games in which there are several other keys to
control as well, but in a game like this there is no need to let the
nice meaningful arrows go to waste.

The first step in using them is to disable their normal cursor-
moving function. This is done with *FX4,1, and is of course
undone with *FX4,0 at the end of the program. Perhaps there
should also be an ON ERROR statement to restore their function
if ESCAPE is pressed — especially while you're sorting out
copying errors in the program.

The keys can now be recognised by INKEY or GET, and
suitable characters can be used to represent them on the screen.
The next problem is allowing for the DELETE key to be pressed.
In INPUT the DELETE key is handled by the system, but when
using GET a program must explicitly look for the key and act on it.

Finally we have the problem of checking for valid input. Look
at PROCinmove. Accepting a move can be considered as passing

“through three states. In the first state, no keys have been pressed:
if RETURN is pressed, the move is accepted; if any of the arrow
keys is pressed, it is recorded as movel%, and the program
passes to the second state; no other key is accepted. In the second
state, one key has been accepted; if DELETE is pressed, that key is
forgotten and we return to state 1; if RETURN is pressed, the
move is accepted as is; if an up or down arrow key is pressed, and
movel% represents a left or right key, we record the latest key as
move2%), and pass to state 3; likewise if a left or right key is
pressed, and movel% was an up or down key, we go to state 3; no
other key is accepted. In the third state, DELETE forgets move2%
and returns to state 2, RETURN accepts the move as is, and no
other key is accepted. |

Difficult as it is to describe, this process is not particularly
hard to program. It does involve a few GOTOs, though, which is
why I decided to explain it here.

Robot 175

6. More excuses for GOTOs.

My version of this program in Pascal has no GOTOs. But Pascal
has a structure which has no problem withIF. . THEN . .ELSE. .
statements lasting half a page or more. Apart from the state
transition process described above, all of the GOTOs can be
explained by the need for a longer form of the IF statement than
BBC BASIC allows.

7. Readability.

This is not a very readable program. One of the main reasons for
this is its lack of overall structure -— the amount of code that goes
into the main program, rather than being put into procedures. I
have deliberately written it this way to make a point. At first the
‘standard” program in this book — MODE something,
PROCsetup, REPEAT PROCdosomething UNTIL finished, END
- probably seemed rather trite to you, but this example of a
program in a more normal form might help to convince you of the
value of structure in program comprehension.

Suggested amendments to the program

1. Can you think of and encode a better victory tune? Offhand, I
can't. |

2. I have tried to reduce the program’s size enough to run it in
mode 1, with four colours. When I reached the stage of doing
away with all of the messages I decided that it wasn’t worth while
— but perhaps there’s a way I've missed.

3. Youmight care to design characters to portray the robot and the
player. It won't be easy to squeeze enough pictorial information
into single characters, but it might be fun.

