
9
Characters

Electron users are able to define their own graphics characters, either
to produce special alphabets and symbols or, more often, to use as the
basis of graphics displays in games. Designing a single character is
easy, and is explained fully in Chapter 20 of the Electron's User Guide.
Designing characters is fun, but you need lots of squared paper on
which to work out the designs and you may need to make several
attempts before you make each design perfect. Even then, the
character may not be quite what you intended when you finally see it
displayed in its proper size on the screen.

This program provides a large-scale display on the screen on which
you draw your design. You use the editing keys, the 'arrow' keys and
COPY key of the Electron, for this. The design is easily altered, too.
You can change it a little at a time until it isjust right. While you are
building it up as a large-scale version in the design area, you see it
appearing at the bottom of the screen in its proper size. This is the size
it will be when you use it in your own programs. As you work out
each design, you will be able to gauge how effectivc it will be in use.
When the design is ready, the program calculates all the values that are
required for the VDU statement which will define the new character.

The program helps you design more thanjust a single character. To
produce larger and more elaborate graphics, we often want to compose
a design from two or more characters, placed side by side. As shown
in Fig. 9.1, designs made from two or more characters offer much
more scope for inventiveness than those made from a single character.
The program provides an area on the screen where you can work with
up td nine characters at once.

113Characters

Using the program

As soon as you run the program the display appears as in Fig. 9.1. At
this stage the design area, enclosed by the red and green borders is
completely blank. The borders are coloured red and green to help you
see exactly where the area is sub-divided into three rows ofthree large
squares. The dashed lines shown in Fig. 9.1 pick out these squares, but
the dashed lines do not appear on the screen.

Below the design area is a row of green numbers. It looks like rmo
rows of numbers but, if you read domn each column, you can see that
these are the numbers ' 24' , ' 25' , ' 26' and so on, up to ' 55' . These
numbers are to be thought ofas ' 224' , ' 225' , ' 226' , up to ' 255' . The
initial ' 2' has been left out ofeach numb::r to save a line on the screen.
This range of numbers (224 to 255) covers the 32 ASCII codes
allocated for user-defined graphics in the Electron. The program
allows you to define characters for any or all of these codes.
Eventually, the characters you design will appear in a row below their
respective numbers. You can see how this will Iook in Fig. 9.1.

The design area allows nine characters out of the available 32 to be
designed at one time. When you first run the program, the message
' Which number? (224-247)' will be showing at the bottom of the

Fig. 9.1. The screen display for CHARACTERS.The dashed lines and
encircled numbers are to mark out the individual characters; they do not

appear on the screen.

1 3

4 5 6

7 8
9

screen. The computer is asking you which character number you want
to be used for the top left square of the design area. You can type in
any number from 224 to 247. Typing ' 224' will make the design area
cover the first nine characters numbers (from 224 to 232). This may
not be a good range to choose, as will be explained later. Typing ' 247'
will make the design area cover the last nine characters (from 247 to
255). Or you can type a number in between these limits. In Fig. 9.1,
the number typed was ' 230' , making the design area cover the
characters from 230 to 238. As soon as the number has been typed and
RETURN has been pressed, the message disappears and is replaced by
a row of red figures ' 123456789' . These figures indicate which range
of character numbers you have elected to work on. They also tell you
which is which, for the squares in the drawing area are numbered from
1 to 9 as shown in Fig. 9.1. Note that the numbers shown in the design
area of Fig. 9.1 are for reference only and do not appear on the screen.

You will now notice that the cursor has appeared at the top left
corner of the design area. It is waiting for you to begin. Draw the
characters by using the following keys:

The ' arrow' keys - to move the cursor around in the design area.
The space-bar - to print a white block on the screen. This is how

you draw each character.
The COPY key - to delete a white block already drawn. This is how

you correct mistakes.
Try moving the cursor around the area. You can wander over the

whole area if you wish. There is no need to stop at the boundary
between one large square and another. Do not worry about making
mistakes for they are easy to correct, using the COPY key. While you
are drawing, you will see miniature white designs appearing at the
bottom of the screen.

Figure 9.1 shows how to draw a loi:omotive, using two characters,
side by side. In this case, a small-scale version ofthe locomotive
appears at the bottom of the screen. The quaint person with the pointed
hat requires three characters placed one above the other. The
characters which make up this person are numbers 3, 6 and 9 in the
area, so he appears as 3 separate characters in the strip below.

There is one thing that you must try to avoid when using this
program. Unfortunately, the BREAK key ofthe Electron is situated
next to the ' arrow' keys. Since you need to use the ' arrow' keys
constantly, it is only a matter of time before you press BREAK by
accident. You can recover the program by typing OLD, but the display
is lost. Actually, the character definitions you have already created are

114 Practical Programs for the Electron

nor lost. Delete line 60. The same characters will reappear in a row at
the bottom ofthe screen when you rerun the program. They will not
reappear in the design area. Pressing BREAK is not disastrous but is
an annoyance. To avoid it, you could try placing an inverted matchbox
tray over the BREAK key when you use this program.

When you have finished designing the nine characters (or as many
groups of characters as can be fitted conveniently in to the area) you
may wish to design more. If so, press key ' D' . This clears the whole
screen. The borders of the area then reappear and also the row of
small-scale characters you have already designed at the bottom of the
screen. You can now add to this range. When the ' Which number?'
message reappears, key in the first number ofa new range of ASCIl
codes . If your first range was from 224 to 232, for example, you
might key in ' 233' to cover the next nine codes from 233 to 241 . You
can then use the design area, as before. If you want to change one of
your earlier designs, press ' D' , to select a range to cover the character
you want to change, and then redesign it completely. The strip of
characters at the bottom of the screen again shows exactly what each
character is like.

When you have finished designing and want to know what VDU 23
statements are to be used to produce these characters in your program,
press key ' R' . The screen clears and a table of values is displayed. The
numbers show you what to put into each VDU 23 statement. Each
character you have designed is shown down the left side of the screen,
followed by its ASCII code (224-255). This is followed by a row
ofeight numbers, the values which are to go into the VDU statement to
define the character in the computer. For example, suppose that a row
offigures in the table is:

230 240 80 113 127 255 255 255 76

The character for the ' rear half' of the locomotive would be to the left
of this row of figures, for these are the values for character 230 of Fig.
9.1. To produce this character in a BASIC program the statement
required is:

VDU 23,230,240,80,113,127,255,255,255,76

In other words, to get the VDU statement, your program line is ' VDU
23' followed by the numbers in the row of the table, with commas
between them.

115Characters

Depending on your TV set, you may not be able to see the top row
of the table. This is the one which holds the figures for character 224.
With other programs in this book we have avoided using the top line
of the screen, because many users will not be able to see it properly.
However, in this program we need to display 32 rows of values and
need every line of the screen. This is why some users will find it better
not to define character 224 using this program.

Although each character is given a particular number (ASCII code)
by this program you are free to choose a different number (within the
range) if you wish. When you put the VDU 23 statement in your
program, put the chosen code in place of the one from the table. This
provides a way of using character 224, if your TV screen does not
display the top line of the table. Define a character with any other
number and assign it to number 224 afterwards.

Moving characters

If you would rather try out your newly defined characters without
having to write your own program, you can make use of the fact that
their definitions afe stored safely away in the Electron' s memory. They
stay there until you switch the computer off, except for any which you
might decide to redefine. Here is a way to have fun with the characters
with the minimum of effort.

Press ESCAPE to leave the program. Then type ' *FX 4,0' and press
RETURN. This restores the ' arrow' and COPY keys to their normal
functions. Now clear the screen for action. You can make the computer
display any of the characters by typing the immediate command:

PRINT TAB(X,Y)CHR$(N)

In the above expression, X and Y are the number of the row and
column in which you want the character to appear. In Mode 4, X must
be in the range 0 to 39, and Y in the range 0 to 31. N is the ASCII code
of the character, in other words, its number in the range 224-255. For
example, to make the man' s head (Fig. 9. 1) appear at the centre of the
screen, type:

PRINT TAB (20,15)CHR$(232)

Experiment with various values for X, Y and N. You will soon work
out the way of placing the whole man anywhere you want him.

A short program can be used to make a character, or group of

116 Practical Programs for the Electron

characters appear to move across the screen. The two programs in
man, defined as in Fig. 9.1 . The programs are readily adaptable, and
you could turn them into procedures for use in your own graphics
programs.

 10 REM MOVE ACROSS
 20 MODE 4:VDU 23,1,0;0;0;0;
 30 FOR J=0 TO 37
 40 PRINT TAB(J,10)" "TAB(J+1,10)CHR$
(224)CHR$(225)
 50 FOR L=1 TO 200:NEXT
 60 NEXT
 70 VDU 23,1,1;0;0;0;
 80 END

Listing 9.1

 10 REM MOVE DOWN
 20 MODE 4:VDU 23,1,0;0;0;0;
 30 FOR J=0 TO 28
 40 FOR K=0 TO 2
 50 PRINT TAB(20,J+K)" "
 60 NEXT
 70 FOR J=0 TO 2
 80 PRINT TAB(20,J+K+1)CHR$(232+3*K)
 90 NEXT
 100 FOR L=1 TO 300:NEXT
 120 VDU 23,1,1;0;0;0;
 130 END

Listing 9.2.

MOVE ACROSS (Listing 9.1) moves the locomotive across the
screen, from left to right. The VDU 23 statement on line 20 is to
disablk: the cursor. If you do not do this, a flickering cursor follows
the loco across the screen, ruining the effect. The statement at line 70
turns the cursor back on again when the program is over. The main
loop of the program (lines 30 to 60) first prints a pair of blank spaces,
then prints the two locomotive characters side by side, one place to the
right. Each time round the loop, the printing is shifted one place to the
right. The blanks clear away the previous image ofthe locomotive and
a new image is printed further to the right. The loop at line 50 is a
delay, to give you time to see the locomotive before it is moved to its
next position.

MOVE DOWN (Listing 9.2) makes the little man descend from the

117Characters

top of the screen to the bottom. It works in a similar way to the MOVE
ACROSS program, except that we now have to print the spaces or
characters one below the other, instead of side-by-side. The loop at
lines 40 to 60 prints three spaces one below the other, and is followed
by a loop at lines 70 to 90 to print the three characters making up the
man.

Keying in

Take care with the punctuation in VDU statements. Sometimes there
are commas and sometimes there are semicolons. Copy the listing
exactly. Also, some VDU statements have a semicolon after the last
number, but others have nothing after the last number. Watch out for
the brackets in line 590. The question mark in line 60 and some other
lines does not appear often in programs. This is the byte indirection
operator, explained in Chapter 23 of the User Guide. The symbol after
the ' 2' in line 6!0 is the exponentiation symbol. You key it by pressing
SHIFT and the ' ^ ~ Ieft-arrow' key.

Program design

20-30 Initialising Mode and a variable.
40 Redefine Mode 1 colours: black as blue, and yellow as green.
50 Disable editing keys.
60 Clear character memory.
70-120 Print borders of design area.
130-200 Print rows of numbers.
210 Print row of characters.
220-260 Getting starting nuinber.
270-280 Clearing message, then printing numbers 1 to 9 below

character area.
290-440 Drawing routine, which ends when ' S' or ' R' is pressed;

begins by up-dating all characters (line 310); lines 320-360 accept
key-presses; lines 370-420 carry out appropriate actions; PROCbit is
used if the COPY key or the space-bar is pressed.

450 Clear screen and repeat drawing routine.
460-550 Display table of VDU statements.
560-570 Wait for space-bar to repeat drawing routine.
580-660 PROCbit to change the appropriate bit in a byte of

118 Practical Programs for the Electron

memory each time a white ' b!ock' is drawn or deleted.
670-750 PROCchars to display a row of characters at the bottom

of the screen.

The program

 10 REM ** CHARACTERS **
 20 MODE 1
 30 B$=STRING$(8," ")
 40 VDU 19,0,4,0,0,0:VDU 19,2,2,0,0,0
 50 *FX 4,1
 60 FOR J=0 TO 255:B=J+3072:?B=0:NEXT
 70 COLOUR 129:PRINT TAB(8,1)B$:COLOUR
 130:PRINT TAB(16,1)B$:COLOUR 129:PRINT
TAB(24,1)B$
 80 FOR J=1 TO 24
 90 COLOUR 129:IF J>8 AND J<17 THEN CO
LOUR 130
 100 PRINT TAB(7,J+1)" ":PRINT TAB(32,J
+1)" "
 110 NEXT
 120 COLOUR 129:PRINT TAB(8,26)B$:COLOU
R 130:PRINT TAB(16,26)B$:COLOUR 129:PRIN
T TAB(24,26)B$
 130 COLOUR 128:COLOUR 2:VDU 31,4,27
 140 FOR J=1 TO 32
 150 PRINT; (J+23) DIV 10;
 160 NEXT
 170 VDU 31,4,28
 180 FOR J=1 TO 32
 190 PRINT; (J+23) MOD 10;
 200 NEXT
 210 PROCchars
 220 COLOUR 2
 230 REPEAT
 240 INPUT TAB(6,30)"Which number? (224
-247) "N$;
 250 N=VAL(N$)
 260 UNTIL N>223 AND N<248
 270 PRINT TAB(6,30)B$;B$;B$;B$
 280 COLOUR 1:PRINT TAB(N-220,30)"12345
6789":COLOUR 2
 290 X=8:Y=2

119Characters

 300 REPEAT
 310 PROCchars
 320 REPEAT
 330 VDU 31,X,Y
 340 KEY$=GET$
 350 CODE=ASC(KEY$)
 360 UNTIL INSTR("D R",KEY$) OR CODE>13
4 AND CODE<140
 370 IF CODE=135 THEN COLOUR 128:PRINT"
 ":COLOUR 131:VDU 8:PROCbit(0)
 380 IF CODE=136 THEN X=X-1:IF X=7 THEN
 X=8
 390 IF CODE=137 THEN X=X+1:IF X=32 THE
N X=31
 400 IF CODE=138 THEN Y=Y+1:IF Y=26 THE
N Y=25
 410 IF CODE=139 THEN Y=Y-1:IF Y=1 THEN
 Y=2
 420 IF KEY$=" " THEN COLOUR 131:PRINT"
 ":VDU 8:PROCbit(1)
 430 COLOUR 3:COLOUR 128:VDU 31,4,29
 440 UNTIL INSTR("DR",KEY$)
 450 IF KEY$="D" THEN CLS:GOTO70
 460 CLS
 470 FOR J=0 TO 31
 480 COLOUR(J MOD 2)+2
 490 PRINT TAB(2)CHR$(J+224);TAB(4)J+22
4;
 500 FOR K=0 TO 7
 510 B=3072+J*8+K
 520 PRINT" ";?B;
 530 NEXT
 540 IF J<>31 AND K<>7 THEN PRINT""
 550 NEXT
 560 REPEAT: UNTIL INKEY(-99)
 570 CLS:GOTO 70
 580 DEF PROCbit(Z)
 590 NB=3072+8*(N-224)+(((X-8) DIV 8)+(
(Y-2) DIV 8)*3)*8+((Y-2) MOD 8)
 600 BY=?NB
 610 BV=2^(7-((X-8) MOD 8))
 620 PV=BY AND BV
 630 IF PV=0 AND Z=1 THEN BY=BY+BV
 640 IF PV>0 AND Z=0 THEN BY=BY-BV

120 Practical Programs for the Electron

 650 ?NB=BY
 660 ENDPROC
 670 DEF PROCchars
 680 VDU 31,4,29
 690 VDU 23,1,0;0;0;0;
 700 COLOUR 3
 710 FOR J=1 TO 32
 720 PRINT;CHR$(223+J);
 730 NEXT
 740 VDU 23,1,1;0;0;0;
 750 ENDPROC

121Characters

