()0

ADDER

The New
- Advanced User
Guide

for the Master, Master Compact, BBC model
B, B+ & Electron.

by

Mark Holmes & Adrian Dickens

ADDER

Published in the United Kingdom by Adder Publishing Limited, Cambridge

Published in the United Kingdom by: C 0 n t e nt S
Adder Publishing Limited,
P.O.Box 148, |
Cambridge CB1 2EQ . .
29053 1 Introduction for those new to machine code 3
ISBN0 947929 05 2 The BASIC Assembler 6
Copyright ©1987 Mark Holmes & Adrian Dickens . . 2.1 The assembler 7
2.2 OPT, assembler 8
First published Septemnber 1957 2 3 The Location Counter P% 9
The authors would like to thank Nigel Dickens for his assistance in the production of this 2.4 Labels 10
book. . . 2.5 Forward Referencing and Two Pass Assembly 10
All rights reserved. This book is copyright. No part of this book may be copied or stored by 2.6 The E(?_Uate FaCIllty in Level 2 BASIC 10
any means whatsoever whether mechanical, photographic or electronic, except for private 2.7 Handlmg errors with BRK 12
or ;tluc;v use“:j;.clleﬁned in the quyr]iﬁghté‘\ct. i&lL:nqui:}ies should ?e adckrte}?seiéokthfh . . 28 Entering machine code from BASIC - CALL 12
publishers. While every precaution has been taken in the preparation of this book, the B
publisher assumes no responsibility for errors or omissions. Neither is any liability assumed 2.9 Conditional Assembl)’ and Macros 13
for damages resulting from the use of information contained herein. 2.10 User Zero Page 14
e ‘ 3 Machine Code Arithmetic 15
Please note that within this text the words Acorn™, Tube™ and Econct™ are registered 125 C 1 15
tradernarks of Acorn Computers Limited. CP/MT™ is a registered trademark of Digital 3. .5 omplement . 2
Research Inc. All references in this book to the BBC Micro, Master 128 and Muasier Compact 3.2 Blnary Coded Decimal 17
refer to the computers manufactured by Acorn Computers Limited under license from the 3.3 BCD and the 65C12 18
British Broadcasting Corporation. . . 4 Addl‘ESSiI‘lg Modes 19
This bock was prepared using Microsoft Word (3.0) and MacDraw on an Apple Macintosh 4.1 Implicit addressing 19
Plus computer. Programs were written on BBC Model B, B+ and Master 128 computers and 4.2 Accumulator addressing 19
the listings transferred to the Macintesh using a serial link. The bock was typeset on an . . . I di dd N 19
Apple Laserwriter Plus to produce A4 sized masters which were reduced to A5 by the 4.3 Immediate a re'ssmg
printers to achicve an effective resolution of 424 dpi. 4.4 Absolute addI‘ESSIIIg 20
4.5 Zero page 20
Printed in Great Britain by Burlington Press Ltd., Fexton, Cambridge. ' 4.6 lndirgctgaddressin 21
g -
4.7 Absolute, X or Y addressing 22
4.8 Zero page,X addressing 22
. . 4.9 Pre-indexed indirect addressing 23
4.10 Post-indexed indirect addressing 24
‘ 4.11 Relative addressing 25
. . 4.12 Addressing modes and the 65C12 25
5 The 6502 Instruction Set 28
5.1 The 6502 registers and abbreviations 28
. . 5.2 The Assembler Mnemonics 29
6 Introduction to the OS 100
6.1 Operating System Calls 102
. 6.2 1/Q0 routines 103
. 6.3 OSBYTE 109
6.4 Filing System Calls 112
| 6.5 Miscellaneous OS calls 112
. . 6.6 OS allocation and use of memory 114
Dedicated to the delectable Sarah Jane 7 Events 119
7.1 The event vector, EVNTV 119
. . 7.2 Enable/disable event OSBYTE calls 121
i

7.3 OSEVEN 122 . . 13.2 Video memory use 184
7.4 An example using events. 122 13.3 The Video hardware 187
8 Interrupts 124 13.4 Screen mode memory maps 210
8.1 Non Maskable Interrupts 125 . . 14 Keyboard routines 218
8.2 Maskable Interrupts 125 14.1 Key values 219
gz "é‘he (iperating system itnterrupt handling routine igg . . %;1% Eea% ke)‘;1 with time limit OSBYTE call gg
4 Serial system interrupts 3 Keyboard scan
8.5 System VIA interrupts 127 14.4 Keyboard scan from &10 OSBYTE call 222
8.6 User VIA interrupts 129 14.5 Write current keys pressed OSBYTE call 222
8.7 Intercepting interrupts 129 . . 14.6 Read key translation table address OSBYTE call 223
8.8 Read /write User 6522 IRQ bit mask OSBYTE 130 14.7 Set keyboard auto-repeat delay 224
8.9 Read /write 6850 IRQ bit mask OSBYTE 131 14.8 Set keyboard auto-repeat period 224
8.10 Read /write System 6522 IRQ bit mask OSBYTE 131 14.9 Function keys 225
8.11 Read /write Electron ULA IR() mask OSBYTE 132 . . 14.10 Reflect keyboard status in keyboard LEDs OSBYTE 228
8.12 BRK /error associated calls 132 14.11 Read/write keyboard disable 228
8.13 The BRK vector &202 132 . . 14.12 Read /write keyboard status byte OSBYTE call 229
8.14 Read ROM no. active at last BRK OSBYTE call 135 14.13 Read/write keyboard semaphore OSBYTE call 230
9 Buffers control and management 136 14.14 Set base for numeric keypad OSBYTE call 230
9.1 Insert value into buffer vector, INSV 136 14.15 Read/write shift key effect OSBYTE call 230
9.2 Remove value from buffer vector 137 . . 14.16 Electron firm keys 231
9.3 Count/purge buffer vector 137 14.17 Read/write TAB key character OSBYTE call 231
9.4 Using the buffer vectors 138 14.18 Read/write Escape character OSBYTE call 232
9.5 Flush specific buffer OSBYTE 143 . . 15 Serial I/O (RS232/423) 233
9.6 Flush selected buffer class OSBYTE call 143 15.1 The RS232C standard 233
9.7 Read buffer status OSBYTE 143 15.2 The Acorn R5423/RS232 implementation 239
9.8 Insert value into buifer OSBYTE 144 . . 15.3 OS calls for using the serial port 240
9.9 Get character from buffer OSBYTE 145 16 Filing System Implementations 250
9.10 Examine buffer status OSBYTE 145 16.1 Filing system calls 250
9.11 Insert char. into i/p buffer OSBYTE call 146 . . 16.2 Master Series Filing Systems 259
10 Escape related calls 147 16.3 The main filing systems 261
10.1 Clear escape condition OSBYTE call 147 16.4 Floppy Disc Hardware 270
10.2 Set escape cordition OSBYTE call 147 . . 17 Paged ROMs 283
10.3 Clear escape + effects OSBYTE call 147 17.1 Paged ROM header format 284
10.4 Read/write escape disable OSBYTE call 148 17.2 Paged ROM/RAM installation 287
10.5 Read/write ESCAPE character OSBYTE call 148 17.3 Language ROMs 291
10.6 Read/write ESCAPE key status OSBYTE call 149 . . 17.4 Service ROMs 294
10.7 Read /write ESCAPE effects OSBYTE call 149 17.5 Serially accessed ROMs & the *ROM filing system 313
11 An Introduction to Hardware 150 17.6 Paged ROM associated routines 321
12 Memory 155 . . 18 Second processors 327
12.1 Memory map overview 155 18.1 Tube system 32 bit addressing 327
12.2 OSBYTE calls concerning memory use 157 18.2 OS calls made from second processors 328
12.3 Paged ROM and RAM hardware control 161 . . 18.3 The Tube ULA 328
12.4 RAM Access Control 161 18.4 The Tube software on the i/o processor 330
13 Video/Graphics System 165 18.5 The 6502 as a typical second processor 331
13.1 O.S. Video Support 165 . ‘ 18.6 Using OS calls and vectors 332
ii iii

18.7 Memory allocation and usage
18.8 Protocol for transferring data across the Tube
18.9 Tube OSBYTE and OSWORD calls
18.10 The Z80 second processor
18.11 The 32016 second processor
19 Clocks
19.1 System clock
19.2 Interval timer
19.3 Read timer state switch OSBYTE call
19.4 CMOS Real Time Clock
19.5 CMOS RAM/EEPROM
19.6 CMOS RAM/RTC hardware (Master only)
20 ADC system
20.1 ADC operating system calls
20.2 ADC Hardware
21 Sound and speech systems
21.1 Sound
21.2 The 76489 sound chip
21.3 Sound chip example program
21.4 The speech chip (model B and B+ only)
22 User/printer and system VIAs
22.1 6522 Versatile interface adapters in general
22.2 The User/Printer VIA
22.3 The System VIA
22.4 6522 VIAs Functional Description
23 The One Megahertz bus & cartridge interfaces
23.1 Introduction to the IMHz bus
23.2 "FRED" and Memory Mapped Hardware
23.3 "JIM" and 64K Paged Memory
23.4 Bus signal definitions

23.6 Hardware requirements for IMHZ bus peripherals
23.7 Master, Compact & Electron Cartridge Interface

24 Miscellaneous topics

24.1 BREAK

24.2 Printer OS calls

24.3 *CODE

24.4 Miscellaneous OSBYTE calls
Glossary
Bibliography

iv

336
338
347
347
350
352
352
352
353
353
356
358
365
365
369
372
372
375
378
379
380
380
381
384
387
402
402
403
404
405
410
413
419
419
422
425
427
430
433

Introduction

The New Advanced User Guide is the totally revised and updated
version of the original best-selling BBC Advanced User Guide by the
same authors. In-the four years since that book was first published, a lot
has happened in the world of Acorn Computers, including the
introduction of many new BBC Micro-compatible machines. Based
around the original hardware and software of the BBC model B, the
new computers have many significant enhancements and changes. This
new guide has therefore been developed to cover all the computers in
the series from the original model B through the B Plus, Electron and
Master 128 to the Master Compact.

The authors have condensed vast amounts of information into these
pages covering all aspects of the Acorn-BBC computer range, including
many previously unpublished details about the new systems' hardware
and software. All the computers are considered in detail throughout the
book with salient differences being carefully noted and explained.
Readers of the original Advanced User Guide will notice that the New
Guide has been re-organised on a functional basis, making reference to
particular topics much easier.

For owners of Master series computers this advanced guide covers
many areas omitted from Acorn's Master Reference Manuals part 1 and

part 2, especially interface details, programming techniques, and
examples.

For owners of earlier machines there is a lot of relevant new
information about the Tube™ and many more detailed examples
covering topics like paged ROMs.

This guide contains a considerable amount of information about
assembly language programming, including all the new 65C02 op-
codes, the operating system, and the system hardware and interfaces.
The intention has not been to provide the inexperienced user with a
tutorial to guide him or her through the complexities of these advanced
concepts. However, it is hoped that the information has been presented
in a way that enables users new to assembly language programming
and unfamiliar with hardware topics to develop their understanding of
the machine and to expand the scope of their programming. Contained
within this book is an extensive description of the software environment
and the hardware facilities available to the assembly language
programmer. The authors have presumed that the readers of this
Advanced Guide are reasonably familiar with the basic use of their BBC
Microcomputer. While every attempt has been made not to bury the
facts under a mountain of computer jargon, the use of some technical

1

terms is an inevitable consequence of attempting to condense a large
number of facts into a concise and easily accessible form. The extensive
glossary of terms should help to unshroud some of the mystery.

While this book gives the programmer full access to all the BBC
microcomputer’s extensive software and hardware facilities using
techniques which the designers of the machine intended programmers to
use, it also opens the door to a multitude of illegal programming
techniques. For the enthusiast, direct access to operating system
variables or chip registers may enable him to perform the bizarre or
even the merely curious. For the serious programmer, on the other
hand, attention to compatibility and machine standards will enable him
to write software which will run on BBC Microcomputers of all
configurations. The responsibility rests with YOU, the user. The value of
your machine depends on continued software support of the highest
quality; unlike many machines the BBC microcomputer has been
designed to be used in a variety of different configurations and the
operating system software provides extensive information about the
current hardware and software status. The operating systermn makes
most of the allowances required for the different configurations
automatically, but only when the legal techniques are adhered to, so
please use them.

1 Introduction for those new to
machine code

There comes a time in every programmer's life (well, most
programmers’, anyway) when the constraints of a high level language
(e.g. BASIC) prevents him or her from implementing a particular
program idea or from utilising some machine facility. At this stage the
programmer must often seek recourse to the microprocessor's native
language, its machine code.

At the heart of any microcomputer is the microprocessor. This
microprocessor is the brain of the computer and provides the computer
with all its computing power. The Acorn BBC range of computers use
members of the 6502 family of microprocessors and the brief description
of machine code given here applies specifically to the 6502, The
microprocessor performs instructions which are contained in memory.
Each instruction which the microprocessor understands can be
contained within a single byte of memory. Depending on the nature of
this instruction the microprocessor may fetch a number of bytes of data
from the memory locations following the instruction byte. Having
executed this instruction the microprocessor moves on to the byte after
the last data byte to get its next instruction. In this way the
microprocessor works its way sequentially through a program. These
single byte instructions are called operation codes (or just opcodes),
although they are frequently referred to as machine instructions (or just
instructions). The data used by the instructions are called the operands.
A program using the native machine instructions is called a machine
code program. An assembler is a software package (a language or a
program) which enables a programmer to create a machine code
program.

Machine code is substantially diiferent from a higher level language
such as BASIC. The machine code programmer is limited to three
registers for temporary storage of data while in BASIC he has unlimited
use of variables. For more permanent storage in machine code
programs, the register values can be copied to bytes of memory. Only
very limited arithmetic is available; there are no multiply or divide
instructions. There are no automatic loop structures such as
FOR..NEXT or REPEAT..UNTIL and any loops must be explicitly set
up by the programmer using conditional branches (these approximate to
IF .. THEN GOTO .. in BASIC). The range of instructions available are
sufficient to enable extremely complex programs to be written, but a lot
more effort is required to implement the program. One of the most
grave disadvantages of machine code is that very little error checking is
made available to the programmer. A well designed assembler will help

3

the programmer, but once the machine code program is running the only
error checking is that which is provided within the program itsell.

At first glance it may appear that there is little to be gained from writing
a machine code program. The principal advantage is that of speed. '
Whilst assigning a value to a variable in BASIC will take about 1
millisecond, in machine code assigning a similar value will only take 10
microseconds. This is why fast moving arcade games have to be written
in machine code. Some of the facilities available on the BBC
Microcomputer can only be used when programming in machine code.
For example, a user printer driver can only be implemented in machine
code.

Of no less importance than the design of the hardware or the choice of
microprocessor in the machine is the operating system. This is a large,
and highly complex machine code program which governs the machine.
The operating system consists of a large number of routines which
perform operations such as scanning the keyboard, updating the screen,
performing analogue-to-digital conversions (for the joy-sticks), and
controlling the sound generator. All these functions are performed by
the operating system and are made available to other machine code
programs. A machine code program with which all users will be familiar
is BASIC. This program, which provides the user with an easier way of
using the microprocessor's computing power, constantly uses the
operating system routines to get input from the keyboard and to reflect
that input on the screen. BASIC recognises words of text and when it
wants to use a hardware facility it calls a machine code routine within
the operating system. The great advantage of this independence of the
language program from the direct use of hardware is that the same
facilities can be offered to different languages without re-writing the
routine.

Writing a machine code program requires the programmer to place the
appropriate values into successive memory locations corresponding to
the opcodes and operands. This would be a very tedious business if it
had to be done by looking up the opcode values in tables and poking in
the values by hand. It is much faster, easier and more efficient to get the
computer to do most of the work. A program which analyses text input
representing opcode symbols, converts these to opcode values and
inserts these values into memory is called an assembler. The text input
consists of opcode mnemonics (three-letter words which specify the
opcode type) followed by numbers, variable names or expressions which
give the values of the operand to be used by the opcode. Like BASIC the
assembler requires the program to be written in a defined way
according to a syntax. The language that an assembler understands is
called assembier or assembly language. In the BBC Microcomputer an

4

a?s;lemblir is avai]gllale as part of the BASIC language and a description
of how this assembler can be used is contained in the chapt
BASIC assembler. @ chapteron the

Many of the following sections include descriptions of the various
operating system routines and facilities which are available to the
machine code programmer.

2 The BASIC Assembler

One of the many attractive features of BBC BASIC is the incorperation
of a mnemonic assembler within the language itself. This provides a
powerful environment for the assembler and allows machine code to be
easily incorporated within BASIC programs. Hybrid BASIC/machine
code programs may often lead to the use of the best features of each
language, the speed of machine code when it is required, coupled with
the increased power of BASIC when speed is not of paramount
importance.

For users of older BBC model Bs the assembler facilities available are
dependent upon the version of BASIC that is resident in the machine. To
ascertain which version of BASIC is present type "REPORT" following a
BREAK. If the copyright message is dated 1981 then this is 0ld BASIC
which will henceforth be referred to as Level 1 BASIC If the message is
dated 1982 or later then this is new BASIC which will be referred to as
Level 2 BASIC. Level 4 BASIC as provided in the Master 128 and Level
40 BASIC as provided in the Master Compact are virtually identical to
Level 2 BASIC from an assembly language programmer's point of view.
One minor change in level 4 and 40 is that register and EQU references
can be entered in lower case.

Users of later BBC model B's, Electrons, 6502 second processors, and
Master series computers may ignore any comments specific to Level 1
BASIC.

Below is an example of a simple machine code program written using
the BASIC assembler.

10 OSASCI=&FFE3

20 DIM MC% 100

30 DIM data &20

40 TOR opt%=0 T0O 3 STEP 3
£Q P%=MC%

€0 [

70 GPT opt’

&0 .entry LDX #C \ set index count (in X reg.) to 0O
9Q loop OA data,X N\ lozd next VDU parameter

100 JSR OSASCI Y\ perZorm VDU command

11¢ IKX Y\ Zncrement index cgunt

12¢ CEX #&20 \ has count reached 32 (&20) 2

13¢C BNE loop YV if nct then ge round again

140 RTS \ back to BASIC

150]

150 NEXT opt%

170 !data=£04190426
180 data!4=&C0CBCOCS
120 data!B=&C000C2119
200 dara!&C=&01150054
210 data!&l0=&00C020C8

220 data!&l4=&00000119

230 data!'s&l8=&0119FF2C

240 data!&1C=&0000FF3E

Z50 PRINT'"Press key tc run pregram":A=GET
260 CALL entry

This program performs some simple graphics using the BASIC VDU
method to select the screen MODE and perform PLOTting. All the VDU
codes are contained within the block of memory labelled "data”. Using
the ! operator does not make it immediately obvious what is going on.
Four bytes are inserted into memory with each ! operator. The least
significant byte being inserted at the address specified. Fach subsequent
byte is inserted into the next byte of memory. ie.

ldata=&041¢0416
data!4=&00C8J0CSE

will have a result equivalent to,
VDU §16,404,&19,504,4C8, &00,&C8, &00

or, to separate it into its two components,
VDU &16, 404

VDU £19,&04,&00C8; £00C8;

or

select MODE 4
PLOT, 4,200,200 - move absolute X,Y

VDU 22,4
VDU 25,4,200;200;

Any program which can be written in BASIC may also be implemented
in machine code although it is not always sensible to do so. There now
follows a detailed description of using the BASIC mnemonic assembler.

2.1 The assembler delimiters '[' and ']".

All the assembler statements should be enclosed within a pair of square
brackets. When the BASIC program is RUN, the assembler statements
contained between the square brackets are assembled into machine
code. This code is inserted directly into memory at the address specified
by P%, and P% is incremented by the number of bytes in each instruction
or directive. The assembly language program is written between the
assembler delimeters. This program will consist of a number of
assembler statements separated by new lines or colons (as in BASIC).

Each assembler statement should consist of an optioral label followed
by an instruction (this will be a three letter assembler mnemonic or an
assembler directive) and then an operand (or address). If a label is

7

included it should be separated from the instruction by at least one
space. The operand need not be separated from the instruction. Any
character following the operand and separated by at least one space
from it will be totally ignored by the assembler which will move onto the
next colon or line for the next statement. A comment may be placed after
the operand field and should be preceded by a backslash (\). Any text
following a backslash in an assembly statement will be ignored by the
assembler up to the next colon or end-of-line.

N.B. In level 1 BASIC colons cannot be included in expressions. Missing
out a colon in a multi-statement line will result in the statement after
the intended colon being ignored by the assembler. This error is often
difficult to spot in a program which assembles without error but then
fails to function as the programmer had anticipated.

During assembly of the example program the following printout is
produced (with pacE=s1900) :

>RUN

1BEA

1BEA

1BEA CPT opth

1BEA A2 00 .entry LDX #0 \ set index count (in X req.)

1IBEC BD 5& _C .loop IDA data,X \ load next VDU parameter
1BEF 20 E3 FF JSR OSASCI \ perform VDU command

1BFZ EBR INX \ increment index court

_BF3 ED 2C CFX #&Z0 % has c¢ount reached 32 (&20) ?
_BFS5 DO F& BNE loop \ if not then gc round again
“BF7 60 RTS Y back to BASIC

1 J I | |

t

o]
<

[/ | N\

location op.code/data label/mnemonic/address comment

2.2 OPT, assembler option selection

OFPT is an assembler directive or non-assembling statement which can
be included within an assembly program to select a number of different
assembler options. The OPT command should be followed by a number
to make the option selection. The assembler options are selected on the
state of the least significant 2 or 3 bits of the OPT parameter.

bit 0 if set,
bit 1 if set,
bit2 if set,

assembly listing enabled.

assembler errors enabled.

assembled code placed in memory at O%
(Implemented in Level 2 BASIC only)

8

In the example program, OPT is set up using the FOR.NEXT loop
variable, opt%. On the first pass of the assembler OPT 0 is used, listing
is suppressed, and assembler errors are not enabled. For the second pass
an OPT 3 is used which switches on assembly listing and enables
assembler errors. BASIC errors will be flagged as normal. The
assembler errors which are suppressed are the "Branch out of range”
error and the "No such variable” error. These will normally be
generated during the first pass when the assembler is resolving forward
passes (see section 2.5). Bit 2 allows a program to be assembled into one
region of memory whilst being set up to run at a different address. P%,
the program counter (see below) should be set up as usual to provide the
source of label values. If bit 2 is set then O% should be set up at the same
time as P% to point to the start of memory into which the machine code
is to be assembled. This facility is useful for assembling machine code
where it is impossible to use the memory in which the program is
eventually going to reside (e.g. Assembling programs which are going to
be blown into EPROM for paged ROMs). This option is only available in
Level 2 BASIC. Each time the assembler is entered the OPT value is
initialised to 3. This means that a second chunk of assembler in the same
BASIC program must perform its own OPT selection.

2.3 The Location Counter P%

When the assembler creates the machine code program, the code
produced is placed in memory starting from the address in P% (one of
the resident integer variables) unless remote assembly has been selected
using OPT (see section 2.2). The programmer must set P% to a
meaningful value before the assembly begins. The usual method for
short programs is to DIMension a block of memeory and to set P% to this
value at the beginning of each pass of the assembler (as in the example).
A classic problem is sometimes encountered when a programmer adds
more code to a program which has been allocated space by this method.
If the code created overflows the space DIMensioned for it, and is over-
written by BASIC, it will fail to operate as expected when tested;
alternatively the code may over-write the BASIC dynamic storage and a
“No such variable”" error will be flagged during the second pass of the
assembler.

The assembler updates P% as it is assembling and when it reaches the
end of a pass the value of P% represents the address of the first 'free’
byte of memory after the machine code program.

2.4 Labels

Any BASIC numerically assignable item may be used as a label with the
assembler (such as a variable or an array element). A label is defined by
preceding the variable name with a full stop. The full stop prefix causes
the assembler to set up a BASIC variable containing the current value of

P%. Once set up this variable is available for use by any other part of the
assembler or BASIC program.

2.5 Forward Referencing and Two Pass Assembly

A large number of labels may be generated during the construction of a
machine code program using the BASIC assembler. It is often the case
that one part of the program needs to jump forward over another part
of the program. Labels provide a convenient way of marking the point
in the program to which the processor is to jump. When assembling the
machine code, the assembler works sequentially through the program
and in the case of a forward reference the assembler will encounter the
reference before the label. In the normal course of events an error will
be flagged (No such variable). In order to resolve forward references,
two passes of the assembler are required. The first pass should be
performed with error trapping switched off and during this pass all the
labels will be initialised. The second pass will provide all the correct
values required for forward referencing. During this second pass error

trapping should be enabled to pick up any genuine programming
mistakes.

The most convenient way of performing the two passes is to use a
FOR..NEXT loop. The programmer should make sure that P% is re-
initialised at the beginning of the second pass. It is often convenient to
set up the pseudo-operation OPT using the FOR loop variable (errors
and listing disabled for the first pass, errors enabled and listing as
required for the second).

2.6 The EQUate Facility in Level 2 BASIC

One of the improvements made to Level 2 BASIC was the incorporation
of some EQU pseudo-operation commands. These allow the

incorporation of data by reserving memory within the body of the
assembly language program.

The EQUate operations available are :-

EQUB
EQUW

equate byte

reserves 1 byte of memory
equate word

reserves 2 bytes of memory

10

EQUD
EQUS

equate double word
equate string

reserves 4 bytes of memory
reserves memory as required

These operations initialise the reserved memory to the values specified
by the address field. The address field may contain a string in double
quotes, a string variable for the EQUS operation, or a number or
numeric variable for the other EQU operations. The assembler will use
the least significant part of the value if too large a value is specified.

The example program, written in Level 2 BASIC, could have been
written with lines 30 and 170 to 240 replaced with :-

141 .data EQUD &0413051%

142 EQUD &00CB00C8
143 BQUC &0000011%
144 EQUD &0112006%
145 EQUEL &000000CE
146 BQUD &£0Q000119
147 EQUL &01Z9FFSC
148 EQUD &0Q000FF 38

In Level 1 BASIC one way to reserve space for data within the body of a
machine code program is to leave the assembler using a ri_ght-k!and
square bracket and insert the data using the address contained in P'%.
P% should then be incremented by the appropriate amount befoFe
entering the assembler. e.g. to incorporate a string into a machine code
program.

10 DIM MC% 10C

20 OSRDCH=&TFEQ

20 OSASCI=&ZFE3

40 FOR opt%=0 T0 3 STEP3
50 P%=MC%

60 [

70 COPT opt%

&0 .entry LDY #C \ zero locp index ') .
490 .Zoop LDA string,Y \ load accumulator with Y7string
100 JS2 OSASCZ N write the character

110 INY \ increment lcop index

120 CM2 #&0D \ is the current character a CR
130 BNZ lcop \ if not get the next character
140 JSR OSRDCH \ get character from keyboard
150 CMZ 49 N 1s it the TAB kev

160 BNE erro- \ if not flag¢ an exror

170 RIS \ return to BASIC

180 .string

19¢ }

20¢C $P%="Plezse press the TAB key"
21¢C FP5=P%+LEN (S2%) +1

220 [
230 GPFT optk

240 .error 3RK \ cause ar error
250]

260 NEXT opt%
270 ?PR=4FF
280 P%=F%+1

11

290 $P%="Wrong key pressed"
300 2 (PS+LEN($P%) } =0
310 CALL entry

This program prompts the user to press the TAB key by printing out an
message. If the wrong key is pressed an error is flagged.

2.7 Handling errors with BRK

In the example program above the BRK instruction is used to generate
an error. The BRK instruction forces an interrupt which is interpreted by
the operating system as an error. As part of the error handling in BASIC
the programmer can incorporate an error number and an error message
into his code to identify the error. The byte in memory following the
BRK instruction should contain the error number. The error message
string should follow the error number and must be terminated by a zero
byte.

The following lines set this up :-

240 .error BRK % cause an error

27C ?PP&%=4FF

28C P%=P%+1

230 $P%="Wrong key pressed"
300 ?{P%+LEK ($P%))=C

Error number 255

Error message
Terminating byte

When a BRK is encountered in a machine code program called from
BASIC, the error message is printed out together with the line number
from which the machine code was called. Typing "REPORT" or printing
ERR will reproduce the message and error number as with any BASIC
error.

The user can provide his own BRK handling routine which may be useful
when using machine code away from the BASIC environment {see
section 8.13 for more information about the BRK vector).

2.8 Entering machine code from BASIC - CALL
and USR

Machine code routines can be entered from a BASIC program using
either the CALL statement or the USR function. On entry to the machine
code program using these instructions, the accumulator, the X register,
the Y register and the carry flag are set to the least significant bytes (or
bit) of the resident integer variables A%, X%, Y% and C%. A number of
parameters may be passed to the machine code routine if the CALL

12

statement is used, the addresses and data types of these parameters
being available to the machine code in a parameter block at location
&500. The USR function allows the machine code routine to return a
value to the BASIC program made up from the register contents. For
more details about CALL and USR refer to the 'User Guide' or
'‘Reference Manual'.

2.9 Conditional Assembly and Macros

When working within the BASIC environment, it is possible to use
BASIC functions to implement these higher level assembly language
structures.

Conditional assembly is a method of varying the code assembled
according to a test. All the facilities of BASIC are available for setting up
the test criteria. Typical applications for conditional assembly include
the conditional incorporation of debugging routines and selecting
different hardware specific sub-routines from a number of alternatives.

A macro is a group of assembler statements which may be inserted into
the assembler program whenever the macro is called. A macro may be
thought of as being a type of sub-routine which is used to include a
portion of assembler used more than once within a program. A number
of statements which are likely to be used more than once can be enclosed
within assembler delimiters and placed within either a sub-routine
(called using GOSUB and terminated by RETURN), or a function
definition or a procedure definition. Using a procedure or a function is
the best way to implement macros because the programmer is then able
to pass parameters to the macro and the procedure/function name
serves to identify the macro.

e.g.

10 CIM MC% 100
20 FOR opt%=0 TO 3 STEP 3
30 P%=MC3

40 [
50 OPT opt%
60 .add LDA &80

70 ADC &81

80 STA &81

90 OFT TNdebug (TRUE)
100]
110 NEXT
120 7?880=1
130 7&R81=2
140 CALL add
150 PRINT'"Result of additior : ";?&81
160 PRINT'""A=&";~7&70, "X=8";~2§71, "Y=5";~7&72
170 END

13

180 DEF FNdebug(switch)

190 IF switch [OPT opt%:STA &70:8TX &71:STY &72:]
200 [OPT opt%:RTS3:]

210 =opt%

This highly contrived program adds two bytes together. It uses a macro
within which conditional assembly occurs. Hanging a function on the
end of an OPT command enables the programmer to call the macro in a
tidy manner. If FNdebug is called with the value TRUE then some code
which saves the registers in zero page is inserted into the program,
otherwise an RTS instruction is inserted. The function returns with the
value to which OPT was originally set. This example indicates how the
close relationship between the mnemonic assembler and BASIC results
in a very powerful assembler. The programmer should remember that
BASIC is always available as an aid when using the BASIC assembler.

2.10 User Zero Page

32 bytes of zero page locations are reserved by BASIC for the user's
machine code programs. These locations are from &70 to &8F
(inclusive). These are the only zero page locations that a user program
(resident in RAM) should use if the program is to be made commercially
available or run on a variety of other BBC Microcomputers. The
locations from &0 to &6F which are part of BASIC's zero page
workspace are available to the machine code program if BASIC is not
required while the code is running, Depending on the nature of the
machine code program other zero page locations may be available. See
chapter 12, memory usage, for more details.

14

3 Machine Code Arithmetic

3.1 2's Complement

The 6502 microprocessor normally performs all arithmetic using the 2's
complement method of representing numbers. In 2's complement
representation the most significant bit of the value is a sign bit. If the
most significant is clear then the number is positive. The remaining bits
represent the binary value of the positive number. Negative values are
represented by the complement of the positive value plus 1. The
complement of any binary value is made by flipping each bit (i.e.
changing each 1 to a 0 and each 0 to a 1). When negative values are
represented by the complement of the positive value this is called 1's
complement. The disadvantage with 1's complement is that there are
two ways of representing 0, a positive 0 (all bits clear) and a negative 0
(all bits set). By adding one to the complemented value (2's complement)
there is only one way of representing 0 (all bits clear).

e.g. Using 8 bits to store a value

binary 5 |O|O|O|O|0|1|011]

complement of 5 [1[1]1]1]1]o]1]o]

add 1

2's complement (-5) [1[1]1]1]1]o]1]1]

Such that the addition of plus 5 and minus 5 yields a result of zero

& [11|_|_

5 [l

() IDiOIO]OIOIOlOIOI

(ignore the carry from the last bit}

Numbers from [1]o]c]c]o]o]o]o](-128) to [o[a[x{a][1[1]1]1](+127)
can be represented using 8 bit 2's complement values.

15

Using 2's complement arithmetic the same addition and subtraction
operations work identically on negative and positive numbers. Negative
numbers can always be recognised by the state of the most significant
bit; this is set for negative numbers.

The 6502 microprocessor can only perform its arithmetic operations
using 8 bit values. This limitation can lead to errors when a carry is
generated on the most significant bit so that the result cannot be stored
in 8 bits. The sign bit may also be wrongly changed when a Carry occurs
into it. Two flags in the status register are set when certain conditions
occur. These flags are the carry flag and the overflow flag.

The carry flag is set when a carry is generated during an addition
operation if a carry is generated from bit 7 (i.e. the carry flag is a ninth
bit of the result). The carry flag is cleared if a borrow occurred into bit 7
during a subtraction. The addition and subtraction instructions on the
6502 include the carry bit in the operation. Using the carry bit makes it
possible to perform multi-byte arithmetic. The examples for ADC and
SBC in the mnemonics section illustrate how the carry flag may be used.

The overflow flag is set when the sign of the result is incorrect following
an arithmetic operation. During additions overflow will occur in two
situations :-

(a) When a carry occurs from bit 6 into bit 7 without the generation of an
external carry.

(b) When an external carry is generated without a carry occurring from
bit & into bit 7. '

During subtractions the carry flag is used as a borrow source. The
overflow flag will be set in the analogous situations where borrows
occur rather than carries. When the overflow flag is set it indicates that
the 2's complement 8 bit result of an arithmetic operation is incorrect.

It is often more convenient to think of bytes as always containing
positive values. The eight bits of the byte can represent a maximum
binary value of 255 (&FF). This is not a problem because the
microprocessor performs exactly the same arithmetic operations
regardless of the sign of the values involved. When the result of any
arithmetic operation has bit 7 set then a negative flag is set in the status
register. The programmer can test this flag if the program must react to
negative values. The overflow and carry flags will also be set as
described above.

16

3.2 Binary Coded Decimal

A binary coded decimal arithmetic mode may be selected by setting the
decimal flag in the status register. The binary ccded decimal form of
representing numbers uses each byte to store a two digit decimal value.
Each digit is stored as a binary value in 4 bits (I nibble). Normally 4 bits
can be used to represent numbers in the range 0 to 15. In BCD arithmetic
6 of the values that could be represented in 4 bits are not used. Adding 1
to 9 in BCD will cause the low-nibble to be set to 0 and the high nibble to
be set to 1. The carry flag is used to store the carry from the high-nibble.

This is an exarnple of a program which uses BCD arithmetic.

1C DIM MC% 100

2C OSWRCH=&FFEE

3C OSRDCH=&FFEC

4C OSNEWL=&FFE7

5C FOR opt$=0 TO 3 STEE3
BC P&=MC%

7C [

8C OFPT opt3

ac .start SED \ set flag for BCD arithmetic
100 CLC \ clear carry flag

110 LCA &80 N A=7&80

12C AGC #1 \ A=A+1+4C

13C STA &80 \ replace value

14C ICA &81 \ A=7&81

15C ADC 4C N A=RA+O+C

1480 STA &81 \ replace values

17C CLD \ clear flag, nec more BCD

18¢C CcLcC \ clear carry flag

190 LDX #2 \ set loop index

200 .loop DEX \ decrement index

210 LDA #&FD \ mask for high-nibble

220 AKD &80, X \ A=A AND X?&80

230 LER A:LSR A:LSR A:LSR A

240 \ move high-nibble to low nibble

250 ADC #&30
260 JSR OSWRCH
270 LDA #&F
280 AND £80,X
290 ADC #&30
300 JSR OSWRCH print number

310 CEPX #0 has index reached 0

Y add value to ASC™O"
Y
i
\
N
A
A\
320 BNE loop \ if not, go round again
N
N
\
N
N
N
\

print wvalue

nask for low-nibble
A=A AND X7?&80

add value to ASC"0O"

330 LDA #&D A=carriage return wvalue

340 JSR OSWRCH perform carriage return (no LF)
350 JS5R OSRDCH A=GET

3560 CMP #&0D
370 BNE starct
380 JSR OSNEWL

was it RETURN
if noct, back to the start
carriage return and line feed

390 RTS back to BASIC
400]

410 NEXT

420 !&80=0

430 PRINT''"Binary Coded Decimal""'

440 PRIKT"press key to add 1"

17

450 PRINT"press RETJRN to exit"''
460 CALL start

This program could be altered to subtract 1 each time a key is pressed by
changing line 100 to SEC and changing the ADC instructions in lines 120
and 150 to SBC instructions.

The decimal flag must always be cleared before using operating system
routines.

There is no standard representation of negative numbers using BCD. In
order to implement mare complex arithmetic including floating point
applications, the programmer must define his cwn conventions and
number formats.

3.3 BCD and the 65C12

Arithmetic operations performed in decimal mode on the 65C12
microprocessor used in the BBC Master series computers use up more
processor time than the same operations performed in non-decimal
mode. This is because the 6502 left the N, V and Z flags in an
indeterminant state following instructions in BCD mode, whislt the
65C12 chip updates the flags correctly. The ADC and SBC instructions
therefore take one extra clock cycle when the decimal flag is set.

18

4 Addressing Modes

When an assembly language instruction needs an address or some data,
this must be provided in the operand field of the assembler statement.
Although there are a limited number of different machine code
instructions which can be used with the 6502, the power of the
instruction set is enhanced by a number of different addressing modes by
which the data or addresses used by each instruction may be provided.
The addressing mode used by the assembler depends on the syntax of
the assernbly language statement. The following text describes how the
different addressing modes work and the assembler syntax which is
necessary.

N.B. Not all addressing modes are available for all instructions. Details
of which addressing modes can be used with which instructions are
contained in the Assembler Mnemonics section 5.2,

4.1 Implicit addressing

Many instructions do not require any addressing mode to be specified in
the operand field. In such cases the addressing is implicit in the
instruction itself. For example an RTS instruction will always cause the

processor to jump to the location addressed by the top two bytes of the
stack.

4.2 Accumulator addressing

Some instructions may operate on either a memory location or the
accumulator. The accumulator is specified by putting a capital A in the
operand field.

e.g.

ASL A
ROR A

\ shift accumulator contents one bit left
\ rotate accumulator contents one bit right

(Note that the variable A cannot therefore be used as an operand.)

4.3 Immediate addressing - using a data constant

If, at the time of programming, the data required for a machine code
instruction is known then immediate addressing may be used.
Immediate addressing is indicated to the assembler by preceding the

19

operand with a "#" character. The assembler uses the least significant
byte of the value given to define the operand. The machine code
instruction actually uses the byte of data immediately following the
instruction in program memory.

Assembler Machine code
108 49

W
[2]

e.g.

LDA #&FF
LLX #count

\ leoad the accumulator with wvalue &FF
\ load X with wvalue of the constant 'count'

4.4 Absolute addressing - using a fixed address

When the address required for an instruction is known at the time of
assembly then absolute addressing may be used. Absolute addressing is
the default addressing mode used by the assembler. If a number or
variable is placed in the operand field of the assembler it will be treated
as a 16 bit effective address.

Machine Code Data

LDA §3018 §3018:

- [

Assembler

e.g.

CMP &1800
JMP lakel

\ corpare A with cortents of location &19Q00
\ goto address specified by 'label'

4.5 Zero page addressing - using a fixed zero
page address

This mode is the same as absolute addressing except that an 8 bit
address is specified. This 8 bit addressing limits use to the first &100
bytes of memory (zero page). The assembler will automatically select
zero page addressing when the operand value is less than 256 (&100).

20

Assembler Machine code Data
LDA &8F £008F:
a [0
e.g.
CPY &80 \ compare Y with contents of location &80

ASL £81 \ shift left contents of location &81 cne kit

4.6 Indirect addressing - using an address stored
in memory

Using this addressing mode an instruction can use an address which is
computed when the program runs. The JMP instruction may use this
addressing mode. The address used for the jump is taken from the two
bytes in memory starting at the address specified in the operand field
(low byte first, high byte second). Indirect addressing is indicated to the
assembler by enclosing the address within brackets.

Assembler Machine Code Data
e w1900 R[] rsoo: [12Es)
A
ze- [5a[zA]
e{;
LDA #&40 \ load accumulator with £490
STA &190C \ store low byte of indirection
LDA #&28 \ load accumulator with &28
STA &1901 \ store high byte of irdirection
JMP (&18C0) \ goto address in &1900 and 51902

N i.e. goto 2840

N.B. A JMFP &2840 instruction would have been more sensible in this
case.

There is a bug in the 6502a used in the BBC model B and Electron. When
the indirect address crosses a page boundary the 6502 does not add the
carry to calculate the address of the high byte.

ie. JMP
address.

(£19FF) will use the contents of 1 9FF and &1900 for the Jvp

21

This bug has been fixed in versions of the 6502 used in the Master series
of computers.

Indexed Addressing

The following 5 addressing modes use the X or Y registers as an offset
which is used to modify another address specified in the operand field.
These addressing modes give the program access to a table of memory
locations specified in terms of a base address to which is added the 8 bit
offset value.

4.7 Absolute,X or Y addressing - using an
absolute address+X

These are the simplest indexed addressing modes. An absolute 16 bit
address is specified in the operand field. This should be followed by a
comma and either X or Y. The address used by the instruction will be the
16 bit address + the contents of the register specified.

The X and Y register contents are always taken as positive values in the
range { to 255 and so only forward offsets are available (c.f. Relative
addressing, section 4.11).

Assembler Machine code Data
LOA £3000,X

t = &3009: |Fr

~— .

e.g.
L2A &2800,X \ load accumulator from &2800+X
ADC tabkle,Y \ A=A+7?(table+Y)

4.8 Zero page,X addressing - using zero page
address+X

This mode is the same as the absolute X addressing mode except that an
8 bit base address is used. The assembler automatically uses this mode,
where available, if a zero page address is specified in the operand field.

22

If a variable is used to describe the address of the zero page location it
should be set up before the first pass of the assembler. This is because the
assembler will assume 16 bit addressing on the first pass if the variable
is unrecognised and allocate two bytes for the address. On the second
pass, the zero-page opcode and one byte of address will be assembled,
causing all further label values to be wrong,.

N.B. For the LDX instruction a zero page,Y addressing mode is
provided.

Assembler Machine code Data
LDA &7F, X [56[7F
>+ = &0080:
X: E! l
e.g.
LDX &72,Y \ load X with contents of (&72+Y)

L3R %80,X N one bit right shift cecrtents of (&8C+X)

4.9 Pre-indexed indirect addressing
using a table of indirect addresses in zero page

This addressing mode is designed for use with a table of addresses in
zero page locations. The operation is performed on a memory location,
the address of which is contained within the zero page locations
specified by an 8 bit base address plus the contents of the X register.

N.B. The Y register cannot be used for this addressing mode.
Machine code Data
21]60
™. &0055: £3023:
.f”’
X: EE l
a-

Assembler

LDA (&60,X)

23

e.g. 4.11 Relative addressing
2680=5600
5s81=540 The 6502 instruction set contains 8 branch instructions which cause
2882=500 jumps if certain conditions are met. In the example above a BNE
?eB3=841 instruction is used to cause the loop to be executed again if the loop
LDX #0 \ set X to 0 index (Y register) does not equal 0. These branch instructions can only be
LOA (&80,%) \ A=264000, address in (§80+X), (831+X) used with relative addressing. If the condition of the branch is satisfied,
b i Yo e d the byte following the branch instruction is added to the program

LDA (&B80,X) \ A=?&4100, adcress in (%82}, (&83)

4.10 Post-indexed indirect addressing
using an indirect address in zero page plus offset
inY

This indexed indirect addressing mode uses a single address held in zero
page. The contents of the Y register are then added to the address held
in zero page to give the effective address used.

N.B. The X register cannot be used for this addressing mode.

counter as an 8 bit two's complement number. This method of relative
addressing allows a branch forward 127 bytes or back 128 bytes from the
program counter value after the branch instruction has been executed.
The calculation of the relative branch value is normally quite
transparent to the programmer using the BASIC assembler. When
writing in assembly language the programmer follows the branch
instruction with a label or absolute address and the assembler performs
the necessary calculations. The use of relative addressing will only
become apparent when a label or absolute address is specified outside
the relative addressing range. When this occurs the assembler will flag
an "Qut of range” error to the user. OPT 0 is used to suppress this error
from forward references on the first assembler pass.

Assembler Machine code Data If calculating relative branches by hand remember that the offset value
is calculated from the beginning of the next instruction. Thus an offset
LCA (&8D),Y 50080: address of -2 (&FE) will cause a branch back to the branch instruction
~- itself.
+ = 53563
",”

e.g-

Set 256 bytes of memory to 0 starting at the address contained in
locations &80 (low byte} and &81 (high byte).

4.12 Addressing modes and the 65C12

The microprocessor used in the BBC Master series computers has an
improved repertoire of addressing modes. Two additional addressing
modes have been added, one allows indirect jumps to be indexed and the
other provides indirect zero-page addressing without using an index
register. The range of addressing modes available for some instructions
has also been expanded.

7680=£40

7681=672 . Lo)
4.12.1 Pre-indexed absolute indirect addressing

LDY #Q \ set loop index to O

TYA N A=) : : : : . . .

.loop STA (£80),Y N 7(§7240+¥)=0, base addr. in &80 and &81 This addressing mode is only available for the JMP instruction. It is

TNy \ Y=yl identical to the indirect addressing mode except that the the value held

CPY #C \ Y-D comparison (not needed after IKY) in the X register is added to the 16 bit absolute address in the operand

BNE loop “ if ¥<>0 goto locp

field to give the final address containing the value to jump to.

24

Assembler Machine code Data

JMP {5§FEQ0,X)
>+ = §TE0Z:
X EE

e.g
LDA n % A=number indicating a sub-routine
ASL A N OA=A*Z
TAX N XK=h
LDA #rts Y\ A=low byte of address following JMP
FHA % push returrn address on stack
LDA #rts/256 Y A=h‘gh byte of address fcllowing JMP
PHA % vpush return address cn stack
JMP {&FEJD, X) \ gote 'n'th address in table at &FE
.rts - \ an RT3 instruzzion will return here

4.12.2 Zero page indirect addressing

An address stored in zero page memory is used as the working address
when this addressing mode is specified. On the 6502 used in earlier
Acorn machines the programmer was restricted to the indexed zero
page addressing modes for indirect addressing. This mode provides a
simple indirect addressing mode which does not tie up one of the index
registers.

Assembler Machine code Data
DA (510 sco10:[cofos| so300:
e.g.
LD2 (&86) \ A=7(!{&86 AND &FFFF))

Zero page indirect addressing is available for the following instructions:

ADC CMP ORA
AND EOR SBC
BIT LDA STA

26

4.12.3 Improved range of addressing modes for
some instructions

The range of BIT instruction addressing modes has been extended to
include immediate addressing, absolute-X and the new zero page
indirect mode.

Accumulator addressing has been extended for use with the DEC and
INC instructions. The BASIC assembler recognises the mnemonics DEA
and INA as synonyms for the accumulator addressing modes for these
instructions.

i.e.

DEC A or DEA
INC A or INA

27

5 The 6502 Instruction Set

This chapter contains a brief description of the 6502 microprocessor
registers and a description of the assembly language mnemonics which
represent the microprocessor's instruction set.

5.1 The 6502 registers and abbreviations

Accumulator - A

An 8 bit general purpose register used for all the arithmetic and logical
operations.

X Index Register- X

An 8 bit register used as the offset in indexed and pre-indexed indirect
addressing modes, or as a counter.

Y Index Register-Y

An 8 bit register used as the offset in indexed and post-indexed indirect
addressing modes, or as a counter.

Status Register

An 8 bit register containing various status flags and an interrupt mask.

These are :-

Carry flag - C

Bit 0, Set if a carry occurs during an add operation and cleared if a
borrow occurs during subtraction. Used as a 9th bit in rotate and shift
operations.

Zero flag-2Z

Bit 1, Set if the result of an operation is zero, otherwise cleared.

Interrupt disable - I

Bit 2, When set, IRQ interrupts are disabled. Set by the processor during
interrupts.

28

Decimal mode flag - D

Bit 3, When set the add and subtract instructions work in binary coded
decimal arithmetic. When clear these operations are performed using
binary arithmetic.

Break flag - B

Bit 4, This flag is set by the processor during a BRK interrupt. Otherwise
this flag is clear.

Unused flag

Bit 5, Unused by the processor.

Overflow flag - vV

Bit 6, If, during an operation, there is a carry from bit 6 to bit 7 and no
external carry then the overflow flag is set. This flag is also set if there is
no carry from bit 6 to bit 7 but there is an external carry.

Negative flag - N

Bit 7, Set if bit 7 of a result is set, otherwise cleared.

Stack Pointer - SP

An 8 bit register which forms the low order byte of the address of the
next free stack location (the high order byte of this address is always
&1).

Program Counter - PC (PCL,PCH low-byte high-byte)

A 16 bit register which always contains the address of the next
instruction to be executed.

5.2 The Assembler Mnemonics

The following section contains a detailed description of each of the
operation codes {or instructions) in the 6502 instruction set. The
assembler recognises three letter mnemonics which it translates into the
8 bit values which the microprocessor actually takes as its instructions.

29

Each assembler mnemonic is described on a new page. At the head of the . . Summary of Assembler Mnemonics
page is the three letter mnemonic which the assembler recognises. ADC Add with Cazry AC-AMC
: AND Logical AND A=A ANDM
Beneath the heading there is a short phrase indicating the function of ASL Arithmetic Shift Left M=M2, C=M7
) . o . . BCC Branch on Carry Clear Branch i C_0
the instruction and the derivation of the mnemonie, . BCS Branch on Carry Set Branch if C=1
BEQ Branch on result zero Branch if Z=1
A shorthand 'BASIC like' description of the operation is given on the top BIT Test memmory bits A AND M, N=M7, v=Ms
. . BMI Branch if negative flag set Branch if N=1
right of the page. The registers and flags are denoted by the . . BINE Branch on reeult ot 2010 Branch if Z=0
abbreviations given on the previous two pages. The initial ‘M’ BPL Branch en positive result Branch if N=0
he data byte obtained using the selected addressi d Da Dranchalways
represents the data byte obtained using the selected addressing mode. BRK Forced inferrupt PC and P pushed on stack, PCL=24FFFE, FCH=?&FFFF
. BVC Branch if overflow clear Branch if V=0
A brief description of the instruction and its operation is given beneath . BVS Branch if overflow set Branch if V=1
he heads CLC Clear carry flag =0
the headings. CLD Clear decimal flag D-0
CLI Clear interrupt disable flag =0
Any changes to the status register are noted in a list of the status . . CLR* Clear memory M=0
f CLv Clear the overflow flag V=0
regwter ﬂags' CMP Compare memory and accumulator A-M
CrXx Compame memory with X register X-M
All the available addressing modes are listed together with the number . oy Compare memory with Y register Y-M
. . s . s . DEC/A* Decrement memory by one M=M-1
of bytes of memory which the instruction and its data will occupy when DEX Docrement X register by one XX
this mode is used. The number of instruction cycles taken for the DEY Decrement the Y register by one Y=Y-1
. fthe i tion ; 1 addressi de is al . a EOR Exclusive CR A-AEDRM
execution of the instruction in each addressing mode is also given INC/A* Increment memory by one MoMel
instruction cycle=0.5 us in a BBC model B, 0.33ps in Master or 6502 2nd . INX Increment X register by one X=X+1
processor, 0.25us in a Master Turbo 2nd processor). };; :EEETS?e&?;fE:m by one ;’C\ﬂew e
g ISR Jump Subroutine Push PC onto stack, PC = new address
A short example of the use of the instruction within an assembly . . LDa Load accumulator from memory A=M
language routine is given at the bottom of each page. o Load X el rom memony .
LSR Logical Shift Right by one bit M=M/2 (or A)
NOP No operation
. . ORA OR memory with accumulator A=A ORM
PHA Push accumulator onto stack Push A
PHP Push Status register onto stack Push P
PHX* Push X register onto stack Push X
. . PHY* Push Y register onto stack Push Y
PLA Pull accumulator off stack Pull A
PLP Pull status register off stack Pull P
PLX* Pull X from stack Pull X
PLY* Pull ¥ from stack Pull Y
. . ROL Rotate one bit left M=M*2, MO=C, C=M7 (A or M)
ROR Rotate one bit right M=M/2, M7=C, C=M0 (A or M)
RTL Return from Interrupt Status register and PC pulled from stack
RTS Return from subroutine Pull PC from stack
SBC Subtract memeory from A with carry ALC=A-MA{1C)
. ‘ SEC Set carry flag C=1
* New opcodes and addressing modes available on t'he 653C12 gsed on S - ;‘Z‘r‘:‘;;t‘;;‘;ile fog o
the Master series computers are marked by a single asterisk. STA Store accumulator conténss in memory M—A
. . S5TX Store X contents in memory M=X
. . ; X STY Store Y contents in memo M=Y 4
** Two additional instructions available on the Rockwell R65C02, used STZ* Clear memory i M=t
on the Master Turbo and 6502 second processors. These are ax Janster Ato X oy
marked with two asterisks. . . TRB* Test and reset bits
TSB* Test and set bits
TSX Transfer 5 to X X=5
XA Transfer X to A A=
XS Transfer Xto S S=X
. . TYA Transfer ¥ to A A=Y
30 31

Add with Carry A, C=A+M+C ¢ Logical AND A=A AND M
This instruction adds thg contents of a memory location to the ‘ . . A logical AND is performed, bit by bit, between the accumulator
accumulator together with the carry l:_ut. If overflow occurs the carry bit contents and the contents of a byte of memory. The truth table for the
is set, this enables multiple byte addition to be performed. logical AND is :-
. . Acc.bit Mem. bit Result bit
Processor Status after use 0 0 0
C (carry flag) : set if overflow in bit 7 . . 0 1 0
Z {(zero flag) :setif A=0 1 0 0
I (interrupt disable) : not affected 1 1 1
D (decimal mode flag) : not affected . .
B (break command)} : not affected
V (overflow flag) : set if sign bit is incorrect
. 01 Processor Status after use
N (negative flag) : set if bit 7 set . .
C (carry flag) : not affected
Z (zero flag) 1set if A=0
Addressing mode Bytesused Cycles Op. code I (interrupt disable) : not affected
. . D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
immediate "2 2 &69 . . N (negative flag) : set if bit 7 set
ZeTO page 2 3 zgg
zero page, X 2 4 .
(indirect zero page)* 2 5 (+1 if in decimal mode) gz% . . Addressingmode Bytesused Cycles Op. code
absolute 3 4
absolute, X 3 4 (+1if page crosseg; i ;E?
4 (+1if page crosse
T A N L @@ wmew 2
(indirect),Y 2 5 (+1if page crossed) &71 Zero page 2 3 &35
Zero page,x . 2 4 &35
Example : Add 1 to a 2 byte value in locations &80 and &S81 . . (zero page indirect)* 2 5 %32
absolute 3 4 &OE— D
Eéi #1 \\ Tiiﬁraiiiiiliii witnh 1 absolute, X 3 4 (+11if page crossed) &3D Lz
ADC &80 \ A=A+7&B0, carry set if sverflow occurs . . absolute,Y 3 4 (+1 if page crossed) &39.
STA &8. \ place resuit of addéti(on in &Sohanged) (indirect,X) 2 6 &21
¥0 \ t accumulator to carry unc 4 .
1&52 §81 \ AoAt2aB14C : agd 11 if carry set (indirect),Y 2 5 (+1if page crossed) &31
STA &84 | stoxe resuit back ia . . Example : Clear the bottom 4 bits of location &80
LDA §80 \ load valte to b g 1
AND #&FO0 \ p;iforri 1Zi;d?]D, ° (mzsizliilléggg)A
. . STA &80 \ load memory with the modified value

ASL

Arithmetic Shift Left M=M*2, C=M7

(or accumulator)

This operation shifts all the bits of the accumulator or memory contents
one bit to the left. Bit O is set to 0 and bit 7 is placed in the carry flag. The
effect of this operation is to multiply the memory contents by 2 (ignoring
2's complement considerations), setting the carry if the result will not fit
in 8 bits.

c%|7|6|5|4|3]|2|1]|c| @0

Processor Status after use

C (carry flag) : set to old contents of bit 7
Z (zero flag) : set if result=0

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) : set if bit 7 of the result is set

Addressing mode Bytesused Cycles Op. code
accumulator 1 2 &OA
Zero page 2 5 &06
Zero page,X 2 6 &16
absolute 3 6 &0E
absolute, X 3 7 &1E

Example : Rapid multiplication of memory contents by 4

\ ?data=?data*2
Y\ 7?data=7data*2, gross effect *4.

ASL data
ASL data

34

BBR**

Branch on Bit Reset Branch if bit=0

BBR is only available on the Rockwell R65C02 microprocessor normally
fitted to the Master Turbo or 6502 2nd processors.

The branch occurs if a single bit in a byte of zero page is clear. This
instruction will not be recognised by the BASIC assembler. The
assembler opcodes will have to be placed in the program directly using
the EQUate instruction. The BRB opcodes are shown below.

BBR Opcodes”
bitQ &OF
bit 1 &1F
bt 2 82F
bit 3 &3F
bit 4 &4F
bit & &5F
bit 6 &6F
bit 7 &7F

To calculate the offset for relative addressing it should be remembered
that as this instruction is 3 bytes long a relative offset of -3 will branch
back to the BBR instruction.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command} : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressingmode bytesused cycles

5 (+1 if branch succeeds
+2 if to new page)

ZEro page 23

Example : Branch if bit 1 of &7F=0

EQUB &1F \ BER opcode for bit 1

EQUR &7F \ zero page address

EQUB &03 \ branch forward 3 bytes
35

BBS**

Branch on Bit Set Branch if bit=1

BCC

Branch on Carry Clear Branch if C=0

BBS is only available on the Rockwell R65C02 microprocessor normally

. This instruction causes a relative jump if the carry flag is clear. The
titted to the Master Turbo or 6502 2nd processors.

address to which the branch is directed must be within relative
addressing range otherwise the assembler will throw up an "Out of

The branch occurs if a single bit in a byte of zero page is set. This .
range" message.

instruction will not be recognised by the BASIC assembler. The
assembler opcodes will have to be placed in the program directly using

Used after a CMP instruction this branch occurs when A<DATA.
the EQUate instruction. The BBS opcodes are shown below.

- BES Opcodes.
bit 0 &BF Processor Status after use
bit 1 &9F C (carry flag) : not affected
bt2 | &AF Z (zero flag) : not affected
bit 3 &BF I (interrupt disable) : not affected
bit 4 &CF D (decimal mode flag) : not affected
bit 5 &DF B (break command) : not affected
bit 6 &EF V (overflow flag) : not affected
bit 7 &FF N (negative flag) : not affected
To calculate the offset for relative addressing it should be remembered]
that as this instruction is 3 bytes long a relative offset of -3 will branch Addressing mode Bytesused Cycles Op. code
back to the BBS instruction. relative 2 2 (+1 if branch succeeds &90
Processor Status after use +2 if to new page)
C (carry flag) : not affected
Z (zero flag) : not affected

I (interrupt disable) : not affected

, Example : Branch if contents of &80 < 100
D (decimal mode flag) : not affected

B (break command) : not affected LDA #1C0 \ load accumulator with data
. CMP &80 \ A-data {comparison}

V(Overﬂ_ow flag) : not affected BCC finish \ goto finish if ?&80<100

N (negative flag) : not affected

Addressing mode bytesused cycles

zero page 23 5 (+1 if branch succeed
+2 if to new page)

Example : Branch if bit 1 of &7F=1

EQJB &9F \BES opcode for bit 1

EQUB &7F \zero page address (&7F)

EQUB &03 \BBR1, &7F,back -6 bytes
36

37

BCS

Branch on Carry Set Branch if C=1

A relative branch will occur if the carry flag is set. The branch address
given to the assembler must be within relative addressing range.

Used after a CMP instruction this branch occurs when A>=data.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) : not affected
Addressing mode Bytesused Cycles Op. code
relative 2 2 (+1 if branch succeeds &BO

+2 if to new page)

Example : Branch if contents of X register are greater than or equal to 5

CEX #5 / X-5, compare
BCS label / branch to label if X>=5
38

BEQ

Branch on result zero Branch if Z=1

This instruction causes a relative branch if the zero flag is set when the
instruction is executed. The assemnbler automatically calculates the
relative address from the address given and will cause an error if the
address is out of range.

Used after a CMP instruction this branch occurs if A=data. Used after
an LDA instruction this branch cccurs if A=0.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I {interrupt disable) : not affected
D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) : not affected
Addressing mode Bytesused Cycles Op. code
relative 2 2 (+1 if branch succeeds &F0

+2 if to new page)
Example : Subroutine not used when A=3

CMP #3 \ A-3, comparison
BEQ over \ if A=3 goto owver
JSR anything \ subroutine te be missed if A=Q

LOover L.

39

BIT

Test memory bits

with accumulator A AND M, N=M7, V=Msé6
This instruction can be used to test whether one or more specified bits
are set. The zero flag is set if the result is 0 otherwise the zero flag is
clea!red. Bits 7 and 6 of the memory location are transferred to the status
register. The BIT instruction performs an AND operation, setting the
status flags accordingly, but without storing the result.

Processor Status after use

C (carry flag) : not affected

Z (zero flag) : set if the result=0

I (interrupt disable} : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : set to bit 6 of memory
N (negative flag) : set to bit 7 of memory

When immediate addressing is used (available on the 65C12 only) the V
and N flags are not changed.

Addressing mode Bytesused Cycles Op. code
immediate* 2 2 &89
Zero page 2 3 &24
absolute 3 4 &2C
absolute,x* 3 4 &3C
zero page,x* 2 4 &34

Example : Test bit 7 of location &8F

LDA #£02 \ load mask into accumulator {(00000010)
BIT flags N\ A AND flags, if bit 1=1 then 2Z=D
BNE flag set \ action to be performed if bit 1 set

40

BMI

Branch if negative flag set Branch if N=1

This relative branch is performed if the result of a previous operation
was negative. Relative branch calculations are made by the assembler
which will flag an error if an address is given outside the relative
addressing range.

A branch occurs after a result which sets bit 7 of the accumulator. (All 8
bit 2's complement negative numbers have this bit set.)

Processor Status after use

C {carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable} : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code

2 (+1 if branch succeeds &30
+2 if to new page)

relative 2

Example : Branching if a byte of memory contains a negative number

Lbh &3010 \ lopad accun. from memory, K set if —-wve
BMI regative \ branch if ?2§3010 is negative

41

BNE

Branch on result not zero

This instruction causes a relative branch if the zero flag is clear when
the instruction is executed. The assembler automatically calculates the

relative address from the address given and will cause an error if the
address is out of range.

Used after a CMP instruction this branch occurs if A<>data. Used after
an LDA instruction this branch occurs if A<>0.

Branch if Z=0

Processor Status after use

C (carry flag)
Z (zero flag)

: not affected
: not affected

I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressingmode Bytes used Cycles Op. code

relative 2 2 (+1 if branch succeeds &DO

+2 if to new page)

Example : Memory location to be written to if it contains zero (i.e. IF
7&84=0 then ?&84=&7F)

LDA &84 \ load memory into A to set flags
BNE round \ if not zero skip the next bit
LDA #&7F \ load A with value to be written
STA &&64 \ write to leocaticn &84 .round
P \ rest of program

42

BPL

Branch on positive result Branch if N=0

Depending on the state of the negative flag a relative branch will be
made. The relative address is calculated by the assembler from an
address provided by the programmer. This address must be within the
relative addressing range.

Branch occurs after a result which sets accumulator bit 7 to Q.

Processor Status after use

C (carry flag)
Z (zero flag)

: not affected
: not affected
: not affected

I (interrupt disable)
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code

2 (+1 if branch succeeds &10
+2 if to new page)

relative 2

Example : A loop which shifts A left until bit 7 is set

% shift accumulatcr 1 bit left
\ if bit 7 not set then go rcocund again

.loop ASL A
B?L loop

N.B. This will be an endless loop if A=0 on entry.

43

BRA*

Branch always

The BRA instruction performs a relative branch regardless of the state
of the processor state flags. The assembler calculates the relative
address from the address given and will cause an error if the address is
out of range. This instruction provides a shorter range alternative to the
IMP instruction which uses more processor time and when assembled
occupies one more byte of program mernory.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : hot affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V {overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code
relative 2 3 (+1 if to new page) &80
Example : Branch back to beginning of loop (kypewriter program)

.loop JSR gebkey \ get key press value
JSR printkey \ print key character

BRA loop \ lcop round again

44

BRK

Forced interrupt PC and P pushed on stack

PCL=?&FFFE
PCH=?&FFFF

This instruction forces an interrupt to occur. The processor jumps to the
location stored at &FFFE. The program counter is pushed onto the
stack followed by the status register. A BRK instruction usually
represents an error condition and the BRK handling code is usually an
error handling routine. Using machine code in a BASIC environment it
is possible to use BASIC's own error handling facilites, see section 2.7. A
user BRK handling routine may be implemented, see section 8.13.

Processor Status after nse

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D {decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code

implied 1 7 &00

Example : Cause an error if A is greater than 4

CMP 45 \ A-5, comparison
BCC noerr \ if A<S5 then branch round error
BRK \ cause error

\ (error data)

\

noerr rest of program

45

BVC

Branch if overflow clear Branch if V=0
A relative branch is made if the overflow flag is clear. The relative
address calculation is performed by the assembler which will flag an
error if given an address out of relative addressing range.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I {interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code

relative 2 2 (+1 if branch succeeds &50

+2 if to new page)
Example : Branching on overflow when carry is deliberately set
ADC &80 N A=R+7&80+C

SEC \ set carry flag
BVC scmewhere \ goto somewhere if no overflow

46

BVS

Branch if overflow set Branch if V=1

Branch to a relative address if the overflow flag is set. Overflow is
generally set when the carry flag is set except when a subtraction has
been performed. In this case overflow is set when the carry flag is
cleared. The address specified in the operand field of the assembler
statement must be within the relative addressing range otherwise an
assembly error will be flagged.

Processor Status after use

C {carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code

2 (+1 if branch succeeds &70
42 if to new page)

relative 2

Example : Branching if overflow occurs during subtraction

SEC / set the carry flag

LDA #8 / load A with the wvalue §

SBC &85 / A=A-M (-carry if reguired)

BVS help / if overflow has occurred goto help
STA &80 / otherwise put new value in &86

N.B. A BCC instruction would have performed the same purpese in this
instance.

47

CLC

Clear carry flag

This instruction clears the carry flag. This is often a sensible operation to

C=0

perform before using an ADC instruction if there is any doubt as to the

status of the carry flag.

Processor Status after use

C (carry flag) : cleared

Z (zero flag} : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected

V (overflow flag)
N (negative flag)

Addressing mode
implied

: not atfected
: not affected

Bytesused Cycles

2

Op. code
&18

Example : Clearing the carry flag before an 8 bit addition

CLC \ clear carry flag

LDA counter 1\ load first low order byte
ADC number % add second low order tc it
STA counter \ place new value in counter

48

CLD

Clear decimal flag D=0

This flag is used to place the 6502 into decimal mode. This instruction
returns the processor into non-decimal mode. The 65C12
microprocessor used in the BBC Master series computers takes one cycle

See machine code arithmetic, chapter 3.

Processor Status after use

C (carry flag)

Z (zero flag)

: not affected
: hot affected

longer than the 6502 to perform decimal mode arithmetic.

I (interrupt disable) : not affected
D (decimal mode flag) : cleared

B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code

implied 1 2 &D8

CLD

Example : Turn decimal mode off

49

\ No more BCD arithmetic

CLI

Clear interrupt disable flag I=0
This instruction is used to re-enable interrupts after they have been
disabled by setting the interrupt flag. In a machine where the operating
system relies heavily on interrupts it is unwise to play around with the

interrupt flag without good reason. For information about interrupts
see chapter 8.

Processor Status after use

C (carry flag) : hot affected
Z (zero flag) : not affected
I (interrupt disable) : cleared

D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressingmode Bytesused Cycles Op. code
implied 1 2 &58
Example : Re-enabled interrupts

CLI \ interrupts responded to now

50

CLR*

Clear memory M=0
This mnemonic is a synonym of the STZ instruction and assembles to
produce an op-code which stores a zero at the specified memory
location.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code
Zero page 2 3 &gi
Zero page,x 2 4 &
absolute 3 4 &9C
absolute,x 3 5 &9E

Example : clear page 4 of memory

LDX #&FF \ X=&FF .

.loop CLR 4&04,X \ memory location=0
DEX N X=X-1 .
BNE lcop \ if not zero, clear next locatlon
\ rest of program

51

CLV

Clear the overflow flag

This instruction forces the overflow flag to be cleared.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected

B (break command) : not affected
V {overflow flag) : cleared
N {negative flag) : not affected

Addressing mode Bytesused Cycles Op. code
implied 1 2 &B8
Example : Explicitly clear the overflow flag

CLV \ overflow now clear

52

CMP

Compare memory and accumulator A-M

This is a very useful instruction for comparing the accumulator contents
to the contents of a memory location. The status register flags are set
according to the result of a subtraction of the memory contents from the
accumulator. The accumulator contents are preserved but the status
register flags may be used to cause branches depending on the values
which were compared.

Processor Status after use

C (carry flag) : set if A greater than or equal to M
Z (zero flag) : set if A=M

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) s set if bit 7 of the result is set
Addressing mode Bytesused Cycles Op. code
immediate 2 2 &C9
Zero page 2 3 &C5
zero page,X 2 4 &D5
(zero page)* 2 5 &D?2
absolute 3 4 &CD
absolute X 3 4 (+1 if page crossed) &DD
absolute,Y 3 4 (+1if page crossed) &D9
(indirectf,X) 2 6 &C1
(indirect,Y) 2 5 (+1if page crossed) &D1

53

Examples : Branching on the result of a compariscn . . C P X
The test which if true is to Code.
cause the branch. . . .
. Compare memory with X register X-M
A>M or M<A BEQ over (or BEQ P%+4, no label)
BCS somewhere This instruction performs a subtraction of the contents of the memory
.over . . location from the contents of the X register, the memory location and
the register remain intact but the status register flags are set on the
A>=M or M<=A BCS somewhere result.
A=M or M= BEQ somewhere . .
A<=M or M>=A BCC somewhere . Processor Status after use
BEQ somewhere . C (carry flag) : set if X greater than or equal to M
A<M or M=A BCC scmewhere Z A(ZQI'O flag)) s set if X=M
I (interrupt disable) : not affected
. . D (decimal mode flag) : not affected
B {(break command) : not affected
V (overflow flag) : not affected
. . N (negative flag) : set if bit 7 of the result is set
. Addressing mode Bytesused Cycles Op. code
. immediate 2 2 &EQD
Zero page 2 3 &E4
. . absolute 3 4 &EC
Example : Clearing an area of memory (max &100 bytes). The number
. of bytes to be cleared is stored in 'count.
. LDA #0 \ set accumulator to 0
TAX \ set loop index to 0
. . . loop STA page,X \ write 0 to byte page+X
INX \ increment loop index
CPX count \ X-7?count, compariscn
. BNE loop N\ if not equal go round again
. 55
54 I

CPY

Compare memory with Y register Y-M
This instruction subtracts the contents of the specified memory location
from the Y register. The memory location and the register remain intact
but the status register flags are set on the result.

Processor Status after use

C (carry flag) :set if Y greater than or equal to M
Z (zero flag) :setif Y=M

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) ~ : not affected

V (overflow flag) : not affected

N (negative flag) s set if bit 7 of the result is set
Addressingmode Bytes used Cycles Op. code
immediate 2 2 &C0
zero page 2 3 &C4
absolute 3 4 &CC

Example : Branch if Y=&0D

CPY #&0D

\ compare Y with &0D/13
BEQ c¢r

\ if ¥=13 gote cr

56

DEC/A*

Decrement memory by one M=M-1
This instruction decrements the value contained in the specified memory
location.

The additional immediate addressing mode available on the 65C12
enables the accumulator to be decremented directly. The instruction DEC
A may be replaced by the synonym DEA on master series computers.

Processor Status after use

C (carry flag) : not affected

Z (zero flag) : set if memory contents become 0
I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command} : not affected

V (overflow flag) : not affected

N (negative flag) : set if bit 7 of the result is set
Addressing mode Bytesused Cycles Op. cade
accumulator* 1 2 " &3A
Zero page 2 5 &Cé
Zero page,X 2 6 &Dé6
absolute 3 6 &CE
absolute, X 3 7 &DE

Example : Decrement location &2900

DEC &2900 N\ T&2900=7&2900-1

57

DEX

Decrement X register by one

This instruction decrements the contents of the X register by one.

Processor Status after use

C (carry flag) : not affected

Z (zero flag) : set if X becomes 0

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) : set if bit 7 of X becomes set

Addressing mode Bytesused Cycles Op. code
implied 1 2 &CA
Example : Decrement X register

DEX N OX=X-1

58

X=X-1

DEY

Decrement the Y register by one

This instruction decrements the contents of the Y register by one.

Processor Status after use

C (carry flag) : not affected

Z (zero flag) :set if Y becomes 0

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) s set if bit 7 of Y becomes set

Addressingmode Bytesused Cycles Op. code
implied 1 2 &858
Example : Decrement Y register

DEY NoY=Y-1

59

Y=Y-1

EOR INC/A*

Exclusive OR A=A EOR M Increment memory by one M=M+1
This instruction performs a bit by bit Exclusive OR of the specified
memory location contents with the contents of the accumulator leaving
the result in the accumulator. The truth table for the logical EOR
operation is :-

This instruction increments the value contained in the specified memory
location.

The additional immediate addressing mode available on the 65C12
enables the accumulator to be incremented directly. The instruction TNC

Acc, Mem, Result A may be replaced by the synonym INA on master series computers.
bit bit bit
0 00 o0
(1) é } Processor Status after use
1 1 0 . . C (carry flag) : not affected
Z (zero flag) : set if memory contents become 0
Processor Status after use I (interrupt disable) : not affected
C {carry flag) : not affected . . D (decimal mode flag) : not affected
Z (zero flag) - set if A becomes 0 B (break command) : not affected
I (interrupt disable) : not affected v (overﬂ?w flag) : not affected
D (decimal mode flag) : not affected N (negative flag) : set if bit 7 of memory becomes set
B (break command) : not affected . .
V (overflow flag) : not affected Addressingmode Bytesused Cycles Op. code
N (negative flag) : set if bit 7 of A becomes set
. . accumulator** 1 2 &lA
. Zero page 2 5 &E6
Addressingmode Bytesused Cycles Op. code ZeT0 g aze,)(2 6 &F6
immediate 2 2 &49 . . absolute 3 6 &EE
zero page 2 3 &45 absolute,X 3 7 &FE
zero page,X 2 4 &55) .
(zero page)* 2 5 &52 . . Example : Increment location &80
absolute 3 4 &4D INC 580 \ ?580=7§80+1
absolute, X 3 4 (+1 if page crossed) &5D INC A \ A=R+l
absolute,Y 3 4 (+1if page crossed) &59 . . INA \ A=A+l
(indirect,X) 2 6 &41
(indirect),Y 2 5 (+1 if page crossed) &51
Example : EOR contents of memory with &FF . . ’
LDA #&FF %\ lecad accumulator with &FF
EOR t \ A=A ECR (7temp)
STA tgrmng \ relcad memoi?p . .
60 61

INX

Increment X register by one X=X+1

This instruction increments the contents of the X register by one.

Processor Status after use

C (carry flag) : not affected

Z (zero flag) : set if X becomes 0

I (interrupt disable} : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) : set if bit 7 of X becomes set

Bytesused Cycles Op. code

2 &ES8

Addressing mode
implied 1
Example : Increment X register

INX O X=X+1

62

INY

Increment the Y register by one Y=Y+1

This instruction increments the contents of the Y register by one.

Processor Status after use

C (carry flag) : not affected

Z (zero flag) : set if Y becomes 0

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) : set if bit 7 of Y becomes set

Addressing mode Bytesused Cycles Op. code
implied 1 2 &C8
Example : Increment Y register

INY N O¥=Y+1

63

JMP

Jump to new location PC = new address
This instruction is the machine code equivalent of a GOTO statement in
BASIC. An indirect addressing mode is available where the address for
the JMP is contained in memory specified by the address in the operand
field (see examples below).

The 65C12 also allows a pre-indexed absolute indirect addressing mode
to be used. Using this addressing mode a jump is made to an address
which is determined at run-time by adding the contents of the X register
to the contents of the two bytes pointed to by the address field.

Pracessor Status after use

C {carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag} : not affected
N (negative flag) : not affected

Addressingmode Bytesused Cycles Op. code
absalute 3 3 &4C
indirect 3 5 &6C
(indirect,X)* 3 6 &7C

Examples : A direct jump
JMP entry \ goto entry

An indirect jump (a contrived example)

LDa #&00 \ A=0

STA &2800 \ ?42800=A (address low byte)
LDA #440 \ A=&40

STA &2801 \ 2&2801=A (address high byte)
JMP (&2800) \ Jump to &4000

JSR

Jump Subroutine Push PC onto stack

PC = new address

This instruction causes a jump but also saves the current program
counter on the stack. The subroutine which is called returns to the part
of the program that called it by pulling the saved address from the stack
and jumping back to the instruction following the JSR. A subroutine
must always be terminated by an RTS instruction which performs the
return to the location from which the subroutine was called.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
[(interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code

absolute 3 6 &20
Examples : Using an 0S call

LDA #A3C"X"

J5R OSWRCH \ print "X" on screen

65

LDA

Load accumulator from memory

A=M

This instructon is used to set the contents of the accumulator to that
contained in a specified byte of memory.

Processor Status after use

C (carry flag)

Z (zero flag)

I (interrupt disable)
D (decimal mode flag) :
B (break command)
V (overflow flag)
N (negative flag)

Addressing mode

immediate
zero page
zero page,X

(zero page)**

absolute
absolute X
absolute,Y
(indirect,X)
{indirect),Y

Example : Load accumulator with ASCII value for "A”

MR WULWNRNN

LDA #ASCTAM

: not affected
:setif A=0
: not affected

not affected

: not affected
: not affected
: set if bit 7 of A set

Bytesused Cycles

=N W

4 (+1if page crossed)
4 (+1if page crossed)
6

5 (+1if page crossed)

\ A=653

66

Op. code

&AD
&AD
&B5
&B2
&AD
&BD
&B9
&Al
&B1

LDX

Load X register from memory

X=M

This instruction is used to set the contents of the X register to that

contained in a specified byte of memory.

Processor Status affer use

C (carry flag) : not affected

Z (zero flag) : set if X=0

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command} : not affected

V (overflow flag) : not affected

N (negative flag) : set if bit 7 of X set

Addressingmode bytesused cycles

immediate 2 2
ZeT0 page 2 3
Zero page,Y 2 4
absolute 3 4
absolute,Y 3 4 (+1if page crossed)

Example : Load X register with contents of location &80

L3X &BC N X=724&80

67

op. code

&AZ
&A6
&B6
&AE
&BE

LDY

Load Y register from memory Y=M

LSR

Logical Shift Right by one bit M=M/2
(or A)

This instruction is used to set the contents of the Y register to that

contained in a specified byte of memory. This instruction causes each bit in the memory location or accumulator

to shift one bit left. Bit 7 is set to 0 and the carry flag will be set to the old
contents of bit 0. The arithmetic effect of this is to divide the value by 2.

o= |7|6]|5|4]l3]|2]1|0|—®C

Processor Status after use

C (carry flag : not affected
Z (zero flag) :set if Y=0

I (interrupt disable) : not affected Processor Status after use

D (decimal mode flag) : not affected C (carry flag) : set to bit 0 of operand
B (break command) : not affected Z (zero flag) : set if result=0
V (overflow flag) : not affected I (interrupt disable) : not affected
N (negative flag) :setif bit 7 of Y set D (decimal mode flag) : not affected
B (break command) : not affected
Addressingmode Bytesused Cycles Op. code V (overflow flag) : not affected
N (negative flag) : cleared
immediate 2 2 &AOQ
Zerc page 2 3 &A4 .
zero page,X » 4 B4 Addressing mode Bytesused Cycles Op. code
absolute 3 4 &AC accumulator 1 2 &4A
absolute, X 3 4 (+1 if page crossed) &BC zero page 2 5 &46
Example : Load Y register with contents of location labeled 'data’ with zz;ilﬁfg’e'x g 2 ii%
an offset in X absolute,X 3 7 (+1 if page crossed) &5E

LDY data,X \ Y=?(data+X . . :
o Avat) Example : Shift accumulator contents right one bit

L3R A \ C=pit 0, A=a/2

68 69

NOP e€® ORA

No operation OR memory with accumulator A=A OR'M
This is a dummy instruction which has no effect on any memory or . . This instruction performs a bit by bit logical OR operation between the
contents of the accumulator and the contents of the specified memory

register contents except to increment the program counter by one.
and places the result in the accumulator. The truth table for logical OR

o0 -

gr?ccaerssco;'1 Status after use Acc. Mem. Result
ry flag) : not affected bit bit bit
Z (zero flag) : not affected . . 0 0 0
[(interrupt disable) : not affected 0 1 1
D (decimal mode flag) : not affected 1 0 1
B (break command) : not affected . . 1 1 1
V (overflow flag) : not affected
N (negative flag) : not affected
. Processor Status after use
Addressingmode Bytesused Cycles Op. code ‘ . C (carry flag) : not affected
implied 1 2 &EA 4 _(zero flag) _ : setif A=0
I (interrupt disable) : not affected
Example : A NOP instruction . . D (decimgl mode flag) : not affected
B (break command) : not affected
NOP % this instruction dees nothing . . V (overflow flag) : not affected
N (negative flag) :setif bit 7 of A set
. . Addressing mode Bytesused Cycles Op. code
immediate 2 2 &09
. . ZETO page 2 3 &05
zero pageX 2 4 &15
(zero page)* 2 5 &12
. . absolute 3 4 &Q0D
absolute, X 3 4 (+1 if page crossed) &1D
absolute,Y 3 4 (+1 if page crossed) &19
{indirect,X) 2 6 &01
. . {indirect),Y 2 5 (+1if page crossed) &11

Example : Set the top 4 bits of the accumulator

. . ORA ¥&FO % mask is 1111000, 1 OR anything=1

PHA

Push accumulator onto stack

Push A

This instruction places the value held in the accumulator onto the stack.
This value is accessible using the instruction PLA (pull A from stack).

Processor Status after use

PHP

Push Status register onto stack

Push P

This instruction places the value held in the status register onto the
stack. This value is accessible using the instruction PLP (pull P from

stack).

C (carry flag) : not affected Processor Status after use
Z (zero flag) : not affected C (carry flag) : not affected
I (interrupt disable} : not affected Z (zero flag} : not affected

D (decimal mode flag) : not affected

: not affected

I (interrupt disable)
D (decimal mode flag) : not affected
B (break cormnmand) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

B (break command)
V (overflow flag)
N (negative flag)

: not affected
: not affected
: not affected

Addressingmode Bytesused Cycles Op. code
i de Bytesused Cycles Op. code
implied 1 3 &48 Addressing mode By y P
impli 1 3 &08
Example : Save registers at the beginning of a routine implied

Example : See the example given for PHA above.

.entry EHP / save status register (see below)
PHA / save accumulator contents
TXA / A=X
PHA / save X register contents
TYA /A=Y
PHA / save Y register contents
/ rest of program
/ accumulator not preserved

72

73

PHX*

Push X register onto stack Push X
This instruction has been implemented on the 65C12 to enable the X
register to be placed on the stack directly. On the 6502 where this
instruction is not available the X register has to be transferred to the
accumulator before it can be saved. The addition of this command helps
in two ways. Routines which save the X register on the stack are shorter
and faster, as less instructions are required for this operation. It is no
longer necessary to make provisions to save the contents of the
accumulator if its value needs to be preserved.

Compare the example given below for saving the contents of registers
on the stack to the example given with the PHA instruction.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B {break command) : not affected
V (overflow flag) : not affected
N (negative flag) : not affected

Addressingmode Bytesused Cycles Op. code

implied 1 2 &DA

Example : Save registers at the beginning of a routine

.entry PHP / save status register (see below}
PHA / save accumulator contents
PHX / save X register contents
PRHY / save Y register contents
e / rest of program, all registers preserved

74

PHY?*

Push Y register onto stack Push Y

This instruction has been implemented on the 65C12 to enable the Y
register to be placed on the stack directly. On the 6502 where this
instruction is not available the Y register has to be transferred to the
accumulator before it can be saved. The addition of this command helps
in two ways. Routines which save the Y register on the stack are shorter
and faster as less instructions are required for this operation. It is no
longer necessary to make provisions to save the contents of the
accumulator if its value needs to be preserved.

Compare the example given below for saving the contents of registers
on the stack to the example given with the PHA instruction.

Processor Status after use

- C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command) : not affected
V (overflow flag) : not affected

N (negative flag) : not affected
Addressingmode Bytesused Cycles Op. code
implied 1 2 &5A

Example : Save registers at the beginning of a routine

.entry FHP / save status register (see below)
FPHA / save accumulator contents
FHX / save X register contents
PRY / save Y register contents
/ rest of program, all registers preserved

75

PLA

C {(carry flag)
Z (zero flag)
I (interrupt disable)

B {break command)
V (overflow flag)
N (negative flag)

implied 1

PLA
TARY
PLA
TAX
PLA
PLP
RTS

PPl e

Pull accumulator off stack
This instruction loads the accumulator with a value which is pulled from

the stack. This is usually a previous accumulator value which has been
saved on the stack using a PHA instruction.

Processor Status after use

: not affected
: set if A=0
: not affected

D (decimal mode flag) : not affected

: not affected
: not affected
: set if bit 7 of A set

Addressingmode Bytesused Cycles Op. code

4 &68

Example : Restore registers at the end of a routine

pull Y walue from stack
put it back in Y

pull X walue from stack
put it back in X

pull A valus from stack
restore status register
back to calling routine

76

PLP

Pull status register off stack Pull P

This instruction loads the status register with a value which is pulled
from the stack. This is usually a previous status register value which has
been saved on the stack using a PHP instruction.

Processor Status after use

C (carry flag)
Z (zero flag)

[(interrupt disable)
D (decimal mode flag) : bit 3 from stack
B (break command)

V (overflow flag)
N (negative flag)

: bit 0 from stack
: bit 1 from stack
: bit 2 from stack

: bit 4 from stack
: bit 6 from stack
: bit 7 from stack

Addressing mode Bytesused Cycles Op. code

implied

1

4 &28

Example : Restore registers at the end of a routine

PLY
PLX
FPLA
ELP
RTS

P i i

pull ¥ value from stack
pull X value from stack
pull & value from stack
restore status register
back to calling routine

77

PLX*

Pull X from stack Pull X
This instruction has been implemented on the 65C12 to enable the X
register to be removed from the stack directly. On the 6502 where this
instruction is not available the X register value on the stack has to be
transferred to the accumulator before it can be restored to the register.
The addition of this command helps in two ways. Routines which
restore the X register from the stack are shorter and faster as less
instructions are required for this operation. It is no longer necessary to
make provisions to save the contents of the accumulator if its value
needs to be preserved.

Compare the example given below for restoring the contents of
registers from the stack to the example given with the PLA instruction.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : set if X=0

I (interrupt disable) : not affected
D (decimal mode flag) : not affected
B (break command} : not affected
V (overflow flag) : not affected

N (negative flag) : set if bit 7 of X set
Addressingmode Bytesused Cycles Op. code
implied 1 2 &FA

Example : Restore registers at the end of a routine

FLY \ pull ¥ value from stack
PLX \ pull ¥ value from stack
PLA v pull A value from stack
BLP \ restore status register
RTS \ back to calling routine

78

PLY*

Pull Y from stack Pull Y

This instruction has been implemented on the 65C12 to enable the Y
register to be removed from the stack directly. On the 6502 where this
instruction is not available the Y register value on the stack has to be
transferred to the accumulator before it can be restored to the register.
The addition of this command helps in two ways. Routines which
restore the Y register from the stack are shorter and faster as less
instructions are required for this operation. It is no longer necessary to
make provisions to save the contents of the accumulator if its value
needs to be preserved.

Compare the example given below for restoring the contents of
registers from the stack to the example given with the PLA instruction.

‘Processor Status after use

C (carry flag) : not affected
Z (zero flag) s setif Y=0

[(interrupt disable} : not affected
D (decimal mode flag) : not affected
B (break command} : not affected
V (overflow flag) : not affected

N (negative flag) :setif bit 7 of Y set
Addressing mode Bytesused Cycles Op. code
implied 1 2 &7A

Example : See example for PLX instruction.

79

ROL

Rotate one bit left M=M*2, M0=C, C=M7
{A or M)

This instruction causes a shift left one bit. The bit shifted out of the byte,
bit 7, is placed in the carry flag. The contents of the carry flag are placed

in bit 0.
—765432104—04-|

Processor Status after use

C (carry flag) : set to old value of bit 7
Z (zero flag) : set if result=0

I (interrupt disable) : not affected

‘D (decimal mode flag) : not affected

B (break command) : not affected
V (overflow flag) : ot affected
N (negative flag) : set if bit 7 of the result is set

Addressing mede Bytesused Cycdles Op. code

accumulator 1 2 &2A
Zero page 2 5 &26
zero page, X 2 6 &36
absoclute 3 6 &2E
absolute, X 3 7 &3E

Example : Rotate accumulator contents one bit left
ROL A \ A=A rotated left

N.B. The carry flag state should be known before this operation is
performed.

80

ROR

Rotate one bit right M=M/2, M7=C,
C=M0 (A or M)

This instruction causes a shift right one bit. The bit shifted out of the
location, bit 0 is placed in the carry flag. The contents of the carry flag
are placed in bit 7.

716|5ta]3l2(1]|0|— C amm

Processor Status after use

C (carry flag) : set to old value of bit 0
Z (zero flag) : set if result=0

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) : not affected
V (overflow flag) : not affected
N (negative flag) : set if bit 7 of the result is set

Addressing mode Bytesused Cycles Op. code

accumulator 1 2 &b6A
zZero page 2 5 &66
zero page,X 2 6 &76
absolute 3 6 &6E
absolute, X 3 7 &7E
Example : Reverse the order of bits in a byte
.start STA &80 \ store byte in &80
LDX #8 \ set loop count to 8
.loop ROL &80 Y bit 7 of &80 to carry
ROR A \ carry to bit 8 of A
DEX \ decrement loop count
BNE loop \ if not 0 goto loop
RTS \ exit with A reversed

81

RTS

Return from subroutine Pull PC from stack

RTI

Return from Interrupt Status register and
PC pulled from stack

The RTS instruction is used to terminate the execution of a subroutine.
Any routine terminated in this way should be called using a JSR
instruction which places a return address on the stack. The top two stack
values are placed in the program counter and execution is resumed at
the point in the program after the JSR instruction. During a subroutine

This instruction is used to return from an interrupt handling routine.
Wh_en an interrupt occurs the current program counter and status
register are pushed onto the stack. These are restored by the RTI

instruction. i
the same number of items pushed on the stack must be removed before
the RTS instruction is reached if the subroutine is to return to the correct
address.
Processor Status after use
C (carry flag) : bit 0 from stack
Z (zero flag) : bit 1 from stack Processor Status after use

I (interrupt disable} : bit 2 from stack

g (deciqunal mode flag) : bit 3 from stack (Z: ((szgyﬂgg;oy) ?\g: zg‘;g:zg

\Vs (&f:rﬂg%nﬁgd) Ei: g gg? z::gt I (interrupt disable) : not affected

N (ive fl s D (decimal mode flag) : not affected
negative flag) + bit 7 from stack B (break command) : not affected

V (overflow flag) : not affected

Addressing mode Bytesused Cycles Op. code N (negative flag) : not affected

implied 1 6 &40

Addressing mode Bytesused Cycles Op. code
Example : Instruction at the end of an interrupt handling routine

implied 1 6 &60
e \ code dealing with the interrupt .
RTI \ back to what we were doing before. Example : Last instruction in a subroutine
P \ body of subroutine
RTS \ return to calling routine
82 83

SBC

Subtract memory from
accumulator with carry A,C=A-M-(1-C)

SEC

Set carry flag C=1

This instruction is used to set the carry flag. It should be used to set the
carry flag prior to a subtraction unless the carry flag has been

This instruction subtracts the contents of the specified memory from the deliberately left as a 'borrow’ from a previous subtraction.

accumulator contents leaving the result in the accumulator. If the carry
flag is used as a 'borrow’ source and if clear then an extra unit is
subtracted from the accumulator. This enables the 'borrow’ to be carried

over in multi-byte subtractions (see example below). Processor Status after use

C (carry flag) s set

Processor Status after use Z (zero flag) : not affected

C (carry flag) : cleared if a borrow occurs I (interrupt disable) : not affected

Z (zero flag) set if result=0 D (decimal mode flag) : not affected

[(interrupt disable) : not affected B (break command) : not affected

D (decimal mode flag) : not affected V (overflow flag) : not affected

B (break command) : not affected N (negative flag) : not affected

V (overflow flag) set if the sign of the result is wrong

N (negative flag) : set if bit 7 of the result is set Addressingmode Bytesused Cycles Op. code
Addressing mode Bytesused Cycles Op. code implied 1 2 &38
immediate 2 2 &E9 Example : Explicit setting of the carry flag
Zero page 2 3 &E5 SEC / c=1
zero page, X 2 4 &F5
(zero page)* 2 5 &F2
absolute 3 4 &ED
absolute, X 3 4 (+1if page crossed) &FD
absolute,Y 3 4 (+1if page crossed) &F9
{indirect,X) 2 6 &E1
(indirect),Y 2 5 (+1 if page crossed) &F1

Example : 16 bit value at locations &80 and &81 subtracted from 16 bit
value at locations &82 and &83, result at locations &82 and &83.

SEC \ ready for any 'borrow’

LDA &BO \ low order byte cof first value
SBC &B2 \ A=A-?&82 (bcrrow may occur)
STA &B2 \ place result in 582

LDA &81 \ high order byte of first value
SBC £33 \ A=A-&83-(-C)

STA %83 \ place result in &8&3

84 85

SED SEI

Set decimal mode D=1 Set interrupt disable flag I=1
This instruction is used to place the 6502 in decimal mode. It causes

This instruction is used to set the interrupt disable flag. When this flag is
arithmetic operations to be performed in BCD mode.

set maskable interrupts cannot occur. See interrupts chapter 8.

Note that the 65C12 as used on the master series computers uses an
additional clock cycle to perform arithmetic instructions in decimal

mode Compared Wlth the 6502_ Processor Sfah.ls after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable} : set

D (decimal mode flag) : not affected

See machine code arithmetic, chapter 3.

B (break command) : not affected
(I;r«::cesso;l St?tus after 1jlse ¢ stfocted . . V (overflow flag) : not affected
(carry flag » not altecte N (negative flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected . .
D (decimal mode flag) : set Addressing mode Bytesused Cycles Op. code
B {(break command) : not affected L -
V (overflow flag) : not affected . . implied 1 z &78
N (negative flag) : not affected Example : Disable interrupts
Addressingmode Bytesused Cycles QOp. code . . SEL \ Ko maskabie interrupts
implied 1 2 &F38
Example : Set decimal mode for arithmetic . .
SED “ BCD from now on
86 87

STA

Store accumulator contents in memory M=A

STX

Store X contents in memory M=X

This instruction is used to copy the contents of the accumulator into a

This instruction is used to copy the contents of the X register into a
memory location specified in the operand field.

memory location.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable) : not affected
D (decimal mode flag) : not affected

B (break command) : not affected B (break command) : not affected
V (overflow flag) : not affected V (overflow flag) : not affected
N (negative flag) : not affected N (negative flag) : not affected

Addressing mode Bytesused Cycles Op. code Addressingmode Bytesused Cycles Op. code

ZEro page 2 3 &85 Zero page 2 3 &86
zero page,X 2 4 &95 zero page,Y 2 4 &96
(zero page)* 2 6 &92 absolute 3 4 &8E
lut 3 4 &8D . .
25:21&2 X 3 5 &9D Example : Store X in location &80
absolute,Y 3 5 &99 STX §80 \ 76B0=X
(indirect,X) 2 6 &81
(indirect),Y 2 6 &91
Example : Store accumulator in location 'save' + Y offset
5TA save, Y \ 2 (save+¥)=2a
Fl
88 89

STY

Store Y contents in memory

This instruction is used to copy the contents of the Y register into a
memory location.

Processor Status after use

C {carry flag)

Z (zero flag)

I (interrupt disable)
D (decimal mode flag) :
B (break command)
V (overflow flag)
N (negative flag)

Addressing mode

Zero page
zero page,X
absolute

: not affected
: not affected
: not affected

not affected

: not affected
: not affected
: not affected

Bytesused Cycles

3
4
4

Example : Store Y in location &SFF(

STY &5FFO

N ?&5FF0=Y

90

Op. code

&84
&94
&8C

STZ*

Clear memory

M=0

This mnemonic is a synonym of the CLR instruction and assembles to
produce an op-code which stores a zero at the specified memory

locati

on.

Processor Status after use

C (carry flag)

Z (zero flag)

I (interrupt disable)

: not affected
: not affected
: not affected

D (decimal mode flag) : not affected

B (break command}
V (overflow flag)
N (negative flag)

Addressing mode

zero page
Zero page,x
absolute
absolute,x

W WM

: not affected
: not affected
: not affected

Bytes used Cycles Op. code

Example : clear page 4 of memory

.loop

LDX #&FF
5T2 §C4,X

DEX

BNE locp

3 &64
4 &74
4 &9C
5 &9E
Y, X=%FF
\ memory location=0
Y X=X-1
\ if not zerc, clear next location
N

rest of program

91

TAX

Transfer A to X X=A

TAY

Transfer Ato Y Y=A

This instruction is used to copy the contents of the accumulator to the X

register This instruction is used to copy the contents of the accumulator to the Y

register.

Processor Status after use Processor Status after use

C (carry flag) : not affected C (carry flag) ot affected
Z (zero flag) : set if X becomes 0 ¥ a8 L
I (interrupt disable) : not affected Z (zero flag) setif ¥ becomes {

I (interrupt disable} : not affected

D (decimal mode flag) : not affected D (decimal mode flag) : not affected

B (break command) : not affected

: B (break command) : not affected
x(overﬂ‘ow gag; : not i?{jf'ic;e‘} X is set V (overflow flag) : not affected
(negative flag) - :setifbit7 of Xisse N (negative flag) : set if bit 7 of Y is set

Addressingmode Bytesused Cycles Op. code Addressing mode Bytesused Cycles Op. code

implied 1 2 &AA implied 1 5 A8
Example : Transfer contents of Ato Y

Example : Transfer contents of A to X TAY \ v=a

TAX N X=RA

92

93

TRB* ®® gp:

Test and reset bits Test and set bits
This .instruction tlakes the complement of the accumulator and performs . . This instruction takes the accumulator value and performs a logical OR
a logical AND with the contents of the byte of memory determined by with the contents of the byte of memory determined by the address field.
the address field. The result is placed in the memory location. . . The result is placed in the memory location.

Processor Status after use Processor Status after use

C ((carry flag) : not affected . . C (carry flag) : not affected

Z (zero flag) : set if A AND memory =0 Z (zero flag) :setif A AND memory =0

I (interrupt disable) : not affected I (interrupt disable} : not affected

D (decimal mode flag) : not affected . . D (decimal mode flag) : not affected

B (break command) : not affected B {(break command) : not affected

V (overflow flag) : not affected V (overflow flag) : not affected

N (negative flag) : not affected . . N (negative flag) : not affected
Addressing mode Bytes used Cycles Op. code Addressing mode Bytesused Cycles Op. code
ZeTo page pi 5 &14 . . Zero page 2 5 &04
absolute 3 6 &1C absolute 3 6 &0C

94 95

TSX

Transfer S to X X=8

TXA

Transfer X to A A=X

This instruction is used to copy the contents of the stack pointer to the X

This instruction is used to copy the contents of the X register to the
register.

accumulator.

Processor Status after use

C (carry flag) : not affected

Z (zero flag) : set if X becomes 0
I (interrupt disable) : not affected

D (decimal mode flag) : not affected

Processor Status after use

C {(carry flag) : not affected

Z (zero flag) :set if A becomes 0
I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command)} : not affected B (break command} : not affected
V (overflow flag) : not affected V {overflow flag) : not affected
N (negative flag) : set if bit 7 of X is set N (negative flag) :set if bit 7 of A is set

Addressing mode Bytesused Cycles Op. code Addressing mode Bytesused Cycles Op. code

implied 1 2 &BA implied 1 2 &BA
Example : Transfer contents of 5 to X Example : Transfer contents of X to A

TSX \ X=8§ TXA \ A=X

96

97

XS

Transfer X to S

This instruction is used to copy the contents of the X register to the stack

pointer.

Processor Status after use

C (carry flag) : not affected
Z (zero flag) : not affected
I (interrupt disable} : not affected
D {(decimal mode flag) : not affected

B (break command) = : not affected
Vv (overﬂf)w flag) : not affected
N (negative flag) : not affected

Addressing mode Bytes used Cycles
implied 1 2
Example : Transfer contents of X to §

TXS N\ S=X

98

5=X

Op. code
&9A

TYA

Transfer Y to A A=Y

This instruction is used to copy the contents of the Y register to the
accumulator,

Processor Status after use

C (carry flag) : not affected

Z (zero flag) : set if A becomes 0

I (interrupt disable) : not affected

D (decimal mode flag) : not affected

B (break command) : not affected

V (overflow flag) : not affected

N (negative flag) :set if bit 7 of A is set

Addressingmode Bytesused Cycles Op. code
implied 1 2 &98
Example : Transfer contents of ¥ to A

TYA N A=Y

99

6 Introduction to the OS

The operating system is a complex piece of software designed to
provide a consistent and comprehensive range of routines servicing the
computer hardware.

Calls to the operating system allow characters to be sent to the screen,
key strokes to be read from the keyboard, data to be down the serial
port, ete. etc.

The operating system software is programmed into ROMs which
occupy the top 16 Kb of the 6502 memory map from &C000 to &FFFF
(bar a gap for memory mapped i/0). In any of the example programs in
this book, calls are made to the operating system by calling sub-routines
within this memory. A typical call to write the letter "A’ to the screen
might look like this.

\ ASCIT code for 'A' is 83
\ 0S write character routine

LDA #65
JSR &FFEE

Many operating system routines make use of vectors stored in RAM.
These vectors are words of RAM (two-bytes) reserved for storing the
address of a particular routine. When a vectored OS call is used, the
first action of the operating system routine is to jump to the address held
in the vector. Thus the code in the OS write character routine used in the
example above looks like this :

JMP (&020E} \ &20E + &20F contair the address &E822

{note that &E822 is the address placed in the vector by the Master OS,
different values will be found in this vector on other microcomputers in
the Acorn BBC series)

The non-vectored write character routine in contrast looks like this:

JMP SE822 % the body of the routine is at &EE22

Clearly the non-vectored write character routine will take less time to
execute but the existence of a vector stored in RAM enables the
interception of the operating system routine by a different routine. This
is of particular benefit where different filing systems may be used for
floppy disc drives, tape recorders or ROM cartridges. As each filing
system is selected, the filing system vectors may be altered to point at
the relevant filing system software. Thus programs which use the filing
system facilities will work similarly no matter which filing system is
selected. The operating system calls which load and save files will
remain unchanged but the actual body of the routines which perform the
work will depend on the address stored in the vector.

100

The addresses of the vectors used by each of the operating system
routines are given in the sections below. Other vectors used to provide
to allow access to facilities such as interrupts or buffer handling are
described in the appropriate chapters.

A well designed operating system consists of a limited number of sub-
routines, the actions of which are determined by parameters passed to
those sub-routines. The format of data passed to the operating system
calls should be consistent, as should the behaviour of the calls and the
return of data.

Subsequent versions of an operating system should provide the same
facilities as previous operating systems while allowing the use of new
facilities using the same type of calls. Good initial design allows for
continuous improvement and expansion with little disruption to the
original design. Applications software which uses operating system calls
correctly should continue to run with later operating system versions.

101

6.1 Operating System Calls

OS Routine | OS Vector | Summary of function
Name | Address | Name |Address
USERV | &200 the User vector
BRKV &202 | the BRK vector
1RQ1Y 8204 | Primary interrupt vector
1RGQ2V &206 | Unrecognised IRG vector
QSCLI &FFF7 CLIV 4208 | Command line interpreter
OSBYTE | &FFF4 BYTEV | &20A | *FX/QOSBYTE call

OSWORD | &FFF1
OSWRCH | &FFEE
OSNEWL &FFE7
QOSASCI &FFE3 - -
OSRDCH | &FFEQ RDCHV | &210
QOSFILE &FFOD FILEV &212

WORDV | &20C | OSWORD call
WRCHV | &20E | Write character to output stream

- - Write LF,CH to screen
Write character, &0 gives CR and LF
Get character from input stream
L.oad/Save file

OSARGS | &FFDA | ARGSY | 8214 | Load/Save file parameters
OSBGET | &FFD7 BGETV | &216 | Get byte from file
OSBPUT | &FFD4 BPUTV | &218 Put byte to file

GSGBPB | &FFD1 GBPBV | &21A | Muliiple BPUT/BGET

OSFIND &FFCE FINDV &21C | OpeniCiose file

FSCV &21E | Filing system centrol entry vector
EVNTV | 8220 Event vecior

UPTV 8222 User print vector

NETV &224 Econet vactor

VDUV &226 | Unrecegnised VDU cemmand vector
KEYV | &228 | Keyboard vector

INSV &22A | Insert character into bufler vector
REMV &22C | Remove character from buffer vector
CNPY &22E | Count/Purge buffar vector

IND1V 8230 | Spare vecior

IND2V 8232 | Spare vector

IND3Y &234 | Spare vector

NYWRCH | &FFCB - Non-vectored read character
NVRDCH &FFCB - - Nen-vectored write character
GSREAD | &FFC5 - - Read character from stting

GSINIT &FFC2 - - String input initialise

QOSEVEN &FFBF - - Generate an event

OSRDSC | &FFBS - - Read byte from screen or 'paged ROM'
OSWRSC | &FFE3 - Write byte to screen or ‘paged ROM’

All operating system calls take their primary parameter in the
accumulator. Secondary parameters, when required are passed in the X
and Y registers. If more data is required for the execution of an
operating system call then this data is stored in 2 block of memory
known as a parameter block, the address of which is passed in the X and
Y registers (least significant byte of the address in X, most significant in
Y).

The following sections contain a brief description of the general function
of each operating system call. Where appropriate detailed call
descriptions are contained in chapters covering the relevant system. So
OSBYTE calls dealing with the video system are descrited in chapter 13
while the general output calls are included below.

102

The operating system calls may be divided into four broad functional
groups:

170 routines
OSBYTE/QOSWORD
Filing system routines
miscellaneous functions

6.2 1/0O routines

The operating system calls which implement input/ output‘facilitifes are
described below. A description of the OS calls concernec! with .the i/o
buffers is included in chapter 9. Keyboard specific calls, including the
function keys and cursor editing control, are described in chapter 14.
Printer handling routines are covered in chapter 24.

6.2.1 OSWRCH : Write character routine

Call address &FFEE
Indirected through &20E

Implemented on all Acorn BBC microcomputers.

This routine outputs the character in the accumulator to the currently
selected input streamds).

While the indirection vector may be used in a 6502 second processor, it
should be noted that OSWRCH calls generated in the i/o processor are
not passed across the tube e.g. filing system messages.

On exit:
A, X and Y are preserved.
C, N, V and Z are undefined.
The interrupt status is preserved (though interrupts may
be enabled during a calD).

6.2.2 Non-vectored OSWRCH

Call address &FFC8

This routine is implemented on ali Acorn BBC microcomputers but is not
available to software running on a 6502 second processor.

This call uses the same code as the default OSWRCH routine. It has no
indirection vector and its general use is not recommended.

103

6.2.3 OSNEWL Write a new-line routine

Call address &FFE7
Not indirected

This call is implemented on all Acorn BBC microcomputers.

This routine writes a carriage return (&D/13) and a line feed (&A /10) to
the current output stream(s) using OSWRCH.

On exit:
A=&0D (13)
Xand Y are preserved.
C, N, V and Z are undefined.

D Interrupt status is preserved (though it may be enabled during a
call).

6.2.4 OSASCI Write character routine,

OSNEWL called
if A=&0D (13).

Call address &FFE3
Not indirected

This call is implemented on all Acorn BBC microcomputers.

This is a write character routine which outputs a carriage return and a

line feed if passed a carriage return character (&D/13) in the
accumulator.

On exit:
A, Xand Y are preserved.
C, N, V and Z are undefined.

Interrupt status is preserved (though interrupts may be
enabled during a call). 8 F g

Information about the output effects resulting from the character values
passed to these OS routines is given in the Video chapter (13).

104

6.2.5 Selecting the input stream

Select input stream OSBYTE call

In the Electron any call with X<>0 will result in and unknown OSBYTE
service call being made to the paged ROMs unless a previous such was
recognised and thus changed the input source.

Call address &FFF4
Indirected through &20A

Entry parameters:
A=&02
X determines input source(s)

X=0 keyboard selected, R5423 disabled (*FX2,0)
X=1 RS423 selected and enabled (*FX2,1)
X=2 keyboard selected, R5423 enabled (*FX2,2)

Default: X=1

Read input source flag OSBYTE call
A=&B1(177)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X)

This flag value should be 0 for keyboard input and 1 for R5423 input (i.e.
contains buffer number) and is used by the OSBYTE above. This call
should not be used to alter the input source as writing the flag does not
enable the relevant interrupts.

6.2.6 OSRDCH Read character routine

Call address &FFEQ
Indirected through &210

Implemented on all Acorn BBC microcomputer operating systems.

This routine reads a character from the currently selected input stream
and returns it in the accumulator,

While the indirection vector may be used in a 6502 second processor, it
should be noted that OSRDCH calls generated in the i/o processor are
not passed across the tube.

105

On exit:
C=0 indicates that a valid character has been read.
C=1 indicates that a character has not been read due to a error.

If an error should occur acknowledgement of the error condition should
be made.

Xand Y are preserved.
N, V and Z are undefined.

The interrupt status is preserved (though interrupts may be enabled
during a call).

6.2.7 Non-vectored OSRDCH
Call address &FFC8

This routine is implemented on all Acorn BBC microcomputers but is not
available to software running on a 6502 second processor.

This call uses the same code as the default OSRDCH routine and has no
indirection vector. Its general use is not recommended.

6.2.8 Read line from input OSWORD call

Call address &FFF1
Indirected through &20C

On entry,
A=0
X contains low byte of the parameter block address.
Y contains high byte of the parameter block address.

This routine takes a specified number of characters from the currently
selected input stream. Input is terminated following a RETURN or an
ESCATE. DELETE (&7F/127) deletes the previous character and CTRL
U (&15/21) deletes the entire line. If characters are presented after the
maximum line length has been reached, the extra characters are ignored
and a BEL (ASCII 7) character is output.

106

The parameter block :-

XY + Buffer address for input - LSB
Buffer address for input - MSB

o
i
2 1 Maximum line length
3
4

Min. accaptable character value
Max acceptable character value

Only characters greater or equal to XY+3 and less than or equal to XY+4
will be acceptad.

On exit:
C=0 if a carriage return terminated input.
C=1 if an ESCAPE condition terminated input.
Y contains line length, including carriage return if used.

6.2.9 GSINIT General string input

initialise routine.

Call address &FFC2

This routine is implemented on all the Acorn BBC microcomputers but is
not available in the Tube operating system.

This routine initialises a string for input prior to reading using
GSREAD.

Entry parameters: .
String address stored in &F2 and &F3 plus offset in Y

On exit:
Y contains the offset of the first non-blank character
from the address contained in &F2 and &F3.
A contains the first non-blank character of the string

Z flag is set if the string is a null string

107

6.2.10 GSREAD Read character from

string input routine.

Call address &FFC5

This routine is used to read characters from an input string after a
GSINIT call. Control codes and non-ASCII values may be introduced by
using an escape character, '|'. The escape character followed by a letter
gives the ASCII value minus 64 (&40). The escape character followed by
a '!I' character gives a value of 128 (&80} plus the value of the following
character. An escape character followed by itself gives the escape
character.

Entry parameters:
&F2, &F3 and Y set by GSINIT

C=0 String terminated by first space, carriage return
or second quotation mark.

C=1 String terminated by carriage return or second
quotation mark. ‘

On exit:
A contains the character read from the string.
Y contains the index for the next character to be read.
C=1 if the end of string is reached.
X is preserved.

6.2.11 Selecting the output stream

Select output stream OSBYTE call

Call address &FFF4
Indirected through &20A

If RS423 output is selected in the Electron, paged ROM service calls are
issued and in the absence of a suitable response this output is sunk. The
same applies to printer output if selected.

Bit 3 should not be used to enable the printer as this may conflict with
the Econet protocol of claiming the printer.

In the BBC O5 1.20, control characters will be passed to the printer
(even when disabled) when the VDU is disabled.

108

Entry parameters:

A=3
X determines output device(s)
Y=0
Xbit o/p selected if bit is set
0 Enables RS423 driver
1 Disables VDU driver
2 Disables printer driver
3 Enables printer, independent of CTRL B or C
4 Disables spooled output
5 Not used
6 Disables printer driver unless the character is
preceded by a VDU 1 (or equivalent)
7 Not used
*FX 3,0 selects the default output options which are :
RS423 disabled
VDU enabled

Printer enabled (if selected by VDU 2)
Spooled output enabled (if selected by *SPOOL)

On exit:
A is preserved
X contains the old output stream status
Y and C are undefined

Read/write output stream flag OSBYTE call
A=&EC (236)Read /write output stream flag OSBYTE call

Call address &FFF4
Indirected through &20A

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X)

This call may be used to access the flag used by the OSBYTE call
described above.

6.3 OSBYTE & OSWORD calls

These two operating system calls are the real work horses of the
operating system. They provide a standard protecol for controlling
virtually all hardware facilities.

The principal parameter of both calls is the eight bit value passed in the
accurnulator. This value determines the action of the call allowing a

109

total of 256 variants of each call. OSBYTE and OSWORD calls are
identified by the value passed in the accumulator. For example the
OSBYTE call which selects serial or parallel printer output is performed
by calling &FFF4, the address of the OSBYTE routine, with an
accumulator value of 5. It is generally referred to as OSBYTE &05. The
OSBYTE calls are also accessible using the *FX command via the
command line interpreter. Selection of the printer port using this
method can be achieved by typing *FX5,1 or *FX5,2

6.3.1 OSBYTE call

Call address &FFF4
Indirected through &20A

This is an operating system routine performing a wide range of tasks.
Three eight bit parameters are provided in the A X and Y registers. Any
results are returned in the X and Y registers. Some OSBYTE calls also
return significant information via the carry flag of the status register.

Entry parameters:
A selects the OSBYTE routine
X contains the first parameter
Y contains the second parameter

On exit:
A is preserved
X may contain the first returned value
Y may contain the second returned value

OSBYTE calls may also be executed by passing the string "FX,x,y" to the
command line interpreter where the first decimal value 'x" is placed in
the X register and the second decimal value 'y’ is placed in the Y register.
No values can be returned from OSBYTE calls executed in this manner.

OSBYTE calls made with accumulator values between &A6(166) and
&FF(255) are used to read or write operating system status flags or
variables. The action of these calls is to replace the contents of the
specified location with :

(<OLD VALUE> AND Y) EOR X
To read a location set X=0 and Y=&FF
To write a location set X=<value> and Y=0

Many of these calls repeat the function of lower value OSBYTEs (these
equivalent calls are not guarantied to have an identical effect when used

110

to set flags or OS variables because other actions may also be
performed by the lower value OSBYTE). Some OSBYTE calls have little
or no practical value and are included for completeness.

OSBYTE calls unrecognised by the operating system are offered to the
paged ROMS using a service call of value &07 with the A, X and Y
register values stored in zero page locations &EF, &F0 and &F1
respectively.

6.3.2 OSWORD call

Call address &FFF1
Indirected through &20C

The OSWORD call performs a wide range of tasks. Different
OSWORD routines are selected by calling the routine with different
values in the accumulator. The X and Y registers contain the address of
a parameter block which may be used to pass an unlimited number of
parameters to the routine. Parameters are returned in a block of
memory at the same address.

Entry parameters:
X contains least significant byte of the parameter block address
Y contains most significant byte of the parameter block address

Exit parameters:
Placed in memory at the address specified by the entry parameters

Unknown OSWORD calls in the range &EQ - &FF are passed to the
user vector (USERV, &200}. Other unknown OSWORD calls are passed
to the paged ROMs using a paged ROM service call with A=&08. The A,
X and Y register values are stored in zero page locations &EF, &F0 and
&F1 respectively.

A word of warning to any programmer intercepting unknown
OSWORDs greater than &80 in paged ROMs. There is a problem in
machines containing DFS 0.90. This version of DFS (found in BBC
model B micro’s only) intercepts any unknown OSWORD in this region
and assumes it is OSBYTE &7F.

111

6.4 Filing System Calls

The following calls are used to provide filing system utilities:

OSFILE &FFDD (FILEV &212)
OSARGS &FFDA (ARGSV &214)
OSBGET &FFD7 (BGETV &216)
OSBPUT &FFD4 (BPUTV &218)
OSGBPB &FFD1 (GBPBV &21A)
OSFIND &FFCE (FINDV &21C)
Filing system control entry (FSCV &21E)

These calls are described in the filing systems chapter. ‘

6.5 Miscellaneous OS calls

These miscellaneous functions are performed by the calls described
below.

Entry parameters:
X and Y contain the address of the command string (X=LSB}
(the command string must be terminated by a carriage return)

On exik:
All registers and status flags are undefined.
(return to the calling routine may not occur in all cases)

6.5.1 OSCLI

Call address &FFF7
Indirected through &208 (CLIV)

OSCLI passes a string of text to the command line interpreter (CLI).
The CLI is routine which interprets the *commands and acts
accordingly. Normally *commands are typed at the keyboard as part of
a BASIC command. On the Master series computer the CLI can be
entered directly following a *GO command (with no parameters) or by
disabling all language ROMs. This routine provides a method of
executing *commands from machine code. The effects are the same as if
the command had been issued from the keyboard.

112

6.5.1 OSRDSC

Call address &FFB9
Not indirected

This call, previously christened OSRDRM in the original 'Advanced
User Guide’ is used to read the screen or paged ROM memory. This call
is not available from second processors.

Entry parameters:
Least significant byte of the address to be read in location &¥F6
Most significant byte of the address to be read in location &F7
Y= ROM number

On Exit:
A contains the byte read.

6.5.2 OSWRSC

Call address &FFB3
Not indirected

Entry parameters:
Least significant byte of the address to be read in location &Dé
Most significant byte of the address to be read in location &D7
A=value to be written

On Exit:
A, Xand Y are preserved.

This call is not available from second processors.

6.5.3 OSEVEN

Call address &FFBF
Neot indirected

This call is used to generate an event subject to that event having been
enabled using OSBYTE &O0E (14). Events are described in chapter 7.

Entry parameters:
Y=event number
EVNTYV is entered with
X is preserved
A=event number
Y=original accumulator value.

113

This call is not implemented on second processors.

6.6 OS allocation and use of memory

The following diagram illustrates the operating system's use and
allocation of RAM.

&0000
&0100
&0200
&0300
20400

&0B0O

&0900

EQA0D
%0800
&0C00
&0D00
&0T00

CSHWM

HMEM

&8000

6.6.1 Page zero allocations

Zero page - var. allocations

Stack {+ BRK handing) &B00 - &483F | Sound workspace
55 workspace - var, allacations &840 - &84F | Sound channel 0 buffer
- &850 - &85F | Sound channel 1 buffar
VDU and CFS workspace %060 - 886F | Sound channel 2 bufier
%870 - 887F | Sound channel 3 buffer
Language workspace 8880 - 88BF | Printer buffer
Tube code &BCO- &8FF | Envelope storage 1- 4
Sound workspace 2900 - &9BF | Env. storage or buffer
CFS/RS423/Spesch ofp buffer &9C0 - &8FF | Speech or CFS buffer
CFS/RS4Z3 ifp bufter %B00- &B10 | Soft key pointers
Soft key storage 85711 - &BFF| Soft key definitons
Character definitions (128-159)
NMI/Econet workspace &D00 - &D5F | NMIhancling code
&D60-&07F | Econet workspace
&D80-&091 | Unused
Paged ROM workspace 8092 -800E | Reserved for trackerball
&D9F - 4DEF| Extended vector table
&DFO - 8DFF| ROM workspace bytes
User memory Master series compulers
S &BO0 - &CFF] Econet workspace
&B01 Econet station number
&B02 | Fileserver station no.
&B03 | Fileserver network no.
Screen memory &B18 | Printer server type string

(non-shadow rmodes)

Zero page memory is a valuable commodity in a 6502 based
microcomputer as a number of useful addressing modes can only use

this page of memory. Zero page has been allocated according to the
scheme described in the following diagram.

[_add! memoty usage

&00
&8F

Language work space

&80
&9F

Econet work space

&AD
&AT

NI work space

4AB
&AF

0S5 temp work space

&B0
&BF

FS temp work space

&C0
&CF

Filing system work space

&D0
&E1

VDU work space

&E2

CF5/RFS status byte

&E3

CFS/AFS options byte

&E6

RE4

General 05 work space

&E7

Auto repeat countgown byte

&E8
&E9

OSWORD &00 inpul painfer

&EA

Serial timeout counter

&E8

CFS/RFS ‘wiilical’ llag

&EC

Last key press {int. key. ng.)

&ED

Penuilimate key press (ink. key no.)

&EE

1MH2 paging register

&EF

QSBYTE/OSWORD Accumulator val.

&F0

OSBYTE/QOSWORD X register valug

&F1

OSBYTE/OSWORD Y register value

&F2
&F3

Command line pointer (with Y register}

&F4

Copy of ROM select regisier

&F5

Speech PHROM/ARFS ROM number

&F6
&F7

PHROM/RFS ROM pointer

&F8
&F9

Soft key expansion ptr (Compact ondy)

&FA
&FB

General OS workspace

&FC

Accumulator storage during interrupts

&FD
4FE

Program counter after Jast BRK

&FF

Escape flag {bil 7 oniy}

115

&70
&8F

User zero page (BASIC)

&Do

STATS - VDU status byte

&D1

ZMASK - current graphics paint mask

&D2

ZORA - text colour OR mask

&D3

ZEOR - text colour EOR mask

&D4

Graphics colour OR mask

&D5

Graphics celour EOR mask

&4D6
&D7

Graphics character cell address

408
&D9

Text character ¢ell address

&DA
&DB
&DC
&DD
&DE
&0F

temporary VOU work space
ZTEMP, ZTEMPA, ZTEMPB

&EQ
4E1

Ptr to mult. tables (not Master series)

6.6.2 General OS workspace &200-&2FF

Page two of memory is used for a number of miscellaneous operating
system functions. The table below contains much information which is
unofficial and should therfore be used with caution.

| add.| memory usage

i

&200
4235

Operating system vectors

&236
&28F

0§ variables (OSBYTEs &AS - &FF)

4290

TV vert. adjust (OSBYTE &40}

4291

TV inlerlace setting (OSEYTE 890)

4292
§296

TIME value - first copy

&297
$29B

TIME value - second copy

4z29C
&2A0

Intarval timer value (OSWORD 3+4)

&2A1
&280

Paged ROM table (OSBs 2AA/AR)

&2B81
&2B2

INKEY countdown counter

&2B3
&2B5

OSWORD 800 work space

4206
42B¢

LSBs of most recent ADC conversions

&2BA
&2BD

M88s of most recent ADC conversions

82BE

Last ADC channet ko finish conversion

&28F
&2C8

Event enable flags {OSBYTE &D/&E)

Differences in Master series computers

§2C9

Soff key exp. plr. (net Master series)

&2CA

Auto repeat count for next key

&2CE
82C0

Two key rollaver work space

32CE

Sound semaphore

42CF
&2D7

Eutter busy flags

&208
42E0

Butter offset - current removal pointer

&2E1
&2E8

Buffer offset - current insertion pointer

82EA
&2EB

CFS open ip file current block size

&2EC

CFS open ifp file current block flag

&2ED

CFS iip file last char. of current block

&2C9

Auto repeat court for next key

42CA
&2CC

Two key rollover work space

&2CD

Sound semaphone

82CE
g208

Butfer busy flags

&207
&2DF

Buffer offset - current removal pointer

42E0
&2E8

Buffer offset - current insartion pointer]

&2E9
32EA

CFS open ifp file current block size

&2EB

CFS open ifp fle eurrent block flag

&2EC

CF$ iip file last char. of current block

&2ED

Unused byle

&2EE
&2FF

OSFILE ctnl, Blocks lar “LOAD/SAVE

116

6.6.3 OS memory OSBYTE calls
Read top of operating system RAM address (OSHWM)

Call address &FFF4
Indirected through &20A
A=&83 (131)

This call returns the address of the first byte of main memory that has
not already been allocated by the operating system for its own use or
allocated for use by paged ROMs. This value is called the operating
system high-water mark (OSHWM). The low byte of the address is
returned in X, the high bytein Y.

Read or write OSHWM

Call address &FFF4
Indirected through &20A
A=&B4 (179)

This call may be used to read or modify the value which the operating
system uses as OSHWM. This value is the MSB of a 16 bit address
which is always on a page boundary.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
Read or write primary OSHWM

Call address &FFF4
Indirected through &20A
A=&B3 (178)

The primary OSHWM is a value representing the top of operating
system memory regardless of the state of the user font definitions. On
the Master series computers, where the state of the font does not affect
this value, this OSBYTE is used to access the paged ROM 100Hz polling
semaphore.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

For other OSBYTE calls returning information about memory settings
see chapter 12,

117

Read or write OS call interception status OSBYTEs

Call address &FFF4
Indirected through &20A
A=&CE (206)A=&CF (207)
A=&D0((208)

<NEW VALUE>=(<CLD VALUE> AND Y) EOR X

These three calls return the bytes which are used as flags to indicate
which operating system calls have been intercepted by the NFS. The top
bit of each byte is used as the flag. If bit 7 is set, then all calls to the
relevant routines are routed through the Econet vector (&224). OSBYTE
&CE returns the status of the OSBYTE and OSWORD vectors,
OSBYTE &CF returns the status of the OSRDCH vector and &D0
returns the status of the OSWRCH vector.

Read or write address of OS variables

Call address &FFF4
Indirected through &20A
A=&A6 (166)A=8&A7 (167)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

These two calls return the start address of the memory used by the
operating system to store its internal variables.

118

7 Events

Events are a mechanism whereby certain interrupts are passed on for
easy trapping by the user. The user is thus able to append his or her own
routines to react to certain events without the difficulties involved in
normal interrupt handling.

7.1 The event vector, EVNTV

Indirection address &220

This vector is called by the operating system during its interrupt routine
to provide users with an easy to use interrupt. A number of events may
cause the event handling routine to be called via this vector but unlike an
interrupt, the reason for the call is passed to the routine. The value in
the accumulator indicates the type of event:

Event No. Cause of Event

0 cutput buffer becomes empty
input buffer becomes full
character entering input buffer
ADC conversion complete
start of VSYNC
interval timer crossing zero
ESCAPE condition detected
RS4Z23 error detected
Econet event
User event

W o =] G N B ow hay —

The event handling routine should not enable interrupts and not last for
more than about 2 milliseconds. So that event handling routines may be
daisy chained they should preserve registers and return using the old
vector contents. i

119

Output buffer empty 0

This event enters the event handling routine with the buffer number (see
chapter 9) in X. It is generated when a buffer becomes empty (i.e. just
after the last character is removed).

Input buffer full 1

This event enters the event handling routine with the buffer number (see
chapter 9} in X. It is generated when the operating system fails to enter a
* character into a buffer because it is full. Y contains the character value
which could not be inserted.

Character entering input buffer 2

This event is normally generated by a key press and the ASCII value of
the key is placed in Y. It is generated independently of the input stream
selected.

ADC conversion complete 3

This event is generated when an ADC conversion is completed on a
channel. The event handling routine is entered with the channel number
on which the conversion was madein Y.

Start of vertical sync 4

This event.is generated 50 times per second coincident with vertical
sync. One use of this event is to time the change to a 6845 or video ULA
register so that the change to the screen occurs during fly back and not
while the screen is being refreshed. This avoids flickering on the screen.,

Interval timer crossing zero 5

This event uses the interval timer (see OSWORD calls &3 and &4,
chapter 19). This timer is a 5 byte value incremented 100 times per
second. The event is generated when the timer reaches zero.

120

ESCAPE condition detected 6

When the ESCAPE key is pressed or an ESCAPE is received from the
RS5423 (if R5423 ESCAFPEs are enabled) this event is generated.

RS423 error event 7

This event is generated when an R5423 error is detected. It is entered
with the 6850 status byte shifted right by one bit in the X register and the
character received in Y.

Network error event 8

This event is generated when a network event is detected. If the net
expansion is not present then this could be used for user events.

User event 9

This event number has been set aside for the user event. This is most
usefully generated from a user interrupt handling routine to enable
other user software to trap an interrupt easily (e.g. an event generated
from an interrupt driven utility in paged ROM). An event may be
generated using OSEVEN, see section 7.3.

7.2 Enable/disable event OSBYTE calls

Call address &FFF4
Indirected through &20A
A=&E (14) - enable event
A=&D (13) - disable event

Entry parameters:
X contains the event number, Y=0

On exit:
A is preserved
X contains the old enable state
{0=disabled, >0=enabled)
Y and C are undefined

121

7.3 OSEVEN, generate event routine

Call address &FFBF
No indirection address

This routine has been implemented on the BBC microcomputer and the
Electron but is not available to software running on a second processor.
The user event may be generated using this routine.

Entry parameter:
Y=event number

On exit:
C=0, if and only if the event was enabled

7.4 An example using events.

The program listed below uses event number 2, the character entering
input buffer event. This event is often referred to as the keyboard event
because input is taken from the keyboard by default.

10 OSWORLD=&FFF1

20 EVNTV=&220

30 DIM MC% 100

40 DIM scund pars 8
50 FORI=0 TO 3 STEP3
60 P%=MC%

70 [

80 CPT I

90 PHP

100 PHA

110 TXA

120 PHA

130 TYA

140 PHA \ save registers

150 STY sound _pars+4 \ S0QUND pitch=key ASCII value
160 LDX #scund pars AND 255

170 LDY #sound_pars DIV 256

180 LDA #7

130 JSR OSWORD \ perform SOUND command
200 PLA
210 TAY
220 PLA
230 TaX
240 PLA
250 PLP \ restore registers
260 RTS % return frem event handler
270)
280 NEXTI
29%0 7EVNTV=MC% AND &FF

300 EVNTV?1=MC% DIV &100

310 !sound pars=&FFF50001

320 sound pars!4=&00010000 :REM set up SCOUND 1,-11,x,1

122

330 *FX 14,2
34¢C :REM enable keyboard event

When this program has been run, each key press causes a sound to be
made in addition to its normal effect. The pitch of this sound is
dependent on the key pressed. This event handling routine does not
check the identity of the event calling it and so enabling events other
than the keyboard event may have some curious consequences.

123

8 Interrupts

An interrupt on an Acorn BBC series micro is much the same thing as an
interrupt to a person. Consider the analogy of a man working at his
desk writing a letter (a foreground task). Suddenly the phone rings (an
interrupt); the man then stops his writing and answers the phone
{(servicing the interrupt). Having answered the phone the man then
returns to writing his letter where he left off.

In the BBC microcomputer the main objective or foreground task is
running the currently selected language such as BASIC or a ROM based
application like a word processor. Interrupts are generated 100 times a
second by a clock within the system VIA chip. This regular interrupt
enables the operating system to perform background tasks such as
modifying the current SOUND in accordance to its ENVELOPE
definition and incrementing the TIME value. An interrupt is also
generated each time a key is pressed so that the operating system can
insert the key value into the type-ahead input buffer.

Interrupts are generated by a number of hardware devices which
require immediate attention by their servicing software. On the 6502
microprocessor there are two types of interrupts, maskable and ron-
maskable. The maskable type of interrupt can be prevented from
occurring by setting the disable interrupts flag (using a CLI instruction).
A non-maskable interrupt (NMI} on the other hand is never ignored and
as such is reserved for hardware devices that always require immediate
attention like a network or a hard disc. For more information about
NMIs see memory allocation chapter 12 and paged ROM service calls
section 17.4.1.

An interrupt is physically generated by a signal being sent to one of the
pins on the 6502 by a device which requires attention. The 6502 then
finishes the execution of its current instruction, saves the status register
and the program counter on the stack (ready for an RTI instruction) and
JMPs (jumps) to a fixed location using vectors contained in the
operating system ROM. When a maskable interrupt is received {on the
IRQ pin) and the interrupt disable flag is not set a JMP (&FFFE) is
performed. When a non-maskable interrupt is received (on the NMI pin)
a JMP (&FFFA} is performed, regardless of the state of the interrupt
flag. A maskable interrupt can be generated by software which executes
a BRK instruction. The interrupt handling routine can distinguish a BRK
interrupt by examining the BRK flag in the status register.

124

8.1 Non Maskable Interrupts

In the case of an NMI being received, the address at &FFFA points to
&D00 which is an area of RAM reserved for the immediate NMI
handling routine. This routine may then continue in a paged ROM. The
NMTI is not used on unexpanded machines but is used by the Econet and
Disc filing systems and their hardware.

8.2 Maskable Interrupts

The address contained in locations &FFFE and &FFFF points to code
within the operating system which handles the maskable interrupts.

The first thing this code checks is whether this interrupt was caused by a
BRK instruction (by testing the BRK flag), if so the interrupt is passed to
the BRKV as described in section 8.13.

After this the interrupt routine indirects through IRQ1V (&204). This
first vector allows a user interrupt handling routine to intercept the
interrupt with a very high priority. The contents of this vector normally
point to the main body of the interrupt handling routine in the operating
system but before an RTI instruction is executed a final indirection is
performed through IRQ2V to allow a low priority interception. When
the RTI instruction is executed the foreground task is re-started.

8.3 The operating system interrupt handling
routine

When an interrupt occurs the handling routine does not know what has
caused it. The routine must first disable interrupts by setting the
interrupt flag to prevent another occurring and then poll (that is 'ask’}
each device which may have caused the interrupt to find out if it needs
servicing.

The OS routine attempts to service the interrupt in the following order:

6850 serial chip

(1) R5423 or cassette
System 6522 VIA

(2) Vsync

(3) Centi-second timer
(4) ADC conversion
(5} Keyboard

User 6522 VIA

(6) Printer port

125

8.4 Serial system interrupts

The 6850 asynchronous communications interface adapter chip is used
for the cassette and R5423 input and output. At any one time either the
cassette system or the R5423 system has control of the chip but never
both.

Interrupts are generated by the 6850 in three circumstances:

(a) when a character is received
(b) when a character is transmitted
(c) when the tone at the end of a cassette block is discontinued

To determine whether the 6850 has instigated the current interrupt or
not, the 6850 status register (Sheila &08, &FE0Q8) has to be examined.
The bits in this register have the following significance.

bit 0 | set when a receiver interrupt is generated

bit1 | set when a transmit interrupt is generated

bit2 | set when a DCD (data carrier detect) interrupt is made
bit3 | set if 6850 is not clear to send (CTS)

bit4 | framing error, only valid if bit 0 set

bit5 [.receiver over run, only valid if bit O set

bit6 | parity error, only valid if bit 0 set

bit7 | set if 6850 generated the current interrupt

The OS examines bit 7 of this register and if set goes on to service the
6850 interrupt. The 6850 interrupt state is cleared by writing to the chip's
Transmit Data Register or reading from its Receive Data Register.

Cassette system interrupt use:

Transmitter interrupts are generated when the next byte due to be
output is required.

Receiver interrupts indicate that a byte has been read from tape and
should be put in memory.

The DCD interrupt marks the end of a block and is used when skipping
files (e.g. during a *CAT)

R5423 system interrupt use:

Transmitter interrupts are generated when the 6850 requires another
byte of data for output. The source of this byte will be the R$423
transmit buffer or the printer buffer (if R5423 printer selected). If the
interrupt handling routine discovers that both buffers are empty it will
flag the RS423 system as not busy in response to OSBYTE &BF.

126

In response to a receiver interrupt the byte read will be placed in the
R5423 receive buffer. Bit 7 of the OS copy of the 6850 (Readable using
OSBYTE &9C) is effectively a flag enabling RS$423 input and a byte read
will only be placed in the buffer if this bit is set. Should a receive error be
flagged event 7 will be generated and the character ignored (unless
OSBYTE &E8 has been used to mask out the error flags). If RS423 input
has been suppressed using OSBYTE &CC the character will be ignored.
As the buffer becomes full the RTS line is pulled up to prevent the
external device from sending any more characters. This occurs when the
free-space remaining in the buffer reaches the level defined using
OSBYTE &CB.

A DCD interrupt will only occur when R5423 has been directed to the
cassette port following the use of OSBYTE &CD. This interrupt is
normally cleared by reading form the 6850 receive register. The
interrupt servicing routine then generates event number 7 (R5423
receive error},

The interrupt mask for the 6850 status register may be accessed using
OSBYTE &E8. The interrupt handling routine ANDs this value with the
6850 status register and any bit cleared by this is ignored by the
operating system. The user is then responsible for clearing this interrupt
condition when the interrupt is passed to IRQ2V. Clearing the interrupt
condition may be achieved either by writing to the transmit register or
reading from the receive register.

For detailed information about the 6850 ACIA the reader shouid refer to
the relevant data sheet.

8.5 System VIA interrupts

The system VIA is used to interface a number of internal hardware
devices on the BBC microcomputer.

When an interrupt is generated by the system VIA the value of the status
register indicates which device caused the interrupt.

bit | interrupt cause if bit set

key has been pressed

V-Sync has occurred on the video system
system VIA shift register times out

a light pen strobe has occurred off screen

an ADC conversion has been completed
timer 2 has timed out (used by speech system)
timer 1 has timed out (100Hz interrupt)
master interrupt flag (0-6 invalid if not set)

127

No G o= o

The operating system will ignore any of these interrupts if the
appropriate bit in the interrupt mask (see OSBYTE &E9) is set. Masked
interrupts are passed onto IRQ2V where a user routine should clear the
interrupt condition by writing to the interrupt flag register of the system
VIA with the relevant interrupt bit set.

The operating system interrupt handling routine services system VIA
interrupts in the following way:

A key pressed interrupt will cause the operating system to mark the key
value as the current key. This will be serviced during the next timer
interrupt.

A vertical sync interrupt is used to time the duration and change over of
two-colour flashing. The change in colour thus eccurs during fly back
and flickering is avoided. This interrupt is also used to time ocut the
cassette and R5423 systems. This enables the other user of the 6850 to
claim it after half a second of inactivity from the existing user. Event
number 4 (V-sync) is generated by this interrupt.

The shift register interrupt is not used by the operating system and if
generated is passed onto IRQ2V.

The ADC conversion completed interrupt causes the operating system
to copy the newly converted value into its work space and the next
channel to be converted is initialised. Event number 3 is also generated.

The light pen interrupt is not used by the operating system and is always
passed over to IRQ2V.

Timer 2 is used by the speech system to count transitions of the speech
ready output. When an interrupt occurs an attempt is made to speak
another word.

Timer 1 is used to provide regular interrupts at centi-second intervals.
The servicing routine performs the following actions in response to this
interrupt:

(a) The interrupt is cleared

{b) One of the two internal clock values is incremented. This clock is then
marked as the current clock for use as the TIME value. On the next
100z interrupt the other clock value is incremented. The dual clock
system is implemented to prevent an interrupt changing the TIME value
while it is being read.

{c) The interval timer is incremented and if zero event number 5 is
generated.

128

(d) The INKEY timer is decremented.
(e} One centi-second portion of SOUND is processed

(f) If a key interrupt has occurred recently the new key value is inserted
into the input buffer and auto-repeat processing is begun.

(g) The speech chip, the 6850 and the ADC converter are checked to see if
any interrupts have been missed.

Disabling interrupts for longer than about 2ms will prevent these
background tasks being performed and will have undefined effects.

8.6 User VIA interrupts

Port A of this 6522 is used for the parallel printer port while port B is
designated as the user port. All interrupts other than the CA1 interrupt
are passed to the user via IRQV2. The parallel printer will cause the
CAl interrupt when it is ready to accept a new character. The interrupt
mask for the user VIA may be accessed using OSBYTE &E?7.

8.7 Intercepting interrupts

Maskable interrupts may be intercepted on the BBC microcomputer and
re-directed to a user specified address. This interception entails the
changing of a vector.

There are two points at which interrupts may be intercepted; the two
vectors are IRQ1V and IRQ2V.

Interrupt Request Vector 1 (IRQ1V)

Indirects through &204,5

This is the highest priority vector through which all maskable interrupts
are indirected. Where at all possible the use of this vector should be
avoided and the lower priority, IRQ2V, used instead.

Interrupt Request Vector 2 (IRQ2V)

Indirects through &206,7

This vector is normally called from the operating system interrupt
handling routine when unrecognised interrupts occur as described
above.

129

Several points should be considered when producin g interrupt handling
routines.

(a) When the vector is changed to point at the new user supplied

b)

©

GV

(e)

routine, the previous vector contents should be saved. This enables
the user routine to pass on any unrecognised interrupts to other
routines which may have previously intercepted the vector.

Interrupts should be disabled using a SEI instruction while the
interrupt vectors are being changed. This will prevent the
operating system interrupt handling routines using the vectors
half way through a change.

When the user routine is entered the stack will contain the status
register and a return address ready for a return using an RTI
instruction. The X and Y registers will be unchanged and the

accumulator contents will have been stored in zero page location
&FC.

Operating system calls should not be used from within an
interrupt handling routine. This is because these routines often use
work space memory locations and enable interrupts. If a second
interrupt occurs while the first interrupt is being serviced these
memory locations will be over written and so not allow the
original interrupt servicing to occur correctly.

The users interrupt routine should be re-entrant. This means that
if there is a possibility of interrupts being enabled during the
routine (e.g. because it is very long}, the code can be run again
without affecting the first foreground interrupt. This can only be
achieved by pushing the contents of the X and Y registers and the
old accumulator contents (stored in &FC) onto the stack, and
restoring them after the call. It is also important to ensure that no
fixed memory locations are used for storing variables, since these
will be over-written by an interrupting routine.

The old mask is returned in X.

This location contains a software copy of the interrupt bit mask for the
user VIA chip (6522).

Default value &FF.

8.9 Read/write 6850 IRQ bit mask OSBYTE call

Call address &FFF4
Indirected through &20A
A=&E8 (232)

This location is reserved for future expansion on the Electron.
<NEW VALUE>=(<OLD VALUE> AND Y} EOR X
The old mask value is returned in X.

This location contains a software copy of the interrupt bit mask for the
serial communications chip (6850).

Default value &FF.

8.10 Read/write System 6522 IRQ bit mask
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&E9 (233)

This lecation is reserved for future expansion on the Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old mask value is returned in X.

This location contains the interrupt bit mask used for the system VIA

8.8 Read/write User 6522 IRQ bit mask OSBYTE

chip (6522).
call
Default value &FF. J
Call address &FFF4
Indirected through &20A
A=&E7 (231)

This location is reserved for future expansion on the Electron,

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X

131
130

8.11 Read/write Electron ULA IRQ mask OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&CB (203)

<NEW VALUE»>=(<OLD VALUE> AND Y} EOR X
The old mask value is returned in X.
This location contains the interrupt bit mask used for the Electron ULA.

Default value &0C.

8.12 BRK/error associated calls

The BRK instruction is normally used on Acorn machines to represent an
error condition and the BRK vector routine is an error handling routine.
In BASIC this error handling routine starts off by putting its house in
order and then prints out an error message.

In addition to the use of BRKs for the generation of errors it is often
useful in machine code programming to include BRKs (break-points) as
a debugging aid.

8.13 The BRK vector &202

When a BRK instruction {op code value 0) is executed a maskable
interrupt is generated. The operating system stores the address of the
byte following the BRK instruction in &FD and &FE, offers the BRK to
paged ROMs with service call &06, stores the ROM number of the
currently active paged ROM for recovery using OSBYTE &BA {RCM
active at last BRK), restores registers, selects the current language
ROM, and then passes the call to the BRKV code.

On Acorn BBC range machines the BRK vector is entered with the
following conditions if a BRK instruction is executed:

(a) The A, X and Y registers are unchanged from when the BRK
instruction was executed.

(b) A RTIinstruction will return execution to the address two bytes after
the BRK instruction (i.e. jumps over the byte following the BRK). The
RTI instruction also restores the status register value from the stack.

132

(c) The address of the byte following the BRK instruction is stored in
zero page locations &FD and &FE. This address can then be used for
indexed addressing .

Error handling BRK routines should not return to the code which
executed the BRK but should reset the stack (using a TXS instruction)
and JMP into a suitable reset entry point. In fact the convention used by
Acorn is to follow the BRK instruction by:

a single byte error number
an error message
a zero byte to terminate the message

and the BRK routine prints out the error name. The BRK handling
routine should normally be implemented by the current language.
Service paged ROMs should copy a BRK instruction followed by the
error number and message down into RAM when wishing to generate
an error. This has to be done because otherwise the current language
ROM is paged in and the BRK handling routine tries to print out the
error message from the wrong ROM. The bottom of page 1 is often used
ard is quite safe as long as the BRK handling routine resets the stack
pointer.

The use of BRKs as break-points in machine code programming can be
of great use to the machine code programmer. The example below
shows how a BRK handling routine may be used to print out the register
values. This routine could be further enhanced by printing out the value
of the byte following the BRK instruction which would then give the
programmer 256 individually identifiable break-points.

10 REM Primitive BRK handling routine
20 DIM code% %100

30 OSASCI=iFFE3

40 OSRDCH=&FFEQ

50 BREV=§202

60 FOR opt%=0 TO 3 STEP 3

70 P%=code}

BO [

90 OPT opt%

100 .init LOX #brkrt AND &FF \ load registers with address
110 LDY #brkrt IV &100

120 SEI \ disable interrupts

130 $TX BRKV \ set up BRK vector

140 5TY BREV+1

150 CLI \ enable interrupts and return
160 RTS

170 .brkrt PHA v osave A (X and ¥ not used)
180 STA byte \ store & in workspace

133

130 LDA $#ASC"A"
200 JSR prntrg
21¢ STX byte
220 LDA #ASCU"X"
230 J5R prntrg
240 5TY byte
250 LDA #ASChY"
260 JSR prntrg
270 JSR new_ln
280 JSR QSRDCH
230 FLA

300 RII

310 .prntrg JSR OSASCI
320 LDA #ASC™:™
330 JSR OSASCI
340 JSR space
3530 LDA #ASC"&™
380 JSR QSASCI
370 LDA byte
380 JSR protht
390 J5R space
400 - JSR space
410 RTS

420 .space LDA #&20
430 JMP OSASCT

440 .new_ln LDA #&D
450 - JMP GSASCI

460 ,prntbt PHA

470 LSR A

480 LER A

490 LSR A

500 LSR A

510 JSR nikble
520 PLA

530 .nibble AND #&0F
540 CMP #&0A
550 BCC number
560 ADC #4086
570 ,number ADC #&30
580 JMP OSASCI

590 .hyte EQUB O

£00 .test BEK

610 EQUB 0
620 DEX

630 3NE test
640 RTS

650 1

560 NEXT

£70 CALL init
580 A%=_:X%=8:Y%=iFF:CALL test

134

- P P - i e A

-

-~

P gt

register id

print register value
store X in workspace
register id

print register value
store Y in workspace
register id

print register value
print carriage return
wait for key press
restore A

retern

print register id

print colon
print space

print ampersand
get register value
print hex number

print two spaces

print space

print carriage return

for comments refer to
previous example

workspace byte

cause an €rror

RTI returns to next byte

loop X times
if X=0 locp again

8.14 Read ROM no. active at last BRK OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&BA (186)

<NEW VALUE»=(<OLD VALUE> AND Y) EOR X
The old ROM number value is returned in X.

The operating system records the number of the paged ROM active
when a BRK occurs before selecting the current language ROM for BRK
handling.

135

9 Buffers control and management

The operating system uses buffers for keyboard input, R$423 input and
output, the printer, the sound system (4 buffers) and the speech system.
These buffers contain data which should be processed by the various
routines. Even though the servicing routine may not be able to respond
to the request immediately the calling routine returns {unless the buffer
is full) and is able to get on with its foreground task. While a buffer
contains a queue of data for processing, the interrupt routine (the
background task) ensures that the relevant routines service this data.

In this way the user is able to type ahead when the machine is unable to
respond immediately, and may initiate sounds which then continue
while he issues further commands.

Buffers operate on a first in first out (FIFO) basis for obvious reasons.

The Acorn BBC range of machines use the following numbers as buffer
id's:

title buffer no.
keyboard buffer

|R5423 input buffer

R5423 output buffer
printer buffer

SOUND channel 0 buffer
SOUND channel 1 buffer
SOUND channel 2 buffer
SOUND channel 3 buffer
speech buffer

RN NCI N~

On the BBC microcomputer or the Electron memory is reserved [or each
of these buffers even though the software/hardware using the buffer
may not be present. The buffer maintenance calls still service these
buffers but the contents will not be processed by the relevant service
routine. The expansion software/hardware will use the appropriate
buffer when installed. Thus when the speech expansion is fitted on a
BBC microcomputer the speech buffer is used and on an Electron with a
Plus 1 the printer buffer is used.

9.1 Insert value into buffer vector, INSV

Indirection address &22A

This vector contains the address of a routine which inserts a value into a
selected buffer.

136

Entry parameters:
A=value to be inserted
X=buffer id

On exit:
A and X are preserved
Y is undefined

C flag is set if insertion failed (i.e.buffer full)

9.2 Remove value from buffer vector, REMV

Indirection address &22C

This vector contains the address of a routine which removes a \._ralue
from the selected buffer. This routine may also be used to examine t_he
next character to be removed from a buffer without actually removing
it.

Entry parameters:
X=buffer id o
V=1 (overflow flag set) if only examination requested

On exit: o
A contains next byte to be removed (examination call)

{A undefined for removal call)

X is preserved
Y contains the value of the byte removed from the buffer

(Y undefined for examination call)
C flag is set if buffer when call made

9.3 Count/purge buffer vector, CNPV

Indirection address &22E

This vector contains the address of a routine which may be used to clear
the contents of a buffer or to return information about the free space or
contents of a buffer.

Entry parameters:
X=buifer id
V=1 {(overflow flag set) to purge buffer
V=0 (overflow flag clear) for count operation
C=1 count operation returns amount of free space
C=0 count operation returns length of buffer contents

137

On exit:

Xand Y contain value of count (low byte, high byte)
X and Y are preserved for a purge operation

A is undefined

V and C are preserved

9.4 Using the buffer vectors

It should be noted that none of the buffer maintenance routines check for
valid buffer id's. Using a buffer id outside the assigned range will have
undefined effects unless specifically intercepted.

None of these vectors are implemented on second processors and so
none of the buffer maintenance calls are sent across the Tube. Calls
using the buffer vectors should always be made by code resident in the
i/0 processor. It should be noted that considerable manipulation of the
buffers may be carried out using OS routines such as OSBYTE,
OSWRCH, OSWORD ete. which may affect buffer contents either
directly or indirectly. Routines intercepting these vectors must always be
resident on the i/o processor, ideally in service type paged ROMs.

The program below illustrates how the buffer vectors can be intercepted
to implement a much larger printer buffer. The standard printer buffer
is only &100 bytes long and since printers tend to be quite sluggish
peripherals this buffer rapidly fills up. A buffer is required which will
hold a reasonable sized listing, or a document before filling up and
refusing to accept further input. Having placed the item for printing in
an enlarged buffer, the user may return to word processing or
programming leaving the operating system to get on with the printing.

The routine used below creates a buffer of variable size as defined by the
variable 'size'. The utility value of this program is limited. For the
reasons given above it will only work when run on a non-Tube machine.
It will only work as long as its code is not corrupted; this means that
renumbering the program after it has been run will crash the machine
since BASIC tramples all over area originally reserved for the
assembled code. Similarly another language ROM is unlikely to allow
the routine to run in peace. If this routine becomes corrupted the
machine will become totally disabled because each time a key is pressed
this routine is called. Experimenting with this example will provide
valuable experience in the use of critical operating system routines. One
note of warning however, be sure to save a copy of the program before
trying to run it; it is quite possible for the program to corrupt itself or

138

even crash the machine irrevocably so that a power on reset is required
(that is, the machine will have to be turned off, and then on again).

This program consists of three main routines which intercept the buffer
maintenance calls for the printer buffer. Calls for any of tl}e other
buffers are carefully handed on to the original routines pointed to by the
contents of the buffer vectors. An area of RAM is reserved for use as a
buffer by using a DIM statement. Four bytes of zero page memory are
used to house two 16 bit pointers. One pointer is used as an index for the
insertion of values into the buffer, and the other pointer is used as an
index for the removal of bytes. When a pointer reaches the end of the
buffer it is pointed to the beginning again. In this way the two pointers
cycle through the buffer space. A full buffer is detectfed by incrementing,
the input pointer and comparing it to the output pointer. If the two
pointers are equal then the buffer is full, the character cannot be inserted
and the input pointer is restored. If after the removal of a character the
output pointer becomes equal to the input pointer then the buffer is now
empty. By using this system the full size of the buffer is always available
to contain data.

1¢ REM user printer buffer routine

20 MODE?

30 size=&2000

40 DIM buffer size

50 DIM code® &400

60 INSV=&223

70 RMV=£22C

80 CNPV=&2ZE

90 ptrblk=§80:!ptrblk=buffer+buffer*&10C00
10C ip ptr=ptrblk:op_ptr=ptrblk+2

110 FOR I=0 TO 3 STEP 3
120 P¥=codet

130 |

140 CPT I

150 .init LDA INSV \ maze copies of old vector
160 STA retl \ contents to pass on calls
170 LDA INSV+1

180 STA reti+l

130 LA RMV

200 3TA ret?2

210 LDA RMV+1

220 5TA ret2+]

230 LDA CNEFV

240 STA ret3

250 LDA CNPV+1

260 3Ta ret3+1

270 LDX #ins AND &FF \ store addr§ss of new

28C LDY #ins DIV &100 \ routines in vectors

290 3EI \ disable interrupts

139

140

141

300 STX INSV . . 820 LDY 40 Y Y=0, for next instruction
310 STY INSV+1 830 LoA {op ptr),Y % fetch character from bufr
320 LDX #rem RND &FF 840 TAY \ return it in ¥
330 LDY #rem DIV &100 850 cLC \ buffer not empty, C=0
340 STX RMV . 860 RIS \ return
350 5TY RMV+1
360 LDX #ecnp AND &FF 870 .empty SEC \ buffer empty, C=L
370 LDY #cnp DIV &100 880 RIS \ return
380 STX CNPV .
320 STY CNEV+1) . 890 .examine LDA op ptr \ examine only, so store a
400 CLI \ enable interrupts 200 PHA % copy of the o/p pointer
410 RTS \ finished 910 LDA op ptr+l % on the stack to restore
az0 PHA % ptr after fetch
420 .wrkbt EQUB ¢ \ byte of RAM workspace . 930 JSR remsr \ fetch byte from buffer
940 FLA \ restcre ptr from stack
430 .retl EQUW © \ reserve space for vectors 950 STA op ptr+l N (if buffer was empty
440 .ret2 EQUW € 960 FLA \ C=1 from fetchk call)
450 .ret3 EQUW © . . 370 STA op ptr
980 TYA \ examine requires ch. in A
460 .wrngbfl PLP:PLA:JMP (retl) \restcre S & A, call OS 990 RTS \ finished
470 \ New insert char. inte buffer routine . . 1000 .wrngbf3 PLP:JMP (ret3) % restore 5, call OS
480 .ins PHA:PHP \ save A and status register 1010 \ New count/purge buffer routine
490 CEX #3 \ is buffer id 3 72
500 BNE wrngbfl N if not pass to old routine 1020 .cap PHP \ save status reg. on stack
510 PLP \ not passing cn, tidy stack . 1030 CPX #3 N\ is buffer id 3 7
520 LDA ip ptr \ A=lc byte of input pointer 1040 BNE wrngbf3 \ if not pass to old subr
530 PEA \ store on stack ‘ 1050 PLP \ restore status register
540 . LDhA ip ptr+l % A=hi byte of input pointer 1060 PHP \ save again
550 PEA % store on stack . . 1070 BVS purge \ if V=1, purge required
560 LDY #0 Y ¥=0 so ip ptr incremented
570 JSR inc ptr \ by the inc ptr routine 1080 BCC len Y\ if C=0, amount in buffer
580 _ JSR compare \ compare the two pointers
590 BEQ insfail \ Lf ptrs egual, buffer full . . 1090 LDA ip ptr % o/w free space request
600 PLA:PLA:PLA % don't need ip_ptr copy now 1100 PHA
610 STA (ip_ptr),¥Y N A off stack, insrt in bufzr 1110 LDA ip ptr+l \ store ip ptr on stack
620 CLC %\ insertion success, C=0 1120 PHA -
830 RTS % finished . 1130 LDX #0 N ®=0 for use as courter
1140 STX wrkbt % wrkbt=0 for hi courter
640 .insfail PLA \ buffer was full so must 1150 LDY #0 \ ¥=0, so ip ptr inecr'd
650 STA ip_ptr+l \ restore ip ptr which was 1160 .loopl JSR inc ptr \ ircrement ip ptr
660 PLA \ stored on the stack 1170 JSR compare \ does it equal ep_ptr
570 STA ip ptr . 1180 BEQ finshdl \ if so0 count=free space
680 PLA ‘ . ‘ 1190 INX N X=X+1
690 SEC \ insertion fails so C=1 1200 BNE rc_inc \ if X=0 don't inc wrkbt
700 RTS \ finished 1210 INC wrkbt % hi byte of count inc'd
. . 1220 .no inc JMP loopl % loop rcund again
710 .wrngkfZ PLP:JMP (ret2) \ restore S, call QS -
1230 .finshdl FLA \ restore ip ptr cff stack
720 \ New remove char. from buifer routine 1240 STA ip ptr+l -
. 1250 PLAR ;
730 .rem PHP \ save status register 1260 STA ip ptr
740 CEX 43 N is buffer id 3 2 1270 LDY wrkbt % Y=hi byte of free space
750 BNE wrngbf2 % if not use 03 routine 1280 PLP \ restore status register
760 PLP % restore status register 1290 RTS % finished
30 BVS examine \ V=1, examine not renove
1330 .len LDA op_ptr \ store op_ptr on stack
780 .remsr JER compare \ compare i/p and o/p ptrs 1310 PHA
790 BEQ empty N if the same, buffer empty 1320 LOA op ptr+l
gao0 LDY #2 \ ¥=2 so that increment ptr . . 1330 PHA
810 JSR inc_ptr % rouiine inc's op ptr 1340 LDX #0 \ X=0 for use as counter

1350 STX wrkbt \
1360 oY #2 \
1370 .loop2 JSR compare A\
1380 BEQ fiashd2 \
1399 JSR inc ptr 5
1400 INX \
1410 BNE no_inc2 N\
1420 INC wrkht N\
1430 .no_ine2 JOMP loop2 N\
1440 .finshd2 PLA \
1450 STA op ptr+l

1460 PLA

1470 STA op_ptr

1480 LDY wrkbt \
1490 PLP A
1500 RTS 5\
151C .purge LDA #buffer AND &FF \
1520 3TA ip ptr \
1530 STA op ptr \
1540 LDA $buffer DIV £1C0
1550 STA ip ptr+l

1560 STA op ptr+l

1570 PLP 5
1580 RIS N

15%0 \ Increment pointer routine. Y=0

wrkbt=0 hi byte of count
¥=2 so op_ptr incremented
are ptrs egual ?

if so buffer empty
increment op _ptr
increment cournt

if ¥=0 then increment hi
byte of count

loop round again

restore op ptr off stack

¥Y=hi byte of length
restore status register
finished

to purge buffer reset

o/p and i/p ptrs to
start of buffer

restore status register
return

op ptr, Y=2 ip_ptr

1600 .ine ptr CLC vV C=0

1610 LDA ptrblk,Y \ A=7(ptrblk+Y)

1620 ADC #1 N A=A+1+C

1630 STA ptrblk,Y \ ?{ptrblk+Y)=a

1640 LDA ptrblk+l,Y \ B=2? (ptrblk+1+%)

1650 ADC #0 N\ A=A+0+C

1660 STA ptrblk+l,Y \ ?{ptrblk+14Y)=A

1670 CMP 4 (buffer+size) DIV &100 \ hi byte end of bufr
1680 BNE home \ not end of buffer

1690 LDA ptrblk, Y \ A=low byte of pointer
1700 CMP # (buffer+size) AND $FF \ end of buffer 7
1710) BNE home

1720 LDA #buffer AND &FF \ if the end of buffer has
1730 STA ptrblk,Y \ bean reached set pointer
1740 LDA #buffer DIV &100 \ to the beginning again
1750 STA ptrblk+l,Y

1760 .home RTS \ return

1770 \ Compare pointers. if equal 2=1

1780 .compare LDA ip_ptr+l

1790 CMP op ptr+l \
1800 BNE return S
1810 LDA ip ptr

1820 CMP op ptr \
1830 .return RTS 5
1840]

1850 NEXT

1860 CALL init

142

don't care otherwise
compare ptr high bytes
if not equal return

compare pointr low bytes
raturn

9.5 Flush specific buffer OSBYTE call

Call address &FFF4
Indirected through &20A
A=&15 21)

While the unexpanded Electron only has a single sound channe.l the
operating systern has been designed to enable the implementation of an
external sound system. Each time any of the sound buffers are flushed a
paged ROM service call is issued with A=&17. In the unexpanded
Electron there is a single effective buffer which may be addressed as any
of the four channels. Thus flushing any of the four buffers will
extinguish any noise being produced at that time.

Entry parameters:
X=number of buffer to be cleared

On exit:
A and X are preserved
Y and C are undefined

9.6 Flush selected buffer class OSBYTE call

Call address &FFF4
Indirected through &20A
A=&O0F (15}

Entry parameters:
X value selects class of buffer

X=0 Al buffers flushed
X<=0 Input buffer flushed only

On exit,
Buffer contents are discarded
A is preserved
X, Y and C are undefined

9.7 Read buffer status OSBYTE call
Call address &FFF4

Indirected through &20A
A=8&80 (128)

143

This OSBYTE call also has ADC functions (see chapter 7).

Information about those buffers not used on the unexpanded Electron
will be meaningless; these buffers have been implemented for expansion
capability.

Entry parameters:
X determines action and buffer number

X=255 {&FF) keyboard buffer
X=254 (&FE) RS423 input buffer
X=253 (&FD) RS423 output buffer
X=252 {&FC) printer buffer
X=251 {&FB) sound channel 0
X=250 {&FA) sound channel 1
X=249 (&F9) sound channel 2
X=248 {&F8) sound channel 3
X=249 {&F7) speech buffer

For input buffers X is returned containing the number of characters in
the buffer and for output buffers the number of spaces remaining.

On exik:
A is preserved
C is undefined

9.8 Insert value into buffer OSBYTE call

Call address &FFF4
Indirected through &20A
A=&8A (138)

Entry parameters:
X contains buffer number
Y contains the value to be inserted into buffer

On exit:
C=0 if value successfully inserted
C=1 if value not inserted e.g. if buffer full

A is preserved

144

9.9 Get character from buffer OSBYTE call

Call address &FFF4
Indirected through &20A
A=&91 (145)

Entry parameters:
X contains buffer number

On exit:
Y contains the extracted character.
If the buffer was empty then C=1 otherwise C=0.

A is preserved

9.10 Examine buffer status OSBYTE call

Call address &FFF4
Indirected through &20A
A=£&98 (152)

This call has been implemented differently on old versions of the BBC
OS up to and including OS 1.20.

(a) BBC model B microcomputers

Entry parameters:
X contains buffer number (See OSBYTE &15 for numbers)

On exit:

If the buffer is not empty
Y=pointer to next character to be read from the buffer
indexed from zero page locations &FA and &FB.
C=0

If the buffer is empty
Y is preserved
C=1

After using this call to examine the next character to be read from a
non-empty buffer the instructions "LDA “&FA),Y" will be required.
Interrupts should be disabled while the OSBYTE call is made and the
buffer examined to prevent any interrupt changing the buffer.

A and X are preserved

145

{b) Master, B+ and Electron
Entry parameters as above

On exit:
Y=character value read from buffer if buffer not empty
Y is preserved if buffer emp
C=1if buffer empty otherwise C=0

A and X are preserved

9.11 Insert char. into i/p buffer OSBYTE call

Call address &FFF4

Indirected through &20A
A=&99 (153)

Entry parameters:
X contains buffer number (0 or 1 only)
Y contains the character value

X=0 keyboard buffer
X=1 RS5423 input

If R5423 input is enabled and X=1 then R5423 ESCAPEs are suppressed
(this is the default state plus OSBYTE call with A=&B5 and
X=1/*FX181,1). This is identical to OSBYTE call with A=&BA (*FX 138).

Otherwise if the character to be inserted is not the ESCAPE character
(set by OSBYTE &DC /*FX 220) or if ESCAPE characters are to be
treated as normal characters (following OSBYTE with A=&E5/*FX

229}, then an input event (cven if input is from RS423) is caused and the
character is inserted into the buffer.

If the character is an ESCAPE character and ESCAPEs are not protected

(using OSBYTE &C8/*FX 200) then an ESCAPE event is generated
instead of the keyboard event.

On exit:
A is preserved
X, Y and C are undefined

146

10 Escape related calls

The following calls have effects on the functioning of the ESCAPE key or
the escape condition.

10.1 Clear escape condition OSBYTE call

Call address &FFF4
Indirected through &20A
A=&7C (124)

This call clears any ESCAPE condition without any further action. The
Tube is informed if active. If there was not an ESCAPE condition to
clear the X register is returned with value zero.

On exit:
A and Y are preserved N
X=0 if there was no ESCAPE condition to clear
X=&FF if an ESCAPE condition was cleared
C is undefined

10.2 Set escape condition OSBYTE call

Call address &FFF4
Indirected through &20A
A=&7D (125)

This call partially simulates the ESCAPE key being pressed. The Tube is
informed (if active). An ESCAPE event is not generated.

On exit:
A, X and Y are preserved
C is undefined

10.3 Clear escape + effects OSBYTE call

Call address &FFF4
Indirected through &20A
A=&7E (126)

i dition. All active buffers will
h 11 attempts to clear the ESCAPE con ‘ .
ge lfsluc:hed, anypopen EXEC files closed, the VDU paging counter will be
reset and the VDU queue will be reset.

147

On exit:
X=&FF if the ESCAPE condition cleared
X=0 if no ESCAPE condition found

A is preserved
Y and C are undefined

10.4 Read/write escape disable OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C8 {200)

<NEW VALUE>=(<OLD VALUE> AND Y) FOR X

The old value is returned in X.

bit 0=0 Normal ESCAPE action

bit 0=1 ESCAPE disabled unless caused by OSBYTE &7D/125
bits 1 to 7=0 Normal BREAK action

bits 1 to 7=1 Memory clearad on BREAK

10.5 Read/write ESCAPE character OSBYTE call

Call address &FFF4
Indirected through &20A
A=&DC (220)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old character value is returned in X.

This location contains the ASCII character (and key) which will gencrate
an ESCATE condition or event.

e.g. "FX 220,65 will make A the ESCAPE key.
Default value &1B (27).

148

10.6 Read/write ESCAPE key status OSBYTE call

Call address &FFF4
Indirected through &20A
A=&FE5 (229)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old status is returned in X.

If this location contains 0 then the ESCAPE key has its normal action.
Otherwise the currently selected ESCAPE key is treated as an ASCII
code,

10.7 Read/write ESCAPE effects OSBYTE call

Call address &FFF4
Indirected through &20A
A=&E6 (230)

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X

The ¢ld value is returned in X.

If this location contains 0 then when an ESCAPE is acknowledged (using
OSBYTE &7E/*FX 126) then :-

EXEC file is closed (if open)

Purge all buffers (including input buffer)
Reset paging counter (lines since last halt)
Reset VDU queue

Any current soft key expansion is cleared

If this location contains any value other than 0 then ESCAPE causes
none of these.

149

11 An Introduction to Hardware

Most users of the BBC microcomputer will be familiar with BASIC
programs, but from BASIC the hardware is virtually invisible.
Commands are provided to deal with output to the screen, input from
the keyboard and analogue to digital converter, plus all of the other
hardware. The same applies to machine code to a large extent through
the use of operating system commands. However, a much more detailed
understanding of the hardware and how it can be controlled directly
from machine code programs is very useful and allows certain features
to be implemented which would have been impossible in BASIC.

The remainder of this book satisfies the requirements of both those who
wish to use the hardware features already present on the computer, and
those who wish to add their own hardware. Each major chapter covers
a particular aspect of hardware and it's associated software support,
and should be delved into as required. All of the standard hardware
features available on the BBC microcomputer are outlined in detail.
Wherever possible, it is better to use operating system routines for
controlling the hardware as this will ensure compatibility with the
entire Acorn-BBC range of computers and peripherals. For those who

wish to add their own hardware, full details on using the USER port
and 1MHz BUS are supplied.

Figure 11.1 illustrates the major blocks of the computer’s circuitry. This
has essentially remained constant for the model B, B Plus and Master
series, the major differences being in the particular chips used to
implement each block on different machines.

At the centre of the system is the central processing unit (CPU) or
microprocessor. This is the chip which executes all the programs
including BASIC. It is connected to the rest of the system via three buses.
These are the data bus, the address bus and the control bus. For clarity
on the diagram, these buses are all compressed into one which is
represented by the double lines terminated with arrows at each major
block. Originally the model B used a 6502A CPU, but the newer Master
takes advantage of chip developments and uses the 65C12 which
supports all 6502 instructions AND extra new instructions. These extra
instructions are covered in chapter 6. Throughout the rest of this book

we will use '6502' to refer to the generic CPU family of which both the
6502A and 65C12 are a part.

150

MODULATOR

1

UHF
=
TUBE

6845
CRTC

TELETEXTE—] VIDEOULA
K
V)
\J

paging
register|

VIDEC

5050

RGB
= 5
iMHz BUS

R .Y

\ L]
[y L]
<] % M l
— Y [}
3 N :
LY
S'\l-J < v 28 L]
- s v O 3
HIE B ; 3
\]
N = . E
L N S A L] .
oj
< :n:
@ o
= z
im O o« —-j
177} =
2 20 o <
5] © < o 62 =
o o
0 w1 a
© oo 8 ,_ |
o
N =
jE’_“\ o >D 2
= A
wl
21 (8 - i
o BN e
- o
AN ~z 5P,
Z [
SYSTEM
6522 VIA E
o
su wl)
=3 3
Lo <
3 >
[} ~ 1
z -} o -5 o
E E o2 '_.: E 50 =
z z BT |15% o -0 T
Q a3 i 28| |2 N2 @
i 88 | ;2 i PRa Oj

FIG 11.1 - The System Block Diagram

A bus is simply a number of electrical links connected in Pa_rallel to
several devices. The CPU spends its time reading and writing data to

151

——_

these devices. The communication protocols which enable this transfer
of data to take place are set up by the control, address and data buses. In
the case of the address bus, there are 16 separate lines which allow 2416
(65535) different combinations of 1's and 0's, The maximum amount of
directly addressable memory on a 6502 is therefore 65536 bytes. The data
bus consists of 8 lines, one for each bit of a byte. Any number between 0
and &FF (255) can be transferred across the data bus. Communication
between the peripherals, memory and the CPU occurs over the data bus,
The CPU can either send out a byte or receive a byte, The data bus is
therefore called a bidirectional bus because data flows in any one of two
directions. The address bus is unidirectional since the 6502 provides, but
cannot receive addresses. Note that some address buffers are included
in the video circuit to allow either the 6845, 5050 or 6502 to provide
addresses for system random access memory (RAM)

In order to control the direction of data flow on the data bus, a read or
write signal is provided by the control bus. Hardware connected to the
system can thereby determine whether it is being sent data or is meant
to send data back to the CPU. The other major control bus functions are
those of providing a clock and generating interrupts and resets. The
clock signal keeps all the chips running together at the same rate, The
RESET line allows all hardware to be Initialised to some predefined
state after a reset. An interrupt is a signal sent from a peripheral to the
6502 which requests the 6502 to look at that peripheral. Two forms of
interrupt are provided. One of these is the interrupt request (IRQ) which
the 6502 can ignore under software control. The other in the non-
maskable interrupt (NMI} which can never be ignored. Only very
important devices which require immediate attention (like the disc
controller) can use NMIs.

When power is first applied to the system, a reset is generated to ensure
that all devices start up in their reset states, The 6502 then starts to get
instructions from the MOS ROM. These instructions tell the 6502 what
it should do next. A variety of different instructions exist on the §502.
The basic functions available are reading or writing data to memory or
an input/output device and performing arithmetic and logical
operations on the data. Once the MOS (machine Operating system)

program is entered, this piece of software gains full control of the
system.

SHEILA and the system hardware

In 6502 systems the hardware is meniory mapped which means that any
hardware device registers appear in the main memory address space.
Page &FE (the 256 bytes of memory starting at &FE0)) is reserved
especially for the system hardware inside the BBC microcomputer. The

152

i f "SHEILA" has been assigned to this page of memory.
;Iﬁglzltl?:i;gcial pages are &FC (calle‘d "FRED"} and &FD cgcalled
"IIM"). FRED and JIM are concerned with extel_'nal user har wljlre
attached to the one megahertz bus and the cartridge socket on the
Master. They are dealt with in chapter 23.

i f the 64K memory map is fully occupied bya
EggéﬁigiegfoRAM and ROM.I-%"O overcome the limitations which i
would otherwise be imposed by such a small memory flddress space, this
memory is paged and overlaid in various ways to achieve a larger
effective addressing capability (see chapter 12).

ould address the 16K MOS ROM, 4 x 161§ pagec? ROMS
Zrl:s g;(l:?le{lfl\; The B Plus received the a_dditional capacity f(.):i1 n;gtélhng
11 x 16K logical paged ROMs on the main board together wit o
shadow video RAM and 12K sideways RAM. The Master 1mpéove 0
this by adding another 64K RAM typically org_amsed as4x 16 pag)
RAMs and an external cartridge socket allowing further expansion o
RAM and/or ROM.

All the machines have the facility for adding an external c0—prc‘nc_essoi‘1
(commonly referred to as a second processor). The Master addlhgna y
has internal connectors which allow for another co-processor to be
mounted internally. These co-processors can be based around any f
microprocessor, and have their own ass_,oc1ated memory, but none o |
their own I/0O devices. All communication be'tween CO-Processors ;dn

the outside world passes through the "Tube’ interface to the BBC Lcro.
In this manner, the extensive 1/O capabilities of the BBC Micro can be
accessed.

i i hed to Sheila are
In the following chapters, all of the devices attac _
described in deft;ail. The table below shows the memory map of Sheila
and notes the major differences between the various Acorn-BBC range

of machines:

400 - &0F [Electron ULA various haidware funclions
800 - 807 | 6845 CRTC Video controlier o |
&08 - ROF | B850 ACIA Serial controller '
&10-&1F [Serial ULA Serial systern chip v
(&18 - 81A)| pPD7002 Analegue to digital converter
&20 - 821 | Video ULA Video system chip v |
&24 Floppy disc control reg.
&28 wD1T70 Fleppy dis¢ control chip
&30 74LS161 (ROMSEL) Paged ROM select register o]
434 ACCCON Memory access control register .
438 INTCFF Network NMI disable
&3C INTON Network NMI enable
&40 - 45F | €522 VIA System VIA o]
controls keyboard, sound o | e
optional speech processor .|
CMOS battery backed clock & RAM
128 or 256 byte EEPRCM
&80 --&TF 6522 VIA User VIA (user port) o]
&80 - &9F | 8271 FDC Floppy Disc controller o
1770 FRC Floppy Dise centroller .
[Third party hww e.g. Modem)]
&A0 - &BF | 68B54 ADLC Econet controller o |
&CO - &CF | pPD7CO02 Analogue 1o digital converter o |
Network interface Econet interlace
&E0Q - FF | Tube ULA Tube system interface o |

(* present only if serial expansion fittad)

154

12 Memory

This chapter is primarily concerned with the physical access to memory.
The memory hardware and operating system calls controlling memory
access are described here. The memory allocated for use by specific sub-
systems is described in the relevant chapters. For information about
how mermory is allocated and used by the operating system refer to
section 6.6,

12,1 Memory map overview

The 6502 series of microprocessor found at the heart of all Acorn-BBC
computers can address up to 64K bytes of memory and memory-mapped
hardware. Acorn have carefully allocated sections of this limited sized
memory map to provide a defined environment within which all
programs can operate.

As can be seen from the memory map illustrated in fig. 12.1, all Acorn-
BBC machines share a similar basic arrangement for the memory, with
additional features on the B Plus and Master machines. The shared
features provide for the lower 32K of memory to be RAM and the upper
16K to be mainly the MOS ROM with three 256 byte pages allocated to
memory-mapped hardware (see hardware introduction). The 16K
section in between contains paged ROM and RAM.

On the model B the first 12K of RAM is used for variable storage, system
use and program storage. The remaining 20K of RAM is allocated
between the screen and program storage depending upon the screen
mode used. Mode 0 uses the whole of this 20K whilst mode 7 uses orly
IK. To overcome this severe limitation on available RAM, both the B
Plus and Master computers have a 20K 'shadow’ screen which can
operate without occupying the RAM in the main memory map.

To achieve more space than 16K for application programs in ROM, the
ROMs are paged. A 4 bit paging register allows up to 16 different
ROMs to be addressed, considerably increasing the amount of software
which can reside in the machine. The Master is even more sophisticated,
being able to provide 4K of MOS workspace and 8K of filing system
RAM outside of the lower 32K RAM. The additional filing system RAM
overcomes the problem which occurred on earlier machines whereby
some filing systems grabbed parts of the lower 12K of RAM for their
own use, reducing the RAM available to the user.

4

155

12,2 OSBYTE calls concerning memory use

BBO0O
&8000
43000

The following OBYTE calls are relevant to the use of memory.

Paged
RAM
12k

Shadow
RAM
20K

Read top of user memory (HIMEM) OSBYTE

Call address &FFF4

8 g Indirected through &20A
g g A=&84 (132)

This call returns either the address of the bottom of the display RAM or
the value &8000 if a shadow screen mode is in use. In a second processor
this value is not the equivalent of HIMEM.

RAM
7
18k
d via system VIA)

RAM
6§
16k

The address is returned in the X (LSB) and Y (MSB) registers

RAM
5
16k
EMO$
i

Read top of user memory for a given screen mode OSBYTE

28 8 s, = g Call address &FFF4
E e g = -] Indirected through &20A
A=&85 (133)

This call returns either the address of the bottom of the display RAM or
the value &8000 if a shadow screen mode is selected.

Entry paramter:
X contains screen MODE number

MOS
ROM
16k
Paged
ROM/RAM
16K
Video
Memory
RAM
20k
Main
Memory
RAM
12k

On exdt,
X contains LSB of address
Y contains MSB of address

BFFFF
&CO00
48000
&3000). o o s - -
20000

Select screen memory for direct access OSBYTE

= B2

S = & <2 Call address &FFF4
e - Indirected through &20A

EEEE {g} A=&6C (108)

This call is only available on Master series machines. It enables the ’
selection of one of the two banks of memory from &3000-&7FFF to be

selected as directly accessable to the user's program.
Fig 12.1 - The memory map

Entry parameters:
X=0 main memory selected
X=1 shadow memory selected

156 157

Cartr. Bus
Filing Sys
RAM 8k
MOS 4k
Shadow
RAM
20k

On exit:
X is preserved, Y is undefined

Select main/shadow memory for VDU access OSBYTE

Call address &FFF4
Indirected through &20A
A=&70(112)

Only available on Master series machines, this call determines which
memory is used by the VDU driver regardless of the memory displayed
by the video hardware. Together with OSBYTE &71 rapid animation
techniques may be developed by updating the next screen while the
previous screen is being displayed.

Entry parameters:
X=0 main or shadow memory according to current mode
(ie. main for modes 0-7 and shadow for modes 128-135).
X=1 main memory used
X=2 shadow memory used
Y=0

On exit:
X=old setting
C is undefined

Read/write flag used by OSBYTE &70

Call address &FFF4
Indirected through &20A
A=&FA (250)

<NEW VALUE>=(<QLD VALUE> AND Y) EOR X
The old value is returned in X.

Available on Master series machines only.

Select main/shadow memory for display OSBYTE

Call address &FFF4
Indirected through &20A
A=&71(113)

On Master series machines this call determines which memory is used
by the video hardware to create the VDU display regardless of which
memery the VDU driver is using.

158

Entry parameters:
X=0 main or shadow memory according to current mode
X=1 main memory displayed
X=2 shadow memory displayed
Y=0

On exit:
X=old setting
C is undefined

Read/write flag used by OSBYTE &71

Call address &FFF4
Indirected through &20A
A=&FB (251)

<NEW VALUE>=(<QOLD VALUE> AND Y) EOR X

The old value is returned in X.

Write shadow memory use OSBYTE

Call address &FFF4
Indirected through &20A
A=&72 (114)

On B+ and Master series machines this call can be used to force the use
of shadow memory regardless of the screen mode selected.

Entry parameters:
X=0 shadow memory always used
X<>0 shadow memory not used if mode 0-7 selected
Y=0

On exit:
X=old setting
C is undefined

Test for sideways RAM OSBYTE

Call address &FFF4
Indirected through &20A
A=&44 (68)

This call is only available on Master series machines and the B+ and is
used to detect the presence of sideways RAM. The operating system

159

tests that it is able to write a byte of memory in page &80 after
switching in the memory bank using the latch at &FE30.

Entry parameters:
A=&44

On exit:
The value returned in X indicates which banks of sideways RAM
are present.

bit 0 is set if ROM number 4 is RAM
bit 1 is set if ROM number 5 is RAM
bit 2 is set if ROM number 6 is RAM
bit 3 is set if ROM number 7 is RAM

Sideways RAM allocation OSBYTE

Call address &FFF4
Indirected through &20A
A=&45 (69)

This call is only available on Master series machines and the B+ and is
used to return information about the use of sideways RAM. Sideways
RAM banks may be allocated for use as paged ROMs or for use as
extended memory using pseudo addresses.

Entry parameters:
A=&45

On exit:
The value in X indicates how banks of sideways RAM are being
used.

bit 0 is set if ROM number 4 in use for extended addressing
bit 1 is set if ROM number 5 in use for extended addressing
bit 2 is set if ROM number 6 in use for extended addressing
bit 3 is set if ROM number 7 in use for extended addressing

RAM size OSBYTE

Call address &FFF4
Indirected through &20A
A=&FE (254)

This call has a different use on Master series computers. On a BBC
model A or B this call returns information about the amount of memory
installed.

160

<NEW VALUE>=(<OLD VALUE> AND Y} ECR X

On exit:
X=0 on the Electron
X=1 on the B+
X=&40 on a model A
X=&B80 on a model B

12.3 Paged ROM and RAM hardware control

&FE30

Bit 7 & 5 4 3 2 1 0

use | M PR3 | PR2 | PR1 | PRO
select

The ROM paging register on all machines is accessed at 'Sheila’ address
&FE30. The lower 4 bits PRO-PR3 select which one of the 16 possible
paged ROMs (and RAMs) is resident in the memory map at &8000 -
&BFFF. The operating system keeps track of which paged ROM is being
used at any time, so it will change the register contents quite often.
Writing directly to this register is definitely not advised, especially from
BASIC or any other language; the current language could be switched
out of memory by mistake causing the whole machine to crash! Selection
of ROMs should always be left to the MOS,

The Master computers set bit 7 of the paging register to switch a 4K
bank of RAM into the memory map from &8000 - &8FFF. This segment
of RAM is used by the MOS during graphics operations. On the B Plus
bit 7 selects 12K of RAM from &8000 - &AFFF. It is possible to load
ROM s into this area of RAM provided that they are less than 12K in
length. ROM data loaded in this way may be selected as the current
language using *FX142,128. Note however that any ROMs selected like
this will not be retained as the current language over a BREAK.

Details of the standard configurations of paged RAM and ROM and
full installation information is provided in section 17.2.

12.4 RAM Access Control
From the memory map diagram, it will be appreciated that fairly
sophisticated control must be exercised over memory accesses,

especially on the Master and B Plus. It is important to ensure that the

1561

carrect memory bank is switched into the correct location before trying
to read or write data to that memory if the systern is not to becorne an
inoperational mess. Luckily, this control of the memory is normally
handled by the MOS and the programmer does not need to worry about
switching banks of memory himself. However, for the systems
programmer writing filing systems or needing to exercise particularly
tight control over the memory, it can be necessary to switch segments in
and out of the main memory map. The remainder of this section covers
this by describing the operations of the ‘access control register’
ACCCON which is located at Sheila address &FE34.

&FE34 - B plus

Bit 7 6 5 4 3 2 1 0
shadow]
use select

&FE34 - Master
Bit 7] 5 4 3 2 1 4]

use |[IRR[TST]IFJ |ITU| ¥ | X | E | D

(=]

use shadow RAM for screen

-

use main memory for screen

0 | VDU driver uses shadow RAM
1 | VDU driver uses main memory

L=

normal RAM in main memory

—ry

shadow RAM in main memory

0| 8k RAM at &C000 - &DFFF
1 | VDU driver code at &C000

0| enable external Tube

-

enable internal Tube
0| 1MHz bus al &FCO0-&FDFF
1| cartridge at &FC00
normal state (do not change)
hardware {est

p=

—

(=

after IRCG processed
IRQ o CPU

pury

162

12.4.1 Access to the Shadow RAM

With the B Plus came the introduction of the 'shadow’ RAM. This is 20K
of RAM which can be used to store the display data for the screen. When
selected using *shadow, OSBYTE 114 or mode 128 - 135, the area of
RAM in the main memory map from &3000 to &7FFF is freed for user
programs and data. Control through the MOS in this manner is
perfectly adequate for most applications. However, with the Master
came more sophisticated access control to allow animated games and
other applications which write data directly into the screen memory and
shadow memory to be produced.

For the Master, several alternative approaches to direct screen control
are possible, but it should always be born in mind that programs which
write directly into the screen memory will not work from second
processors. The first and simplest approach is to deselect the shadow
screen altogether. Writing data into the screen display area is then just a
matter of writing data to the correct address in memory without
bothering about switching the shadow memory. This approach limits
the RAM available for the user program, but does ensure compatibility
with the model B. If extra RAM is required, the programmer will have
to switch the shadow RAM into and out of the main map using the
OSBYTEs covered in section 12.2. The code which performs this
switching must not be in the memory from &3000 - &7FFF, otherwise it
will switch itself out of the memory map and crash.

The Master series computers require the 'X' bit to be set to switch the
20K shadow RAM into the memory map. Clearing the 'X' bit switches
the shadow RAM out of the memory map. Additional control is achieved

. with the 'E' and D' bits. With the 'E’ bit set, any access to the screen

memory addresses from the MOS VDU driver code at &C000-&DFFF
automatically switches in the shadow RAM when data is written. With

‘E' clear, all written data, even from the MOS VDU driver code,

accesses the main memory. The 'D' bit determines whether the shadow

or main memory is used by the 6845 CRTC to generate the video image.
With "D set the shadow RAM is displayed; with 'D’ clear the main
memory is displayed. By careful control of all these bits, preferably using
the OSBYTEs covered in section 12.2, smoothly animated sequences can
be constructed. Generated video output is sourced from one of the

screen memories, whilst the other is being updated with new graphics.

The B Plus does not have such versatile control of the shadow RAM. Its
'S' bit is equivalent to the Master’s D' and 'E’ bits combined. When set,
the 'S' bit causes the VDU driver to update the shadow screen and
causes the shadow screen to be displayed. When clear, the main memory
is used by the MOS VDU driver and is displayed on the video screen.

163

12.4.2 Filing system RAM control

On the model B, filing systems such as the Disc Filing System (DFS)
allocate necessary workspace at the bottom of available RAM. This
leads to several pages of memory being occupied from &0EO0 (the exact
amount depends on the particular filing system(s) installed). Just like
having the screen in main memory this is undesirable as it reduces the
RAM available to the user.

The Master computers overcome this waste of memory by allowing an
extra 8K bank of RAM to be switched in at &C000-&DFFF. This extra
bank can be switched in by filing systems and temporarily overlays the
MOS VDU driver code. To switch in the extra RAM, the "Y' bit of
ACCCON should be set, but must be cleared again before the VDU
driver code next needs to be accessed.

12.4.3 Other Master access controls

In addition to RAM access control, the Master ACCCON register also
performs the following functions:

Interrupts - setting the IRR bit causes an IRQ to the CPU

Cartridge/bus access - setting the IF] bit causes accesses to "Fred' and
'Jim' between &FC00-&FDFF to be directed to the cartridge sockets.
When clear IF] directs accesses to the IMHz bus as on the model B.

Co-processors - the master can be attached to two secondary
processors, one internal, the other external. When set, the ITU bit selects
the internal co-processor and when clear it selects the external co-
processor.

164

13 Video/Graphics System

The video system is described in two parts. All operating system calls
and associated software support are described in the first section. The
video hardware is described in the second section.

The manipulation of the video memory is described in the Memory
chapter where the appropriate operating system calls and hardware are
described.

13.1 O.S. Video Support

Screen output is achieved using the OS output routines with the screen
selected as one of the current output streams. The OS output routines
are described in chapter 6. The primary output routine is:

OSWRCH: Output character given in A
Call address &FFEE
Indirected through &20E

Using this routine all the defined character and graphics facilities are
available. Most programmers will be familiar with these facilities when
using BASIC.

13.1.1 Text output and control characters

When ASCII character values are output to the screen the appropriate
character will be printed on the screen at the text cursor position. The
ASCII values and characters are given in the following table.

165

2| 32 [space|[30] 48 [0 40| o4

2|33 || 31| 49 | 1 4] 8 ?
2| 34 | " 2| s | 2 2|6 | B
23| 35 | # 33| 51 | 3 aleg | e
24| 3 | 3 | 2 | 4 44|l 8 | D
5137 | % 5[5 | 5 5|60 | E
% | 38 & 36| 54] 81 70 F
a7y 3 : 7] 5 7 47| 7 G
B 40 | | 38 8 sl 2| K
24) n| w 9 | 73 |
oA 42 | 3a0 = : Al 74 |
2B| 43 | + 3| ® ; 5 |k
2C| 44 | 3c| &0 | < el w | L
20| 45 - 30| &1 = an| 7 M
k| 46 | . 3E|l & | > 4E| BN
oF | 47 | / 3F[63 | 7 4Fl B | O
o|ea [P 6| % I REE

st 8 | o 6| | a 7| 113 5
2| & R @ 8| b 2| 12| r
53 83 | 8 831 @ | ¢ 73| 115 s
54| 84 | T 64| 100 | d 74| 116 | t
%5186 | U | 101 | e Bl 17| u
%) 6 | v 6| 1| f Bl 18| v
G 67 W []6| 103 g 7| e | w
8] 8 | X 68| 104 | h Bl 2| «
0|8 |vy 0| 15| i Bl oy
sAl 0 | 2 BA| 106 | 7Al 12| 2
S8 e | 6B| 107 | & 781 123 |
sci 2 | 6C| 108 | I 7C| 124 | |
0| 93 |] 60| 109 | m | 15|
5| 94 | # BE| 110 | n E| 1| -
F1 % | _ BF| 111 | o F| 127 | o

Character values between 0 and 32 are used to produce miscellaneous
control effects such as moving the text cursor and performing PLOT
commands. The table below gives a summary of these codes. A more
detailed description can be found in the model B 'User Guide' or the
‘Master Reference Manual part 1'.

Where' a contro} character requires one or more parameters (indicated
in the '+bytes’ field of the table) these are taken as being the characters
output immediately following the control character.

166

Does nothing

Send next character to printer only
Enable printer

Disable printer

Write text at text cursor

Write text at graphics cursor
Enable VDU drivers

Make short beep (BEL)

Move cursor back one character
Move cursor forward one character
Move cursor down one ling

Move cursor up one line

Clear text area

Carriage return

Paged mode on

Paped mode off

Clear graphics area

Define text colour

Define graphics colour

Dafine logical colour

Restore default logical colours
Disable VDU drivers or delete input line
Select screen MODE

Re-program display character + various other fr's

BENisIFFRoN TN RO O

N
[#%)
BENAG RGNS TMOOD oy rn bW -0

>-—-I-—-N-<><§<<:—|m:no-uoz§|—xr_—:r:c)'nmmOm:b@

cmohhoommm—soommAccoooococooocco—o

24 Define graphics window

5 PLOT kx.y

2% 1A Restore default windows

27|18 ESCAPE value

28 11C Define text window

2|10 Define graphics origin

30| 1E Home text cursor to top left of window
31{1F] _ Move text cursor to X, ¥

127 7F | del Backspace and delete

VDU code 23 may also be used to access the 6845 CRTC chip registers on
the BBC microcomputer and to turn the cursor on or off on the BBC
microcomputer and the Electron.

VDU23,0,r,v,0,0,0,0,0,0 - places value v in register r of the 6845 (two
byte values may be given to the VDU commands by using a semi-colon
instead of a comma; this method is used in the VDU23,1 examples

below).

vDU23,1,0,0;0;0;0 - hides cursor ;
VDU23;1,1,0,0;0;0 - display cursor

vDU23;1,2,0;0;0,0 - gives a steady cursor

VvDU23;1,3,0;0;0,0 - gives a flashing cursor

This method of selecting a steady cursor is only implemented on the
Electron. When the cursor is hidden cursor editing may still be

167

L

performed. On the BBC micro,but not the Electron, the flashing cursor
will re-appear during cursor editing.

Writing 0 to this location can be a useful way of abandoning a VDU
queue. Otherwise writing to this location is not recommended.

On the Electron the VDU?23,0,10,32;0;0;0 method of turning the cursor

off using the 6845 register directly is also implemented for compatibility. 13.1.4 PLOT numbers

A brief summary of VDU 23,n commands available on the Master seties
computers is shown in the table below.

r

The graphics plotting routines are available using control code value
&19 (25). This control code takes 5 parameter bytes. The 5 bytes
correspond to the K, X and Y parameters described for the PLOT
command in BASIC as described in the ‘User Guide'. The plot number
(K) is a single byte value while the X and Y co-ordinates are two byte
values.

n | VDU Znitundtion T oo |

n

0 Write to 6845 registers

1 Turn cursor onfoff
o5 | Set Extended Colour Fill (ECF) patterns
6 Set dotted lines pattern
7

8

9

10

11

Scroll window directly A summary of the plot numbers is given below:

Clear block

Set 1st flash time

Set 2nd flash time

Set default ECF patterns

12415 | Set simple ECF pattern
16 Cursor movement control

1725 | reserved
% reserved for Communicator font changes
z reserved for Acornsoft sprites

28-31 | User program calls

Move relative to last point
Draw ralative in current foreground colour
Draw ralative in logical inverse colour
Draw ralative in current background colour
Meve absolute

Draw absoluts in current foreground colour
Draw absolute in logical inverse colour
Draw absolute in current background celaur

~fohn B W =0

13.1.2 Reserved VDU23 expansion

Higher PLOT numbers have other functions. The graphics cursor
movements and plot colours follow the same pattern as the first 8 plot

The VDU23 functions numbered 17-31 are passed to the VDUV vector at numbers.

&226. See the table above for detailed current allocations. These
functions can be recognised by the following conditions on entry to
VDUV: C=1, A contains the VDU function code, ie first number
following 23 in the sequence. All parameters following the 23 are held in
ascending order starting at VDU variable location &1B.

13.1.3 Read/write VDU queue OSBYTE call

Call address &FFF4
Indirected through &20A
A=&DA (218}

<NEW VALUE>=({<OLD VALUE> AND Y) EOR X
The old queue value is returned in X.

This contains the 2's complement negative number of bytes still required
for the execution of a VDU command.

168 169

£15 Last paint in line omitted when inverted plotting Lsed
16-23 Using dotted line

24.31 | Dotted line, omitting last point
32-39 | Solid line, first point omittad

40-47 | Solid line, both end points omitted
48-55 | Dotted line, initial point omitted
5663 | Dotted line, both end points omitted
64-71 Single point plotting

72-79 | Horizontal line filling

8087 | Plot and fill triangle

8805 | Horizontal line blanking (right onty)

96-103 | Plot rectangle

164-111 | Horizontal line filling

112-119 | Plot parallelogram

120127 | Horizontal line fill {non-foreground)
128-135 | Flood fill inon-background)
136-143 | Flood fill (foreground)

144-151 | Plot circle outling

152-159 | Plot filled circle

16¢-167 | Plot arc

168-175 | Plot filled chord segment
176-183 | Piot filled sector

184-191 | Move or copy rectangle
192-199 | Plet ellipse outline

200207 | Pletsclid ellipse

208231 | reserved

232-239 | reserved for Acornsoft sprites
240-255 | user PLOT numbers

13.1.5 VDU extension vector

vDUv
Indirection address &226

This vector is called when the VDU drivers are presented with an
unknown command or a known command in a non-graphics MODE. It
has been implemented to provide a facility for extending the graphics
software.

A VDU 23,n command with a value of n in the range 2 to 31 will cause a
call to be made to this vector with the carry flag set and the accumulator
containing the value n.in the BBC model B. On machines equipped with
the graphics extension ROM such as the Master Series, values from 17

to 31 are passed to this vector although some values have been reserved
for expansion software (see 13.1.2).

An unrecognised PLOT command or the use of a PLOT command in a
non-graphics MODE will result in this call being made with the carry
flag clear. The accumulator will contain the PLOT number used.

170

13.1.6 User defined characters

The BBC microcomputer and the Electron allow the user to define the
pixel pattern of text characters outside the ASCII and control character
range. On Master series computers the font is permanently expanded
and a default set of character definitions may be used.

In the default state 32 characters may be defined by the user using the
VDU 23 statement from BASIC (or the OSWRCH call in machine code).
Refer to the "User Guide’ for more information about using the VDU 23
command. These characters use memory from &C00 to &CFF. Printing
ASCII codes in the range 128 (&80) to 159 (&9F) will cause these user
defined characters to be printed up (these characters will also be printed
out for characters in the range &AO0-&BF, &C0-&DF, &E0-&FF).

Read character definition OSWORD

Call address &FFF1

Indirected Through &20C

A=&CA

Xand Y contain the address of a parameter block

The 8 bytes which define the 8 by 8 matrix of each character which can be
displayed on the screen may be read using this call. The ASCII value of
the character definition to be read should be placed in memory at the
address stored in the X and Y registers. After the call the 8 byte
definition is contained in the following § bytes.

XY+ |0 Character required
1| Top row of character definition
2 | Second row of character definition

8 | Bottom row of character definition

Exploding the character definition RAM

In the default state of non-Tube model Bs the character definition RAM
is said to be imploded because no memory has been allocated for storing
extra character patterns. On Master series computers part of the
additional RAM is permanently assigned to storing character patterns
and so the concept of exploding the font is not applicable.

171

?

If the character definition RAM is exploded then ASCII characters 128
(&80) to 159 (&9F) can be defined as before using VDU 23 and memory
at &C00. Exploding the character set definitions enables the user to
uniquely define characters 32 (&20) to 255 (&FF) in steps of 32 extra
characters at a time. The operating system must allocate memory for
this, which it does using memory starting at the "operating system high-
water mark” (OSHWM). This is the value to which the BASIC variable
PAGE is usually set and so if a totally exploded character set is to be
used in BASIC then PAGE must be reset to OSHWM+&600 (i.e.
PAGE=PAGE+&600).

ASCII characters 32 (&20) to 128 (&7F) are defined by memory within
the operating system ROM when the character definitions are
imploded.

Explode character definition RAM OSBYTE call - model B
Restore default font definitions - Master series

Call address &FFF4
Indirected through &20A
A=&14 (20)

It should be noted that in a Master series computer or when a second
processor is active the default state is a fully exploded font allocation. In
the Master this call takes no parameters and restores the default font
definijtions.

Entry parameters :
X value explodes/implodes memory allocation

See section 6.6.3 for details about reading OSHWM.

The memory allocation for ASCII codes in the expanded state is as
follows:

Parameter | ASCII code
X=0 &80 - &BF
X=1 &AD - &BF
X=2 &C0 - &DF
X=3 &EOD - &FF
X=4 &20 - &3F
X=5 &40 - &5F
X=6 &60 - &7F

Memory allocation

&C00 - &CFF (imploded)

OSHWM - OSHWM+&FF {(+above)
OSHWM+&100 - OSHWM+&1FF (+above)
OSHWM+&200 - OSHWM+&2FF (+above)
OSHWM+&300 - OSHWM+&3FF (+above)
OSHWM+&400 - OSHWM+&4FF (+above)
OSHWM+&500 - OSHWM+&S5FF (+above)

Before the OSHWM is changed during a font explosion a service call is
made to the paged ROMs warning them of the impending change.

172

On exit:
Ais preserved
X contains the new OSHWM (high byte)
Y and C are undefined

Read character explosion state OSBYTE call

Call address &FFF4
Indirected through &20A
A=&B6 (182)

This call is implemented on the BBC model B and the Electron. However
use of this call is not recommended as this OSBYTE has been re-
allocated in the Master series where this OSBYTE is used to read/write
the printer ignore character.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The explosion state is returned in X.

This location contains the state of font explosion as set by OSBYTE call
with A=&14/*FX 20.

Restore a group of default font definitions - Master.

Call address &FFF4
Indirected through &20A
A=E&19 (25)

This call was unused on previous BBC operating systems and on the
Master series computers allows either complete restoration of the
default font or restorations of groups of 32 characters.

Entry parameters :
X value determines which characters are restored.

Parameter | Group of Character Codes
X=0 32.255 (&20 - &FF}
X=1 32-63 (&20 - &3F)
X=2 64 -95 (&40 - &5F)
X=3 96 - 127 (860 - &7F) ’
X=4 128 -159 (&80 - &9F)
X=5 160 191 (&AD - &BF)
X=6 192-223 {&C0 - &DF)
X=7 224 - 255 {&ED - &FF)
173

13.1.7 Reading information about the screen Read input cursor position OSBYTE call

state Call address &FFF4
A number of calls are implemented to enable the programmer to Indirected through &20A
interrogate the machine to determine the state of the graphics or text A=&86 (134)

screen. This call returns the current text cursor position(POS and VPOS).

During copying of text on-screen, the co-ordinates of the input cursor
are returned.

Read character and screen MODE OSBYTE call

On exit:
?ﬁl add;ets}? &FFhF:zZO A X contains horizontal character position
:_zg;ta?’s) roug Y contains vertical character position

This call returns the character at the text cursor and the number of the
current screen MODE.

Read pixel value OSWORD call

Call address &FFF1

Indirected through &20C

A=&9

X and Y contain the address of a parameter block

On exit:
X contains character value
(0 if character not recognised)
Y contains graphics MODE number

(0-7 regardless of shadow RAM modes) This routine returns the status of a screen pixel at a given pair of X and

Y co-ordinates. A four byte parameter block is required and the result is

A is preserved contained in a fifth byte.

C is undefined

XY + LSB of the X co-ordinate
MSB of the X co-ordinate
LSB of the Y co-ordinate

MSB of the Y co-ordinate

Read output cursor position OSBYTE call

Wl 2| =

Call address &FFF4
Indirected through &20A
A=&A5 (165)

On exit:
XY+4 contains the logical colour at the pixel

This call is available on the Master series operating systems only. It or &FF if the point specified was off screen.

returns the current text cursor position(POS and VPOS). During
copying of text on-screen, the co-ordinates of the output cursor are

returned. Read previous graphics positions OSWORD call
On exit: - Call address &FFF1

X contains horizontal character pogition Indirected through &20C

Y contains vertical character position A=&0D

The operating system keeps a record of the last two graphics cursor
positions in order to perform triangle filling if requested. These cursor
positions may be read using this call. X and Y should provide the address
of 8 bytes of memory into which the data may be written.

174 175

XY + Previous X co-ordinate, low byte
Previgus X co-ordinate, high byte
Previous Y co-ordinate, low byte
Previous Y co-ordinate, high byte
Current X co-ordinate, low byte
Current X co-ordinate, high byte
Current Y ¢co-erdniate, low byte
Current ¥ co-ordinate, high byte

R I AT S T T =)

Read VDU status OSBYTE call

Call address &FFF4
indirected through &20A
A=&75(117)

On exit the X register contains the VDU status. Shadow mode (bit 4) is
used only on the B+ and Master series machines. Information is
conveyed in the following bits :

VDU Status Byte
[7]6]5{4ai3[2]1]0]

| Printer output enabled by a VDU2 |
Scrolling disabled {gursor editin

rPaged serolling selected

| Sottware scrolling selected (text window) |

I Shadow made selected |

| Text at graphics curscr enabled by VDU 5 |

input & output cursors separated, cursor editing mode
[Screen disabled following VDU 21 I

A and Y are preserved
C is undefined

Read/write lines since last page halt OSBYTE
Call address &FFF4

Indirected through &20A
A=&D9 (217}

176

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The previous setting of this location is returned in X.

This value represents the number of lines printed since the last page
halt. It is used by the operating system to decide whether or not to halt
scrolling when paged mode has been selected. This location is set to zero
during OSWORD call &00 to prevent a scrolling halt occurring during
input.

13.1.8 Reading and writing the colour states

The relationship between physical and logical colours, the palette, and
the timings of the flashing colours may be accessed using the following
calls.

Writing the palette

This may be achieved using the OSWRCH routine and control code &13
(19). A faster method uses the OSWORD call with A=&0C.

Write palette OSWORD call

Call address &FFF1

Indirection address &20A

A=&0C (12)

X and Y contain the address of a parameter block.

Another advantage of using this routine is that OSWORD calls can be
used in interrupt routines. A parameter block should be set up with the
logical colour being defined at XY, the physical colour being assigned to
it in XY+1 and XY+2 to XY+4 containing padding ('s.

e.g. To perform an equivalent call to a VDU 19,1,3,0,0,0 command the
parameter block should be:

XY+ |0} Logical colour
1| Physical colour
2|0 ’
3| a
4

C (padding for future expansion)

177

Read palette OSWORD call

Call address &FFF1

Indirected through &20A

A=&0B (11)

X and Y contain the address of a parameter block

The physical colour associated with each logical colour may be read
using this routine. On entry the logical colour is placed in the location at
XY and the call returns with 4 bytes stored in the following four
locations corresponding to a VDU 19 statement.

XY + Logieal colour

Physical colour (on return)
0

0

0 (padding for future expansicn)

Bl 2o

Set mark duration of flashing colours OSBYTE

Call address &FFF4
Indirected through &20C
A=&9 (9)

This call sets the duration of the mark state of flashing colours i.e. the
duration of first named colour.

Entry parameters:
X determines length of duration, Y=0

X=0 Sets mark duration to infinity
Forces mark state if space is set to 0

X=n Sets mark duration to n centiseconds
(n=25 is the default setting)

On exit:
A is preserved
X contains the old mark duration
Y and C are undefined

178

Reading the mark duration OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C2(194)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old mark duration is returned in X.

Set space duration of flashing colours OSBYTE

Call address &FFF4
Indirected through &20C
A=&A (10)

This call sets the duration of the space state of flashing coloursi.e. the
duration of the second named colour.

Entry parameters:
X determines length of duration, Y=0

X=0 Sets space duration to infinity
Forces space state if mark is set to 0

X=n Sets space duration to n centiseconds
(n=25 is the default setting)

On exit:

A is preserved

X contains the old space duration

Y and C are undefined

Reading the space duration OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C3 (195)

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X

The old space duration is returned in X. ’

179

Reading the flash counter OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C1 (193)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old flash counter value is returned in X, This counter contains the

number of 1/50th sec. units until the next change of colour for flashing
colours.

OSBYTE &9A (154)

Call address &FFF4
Indirected through &20A
A=&9A (154)

This call is implemented differently on the BBC microcomputer and the
Electron.

(a) BBC Microcomputer and Master

Write to video ULA control register and OS copy

Entry parameters:
X contains value to be written

This call writes to register 0 of the video ULA and also writes the value
into the reserved location of the operating system’s workspace. See
section 13.3.13.

This call also sets the flash counter to the mark value,

On exif:
A, X, Y and C are preserved

(b) Electron

Reset flash c¢ycle

This call resets the flash cycle to the beginning of the mark state (i.e. to
the first named colour of the pair) by manipulating the ULA registers.

There are no entry parameters.

180

On exit:
All registers are undefined

OSBYTE &9B (155)

Call address &FFF4
Indirected through &20A
A=&9B (155}

Write to video ULA palette register and OS copy

This call is not implemented on the Electron. On the Electron this call is
ignored by immediately executing an RTS instruction.

Entry parameters:
X contains value to be written

This call writes to register 1 of the video ULA and also stores a copy of
this value in the OS5 workspace. The actual value written to the register
and the internal copy is X EOR 7.

On exit:
A,Xand Y are preserved
Cis undefined

OSBYTE &73 (115)

Call address &FFF4
Indirected through &20A
A=&73 (115)

Blank or restore palette (Electron)

This call is only implemented on the Electron where this call is used to
set all colours to black or restore the default palette.

Entry parameters:
X =0, restore the palette
X>0, set palette colours to black

181

Reading OS copies of video ULA registers
OSBYTE calls

Call address &FFF4
Indirected through &20A
A=&B8 (184) control register
A=&B9 (185) palette register

Read OS copies of video ULA registers.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location are
returned in Y,

The last value written to the ULA registers can be read using this
method. These calls should not be used to write to these locations
because to do so would make the internal operating system copy of the
registers inconsistent with the actual register contents. OSBYTE &B8 is
undefined on the Electron and OSBYTE &B9 is used as the paged ROM
polling semaphore (see chapter 17).

13.1.10 Wait for vertical sync OSBYTE call

Call address &FFF4
Indirected through &20A
A=&13 (19)

This call forces the machine to wait until the start of the next frame of
the display. This occurs 50 times per second on the UK BBC
Microcomputer. Its main use is to help produce flicker free animation on
the screen. The flickering effect is often due to changes being made on
the screen half way through a screen refresh. Using this OSBYTE call
graphics manipulation can be made to coincide with the flyback between
screen refreshes. User trapping of IRQ1 may stop this call from
working.

On exit:
A is preserved
X, Y and C are undefined

182

13.1.11 The OS VDU variables

The operating system VDU variables are accessible on the BBC
Microcomputer and Electron using the OSBYTE calls described below.
These VDU variables have been officially described by Acorn in the
‘Master Reference Manual Part T'.

Read VDU variable value OSBYTE call

Call address &FFF4
Indirected through &20A
A=&A0 (160)

This call is used to read VDU variables and is preferable to reading
directly from the video workspace.

Entry parameters:
X contains the number of the VDU variable number to be read

On exit:
X=low byte of number
Y=high byte of number
A is preserved
C is undefined

Read address of VDU variables OSBYTE calls

Call address &FFF4
Indirected through &20A
A=&AE (174) reads LSB
A=&AF (175) reads M5B

When used across the Tube the address returned refers to thei/o
Processor's memory.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The origin address LSB or MSB for the VDU variables is returned in X.
With OSBYTE 175 the contents of the next location are returned in Y.
This call returns with the address of the table of internal VDU variables.

On exit:

X=low byte
Y=high byte

183

13.1.12 *TV OSBYTE call @ @ 15> 05 use of page 3

Call address &FFF4 Aaddr}: . memory usa
Indirected through &20A . . 500 e ‘
A=&90 (144) 2307 Current graphics window, internal co-ordinates
. %308))
Th;ls call tr’ne?iyfbe used to set the vertical screen shift and interlace option &30B Gurenk VDU 26 seftigs [cutrent tex! vdncion)
as descri or the *TV command. .
and ::gg Current VDU 29 setfings (graphics origin)
Entry parameters: 8310 .
X=vertical screen shift in lines . . g3ty | Curent graphics cursor
Y=0 interlace on 4314
: Old hics cursor (internal co-ordinates;
Y=1 interlace off 8317 grap ()
4316 | POS vale
On exit: . . 8319 | YPOS valie
X=o0ld screen shift setting %31A | POINT value within current graphics character
Y=o0ld interlace OPtiDn . . i;:g VDU queus/Graphics workspace
&31F
4323 VDU gueue anchored at 8323

13.2 Video memory use Eaze
. . a327 Current graphics cursor (infernal co-ordinates)
4328
13.2.1 VDU zero page allocation 2349
&34A
3348
434C
&340
834E | MSB of HIMEM regardiess of shadow mode

General graphics workspace

Text cursar address for 6845

The allocation of zero page for the VDU driver is shown below.

Text windew size in bytes {used for scrolling)

184

185

&D0 [STATS - VDU stalus byle I 238F | Mo, of byies oooupied by a characte for current mode
401 | ZMASK - curvent graphics point mask 2350
&D2 | ZORA - text colowr OR mask . 4351 Adaress of top left of screen as used for 6845
&3 | ZEOR - text colour EOR mask . 4352
&D4 | Graphics tolour OR mask 3353 No. of bytes used for row of characters for cumrent mode
85 | Graphics colour EOR mask &354 | Size of current screen mode in pages
Graphics character cell address . . &355 | Current screen mode ignaring shadow bit

&D7 &356 | Size of screen memory: 20k=0,16k=1,10k=2,8k=3,2k=4
&D8 8357 .
D9 Text character cell address &354 Q8 current colour settings
&DA . .
408 temporary VDU werk space :g:g VDU 18 settings, foreground piol mode
40C ZTEMP, ZTEMPA, ZTEMPB 2350
0D . . 835E Vector used when decoding VDU codes
RDE B35F | Last seffing of 6845 cursor starl register
&DF &360 | (No. of logical colours for cumment mode)-1
&EQ] . %361 | (No. of pixels per byte for current mode)-1, C for text
agy | P MUl tables fnot Master series) . 2362 | Bil mask for right most pxel Tor current moge

%363 | Bit mask for left most pixel for current mode

364

. . 4365 X+Y co-ordinates for fext Up cursor (used for copying)

Iiddr. mmoryusage

4366 | Teletext output cursor characler (&FF - defaull)
&387 | Font flags, source is RAM i bit set

£368)
836E Font location bytes, MSB of address for each font group
&36F
Colour paletie, 1 byle per logical colo
437E i e periog i
&37F | Unused byte
&380 H ‘
8396 zader block for BPUT file

&39D | Offset of next byle for BRUT o/p
&39E | Offsel of next byte for BGET i
839F

R3A6 Unused bytes
43A7
£381 Filgnarna for the current BGET fife
&3B2
Block header of the mast
2300 lhe most recent block read
43D1 | ‘OPT 3 valus, sequential bleck gap
&3D2 . ’
2300 Filename of the current file being sezrched for
£30D
N
83DE umber for next BGET black
430F | Misc. CFS work space
&3ED .
43FF Keyboard input butfer

20 lmemow Usage -

8366 [VOU 23,16 sefiing

&367 | VDU 23,8 setting, dol pattern

4368 | Cument state of dot patiem

4369 | Colour ploting, ECF pattern number or zerp
&36A | Graphics toreground, ECF number of zsro
&36B | Graphics background, ECF number or zero
&36C | Bit 7 - lag for cursor in column 81

4360 | GCOL setting of graphics foreground colour
436E | GCOL setting of graphics background colour

Changes for Master series computers

The diagram below describes the way in which the Acorn BBC series
computers use the VDU driver workspace in pa ge 3 of memory. Some
official information can be found in the Master reference manuals, The
remainder is unofficial and should be used with some caution.

186

13.3 The Video hardware

The video system on the Acorn-sBC range of computers is based around
two core chips; the 6845 CRT chip and the Acorn Video ULA. The 6845
controls the general screen format, vertical cursor size and copes with
light pens while the special Acorn Video ULA controls the colours and
horizontal cursor size.

For most applications the operating system provides an extensive range
of both character and graphics display facilities, which should be used
wherever possible. Direct control of both the video chips and the video
display memory can be used to obtain specialised effects like rapid
sideways scrolling and fast animated graphics. This section covers the
detailed information required to achieve this direct control.

13.3.1 Direct access to the display memory

Filling the screen memory directly with display data is not
recommended for software which must operate across the entire Acorn-
BBC range of computers since it will not work across the Tube.
However, fast animated graphics applications (like some games) are
only likely be able to achieve the desired speed using this method.

There are three essential points which must be considered before a
program starts to write data into the screen memory:

(1} Is this program running from a second processor? If it is you cannot
write directly into the screen memory because it is not in the memory
map of your processor. Note that you can still access the video
controller chips using valid OS calls.

(2) Is the Shadow Screen being used? Users of the B Plus and Master
series may be using the shadow screen. If this is the case, it is necessary
to switch the screen into the main memory map whenever it needs
updating. TAKE CARE! The OS nermally looks after switching this
memory in and out. You MUST ensure that your code is not running
from a part of memory which will be switched out of the memory map
(if this happens your code will switch itself out of memory and the
machine will crash). See section 12.4 for details of memory switching.
Remember to switch the original non-shadow memory back in after
writing into the shadow screen.

Be careful not to confuse "selection’ of the shadow screen with
'switching' the shadow screen using the ACCCON register. It is
perfectly valid to select a shadow screen using *shadow. This tells the
OS to write all video output into the shadow screen, but it only switches

187

the shadow screen into the memory map momentarily whenever it
writes a character to it.

(3) Is the screen memory in the main memory map? If your machine is a
model B, this will always be the case. You can force a B Plus or Master
series model to use main memory by de-selecting the shadow screen.
Once this has been done, you can write directly into the screen memo:
at its normal memory-mapped location (see section 13.4 for full details
of these memory maps).

13.3.2 The 6845 CRTC

Sheila address &FE00-&FEQ1

General introduction to the 6845

The 6845 cathode ray tube controller chip (CRTC) forms the heart of the
Acorn-BBC series video display circuitry. Its major function is that of
displaying the video data in memory on a raster scan display device (a
television or monitor). The 6845 is responsible for producing the correct
format on the display device, positioning the cursor, performing
interlace if it is required and monitoring the light pen input. It will use
the main memory or the shadow memory for video display, as defined
by the ACCCON register (see section 12.4).

From a user’s point of view it is useful to know how to define a
specialised screen layout, and how the screen layouts (modes) have been
defined by Acorn. A generalised overview of the 6845 is therefore given
first, followed by the values in each of the registers in the various
modes. Section 13.4 contains diagrams illustrating all of the screen
modes in a very concise and easily referenceded format.

188

= Tolai number of horizental characters (Nht + 1}
[Number of displayed horizontal characters {Nhd)———

1
| Y |
] |
L 1
™4

ling

SCREEN DISPLAY PERIOD

o
Maximum scan lines (Nr + 1) p_l

No. of verticai displayed characters (Nvd

——Jotal number of vertical characlers (Nvy + 1)

Tolal scan line adjust (Nadj)

Fig 13.1 - Illustration of a general screen format

13.3.3 Programming the 6845

The 6845 possesses 18 internal registers, 14 of which are write only (R0-
R13), 2 of which are read and write (R14-R15) and 2 of which are read
only (R16-R17). In order to gain access to any of these registers, the
register address must first be written into the 6845 address register. This
is situated at Sheila address &FEC0. Having written a 5 bit number into
the address register, the selected internal register may be written to, or
read from, at Sheila address &FE01.

The best way of programming the 6345 is by using the VDU23 command
because this will work across the Tube. For example
VDU23,0,R,V,0,0,0,0,0,0 will put the value V into register R. In BASIC
programs it can be shortened by using semicolons instead of commas. A
sernicolon causes a 2 byte word to be included in the VDU command. For
example VDU23;R,V;0;0;0 has the same effect as the first example.

189

6845 REGISTER SUMMARY TABLE

RO Horizontal total 127 127 127 127] &3 63 | B3| 83
Ri Characters per line 80 | 80| 80| 80| 40 40 40| 40
R2 Horizontal syne. position 98) 98 | 98| 98| 49| 45 [19 51
R3 Horizontal sync. width 8 8 B 8 4 4 4 4
Vertical sync. time 2 2 2 2 2 2 2 2
R4 Vertical total 38 | 381 38| 30| 38 [aa 30 (| 30
R3 Vertical total adjust 0 0 0 2 4 0 2 2
A6 Vertical displayed characters | 32 | a2 | 32 e5 [32| a2) o5 [25
R7 Vertical sync. position 341 34) 34 27| 34| 34 27 | 27
R8 Interlace mode bits 0, 1 1 1 1 1 1 1 1 1
Display delay bits 4,5 0 0 0 0 ¢ 0] 1
Cursor delay bits 6,7 0 0 o 0 0 0 0 2
Rg Scan lines per character 7 7 7 § 7 7 g 18
RiD Cursor start bits 04 ? 7 7 7 7 7 7 18
Cursor type bit 5 1 1 1 1 1 1 1 1
Cursor Bink bit 6 1 1 1 1 1 1 1 i
R11 Cursor end B 8 8 § 8 8] 19
A12R13] Sereen slart addvess
R14,R15| Curser pesition
‘ R1€,R17| Light pen position

13.3.4 The Horizontal Timing Registers

The horizontal timing registers define all of the horizontal timing for

the screen layout. The point of reference for these registers is the left

most displayed character position. The registers are programmed in
character time units” relative to the reference point.

Horizontal total register (R0)

This 8 bit write only register determines the horizontal sync. frequency.

It should be programmed with the total number of displayed plus non-

190

displayed character time units across the screen minus one (Nht on
figure 13.1).

Note that the number of displayed characters is not necessarily the same
as the number of characters per line. This is because of the variable
number of bits attributed to each pixel, which depends upon the number
of colours available. The table for R1 contents illustrates this.

Mode 0 1 2 3 4 5 6 7
RO 127 127 127 127 63 63 63 63

Horizontal displayed register (R1)

This 8 bit write only register determines the number of displayed
characters per horizontal line (Nhd on figure 13.1).

Mode 0 1 2 3 4 5 6 7
No. of CHRS 80 80 80 80 40 40 40 40
as seen by 6845 (Nhd}

No. of CHRS 80 40 20 BO 40 20 40 40

as seen on the screen

No. of bits used to store | 1 2
colour information

Horizontal sync. position register (R2)

This 8 bit write only register determines the horizontal sync. pulse
position on the horizontal line. The specification is in terms of character
widths from the left hand side of the screen.

Mode 0 1 2 3 4 5 6 7
R2 98 98 98 98 49 49 49 51

Increasing the value of this register pushes the entire screen left whilst
decrementing it pushes the whole screen to the right.
The sync. width register (R3)

This 8 bit write only register defines both the horizontal and the vertical
sync. pulse times.

Horizontal sync. pulse width

The lower 4 bits contain the horizontal sync. pulse width in number of
characters. Any number between 1 and 15 can be programmed, but 0 is
not valid. It is however not advisable to change this register since most
monitors and televisions require the standard sync. width to operate
propetly.

Made 0 1 2 3 4 5 6 7
Lower 4 bits of R3 3 8 8 8 4 4 4 4

Vertical sync. pulse width

The upper 4 bits contain the number of scan line times for the vertical
sync. pulse. This is set to 2 in all modes.

13.3.5 The Vertical Timing Registers

The point of reference for vertical registers is the top displayed
character position. Vertical registers are programmed in character row
times or scan line times.

Vertical total register (R4)

The vertical sync. frequency is determined by both R4 and R5. In order to
obtain an exact 50Hz or 60Hz vertical refresh rate, the required number
of character line times is usually an integer plus a fraction. The integer
number of character lines minus one (Nvt on figure 13.1) is programmed
into this 7 bit write only register.

Mode 0 1 2 3 4 5 6 7
R4 38 38 33 30 38 38 30 30

Vertical total adjust register (R5)

This 5 bit write only register is programmed with the fraction for use in
conjunction with register R4. It is programmed with a number of scan
lines (Nadj on figure 13.1). It can be varied slightly in conjunction with
R4 to move the whole display area up or down a little on the screen. It is
usually set to 0 except when using modes 3,6 and 7 in which it is set to 2.
“TV (OSBYTE &90) controls the vertical positioning of a display on the
screen. Refer to section 13.1.12.

Vertical displayed register (R6)

This 7 bit write only register determines the number of displa.yed
Character rows (Nvd on figure 13.1) on the CRT screen and is
programmed in character row times.

Mode 0 1 2 3 4 5 6 7
Character lines[32 32 32 25 32 32 25 25

Vertical sync. position (R7)

This 7 bit write only register determines the vertical sync position with
respect to the reference. It is programmed in character row times.

Mode 0 1 2 3 4 5] 7

Syncposition |34 34 34 27 34 34 27 27

13.3.6 Interlace and delay register (R8)

This 6 bit write only register controls the raster scan mode and
cursor/display delay.The interlace options are:

Interlace modes (bits 0,1)

Interlace mode | Description

register

Bit 1 Bit 0
0 0 Normal (non-interlaced) sync. mode (figure 13.2a)
1 0 Normal (non-interlaced) sync. mode (figure 13.2a)
0 1 Interlace sync mode (figure 13.2b)
1 1 Interlace sync and video (figure 13.2¢)

All BBC microcomputer screen modes are interlaced sync only except .for
mode 7 which is interlaced sync and video. The default values can easily
be changed using *TV (*FX 144) followed by a 0 to turn interlacing on or
a 1 to turn interlacing off.

193

scan Line scan Line scan Line
address address address
0 0 0 ¢ ,
1 N-EE-E—E— | —p-m-8-m-m— o 2N .‘:l——.”." !
) . p TH-ME-N-E- 1 Pistaintetets - 3
...... .-----.2 - - s - -
3 u 3 — — 5 6 —l—l—:)-l—l}— >
4 . . - o IITTTTTe 7
5 " 5 — . Y ik !
6 —N-m-N-m-E— ;:.:'.E::;';:5 4 JTTmmemon 3
. ; A EEE-S g oTITi 5
............. 7 e, T
even odd even odd
field fiekd field fiek

Fig. 13.2a Normal Sync. Fig. 13.2b Interlace Sync. Fig. 13.2c Interlace Sync. & Video

Display blanking delay (bits 4,5)

Bits 4 and 5 control the display blanking signal. This signal must be

enabled for all of the character output period and is used to take account

of the time to transfer data from memory to the video output circuitry.
No delay is required in modes 0-6, but a one character delay is required
in mode 7 because the SAA5050 character generator is used.

Display blanking delay

Bit 5| Bit 4| Description

0 0 | Nodelay
0 1 | One character delay
1 0 | Two character delay
1 1 | Disable video output

Cursor blanking delay (bits 6,7)

Bits 6 and 7 control the cursor blanking signal. This signal must be
enabled at the exact time when a cursor should appear on the screen.

No delay is required in modes 0-6, but a two character delay is required
inmeode 7.

194

Cursor enable signal

Bit 7 [Bit 6 | Description

0 | Nodelay

1 [One character delay
0 | Two character delay
1 | Disable cursor output

L al= =]

13.3.7 Scan lines per character (R9)

This 5 bit write only register determines the number of scan lines per
character row including spacing. The programmed value is one less
than the total number of output scan lines.

Mode 0 1 2 3 4 5 6 7
Scans per character | 7 7 7 9 7 7 9 18

13.3.8 The Cursor

It is possible to program a cursor to appear at any character position
(defined by R14 and R15). Its blink rate can be set to 16 or 32 times the
field period of 20 ms. Optional non-blink and non-display (i.e no cursor
on the screen) modes can also be selected. The cursor height in number
of lines and vertical position in character slots can also be defined.

The cursor start register (R10)

This 7 bit write only register controls the cursor format (see figure 13.3).
Bit 7 is not used. Bit 6 enables or disables the blink feature. Bit 5 is the
blink timing control bit. When bit 5=0, blink frequency = 1/16th of the
field rate. When bit 5=1, blink frequency = 1/32nd of the field rate. The
cursor start line is set by the lower five bits.

195

SW-INNALN =D
DD~ LI NS — D
00~ LA Lo 0) = O

10
1

9
10 10
il 1

Cursor start address « § Cursor start address = 2
Cursor end address = 10 Cursor end address =6

I HEER
| NER
Cursor start address = 9
Cursor end address = ¢

Figure 13.3 - Cursor layout examples

The cursor end register (R11)

This 5 bit write only register sets the cursor end scan line (see diagram).

Mode 4] 1 2 3 4] 6 7
Cursor end 8 8 8 9 8 8 9 19

Cursor position register (R14 and R15)

This 14 bit read/write register stores the current cursor location. It
consists of 8 low order (R15) and six high order (R14) bits.

13.3.9 Light Pens

A typical light pen consists of a small light sensitive device fixed to the
end of a pen-shaped holder. The sensor picks up the light given out from
the monitor screen and sends an electronic signal into the micro. This
LPSTB (light pen strobe) signal can be decoded (because the screen is
scanned on a raster basis) and the position of the pen head determined.

Light pens can be used for a multitude of tasks such as drawing,
"painting”, designing layouts, playing games etc., but their use in many
applications is limited by the resolution. The reason for this is that a
fairly large area of screen (i.e. perhaps 5mm x 5mm) is ususally required
to provide sufficient light to operate the pen. The maximum resclution
for defining the position of the light pen is therefore a patch on the
screen of this size, so accurate line drawings are impossible. The
position of the light pen is stored to the nearest character position, so
this limits the resolution to a character cell.

196

Light pen position register (R16 and R17)

This 14 bit read only register is used to store the location of a light pen
sensor placed in front of the screen. The register is modified whenever
the LPSTB signal is pulsed high.

Constructing a light pen

The light pen hardware must produce a positive going TTL pulse
whenever the display scan position is under the sensor. The light pen
position will then be stored in the light pen register R16,R17. Note that
slow light pen response will require a delay factor to be subtracted from
R16,R17 to produce the correct light pen position.

Luckily, there are small light sensitive devices available which provide a
direct TTL logic level output. If one of these is fixed to the end of an
empty pen and connected to the light pen input on the rear of the BBC
microcomputer, an operational light pen can be constructed. The
connections for such a pen are illustrated in figure 13.4. A special
photosensor called a "Sweet spot" is available from R S Components or
most of their distributors, and is supplied as part number RS 303-292.

Analegue port conneclor
1 O w5
v +
OE 0? 06 05 04 3 2
2 o o OLPSTB
3 015 014 013 12 11 10 3
Undersida view of
photosensor
2 B
1 B
Photosansor (See text) 3
N
WIEW INTO ANALOGUE PORT CONNECTOR SHOWING CONNECTIONS FOR A LIGHT PEN
Figure 13.4 - Light pen circuit :
197

Light pen software

In order to take account of the different screen start addresses for the
various modes, a further correction factor must be subtracted from the
contents of the light pen register. These correction factors are:

Mode | Correction factor

&0606 (1542)
&0606 (1542)
&0606 (1542)
&0806 (2054}
&0B04 (2820)
&0B04 (2820)
&0CH4 (3076)
&2808 (10248)

SNONUT R W —=O

The light pen position in terms of x,y coordinates is given by:
y = (L.p register-correction)} DIV number of characters per line
x = (L.p register-correction) MOD number of characters per line

This x value will be in terms of 6845 characters and will have to be
modified by multiplying by:

Number of chars. per line
Number of chars. seen by 6845

20 1
eg.formode2: 35 =

The resolutions are therefore:

Modes 0,3,4,6,7 single displayed character
Modes 1,5 half of a displayed character
Mode 2 quarter of a displayed character

Note that the screen should be cleared before using a light pen and not
scrolled whilst the pen is in use. If it is scrolled, the position of the start
of the screen will have to be taken into account as well.

10 DIM M% 150
20 olp=&70:1lpen=&74
30 FOR opti=0 TO 3 ST=P 3

40 F%=M%

5C [

5C OFT opt%

7C .init SEI \ Disable interrupts

198

30

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
32qQ
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
430
500
510
520
530
540
550
560
570
280
590
600
610
620
630
640
650
660
670
680
690

Lint LDOA
PHA
TXA
PHA
TYA
PHA
LCA
AND
CMP
BNE
LDa
LCX
STX
INX
LDA
CMP
STh
BNE
5TX
LDA
TAY
SBC
CLC
ADC
BMI
CMP
BCS
% Have two
STY
ILDA
STA
JMP
.diffl STX
DY
diff2z sTY
LDA
STA
STA
.exit PLA
TAY
PLA
TAX
PLA
5TA
RTI
1
NEXT opt%

#int MOD 256 M\ Low byte of address

206

\

TRQZV low

f#int DIV 25¢ \ High byte of address

&207
#588
&TE4E

&EFC

&FE4D
#4828
#588
exit
SFE40
#16
&FEOOD

&FEO1
olp+l
olp+l
diffl
&FEQQ
&FEDL

clp

#1
diff2

diff2
value
lpen
olp+l
lpen+l
exit
&FEOQ
4FEO01L
olp

#0
lpen
lpen+l

&FC

\
\
kN

A\
\

PR R S S e

W

et

IRC2V high
Interrupt change mask
Znable Zightpen interrupt

Exit
Do save

Get system VIA interrupt status
Mask cut bits not interested in
Is it a _ightpen interrupt?

No - exit

Clear irnterrupt

Lightpen register

6845 address

Ready for next read

£B4% data

=pld value?

Update with new wvalue

Next register

Get low address
Temporary store
Is it nearly eq.

Nearly eq if ¢,1,2

Compare with 2+1
»>=3 so not nearly eq..

ame s0 update lpen

And depart
Next register

Update olp

Mark lpen as invalid

Restore registers

Just in case it has changed

REM Initialise workspace

tolp=0
1pen=0

REM grab the wvector

CALL init

REM grab lightpen interrupts
REM Using mask 11110111=247

199

700 *FX 233,247

710 REM Demonstrate action of lightpen interrupts

720 REM Refer to hardware section for adjustments etc.
730 REM Set up a text window to stop hardware scroll
74C VDU 28,0,23,39,0

75C REPEAT

760 IF !lpen = 0 THEN PRIKT "Not valid":ELSE PR-NT ~!lpen
770 UNTIL FALSE

13.3.10 Displayed screen start address register
(R12, 13)

This 14 bit write only register determines the location in memory which
corresponds to the upper left-hand character displayed on the screen.
R13 (8 bits) is the low order address and R12 (6 bits) is the high order
address. It can often be useful to know what the current contents of this
register are. Unfortunately, being a write anly register it is not possible
to read the value directly. However, OSBYTE &A0 can be used to get
these parameters from the operating system workspace in page &03.
The start of screen address is stored in locations &350 and &351. If
OSBYTE is called with &AQ with X=&50 then the contents of &350 will
be returned in the X register and the contents of &351 will be returned in
the Y register.

Note that the actual screen start address must be divided by 8 before
being sent to R12,R13 because there are 8 lines per character (modes 0-
6). In mode 7 a rather more complex correction has to be applied (see
section 13.3.11 on mode 7 scrolling).

The ability to define the start of the screen to be anywhere in memory is
very useful because it allows fast scrolling of the screen up, down, left
and right. Provided that the start address is inside the screen memory of
the mode being used, a hardware wrap around feature will also
operate. Characters which would have scrolled off the top of the screen
will therefore reappear at the bottom. The wrap around circuit simply
detects whenever the 6845 tries to get video data from a ROM (an
address above &7FFF), and adds an offset to that address. This has the
effect of bringing the address back inside the video RAM. Since the
screen sizes are different in the various modes, 2 bits on the SYSTEM

VIA are used to define the length of the hardware scrolled screen, see
section 22.3.

13.3.11 Hardware Scrolling

Scrolling the screen fast in any direction can be of immense use in a
large number of applications. Text can be scrolled in word processing

200

applications, landscapes can be made to rush by in a horizontal direction
(see games such as Acornsoft Planetoid). If it were not for the hardware
scroll feature, it would be necessary to move every byte on the screen to
perform a scroll. This is very time consuming for 20000 bytes and
therefore slow. In order to make effective use of the hardware scrolling
facilities available, it is necessary to understand both the advantages
and the limitations which are imposed.

Modes 0-6 will now be analysed in detail followed by mode 7 which is
slightly different.

Modes 0-6 vertical scrolling

In order to move the screen position upwards by one character line, it is
necessary to increment the current start address register (R12,R13) by
the number of characters per line. Remember that these are characters
as produced by the 6845 and not as seen on the screen. There are 80 6845
characters per line in modes 0-3 and 40 characters per line in mod=s 4,5
and 6. The screen can be scrolled downwards by decrementing the
screen start address register by the number of characters per line. Note
that you should not normally allow the screen start address register to
contain a value less than the official screen start address or greater than
the official screen end address in the mode being used. If this occurs then
areas of the main system memory will be displayed directly on the
screen. This produces some interesting results, espedially if zero page is
displayed! Remember that the value put into R12,R13 is the actual
memory address DIV 8. (See the example program in section 13.3.12.)

Sideways scrolling

The whole screen can be made to move left by one character (as seen by
6845) by incrementing the screen start register. It will move one
character to the right by decrementing this register. Note that each
character which moves off the left of the screen will appear on the next
line up at the right of the screen. It is therefore necessary to move each
of these characters down a line in software to maintain a true sideways
scroll.

This scrolling technique is good for text, but may produce jumpy
movements in graphics due to the limited resolution in the screen
position. On a mode 0 screen, each sideways scroll moves the screen by 8
pixels. On a mode 2 screen, each 6845 character only represents 2
graphics pixels so a fairly effective hardware scroll can be used.

201

Mode 7 scrolling

Hardware scrolling in mode 7 is slightly more complex than in modes 0-
6. To calculate the value to put into registers 12 and 13, first calculate
the required start address in RAM (e.g &7C28). Take the high byte and
subtract &74, then EOR the result with &20. This new value should be
put into R12. R13 contains the low order address byte. A similar
correction factor should be applied when calculating the cursor register
contents.

13.3.12 Fast Animation

Fast animation using mode 2

Mode 2 has several advantages over all of the other modes for fast
animation. It is for this reason, plus the fact that all 16 colours are
available, that this mode is used in most fast graphics games. Provided
that the programmer is prepared to put up with a 2 pixel at a time
movement instead of a 1 pixel at a time movement, moving objects
simplifies to moving complete bytes in memory. Consider for a moment
the layout of each byte on a mode 2 screen.

pixel| P2d | P1d | P2c | Plc | P2b [P1b | P2a | Pla
bit | 7 6 3 4 3 2 1 0

Pla-P1d are 4 bits defining the colour of pixel 1
P2a-P2d are 4 bits defining the colour of pixel 2

To move graphics sideways by one pixel involves extracting Pla-P1d
from P2a-P2d. These removed bits must then be reinserted into the
adjacent byte. This process is tricky and consumes a lot of processing
time leading to very slow movement in all but the simplest of cases. It
will be appreciated how much faster it is to simply move a byte (2 pixels)
at a time from one memory location to another, which can be done very
fast indeed.

Fast animation using mode 0

Unlike mode 2, fast animation moving a byte at a time in mode 0 moves
8 pixels. Animation moving 8 pixels at a time will generally produce
very uneven motion. Since the packing of pixels in mode 0 assigns one
bit per pixel, animation can be implemented by shifting all of the bits in a
byte left or right by one position using a "ROR" or "ROL" instruction.

202

The bit which moves off the edge of one byte must be put into the
adjacent byte. Since this has to be applied to all bytes on the screen, it is
a slow process.

Wrap around

To ensure that the hardware wrap around feature operates correctly,
the start of screen address must be kept within the screen boundaries. If
it goes below the start of screen address then add the length of the
screen to it. If it goes above the top of screen address then subtract the
length of the screen from it.

e.g. in mode 0, the calculated start of screen address may be &8050.
Since this is outside of the screen, it should be changed to &3050 by
subtracting &5000, the screen size.

Hardware scroll example

The program listed below uses the hardware scroll facilities in mode 0. A
line of text can be moved around the screen using the cursor keys. Note
that as text moves off one side of the screen (sideways scroll), it
reappears on the other side either one line up or one line down from its
original position. If a true sideways scroll is required, it is necessary to
move all of the bytes on the relevant side of the screen up or down by
one character position. During motion of the line of text in a vertical
direction, there will be brief flashes of another line on the screen. This is
partially due to the delay in BASIC between setting register 12 and
register 13 on the 6845, and also because the change occurs in the middle
of a screen display. The flashing will be reduced in machine code
programs which wait until the frame sync. period before changing any
of the 6845 registers.

10 REM HARDWARE SCROLL EXAMFLE IN MODE O

20 MODEQ

30 START=&3000

40 PRINT"THIS TEXT CAN BE SCROLLED IN ANY DIRECTION USING THE

CURSCR KEYS™

50 REM SET KEYS REPEAT RATE AND CURSOR KEY3 TO GIVE 136 ETC.
60 *FX4,1

70 *rxiz, 3

80 REPEAT

a0 A=INKKEY (0)

100 ZF A=136 THEN PROCMOVE({§)

110 TF A=137 THEN PROCMOVE{-8)

120 IF A=138 THEN PROCMOVE (-640)

130 IF A=139% THEN PROCMOVE (640)

140 UNTIL FALSE
150 DEF PROCMOVE (offset)

203

160 START=S5TART+offset

170 REM IF ABOVE CFFICIAL START THEN SUBTRACT SCREEN LENGTH
180 IF START>=&8000 THEN START=START-&5000

19C REM IF BELCW CFFICIAL START ADDRESS, ADD SCREEN LENGTH
200 IF START<&3000 THEN START=START+&500C

210 REM MODIFY 6845 MEMORY START ADDRESS REGISTER

220 vDU23;12,S5TART DIV 2048;0;0;0

230 VvDUZ23;13,START MOD 2043 DIV 8;0;0;0

240 ENDPROC

13.3.13 The Video ULA

Sheila address &FE20-&FE21

The Video ULA is a special chip designed by Acom to provide all the
video timing for the rest of the system (including the 6845), to determine
the relationship between logical and physical colours, to control the

cursor width and to provide Red, Green and Blue (R G B) video outputs.

This section explains how the ULA is programmed for the various
display modes.

The Video Control Register
SHEILA &FE20 (write only)

This 8 bit register controls which flashing colour is present at any one
time, whether teletext is selected, the number of characters per lire, the
clock rate sent to the 6845 and the master cursor size. OSBYTE 154
should be used to write data into this register to maintain Tube
compatibility.

7 6 5 4 3 2 1 0

L J L |]

| Flash colour select |

| TelatextNormal select |

| Number of characters per line |

| 6845 clock rate select |

[Width of cursor in bytes |

| Master cursor size I

Fig 13.5 - The Video Control Register

204

Selected flash colour (bit 0)

This bit selects which colour of the two flashing colours is actually
displayed at any particular time. It is continually changed by the
operating system to generate the flashing colours. OSBYTE 9 and
OSBYTE 10 control how long each colour is on the screen and can be
defined down to one fiftieth of a second. By varying the flash rates of
the colours it is possible to generate "new" colours. This is because a
flash rate of one fiftieth of a second is fast enough to fool the eye into
seeing a single colour rather than two rapidly flashing colours.

0 = first colour selected

1 = second colour selected

Teletext output select (bit 1)

This bit selects whether RGB input comes from the video serialiser in the
ULA or from the teletext chip.

0 = on chip serialiser used

1 = teletext input selected

Number of characters per line (bits 2,3)

These two bits determine the actual number of displayed characters per
line.

Bit 3| Bit 2| No. of chars. per line
1 1 80
1 0 40
0 1 20
0 0 10

6845 clock rate select (Bit 4)

The clock frequency sent to the 6845 can be varied using this bit. ;
0 =low frequency clock (modes 4-7)

1 = high frequency clock (modes 0-3)

205

Width of cursor (bits 5-7)

Cursor |Bit7|Bit 6 |Bit 5| Used for modes
- 1 0 0 0,3,4,6

-- 1 1 0 1,5

-—-- 1 1 1 2

- 0 1 0 7

These three bits determine the cursor width as illustrated.

To understand the operation of the cursor control, consider the
relationship between the video data clock and each dot displayed on the
screen. In two colour modes each dot is represented by one bit, in the
four colour modes each dot is represented by two bits and in the 16
colour mode each dot is represented by four bits. Since each character is
8 dots wide, the video data clock must have 8, 16 or 32 cycles for each
character width referred to the 6845. The cursor control bits 7-5
therefore enable the cursor for the first 8, the second 8 and the last 16
cycles of video data respectively.

For mode 7 the character is displayed in the character cell after it has
been accessed by the 6845. This is due to the video data being generated
from the special teletext chip rather than the video ULA serialiser. The
cursor therefore has to be enabled in the second 8 cycles of the video
data clock for each character.

NOTE - setting bits 5,6 and 7 to 0 will cause the cursor to vanish from
the screen under ALL conditions.

General summary of the video control register

bit 7 |6 |5 4 3 [2 1 [value

Mode cursor width clock | chars.per line [Tix. | flash | {hex.)
0 1 o a 1 1 1 0 X &9C
1 1 1 0 1 1 0 0 X &D8
2 1 1 1 1 0 1 Q X &F4

3 1 o [\ 1 1 1 0 X &5C

4 1 0 0 [1 0 0 X &88

3 1 1 0 5} 0 1 0 X &4

6 1 0 0 Y 1 0 0 X &88

7 0 1 0 0 1 0 1 1 &4B

206

X signifies that the flash bit is changed regularly

13.3.14 The Palette - SHEILA &21 (write only)

The "Palette” is a 64 bit RAM in the video ULA which defines the
relationship between the logical and acfual colours displayed on the
screen. If you don't understand the difference between logical and
actual colours yet, then refer to the COLOUR section in the User Guide.
*FX155 can be used to write colour data into the Palette. It will
automatically EOR the physical colour with 7 (see later). Usually, it is
better to use VDU19 or OSWORD &0C to program logical and actual
colours.

The palette register consists of two 4 bit fields. Bits 0-3 are the actual
colour field. Bits 4-7 are the logical colour field, as illustrated in figure
13.6.

[| | |
Actual Colour Register

Logical Colour Register

Fig 13.6 - The Palette register

Logical colour field

The following description of programming the palette only applies to
direct programming using OSBYTEI155. If OSWORD &0C or VDU19
are used, none of the problems which are about to be outlined will be
relevant.

Programming the logical colour directly is easy in mode 2. The logical
colour nurnber then occupies the entire 4 bit field. In two colour modes
0,3,4 and 6, programming the logical colour directly is more complex. Bit
7 defines the logical colour, but bits 4,5 and 6 must be programmed to all
their possible values. In other words, in order to set logical colour 1 to
actual colour 5, it is necessary to program logical colours 8, 9, 10, 11, 12,
13, 14 and 15 to 5. If this is not dene, some parts of characters will be in
one colour and other parts will be in a different colour.

Programming the logical colours in a four colour mode is slightly more
complex. Bits 7 and 5 together contain the logical colour numker. All
other possible combinations of bits 6 and 4 must also be programmed.
The following table shows how to program logical colours 0-3. For
example, to program logical colour 0, it is necessary to program four
separate locations in the palette.

207

Logical Colour| pajette reg. bit
o[7]6]s]4
o(ofogo

0 010|011
ol1jofo

gp1|oit

0lof1]o

1 ofof1]1
o1]1(0

of1]111

1{o]o]e

2 1{010]|1
1§1(070

1|1 e

110(1]0

3 tof1]1
1{1]1}]o0

111]114

General Summary for logical colour
programming
Mode Bit 7 Bit 6 Bit 5 Bit4
2 colour Logical
colour X x p
Bit 0
4 colour Logical Logical
colour X colour X
Bit 1 Bit 0
l6 colour | Logical | Logical | Logical | Logical
colour colour colour colour
Bit 3 Bit 2 Bit 1 Bit 0

&00(D)
&01(1)
&02(2)
&03(3)

Actual colour field

The actuai colours are:

black
red
green

yellow (green-red)

208

&04(4) blue

&05(5) magenta (red-blue)
&06(6) cyan (green-blue)
&Q7(7) white

&08(8) flashing black-white
&09(9) flashing red-cyan
&0A(10) flashing green-magenta
&OB(11) flashing yellow-blue
&0C(12) flashing blue-yellow
&0D(13) flashing magenta-green
&0E(14) flashing cyan-red
&0F(15) flashing white-black

Tt is these colour numbers which should be used with OSBYTE 155. Note
however that the actual number sent to the Palette is the above number
EOR &07, i.e.. with the three colour bits inverted and the flash bit as
above.

Some interesting effects using the palette

Because of the necessity to program 4 different palette locations for
each colour in a four colour mode, some "nasty” effects can be produced
on the screen if all four locations are not programmed with the same
colour. To illustrate this point, try displaying four colours on the screen
at once, then run this line of BASIC:

A%=155: REPEAT: X%=RND (255): CALL &FFF4: UNTILO

209

13.4 Screen mode memory maps MODE 1 Screen Layout

Graphics 320 x 256
Colours 4

MODE 0 Screen Layout

Text 40x 32
Graphics 640 x 236
Colours 2 63000 | &3008) . £3278
Text 80x32 §£3001 | &3009 §3279
s3002 | &3002 E327R
53000 | 53008 &3278 53003 | &300B 5327B
£3001 | &3009 &3279 £3004 | &300C £327C
&3002 &30CA &327R £3005 | &300D &327D
§3003 | &300B £327B £3006 | &300E &327E
£3004 | &300cC &327C s3007 | s300F I Xk
53005 | &300D §327D £3280 : ‘
......................... [} [
§3006 | &300E &327E §3281 J :
£3007 | &300F £327F : : '
53280 / : '
. [’
£3281 [‘v ’
» ’ L}
'] [L
[[’
[} ‘]
¢ [
s7B0S ‘ ,
§7BO7 /
7080 | s7D88 L 7FF8
£7081 | &7p89 STFFS
sBC6 §f s 0 r w W 4 | |t rerrrrr s
7082 | &7pEa & 7FFA
sme?) 1 0000000 e
e £7083 &TDER &1FEB
&7DE0 &Jcg | &7FFB s 7D84 £7DEC &TFFC
&7D81 g/pgoy } &7FED sogs e | &TFFD
se2 | s708n | §7FFA &7D86 | &7DBE &TFFE
&TDE3 &7D8B &7FFRB &TD&a7 LTy &TFFF

&7D84 &7D8C EJFFC

&TDES &7D3D &7FFD

&7DE6 &7DBE &7FFE

&TDE7 &7DBF & 7FFF

0 4 pixels

716 1 2 bits/pixel
¥ F

514
3 Tf

7]6[5[af3]2]1]0] fae,

Note that the screen layout is only as shown immediately after
the screen has been cleared. It changes when scrolled.

Note that the screen layout is only as shown immediately after
the screen has been cleared. It changes when scrolled.

210 211

P
AMrREARTTITRARLRRAR R RN
AR AT ERRRERRETETTRRRATEIR R

MODE 2 Screen Layout

Graphies 160x 256
Colours 8
Text 20x 32
£3000 &3008 53278
s3001 | e300 | Tt £3279
£3002 | &300a | T TTTTTToTTeoUt &327a
g3003 | e300 | T TTTTTTTTTooo PEEET
s3004 | s300C | T TTTTTTTTTTTTYt 23570
&3C05 | &300D | CTTTTTTTTeeTt £327D
€3006 | &300E | T TTTTTTTToTet PEYET
53007 | s30cF | T TTTTTTTTTTOOT £327F
— ; meeeaeraas]
r
&32B1 ‘ ;
’ v
[‘ v
‘' ‘ '
] ') .
[’ ’
d [F)
[’ ’
[’ F]
[’ ’
[v "
[v "
’ ¢ ’
57B06 ; ’
&7R07 4
&7DB0 | &7D88 R R
&7D81 | s7pgy | T T TTTTTTTTTTTTTTTTS STFED
«7p8z | s7p8A | T TTTTTTTTTUO S IFFA
£7D83 | s7p8B | T TTTTTTTTTTTomToos STFEE
&7384 | svpc | T TTTTTTThTTrTTToo S TEFC
&7085 s7o8D | T TTTTTTTTeTo &§7FFD
&TD8G s7082 | T TTTTTTTTTTo &TFFE
787 | s7088 | Tttt & TFEE
5 4 2pixels
4 bits/pixel

716
£t

"‘.b ==Y
O

Note that the screen layout is only as shown immediately after

the screen has been cleared. It changes when scrolled.

212

000000000000 O OGS

MODE 3 Screen Layout

Graphics Not available

Colours 2

Text 80 x 25
&4000 | «4008 caz78
sap01 | sacos | 7Tt TTTTT 24270
&4002 &4Q00A 54278
&4003 £4COB &43 TR
54004 | &400C 24270
&4005 &400D §427D
&4006 &400E §427E
&4007 &400F &427F
- BRLANK
£ | RERNE
<4280 | eSS

] L ’

: ; ’

‘ ; :

4 : :
&7987 ' ’
ELANK HLANK
BLANK:} |BLANK
g7c00 | &7c08 &7E78
&7c01 | s7c09 &7TET9
&7C02 | &7C0A &7ETA
&7C03 &7C0B &7TETB
s7c04 | s7coC 87ETC
&7c05 | s7COD S 7E 7D
&7C06 | &7COE S TETE
&7C07 &TCOF & TETF
| Buavk { BLANK ELANK
BLANK |/ BEANK P —
7lel|5(a|3|2]1]0] iba

it/ pixel

Note that the screen layout is only as shown immediately after

the screen has been cleared. It changes when scrolled.

213

MODE 4 Screen Layout . .
MODE 5 Screen Layout
Graphics 320 x 256)
Colours 2 . . Graphics 160 x 256
Text 40x 32 Colours 4
Text 20x 32
£5800 | &5808 £5938 . .
.......................... £5800 | &5808 55938
5801 | &5809 sse3s |l 0000 - bl . -
.......................... £5801 | &5809 £3939
&£58C2 &580A &593A 25602 | assoa | 77Tt PEYETN
55803 | &580B | . 45938 . . %5803 | ess0B | T TTTTTTTTto &593B
£5804 | gsgoc | §593C 55604 | assoc | T TTTTTroeeeene T
&5805 &580D) &593D . &5805 £580D &£593D
#5606 | ssgoz | T £593E . 55606 | s580% £593E
&5807 &580F e et &593F &5807 &580F &593F
55940 ! ’ . 5940 / ‘
/
5§5941 ’ ' . £5941 y ‘
¢ ' ’ #
’ / Pl ’ 4 ’
'] ’ ' ‘]
’ L ’ ’ | L
1 ¢ ' ' ‘]
]] ’ [["
v ¢ ’ ’ ’ L
’ i ’] ' ’
[v . ’ ¥ ’
: : — o ' : :
L
57DBE / ’ . &7DE6 ’ ’
&7D87 ’ &TD87 ‘
s7Ece | s7Eca | T R BPETT . . S B STEES
s78c1 | svmcy | T S TFEO &7EC1) &yRC2 | &TFFY
s7zc2 | svmca | P stec2 | eECA | &TFFA
s7EC3 | s7ECB % /FFB . . A B STEFE
.......................... TFF
& TECA g7pCC | &7FFC sTRECA &:ECC -------------------------- = <
& 7ECS &7ECD &7FTD 5TECS L STEFD
— &TECE | &7ECE &T7FFE
§7EC6 | &7ECE & 7FFE . -------------------------
.......................... &TEC7 | &a7ECF &TFFE
§7EC? | &7=CF §7FFF
. . 4 pixels
7 6 5 4 3 2 1 0 8 pixels 7 6 5 4 2 1 2 bits/pixel
hipd g Frerereys
@ *
N . - I
Note that the screen layout is only as shown immediately after
the screen has been cleared. It changes when scrolled. .
. Note that the screen layout is only as shown immediately after
the screen has been cleared. It changes when scrolled.
g
214
@9 "

MODE 6 Screen Layout

Graphics Not available

Colours 2
Text 40 x 25
56000 &6008 46134
55001 | s6o0s | T TTTTTTTTTTTToo 56139
se0c2 | &6o0n | T TTToTTTTTTTTt 56134
86003 | seo008 | T CTTTTooTTTTTTTTT %6135
«6004 | s600c | T TTTTTTTTTTTTs §613C
£6005 | 600D | T Tt £613D
s6006 | se00e | T S613E
5 613F
BLANK
T L LT St Ll T I BEANK i

AmATRTRRRRRR

TEERRRRR R

BLANK

- BLANK

&TF38

&£7F33

&TF3A

&TF3B

&TF3C

&7F3D

&TF3E

§TF3F

BLANK

BLANK

4(3(2]|1]0

Note that the screen layout is only as shown immediately after

8 pixels
1 bit/pixel

the screen has been cleared. It changes when scrolled.

216

MODE 7 Screen Layout

Graphics Teletext graphics only

Colours Teletext
Text 40x 25
g7¢00 | e7c01 §7C27
’ ’
’ ’
&7C28 ! '
r L]
' ’
’ L]
[’ L]
¢ ’ L]
] [’
[} ’ L]
’ ’ ’
[’ 1]
[] 4 [
[’ [
’ ’ *
’ ’ [
‘ "I""'"”""""””"
sTFCO | &7PC1 $7FE7

Note that the screen layout is only as shown immediately after

the screen has been cleared. It changes when scrolled.

217

14 Keyboard routines

This chapter describes the routines which control the keyboard. The
Master series computers, BBC model B and the Electron have different
keyboard matrix layouts and this should be kept in mind when
producing software which is intended to be compatible on all machines.

On the Master Compact additional use is made of the cursor keys as
part of the analogue joystick emulation. Further information about the
Compact joystick arrangements are described in chapter 20.

The BREAK key is a direct link to the 6502 reset line and does not appear
on the keyboard matrix of any of the Acorn BBC series machines.

The keyboard on the Master series computers consists of a total of 93
keys; 74 in the main keyboard section and 19 in the numeric keypad. The
Master Series computers have a different matrix arrangement from
model Bs to allow for the additional keys. The start-up option switch
found on the keyboard circuit board of the BBC model B micros has been
replaced by non-volatile memory on Master series computers.

The keyboard software in the operating systemn is interrupt driven, The
system 6522 constantly scans the keyboard matrix columns. When a key
is pressed an interrupt is generated and the scanning action of the 6522
is stopped. The keyboard reads the column counter to identify which
column of the keyboard has been selected. Each keyboard matrix row is
then examined to precisely locate the key. The keyboard software
operates a 2 key rollover', which means that a second key press rapidly
after the first key press will also be recognised even if the two key
presses overlap.

Having scanned the keyboard matrix the internal key number of that key
is stored in the current keys pressed information and a flag is set to
indicate that a key has been pressed. At this stage the interrupt routine
returns to the foreground task.

The conversion of the internal key number to an ASCII code, with
adjustments according to the state of the SHIFT, CTRL keys etc., takes
place during the general background processing routine, which the
operating system checks every 10 ms. The operation is complete when
the final character value has been placed in the keyboard buffer.

218

14.1 Key values

The table below gives the values used by the operating system to
distinguish the different keys. The internal key numbers represent the
lowest level of translation from the matrix addresses. These numbers
exclusive-ORed with &FF give the INKEY negative numbers which are
translated via a table to give the ASCII codes. Different operating
system routines use different key-value types. The ASCII values are
returned by OSRDCH while OSBYTE &78 uses the internal key number
(IK No. in the table). The INKEY numbers describe values used by the
BASIC INKEY instruction when performing keyboard scans.

The Electron key values are identical to the BBC model B but the option
switches have not been implemented.

Character| ASCII INKEY |[IK No. Character| ASCII

dec. | hex]dec. |hexi dec | hex dec. | hese | dec. | hex [dec | hex

SPACE | 32 |20 |95 [0 & | &2 @ & a0 -7z]88 |71 (&7
! 3 |21 A 65 |41 |-¢6 |BE |65 |4
T T P B s |42 |-101|9B [100 |ea
35 |23 C 67 |43 |-83|aD |82 [
$ % | D 63 |44 |-:1|cp |50 |32
% 37 |25 E 69 |45 |-35 |DD |34 |22
& 38 |26 F 70 |46 |-68 |BC |67 |43
' 39 |27 G 71 147 |-sa|ac |8 |53
{ 40 |28 H 7 |48 |-85 |aB |84 |52
) 41 |29 I 73 |49 (-38|pAa (38 |26 [25
. 42 |24 I 74 4A [-70 [BA |69 |35
+ 43 |28 K 75 |aB |-71 |Bo |70 |46
44 12c |03)90 | 102 66 L 76 |4C |-87 | a0 |86 |36
i 45 [2D|-24 B8 | 23 [17 M 77 4D [-102)94 |101 |65
) 46 |2E |-104]08 | 103 &7 N 78 |4E |-86 |AA |85 |55
Y, 47 |2F 121)87 | 104] €8 o 79 [4F |-55|co |54 |36
0 48 |30 |-40 |D8 | 30 | 27 r 80 |50 [|-56|cs |55 {37
1 49 31 |-49 |CF| 48 | 30 Q 8l (51 [-17 |er |16 |10
2 50 |32 [-50 {CE{ 49 | 31 R 82 |52 |-52[cc |51 a3
3 st |33 [-w|eel 7 {m1 s 8 |5 |-82 |AE (@1 |51
4 52 [34 {-19 [ED| 18 | 12 T 84 |54 |-36 |pC |35 |2
5 53 |35 [-20 |[ec| 19 | 13 U 85 {55 [-54|ca |53 |35
6 54 |36 |-53 |cB| 52 | 34 v 86 |56 |-100/oc |ve |ea
7 55 |37 |-37 |oB| 36 | 24 w 87 |s7 |-34 |pE |33 |2
8 56 |38 |-22 [EA| 21 | 15 X 88 |58 |-¢7 |BD |66 |42
9 57 {39 [-39 Do | 37 | z5~|20 | v 89 |59 [-¢0 |BB |68 |44
: 58 [aal-73 |87 | 2 | 48 z 9 |5A |-98 |9E |97 |e1
; 59 [3B{-88 |as| 7 | 57 [9 |58 |-57|c7 |56 |38
< 60 |3c \ 92 |sc |-121087 [120 |78
= 61 {3D] 93 15D |-89 [A7 |88 |58
> 6 |35 A 94 f5E |-25 |B7 |24 |18
? 63 |3F o5 |57 |-41|o7 |40 |28

219

Character] ASCII |INKEY |IK No. Character] ASCIL |INKEY [IK No. 14.2 Read key with time limit OSBYTE call
dec. | hex{dec. |hex{ dec | hex dec. [hex. Hee. | hex | dec | hex
N 9 |60 Escape [27 |1B |[-113|8F |112 {70 Call address &FFF4
a 97 |61 Tab o |9 |-97t9F |86 |0 :
b 98 e Capsik o5 |BE |ea |40 Indirected through &20A
c 99 |e3 Ctrl -2 e |1 A=&81(129)
d 100 | &4 Sh. Lk -81 |AF {80 |50
e 101 [65 Shift -1 |FE |0 0 This call is functionally equivalent to BASIC's INKEY command and can
; }% gg CDS:);'E g; ;_f :19006 9A66 ?35 gg be used get a character from the keyboard with a time limit, scan the
h 104] €8 Return (13 |D |-7a|Be |73 |ao keyboard for a particular key press or return information about the OS
i 1051 69 UpCurs | 139 188 |-58 | C6 |57 [39 type (described in section 24.4.1).
j 106] 64 DnCurs [138 |84 |-42 |Ds |41 |20
k 107 | 68 L.Cors {136 |88 [-26 |E6 |25 |19 - T
1 108 | 6C RCurs (137 [89 |-122]85 [121 [0 () Read key with time Limit
m 19| 6D) -33 |DF |32 |20
n 110 | 6B i1 -14)8E |13 (71 Entry parameters:
o 111 | 6F :2 -115] 8D 11; 72 X and Y specify time limit in centiseconds
P 12|70 3 -116| 8F | 115 |73 :
q 1347 £ -21 |EB |20 |14 (low byte, high byte)
r 14|72 5 -117[8B {116 {74
s 115173 f6 -118(8C 117 |75 Maximum time limit is &7FFF centiseconds (5.5 minutes approx.)
t 116 | 74 7 -3 | [22 |16
u nz| 7 8 19| sp [118 7% .
v 118| 76 £ -120|8E [119 |77 On exit:
w 119177 . If a character is detected, X=ASCII value of key,
; ﬁ? ;g Y=0 and C=0
z 1221 7A If a character is not detected by timeout then Y=&FF
{ 123 7B and C=1
! 124 7C . _ _
) 125| 7D If Escape is pressed then Y=£&1B (27) and C=1

(b) Scan keyboard for key press

Entry parameters:

Master Series Keypad Start up option switch (model B) X:negatj_ve INKEY value for key to be scanned
Character| ASCII |INKEY | IK No. Character| ASCII INKEY |IK No. Y=&FF
dec) hex{dec. |hex| dec| hex dec. | hex.] dec. | hex | dec | hex On exit
: n exit:
0 48 |30 [107[95 | 106| 6A bit 0 5 |9 y . . _ .
1 49 |31 (-108 |94 | 107(6B bit 1 8 |8 X and Y contain &FF if the key being scanned is pressed.
2 50 |32 {-125(83 | 124 7C bit 2 7 |7
3 51 |33 |-109]93 | 108] 6C bit 3 6 |6
4 52 |34 |-123[85 | 122] 7A bit 4 5 |s
5 2 |35 12281 { 123 78 bit 5 A 14.3 Keyboard scan OSBYTE call
6 54 |36 [-27 |E5 | 26 | 1A bit 6 3 |3
7 55 137 [-28 |E4 | 27 | 1B bit 7 22 Call address &FFF4
] 56 [38 |43 [DS| 42 | 2a X
9 57 |29 |44 D2l 53 | 78 Indirected through &20A ,
+ 43 |28 [-59 |5] 58 | 3A A=&79 (121)
- 45 |20 |60 [ca] 59 | 3
/ 47 12F |-75 |B5 | 74 [4A It should be noted that on the BBC model B the key matrix is not scanned
£ 33123 |91 JAS T 90 | 5A in a regular ascending order. However, on other machines in the Acorn
42 |24 |92 |A4| 91 | 5B e 8 . . X .
. 44 [2C |93 |A3| 92 § 5C BBC range the keyboard scan is performed in ascending numerical
Return | 13 10D |-61 |C3 [60 | 3C order. This call returns information about the first pressed key
Delete | 127|7F {-76 |B4 | 75 | 4B

encountered during the scan. Other keys may have been pressed as well,

221

220

-
R
&

and a further call or calls will be needed to complete the entire keyboard
scan. The BBC microcomputer keys are scanned in the order :

&10, &20 ... &70, &11, &21 ... &71 etc. to &19, &29 ... &79

Entry parameters:
X determines the key to be detected and also
determines the range of keys to be scanned.

Key numbers refer to internal key numbers given in the table in section
14.1.

(a) To scan a particular key:
X=key number EOR &80
on exit X<0 if the key is pressed

(b) To scan the matrix starting from a particular key number:
X=key number

After call X=key number of any key pressed or &FF if no key pressed.

On exit:
A is preserved
X contains key value (see above)
Y and C are undefined

14.4 Keyboard scan from &10 OSBYTE call

Call address &FFF4
Indirected through &20A
A=&7A (122)

Internal key number (see table above) of the key pressed is returned in X.

This call is directly equivalent to an OSBYTE call with A=&79 and X=16.

On exit:
A is preserved
X contains key number or zero if none pressed
Y and C are undefined

14.5 Write current keys pressed OSBYTE call
Call address &FFF4

Indirected through &20A
A=8&78(120)

222

This call should only be made by filing systems which have recognised a
key pressed with BREAK and are initialising accordingly (see paged
ROM service call with A=&03, section 17.4.1). This call should be used to

write the old key pressed value to prevent its entry into the keyboard
buffer.

The operating system operates a two key roll-over for keyboard input

(recognising a second key press even when the first key is still pressed).
There are two zero page locations which contain the values of the two
key-presses which may be recognised at any one time.

Entry parameters : X and Y contain values to be written

Value in X is stored as the old key information
Value in'Y is stored in the new key information

On exit:
A, Xand Y are preserved
C is undefined

14.6 Read key translation table address OSBYTE
call

Call address &FFF4

Indirected through &20A
A=&AC (172) - address low byte
A=&AD (173) - address high byte

This call is implemented on all computers in the Acorn BBC range.
However, it should be noted that the table is hardware specific due to
the different keyboard matrix layouts on different machines. When used
across the Tube the address returned refers to the i/0 processor's
memory.

Use of this call is not recommended.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location are
returned in Y. P

On exit:
X=low byte
Y=high byte

223

14.7 Set keyboard auto-repeat delay OSBYTE call

Call address &FFF4
Indirected through &20A
A=&0B (11}

Read/write keyboard auto-repeat period

A=&C5 (197)

<NEW VALUE>=(<OLD VALUE> AND Y} ECR X

The old period value is returned in X. The contents of the next location

Entry parameters: are returned in Y.

X determines delay before repeating starts, Y=0

X=0 Disables auto-repeat facility
X=n Sets delay to n centiseconds
(n=32 is the default setting)

14.9 Function keys and user definable keys

The function keys and certain other keys may have user defined strings

. associated with them using the "KEY" command.
On exit:

A is preserved
X contains the old delay setting
Y and C are undefined

The following calls have various effects on these keys.

14.9.1 Enable/disable cursor editing OSBYTE call

Call address &FFF4
Indirected through &20A
A=&04 (4)

Read/write keyboard auto-repeat delay OSBYTE call
A=&C4 (196)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
Entry parameters:
The old delay value is returned in X. The contents of the next location X determines editing keys' status, Y=0

are refurned in Y.

X=0 Enable cursor editing (default setting)
X=1 Disable cursor editing
14.8 Set keyboard auto-repeat period edit keys give ASCII codes
X=2 Disable cursor editing
Call address &FFF4 edit keys act as soft keys (11 to 15)
Indirected through &20A X=3 On the Master Compact only
A=&0C (12) makes the cursor keys have joystick like effect

and the copy key simulates the fire button.
Entry parameters:

X determines auto-repeat periodic interval, Y=0 On exit:

A is preserved
X contains the previous status of the editing keys
Y and C are undefined

X=0 Resets delay and repeat to default vals
X=n Sets repeat interval to n centiseconds
(n=8 is the default value)

Read/write cursor editing status OSBYTE call
A=&ED (237)

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X

On exit:
A is preserved
X contains the old *FX 12 setting
Y and C are undefined

The old status value is returned in X.

224 225

14.9.2 Read/write function key status OSBYTE
calls

Call address &FFF4

Indirected through &20A

A=&E1 (225) - function keys, &80 to &8F

A=&F2 (226} - SHIFT+function keys, &90 to &9F
A=&E3 (227) - CTRL+{function keys, &A0D to &AF
A=&F4 (228) - CTRL+SHIFT+fn keys, &B0 to &BF

<NEW VALUE>=(<CLD VALUE> AND Y} EOR X

The old status is returned in X. The contents of the next location are
returned in'Y.

These locations determine the action taken by the operating system
when a function key is pressed.

value 0 totally ignore key.

value 1 expand as normal soft key.

value 2 to &FF add n (base) to soft key number to provide
"ASCII" code.

The default settings are :-

fn keys alone &01 expand using soft key strings
fn keys+SHIFT &80 code &80+soft key number
fn keys+CTRL &90 code &90+soft key number

fn keys+SHIFT+CTRL &00 key has no effect

14.9.3 Read/write character status flag OSBYTE
calls

Call address &FFF4

Indirected through &20A

A=&DD (221) - characters &C0 to &CF
A=&DE (222) - characters &DO0 to &DF
A=&DF (223) - characters &E0 to &EF
A=&FQ (224) - characters &F0 to &FF

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old status value is returned in X. The contents of the next location
are returned in Y.

226

These locations determine the effect of the character values &CQ0 (192)
to &FF (255) when placed in the input buffer. The meanings of these flag
values are the same as for those calls described in the section above.

Default values are &01,&D0,&E0 and &FQ (respectively).

14.9.4 Read/write length of soft key string
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&DS (216}

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old length is returned in X.

This location contains the number of characters remaining in the soft
key buffer of the current soft key expansion.

14.9.5 Read/write soft key consistency flag
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&F4 (244)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old flag is returned in X.

A non zero value indicates that the soft key buffer is in an inconsistent
state (the operating system does this during soft key string entries and
deletions). If the soft keys are in an inconsistent state during a soft break
then the soft key buffer is cleared (otherwise it is preserved).

14.9.6 Reset function keys OSBYTE call

Call address &FFF4
Indirected through &20A
A=&12 (18)

Function key definitions are normally preserved other than following a
hard break. This call allows the set of definitions to be cleared.

227

No entry parameters.

On exit:
X is undefined
Y is preserved.

14.10 Reflect keyboard status in keyboard LEDs
OSBYTE

Call address &FFF4
Indirected through &20A
A=&76 (118)

The keyboard status byte maintains a record of the current setting of
caps-lock and shift-lock and is used by the keyboard interrupt routine
which also updates the keyboard caps-lock and shift-lock LEDs. When
this byte is written directly using OSBYTE &CA this call can be used to
ensure that the keyboard LEDs reflect the current keyboard status byte.

On exit,
A is preserved
X has bit 7 set if Ctrl is pressed
Y is undefined

14.11 Read/write keyboard disable OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C9 (201)

This location is used on the all Acorn BBC machines. However this call
should only be made by the Econet filing system.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old value is returned in X.

If location contains 0 then scan keyboard normally, otherwise ignore all
keys except BREAK.

228

14.12 Read/write keyboard status byte OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&CA (202)

This location is used in a similar manner on all the Acorn BBC machines.
The value of the status byte has a different meaning on the Electron
compared to other machines in the range, reflecting its different
keyboard design.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old status byte value is returned in X.
(a) The BBC microcomputer

bit 3 - 1 if SHIFT is pressed.

bit 4 - 0if CAPS LOCK is engaged.

bit 5 - 0 if SHIFT LOCK is engaged.

bit 6 - 1 if CTRL is pressed.

bit 7 - 1 SHIFT enabled, if a LOCK key is engaged then SHIFT
reverses the LOCK.

SHIFT enable (bit 7) may be set by holding SHIFT down as the CAPS
LOCK key is engaged which enables lower-case letters to be typed when
capitals are selected by pressing the required key plus SHIFT. The only
way to set SHIFT enable for the SHIFT LOCK key is to use ¥FX202,144
{or OSBYTE &CA).

{b) The Electron

bit 4 - 0 if CAPS LOCK active
bit 5 - 1 if Fn active

bit 6 - 1 if SHIFT active

bit 7 - 1 if CTRL active

All bits except the CAPS LOCK bit will only change transiently and are
subsequently unlikely to be of use.

229

14.13 Read/write keyboard semaphore OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&B2 (178)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old flag is returned in X.

If this location contains 0 then keyboard interrupts are ignored.
Keyboard interrupts are enabled if it contains &FF.

14.14 Set base for numeric keypad OSBYTE call

Call address &FFF4
Indirected through &20A
A=&EE (238)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old flag is returned in X.

This call is only available in Master series computers. The ASCII
characters generated by the keys in the keypad are determined by the
value of this location. The value generated is calculated as the ASCII
value of the keytop legend minus 48 plus this value.

14.15 Read/write shift key effect OSBYTE call

Call address &FFF4
Indirected through &20A
A=&FE (254)

<NEW VALUE>=(<OLD VALUE> AND Y) ECR X
The old flag is returned in X.

On the Master series this call may be used to enable the use of the shift
key with the numeric keypad. When numeric shift is enabled the
character generated by the shifted key will be the alternative character
generated by the equivalent main keyboard key.

230

14.16 Electron firm keys

The Electron operating system has a mechanism whereby the language
ROM is able to insert strings of text into the input buffer in response to
certain function key combinations. For more information about firm
keys see Language ROMs section 17.3.2.

14.16.1 Read/write firm key pointer OSBYTE call

Call address &FFF4
Indirected through &20A
A=&CC (204}

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old pointer value is returned in X. The value in the next location is
returned in'Y.

The value contained in this location is a pointer into the currently
expanding firm key.

14.16.2 Read/write length of firm key string
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&CD (205)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old length value is returned in X.

This location contains the length of the string currently being expanded
from a firm key.

14.17 Read/write TAB key character OSBYTE call

Call address &FFF4
Indirected through &20A
A=&DB (219)

This call has a different function on the Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) ECR X

231

The old character value is returned in X,

This location contains the value to be returned by the TAB key. It is
possible to use the TAB key as a soft key by setting this location to &80+n
where n is the soft key number. If the key value selected normally

responds to CTRL and SHIFT combinations the TAB key will respond
accordingly.

Default value is 9 {forward cursor 1 character space).

14.18 Read/write Escape character OSBYTE call

Call address &FFF4
Indirected through &20A
A=&DC (220)

<NEW VALUE>=(<OLD VALUE> AND Y) ECR X
The old character value is returned in X,

This location contains the ASCII character (and ke i i
ta y) which will generate
an ESCAPE condition or event. The default value is &1B(27) 8

232

15 Serial I/O0 (RS232/423)

A considerable amount of jargon and confusion surrounds the subject of
serial communications. Serial technology has been around for 150 years
or more and much of the terminology dates from the first
intercontinental serial transmission in 1866. The R5232 standard (a
much misused and abused term) dates from a proposal in 1959. The
formal standard is embodied in Recommended Standard Number 232,
Revision C from the Engineering Department of the Electronic
Industries Association (EIA R$232C) better known to most of us as
RS232. This document, written in the heavy stilted prose of the
professional engineer and laced with obscure and esoteric jargon, has
been responsible for much of the confusion about this 'standard’. The
basic need for a standard method for the transmission of data between
computer devices has held the standard loosely together. As is often the
case in the computer industry the establishment of a market leading
product has greatly contributed to the standard. In the same way that
the Centronics printer interface became the parallel printer
standard,Hayes have influenced the serial 1/0 interface standard with
their modems.

There are a multitude of different sub-sets and super-sets of the R5232
standard and it appears that few manufacturers have the courage not
to include the magic characters R5232 in their publicity material. The
truth is that while complying to parts of the RS232 standard may impart
the legal right to call an interface RS232, in practice it can be an
extremely frustrating ordeal trying to persuade two such R5232
designated devices to talk to each other.

The Acorn philosophy has been to trim the hardware link to the bearest
minimum by using a minimum number of control lines. This does at least
reduce the number of decisions about which wire to solder to which pin.
The adoption of the R5423 standard in the first BBC Micro and the
subsequent return to RS232 in the Master Series may be ignored as the
serial hardware between the two machines seems largely unchanged.
The RS423 standard is intended to describe an RS232 compatible
interface capable of use over greater distances.

15.1 The RS232C standard J

This section does not propose to be an exhaustive description of the
RS232C standard but it is hoped that the information will provide a
greater understanding of the standard in the context of devices other
than the Acorn BBC series of microcomputers.

233

The formal name of the standard is "Interface between Data Terminal
Equipment and Data Communication Equipment Employing Serial
Binary Data Interchange.” The terms Data Terminal Equipment (DTE)
and Data Communication Equipment (DCE) are, in a microcomputing
context, normally a computer and a modem respectively. The DCE may
also be another computer, printer or some other peripheral with a serial
interface. The terms DTE and DCE will be used in the following
description to avoid possible ambiguities.

The EIA RS232 document covers three different aspects of the serial
communications interface:

1. Mechanical description of interface circuits
2. Functional description of interchange circuits
3. Electrical signal characteristics

15.1.1 Mechanical description of interface
circuits

The R$232 standard does not specify the D-25 connector commonly used
for R5232, it says only that there should be two connectors, fernale for
the DCE and male for the DTE. The IBM PC has a male connector, of
the D-25 type (although the IBM PC/AT uses a D-9 connector).

A total of 22 interchange circuits are defined and assigned pin numbers
on the connector. These assignments are given in the following table:

234

1
2
3
4
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
2
21
22
23
24
i)

Protective ground
Transmitted Data
Received Data
Request 1o Send
Clear to Send
Datz Set Ready
Signal Ground {Common)

Received Line Signal Detect {Data Carrier Detect)
Reservad for testing

Reserved for testing

Unassigned
Secondary Received Line Signal Datect
Secondary Clear o Send

Secondary Transmitted Data
Trarsmission Signal Element Timing
Secondary Received Data

Receiver Signal Element Timing
Unassigned
Secondary Request to Send
Data Terminal Ready
Signal Quality Cetector
Ring Indicator
Data Signal Rate Detecter
Transmit Signal Element Timing
Unassigned

A number of these circuits are unassigned, concerned with synchronous
transmission, or have only a secondary control function and are rarely
used. The following table gives the nine remaining R5232 circuits
relevant to asynchronous communication on microcomputers.

[oin Tabrv.] name . . Jdirection] - function - n e]
1 | — | protective ground - safety ground
2 | TD { transmitled data to DCE | outbound DTE data
3 | RD | received data to DTE | inbound DTE data
4 |RTS| requestto send to DCE | DTE wants to fransmit data
5 |CTS| clear to send to OTE | DCE is ready to receive data
6 |DSR| data set ready to DTE | DCE is ready to communicate with DTE
7 | -~ | signalcommen —— | common line for circuits J
8 |DCD| data carmier detect | to DTE | datalink in process
2 |DTR| data terminal ready| to DCE | master modem enabla

235

The data being transferred is carried on only two circuits, pins 2 and 3,
transmitted data and received data. The absolute minimum RS232
system would only require these two connections and a common ground
(and some would argue that life would be simpler if the standard was
maintained at that level). All the other lines are control circuits intended
te control the flow of data. The control circuits should be interpreted by
the devices at each end as signals to start or stop the exchange of data.

15.1.2 Functional Descriptions of Interchange
Circuits

The following paragraphs briefly describe the formal EIA definitions of
each circuit together with some additional comments on the use of these
circuits.

Protective Ground (pin 1)

This pin should be connected to ground (earthed preferably). The DIN
plug metal shield is a good ground connection at the BBC end and when
using shielded cable the woven wire screen should be used to connect the
two protective grounds.

Signal Commen (pin 7)

This is another zero volt connection. This circuit provides the common
return for all circuits and thus completes the circuit and allows the
current to flow. This circuit should not normally be connected to the
protective ground pin 1.

Request to Send (RTS, pin 4)

Clear to Send (CTS, pin 5)

RTS officially ‘conditions’ the modem for transmission. This signal is an
output from the computer (DTE) to the modem (DCE}. RTS/CTS
handshaking was intended for use in a half-duplex situation {i.e. when
data transmission may only occur in one direction at any one time). The
computer keeps RTS inhibited while data is being received from the
modem. When the computer wishes to transmit data to the modem it
signals the intention using the RTS line. The modem will not respond
instantly but will signal its readiness to receive via the CTS input of the
computer. The computer should not begin transmission to the modem
until CTS has been asserted by the modem.

In the real world most communication is full-duplex (i.e. transmission in
both directions can occur simultaneously). Most modems permanently
assert CTS or tie it to Data Carrier Detect (pin 8)

The two handshaking lines on the BBC micro are called RTS and CTS
and while these names are perfectly adequate in a purely semantic sense

236

they are misnamed in terms of the EIA standard. A description of how
the BBC micro uses these signals is given in section 15.2.

Data Set Ready {DSR, pin 6)

DSR is asserted by modems when a communication channel is open.
This normally means that entry has been made into the telephone
system. The precise meaning depends on whether the modem is in
originate or answer mode.

Usually this signal is permanently asserted by microcomputer modems
and is used as a signal to indicate that the modem is connected and
powered up.

Data Carrier Detect (DCD, pin 8)

Otherwise known as Received Line Signal Detect, this signal is asserted
when the modem has detected a remote carrier. This nermally means
that contact has been made with another modem. The signal remains
asserted for the duration of the link.

The loss of this signal in the middle of a session indicates that the
modem is still connected and functioning, but that contact with the
remote modem has been lost.

Data Terminal Ready (DTR, pin 20}

This signal informs the modem that the computer is ready for
communication. In the words of the standard it 'prepares the DCE to be
connected and maintains the connection established by external means'’.
Most modems will not receive data unless this signal is asserted. The
signal is, in effect, a master control.

This signal generally indicates that the computer is connected and
powered up.

Transmitted Data {TD, pin 2}

This circuit carries the data transmitted from the computer to the
modem. Data is not transmitted unless the following circuits are
asserted:

1. RTS
2. CTS
3. DSR ;
4. DTR

The CTS and RTS requirements make no sense in full-duplex modems
where these signals have no meaning.

237

Received Data (RD, pin 3)

<. » s P , . 15.2 The Acorn RS423/RS232 implementation
The activity of this line is not dependent directly on any other signal.

Acorn use a five connection serial link. A table of the signals used and a
diagram showing their connections in the R5423 /232 socket are

15.1.3 Electrical Signal Characteristics dhstrated below

Although the following points will only be of peripheral interest to most
programmers, they are included here to complete this outline of the
RS232 standard.

(top of computer)

Gap in metal surround of plug

The speed of transmission is defined within the standard from zero to a
nominal upper limit of 20,000 bits per second. For most devices this limit
tends to be 19,200 baud. The standard also cautions against cable
lengths in excess of 50 feet unless the total capacitance is less than 2,500
picofarads.

(J] +——— ey groowe

The standard also states that the interface must be able to sustain a

short circuit of infinite duration between any two of its pins and in such VIEW OF PLUG FROM SOCKET

a case the current must not exceed 500 mA. 1 | signal ground
2 | clear to send

OUTPUTS INPUTS 3 | transmited data
i I | 4 | teceived data

control data control data 5 | request to send

0 (space) 1 (on) D (space)

+3 volts
0 volis
-3 volts

VIEW OF SOCKET FROM PLUG

1 (mark) 0 (cff) 1 (mark) (also the view of the plug pins when soldering)

{bottom of computer case)

The RS232 standard specifies the voltages in terms of their magnitude
and polarity. No voltage should exceed +15 volts. The diagram above
indicates the logic levels for the control and data signals.

One major complaint against the infamous Acorn RS423 /R5232

connector is the fact that it is possible to insert it in two different
orientations. The plug may be inserted with the notch in the metal shield
facing the top of the computer case (usually accepted as the correct
position) or 180° rotated with the notch facing the bottom of the case. i
Although no harm is normally done by inserting the plug the wrong way
round, there is an inadequacy in the design. One of the first things to test

in the event of a failure in the serial port is that the plug has been

inserted the right way round and that the cable has been wired up
correctly.

238 239

In comparison with many other manufacturers (most notably IBM and
compatibles) Acorn have been exceedingly generous by including an
operating system which provides interrupt driven buffered serial 1/0
with hardware handshaking.

The use of the two data signals is straight-forward, but in comparison
with other serial interfaces there is a dearth of control signals. In
essence the Acorn design is a model of simplicity. The control signals
consist of a Request to Send output signal and a Clear to Send input
signal. The RTS line is asserted until the serial input buffer becomes full
and is re-asserted when the buffer empties again. The transmission of
characters is dependent on the presence of an asserted CTS line. If this
signal is lost then transmission is halted and only recommences when
the CTS signal is re-asserted. Clearly the RTS and CTS lines are
complementary and connecting two BBC micros together via the serial
port can be carried out by connecting the RTS and TD of each micro to
the CTS and RD of the other.

This use of RTS and CTS corresponds more closely with the Data
Terminal Ready and Data Set Ready signals of the EIA standard than
with the true RTS and CTS definitions, although it may be argued
otherwise.

Problems often arise when attempting to connect a BBC micro to a
peripheral device or another computer possessing a 25 pin connector.
Although Acorn are not the only manufacturers to use RTS and CTS as
the handshaking lines, it is rarely the case that just connecting these two
signals will be sufficient. Because of the wide variation in various RS232
implementations there are no golden rules for connecting different
devices together so that they always work. Several hardware devices
are available which act as protocol converters (like the Adder range of
Peripheral Managers!) which can sometimes overcome the direct
interfacing problems.lt is hoped that the information given above will
help anyone attempting to interface their BBC microcomputer with
another computer or peripheral via the serial port.

15.3 OS calls for using the serial port

All the following calls relate directly to the RS423/RS232/Serial system.
The majority of these calls will not be implemented on the unexpanded
Electron and will be passed on to the paged ROMs as unknown
OSBYTE calls.The Master Compact requires the optional interface
chips to be inserted before its R5232 port can be used.

240

15.3.1 Select input stream OSBYTE call
Call address &FFF4

Indirected through &20A

A=&02 (*FX2)

Entry parameters:

X determines input device(s)

X=0 keyboard selected, R5232 disabled (default state)
X=1 RS232 selected and enabled, keyboard disabled
X=2 Keyboard selected, RS232 enabled

On exit,

X=0, if the keyboard was the previous input source
X=1, if the serial port was the previous input source

A is preserved, other registers undefined.

15.3.2 Select output stream OSBYTE call

Call address &FFF4
Indirected through &20A
A=&03 (*FX3)

Entry parameters:
X determines output device(s),Y=0

bit action if set

Enables R5232 output

Disables VDU driver

Disables printer output

Enables printer, independent of Ctrl-B or Ctrl-C

Disables spooled output

not used

Disables printer output unless character is preceded

by a VDU 1 (or equivalent) :
7 not used

fo 2R) I S UL R (6 R

*FX3,0 selects the default output options which are:
R5423 disabled
VDU enabled
Printer enabled {output controlled by VDU 2/3 or Ctrl-B/C)
Spooled output enabled (requires *SPOOL command)

241

The OSBYTE call with A=&EC (236) can also be used to read and write :
the output stream selection byte. This OSBYTE call has the advantage . . Sty pasameters
that the Y register can be used as a bit-mask to avoid writing those bits

. rmines transmission rate
which are not to be changed. X dete es t

On exit, X=1 75 baud transmit
X=old output stream status byte §i§ ;gg E:Eg g:ﬁiﬁﬂ
A is preserved, other registers undefined. if; ;igg E:Eg :;Zﬁiﬁ:
X=6 4800 baud transmit
15.3.3 Set serial receive rate OSBYTE call §=§ ?Sggo Eaug :ranzﬁi
= aud tran
Call address &FFF4 On exit
n exit:

Indirected through &20A

A=&07 (*FX7) A is preserved

X & Y contain old serial ULA register contents (not Electron)
Entry parameters: C is undefined

X determines baud rate

X=1 75 baud receive 15.3.5 Read/write RS423 mode OSBYTE call
X=2 150 baud receive
X=3 300 baud rece%ve Call address &FFF4
X=4 1200 baud receive Indirected through &20A
X=5 2400 baud receive A=&B5 (181)
X=6 4800 baud receive
X=7 9600 baud receive This call is implemented on all Acorn-BBC computers. On the
X=8 19200 baud receive unexpanded Electron this call will have no effect unless a suitable
On exit: hardware and software expansion has been added to implement R5423.

There are two R5423 modes available. The default mode treats R5423
input differently from keyboard input in that if an ESCATE character
(&1B normally) is received, an ESCAPE is not generated and instead the
ASCII character is placed in the input buffer. This has been provided to
simplify the implementation of such things as terminal emulators. The
second mode treats RS5423 input just as if it had come from the key-oard.

A is preserved

X & Y contain old serial ULA register contents (not Electron)
Cis undefined

<NEW VALUE>=(<OLD VALUE> AND Y) ECR X

15.3.4 Set serial transmission rate OSBYTE call

Call address &FFF4 The old flag value is returned in X. i
Indirected through &20A

A=&08 (*FX8) Flag=0 ESCAPEs are recognised

soft keys are expanded
character entering input buffer event generated
cursor editing performed

242

243

Flag=1 All characters enter input buffer (default)

character entering buffer event not generated

15.3.6 Read/write RS423 use flag OSBYTE call

Call address &FFF4
Indirected through &20A
A=&BF (191)

This OSBYTE is used on all computers, but is reserved for expansion
software on the Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old flag value is returned in X.

bit 7 set - R5423 free.
bit 7 clear - R5423 busy
bits 0 to 6 - undefined.

15.3.7 Read/write 6850 control register OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&9C (156)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old register value is returned in X.

This call may be used to change or read the 6850 ACIA control register.
This call updates the operating system's RAM copy of this register at the

same time.

The control register bits have the following meanings:

Bit0 [Bit1 Effect
0 0 divide counter by 1
1 0 divide counter by 16
0 1 divide counter by 64 (default for R5423)
1 1 master reset

244

This counter is used to set the cassette system baud rates.

Effect

7 bit word, even parity, 2 stop bits
7 bit word, odd parity, 2 stop bits
7 bit word, even parity, 1 stop bit
7 bit word, odd parity, 1 stop bit

8 bit word, 2 stop bits

8 bit word, 1 stop bit

8 bit word, even parity, 1 stop bit
8 bit word, odd parity, 1 stop bit

Bit2 Bit 3 Bit 4

—HOoRORORLS
—— D e = SO
—— e OO O D

These bits control the RS423 data format.

Effect

RTS low, transmit interrupt disabled
1 0 RTS low, transmit interrupt enabled
0 1 RTS high, transmit interrupt disabled
1 1 RTS low, break level on data output,
transmit interrupt disabled

Bit 5 Bit 6
0 0

These bits control the level of the RTS line, the interrupt generated by
the transmit data register empty state, and the break level on data
output.

Bit 7, when set, enables the receive data register full, over-run, or DCD
transition interrupts.

For a more detailed description of this register refer to the
manufacturer's data sheet for the 6850 ACIA.

Read OS copy of 6850 control register OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C0 (192)

This OSBYTE is used on all computers, but is reserved for expansion
software on the Electron.

<NEW VALUE>={<OLD VALUE> AND Y) EOR X
The old value is returned in X.

This call is equivalent to OSBYTE &9C except that it does not update
the register in the 6850. This call should not be used to write the control
flag as it would cause the operating system RAM copy to become
inconsistent with the 6850 register contents.

245

15.3.8 Read/write RS423 handshake level
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&CB (203)

This OSBYTE is used to store the interrupt mask for the ULA on the
Electron (see interrupts chapter 8).

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old handshake level is returned in X.

This OSBYTE controls the space remaining in the R5423 input buffer
when R5423 input is halted by the operating system entering a buffer
full state (which sets the RTS line high). The default value is 9. The free
space remaining in the buffer allows extra characters to be received
before buffer overflow occurs and data is lost. The value selected should
reflect the response time at the transmission end and the time taken for
the operating system to act upon the buffer full situation.

15.3.9 Read/write RS423 input suppression flag
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&CC (204)

On the Electron this call is used to access the firm key pointer (see
keyboard calls, chapter 14).

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old flag value is returned in X.

If this location contains 0 then RS423 input is accepted otherwise RS423
input is ignored (R5423 receive errors will still cause an event).

15.3.10 Read/write RS423/cassette flag OSBYTE
call

Call address &FFF4

Indirected through &20A
A=&CD (205)

246

On the Electron this call is used to access the current firm key string
length.

<NEW VALUE>=(<CLD VALUE> AND Y) FOR X
The old flag value is returned in X.

If flag=0 RS5423 data passed to serial port.
If flag=£&40 R5423 data passed to cassette port.

Any change is only effected following a baud rate selection using
OSBYTE calls &07 or &08.

15.3.11 Read/write IRQ mask for 6850 OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&ES (232)

This location is reserved for expansion on the Electron.
<NEW VALUE>=(<OLD VALUE> AND ¥) EOR X
The old mask value is returned in X.

This location contains a software copy of the interrupt bit mask for the
serial communications chip (6850}

Default value &FF.

Refer to the interrupts (chapter 8) for further information about 6850
interrupts.

15.3.12 Read OS copy of serial ULA register
OSBYTE «call

Call address &FFF4
Indirected through &20A
A=&F2 (242)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X.

247

This location contains a software copy of the value currently written to
the serial processor ULA register. This call should not be used for
writing as it would make the copy of the register contents different from
the actual register contents.

All the serial ULA functions can be controlled with :-

OSBYTE with A=&89/*FX 137 motor control
OSBYTE with A=&CD/*FX 205 cassette/R5423 select
OSBYTE with A=&7,&B8/*FX 7,8 RS423 baud rate contrel

This location is reserved for future Acorn expansion on the Electron.

The serial ULA consists of a single register at &FE10. This register
should not be programmed directly. All the facilities offered by this chip
are available from operating system calls. This brief description is
included in the absence of a conventional manufacturers data sheet. The
serial ULA control register is 8 bits wide and is write only.

Bits 0 to 2 - define the transmit baud rate. Bits 3 to 5 - define the receive
baud rate

bit5 | bit4 [bit3 | [bit2[bit1]bit0] reg. bits
Transmit Recieve Baud rate
0 0 0 0 0 0 | 19200
1 0 0 1 0 0 | 9600
0 1 0 0 1 0 | 4800
1 1 0 1 1 0 | 1200
0 0 1 0 0 1 {300
0 1 1 0 1 1 150
1 1 1 1 1 1 75

These baud rates rely on the 6850 control register being set to divide the
clock rate by 64.

This is the only way that the currently set baud rates may be read. The
relationship between the 4 bit register values and the baud rate numbers
used by OSBYTEs &07 and &08 is that the ULA value inverted and plus
1 gives the OSBYTE baud rate value.

Bit 6 - if set the R5423 system has control of the serial system otherwise

the cassette system is in use.
Bit 7 - if set the cassette motor and relay are switched on.

248

15.3.13 Read/write CFS timeout counter OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&B0 (176)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old counter value is returned in X.

This counter is decremented once every vertical sync. pulse (50 times per
second). The timeout counter is used to time inter-block gaps and leader
tones.

249

16 Filing System
Implementations

This chapter consists of brief descriptions of a number of different filing
systems which have been implemented on the Acorn BBC series
microcomputers. The Tape and *ROM filing systems are incorporated
into the operating system software itself. Other filing systems reside in
their own paged ROMs {on Master series computers ADFS and DFES
are already installed within the 1 megabit ROM). Additional hardware
is also required for the use of most filing systems.

16.1 Filing system calls

In their design of the operating system software for the BBC
microcomputers, Acorn have defined a number of standard functions
which have to be supported by filing system software. Two filing
systems are incorporated into the operating system itself. These are the
cassettte filing system and the ROM filing system. Other filing systems
software is implemented in paged ROMs to support expansion
hardware such as floppy disc drives and teletext adapters. Each new
filing system adheres to the filing system rules so that all other software
using the filing system is unaffected by any change in filing systems
which may occur,

The complete filing system specification is designed cope with all types
of storage media from cassette tapes to winchester hard discs. Some
filing systems do not implement the full filing system specification due to
the physical limitations of the media they use. For example write
operations are not supported by the ROM filing system and the cassette
filing system does not allow the use of sub-directories.

The following sections describe the standard filing system calls with
notes on how the different filing systems implement them.

16.1.1 OSFILE

Read or write a whole file or its attributes

Call address &FFDD
Indirected through &212 (FILEV)

This routine is used to load or save whole files.

250

On entry:
A specifies action to be performed
X and Y contain the address of a parameter block

XY+ |G .
3 address pointing to filename + CR (LSB first)
21 .
5 file load address
6 .
g file execution address
10
1 start address or length
14
1 end address or file attributes

The file attributes consist of a file attribute byte (shown in the table
below) which is stored in XY+14, and for the NFS a two byte date
attribute. The date attribute consists of the day of the month in the first
byte, the month in the least significant 4 bits of the next byte, and the
year - 81 stored in the remaining 4 bits.

“bit | attribute”] *mearing whenset | meaning wtien 0
0 | R attrioute file cannot be read file can be read

1 W atiribute | fite cannot be written | file can be written

2 | E attribute file is 'execute cnly' | attribute not set

3 | L attribute file can't be deleted file not locked

4 | NFSuse piivate use only readable by others
5 | NFSuse private use only writable by others
6 | notused

7 not used

Action of call with various values in A:

save block of memory returning file length and attributes
write catalogue infermation for named file

write load address for named file

write execution address fer named file

write attributes for named file

read catalogue information

delete named file, returning catalogue information

create empty file of defined size

Ioad named file, if XY+6 contains 0, use specified address

E“ﬂmm#wm_;o

251

The call with A=7 is new to the Master series computers.

On exit:

The paramet

er block is updated by some calls.

A is undefined except after the call with A=5
A=0 if file not found
A=1if file found
A=2 if a directory was found
A=&FF if E attribute set (ADFS only)
X and Y are preserved
Other registers are undefined

Interrupts may be enabled by this call,

16.1.2 OSARGS

Read or write a file's attributes

Call address &FFDA
Indirected through &214 (ARGSV)

On entry :

Aspecifies action to be taken
X points to a 4 byte area in zero page (always i/o processor)
Y contains file handle or 0

Entry paraméters::
wh LY fag, e T Keeg T
0 ¢ retum filing system number in A
fle handle | pir to ZP | return sequential file pointar in zero page
1] ptr to ZP | return address of remaining command line in zero page
filzhandle | pir to ZP| write sequential file pointer from zero page
2 file handle | pir to ZP| return length of file in zero page
25 |0 write any bufiered data to all pending files
file handle write any buffered data to specific file
On exit:

X and Y are preserved

252

all other registers undefined (except when A=0, Y=0)

Filing System Numbers, -
no fiing system selectéd
1200 baud CFS

300 baud CFS

ROM filing system

Disc filing system
Network filing system
Teletext filing system
IEEE filing system
ADFS

Host filing system
Videodisc filing system

W X~ ®» o W D

—
(=3

Interrupts may be enabled by this call

16.1.3 OSBGET

Read a single byte from an open file

Call address: &FFD7
Indirected through &216 (BGETV)}

On entry:
Y contains file handle, as provided by OSFIND

On exit:
A contains the byte read from the file
(the sequential file pointer is incremented by one}
C is set if the end of the file has been reached
X and Y are preserved

Other register values are undefined
Interrupts may be enabled

16.1.4 OSBPUT

Write a single byte to an open file

Call address: &FFD4
Indirected through &218 (BPUTV)

On entry:
A contains byte to be written
Y contains file handle, as provided by OSFIND

253

On exit:
A, X and Y are preserved
Other register values are undefined
Interrupts may be enabled

Fast Tube BPUT OSBYTE call

Call address &FFF4
Indirected through &20A
A=&9D (157)

This call is a faster alternative to OSBPUT when used from a second
processor.

On entry:
X contains byte to be written
Y contains file handle

On exit:
X and Y are undefined.

16.1.5 OSGBPB

Read or write multiple bytes to an open file

Call address: &FFD1
Indirected through &21A (GBPBV)

On entry:
A specifies action to be performed
X and Y contain the address of a parameter block

XY + | 0] file handle (or disc cycle number, for A=8)
1 | start address of data (LSB first)
4 | for address for returned data)
5 | number of byles to fransfer (LSE first)
8 | (or no. of flenames for call with A=8)
12 sequential pointer value to be used (LSB first)

The various actions of the OSGBPB call are summarised in the
following table.

254

- parameter block - -
b itle -
A [OSGBPBcalAdlion . ? :t;’gtht ot e —
1| write bytes to file at sequential file pointer specified ° 3 rmg Or CBCRoTy
. — n+1| start option
2 | append bytes ta file at current file painter -
~ — n+2 | drive number
3 | read bytes from specified position in file
4 | read bytes from current position in file 0 | drive string length - x
S | read title, option and drive tc memory 1 | drive string
6 | read current directory and drive names x+1| directory name len. - y
7| read current library and drive names x+2| directory string
8 | read fila names from the current directo
il 0 length of 1st file name - x
1 15t filename
x+1 length of 2nd file name -y
x42 2nd filename
y+x+3| length of next file name
repeated as requested
results stored in memory specified in parameter block
On exit:

A, X and Y are preserved
Li the carry flag is clear in the event of a successful transfer
C=1 if the transfer could not be completed.

In the event of a transfer not being completed the parameter block
contains the following information:

{a) The number of bytes or names not transferred in the number of bytes
to transfer field.

(b) The address field contains the next location of memory due for
transfer.

(c) The sequential pointer field contains the sequential file pointer value
indicating the next byte in the file due for transfer.

16.1.6 OSFIND

Open or close a file for random or sequential access

Call address &FFCE
Indirected through &21C (FINDV)

255

On entry:
A specifies action to be taken
X and Y contain relevant parameters (see table below)

“Entry parameters © ;[+Action
“A T Xand Y regiters, . |° T

all files to be closed

specific file to be closed

file to be ppened for input, file handle returned in A

file 1o be opened for output, fie handle returned in A

file to be opened for random access, handle ret. in A

0 Y=D

Y=file handle

64 XY=addr. of flename
128 | XY=addr. of filename
12 | XY=addr. of filename

On exil:
A is preserved following a call with A=0
A returns the file handle following successful file opening
If a file could not be opened then A is returned containing 0
X and Y are preserved
other registers are undefined

When opening a file for output a file will be created if one does not
exist (default length 16k - DFS, 64k - ADFS). If a file already exists
the sequential file pointer will be set to the start of the file.

Note that if the file could not be opened because the filename was
syntactically incorrect, or involves a non-existent directory, a BRK may
be executed with an error message 'Not found error'.

16.1.7 FSCV

The filing system control vector {(&21E on model Bs, or in Hazel on
Master series computers)

This vector is used by the operating system to invoke a number of
miscellaneous filing system functions.

256

[A-] action” o X &Y entry parameters | axit barameters.. . -
0 | *OPT command “OPT parameters |
1| EOF being checked X=file handls X=&FF if EOF X=0 otherwise
2 | */ command XY point to command line
3 | unrecognised * command XY point 1o command fine
4 | "BUN command XY point to command line
5 | *CAT command XY point to command ling
6 | New filing system start
7 | return file handle range X=minimum, Y=maximum
8 | OS has received a *command
9| “EX command XY point to command line
101 “INFO command XY point fo command line
11 | *RUN command for library XY point to command line

16.1.8 General filing system OSBYTE calls

The following OSBYTE calls have general filing system effects.
Read machine high order address OSBYTE call

Call address &FFF4
Indirected through &20A
A=&R82 (130)

This OSBYTE call provides the 16 bit high order address for filing
system addresses which require 32 bits (see section 18.1).

No entry parameters

On exit:
X and Y contain the high order address (LSB, MSB).

Close any *SPOOL/*EXEC files OSBYTE call

Call address &FFF4
Indirected through &20A
A=&77 (119)

This call causes the closure of any open *SPOOL or *EXEC files. A

llca;i%e% ROM service call with A=&10 is also generated (see section

On exit:
A is preserved
All other registers are undefined.

257

Read or write *EXEC file handle OSBYTE call

Call address &FFF4
Indirected through &20A
A=8C6(198)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old value is returned in X.

The location used by this OSBYTE contains the file handle used for the
*EXEC file.

Read or write *SPOOL file handle OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C7 (199)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old value is returned in X.

The location used by this OSBYTE contains the file handle used for the
*SPOOL file.

Select filing system options (*OPT) OSBYTE call

Call address &FFF4
Indirected through &20A
A=&8B (139)

Entry parameters:
X contains the option number (1st *OPT parameter)
Y contains the option value (2nd *OPT parameter)

On exit:
A is preserved
All other registers are undefined.

Check for EOF OSBYTE call

Call address &FFF4
Indirected through &20A
A=&7F (127}

On entry:
X contains the file handle of the file to be checked.

Cn exit:
X <=0 if the end of the file has been reached.
X=0 if the end of the file has not been reached.
A and Y are preserved
All other registers are undefined.

16.2 Master Series Filing Systems
Auxilary filing systems

The Master series computers have a number of additional filing system
facilites controlled by a filing system handler.

The filing system handler is a part of the operating system on these
machines. It intercepts all calls relevant to filing systems and then feeds
these calls to the appropriate filing system. This approach enables more
than one filing system to be easily accessible at the same time.

The default filing system is determined by either the power-up
configuration or by the use of a command such as *DISC or *TAPE. A
secondary filing system may be specified which is used only when disc
based commands are not found on the default filing system. This filing
system is called the library filing system (it is intended that it should be
used to house a library of regularly used programs). A third type of filing
system called a temporary filing system is also available. Temporary
filing systems are invoked by specifying the target filing system as a
prefix for the filing system command. The prefixes used consist of the
filing system name (DFS, ADFS, NET, TAPE etc} with a hyphen before
and after it.

for example
*LCAD -DISC-prog
specifies that the file, prog, should be loaded from the disc filing system.

The filing system handler intercepts filing system calls that are made to

the relevent addresses in page &FF. This means that directly using the
contents of the filing system call vectors will bypass this mechanism. The
filing system handler code places an address to one of its own routines

into the filing system control vector and maintains its own copy of the :
active filing system control register for the current filing systemn.

The additional workspace required for the filing system handler
routines is provided by the additional sideways memory in page &DF
(Hazel). The use of this memory is illustrated in the following diagram.

259

Page &DF (Haze!) Allocations

0 "

. filing system name

8 | minimum file handle

9 | maximum file handle

A | filing system number

; use ASCII only when printing
bit7| or APPEND/BUILD flag
bit6] no line numbers when printing

&DF00 current filing system number
&DFC1 aclive filing system number
&DFC2 library filing system number
&DFD3 | current filing system ROM number
SDF04 command line pointer, transient commands
&DF05
DF ,
&DF05 upto 17 filing system information blocks
{11 bytes each) terminated by a zero byte
&DFCA
&DFC2 | filing system flags
&DFC3 BCD line number for BUILD/APPENDILIST
&DFC4
&DFC5 | last char printed by BUILD/APPEND/LIST
&DFC6 | temporary filing system flag
BDFC7 OSGBPB for destination of *MOVE
LOFD3
&DFD4 | source handie for *MCVE
&DFD5 |- destination handle for *MOVE
&DFD6 | MSB of *MOVE buffer address
&DFD7 | *MOVE buffer length in pages
80FD8 destination name pointer for “MOVE
&DFD9
&DFDA .

f FSCV for active filing systam
spFDB | % ° 9y
&DFDC | copy of ACCCON during *MOVE
&DFDD | ACCCON changed flag (O if not changed)
&DFOE urused
&DFFF

Make temporary filing system permanent OSBYTE call

Call address &FFF4
Indirected through &20A
A=&6D (109)

This call, when issued while a temporary filing system is active, makes
the temporary filing system become permanent.

260

16.3 The main filing systems

A number of different filing systerns have been produced by Acorn or are
supported by them. The cassette and ROM filing systems are available
on all the Acorn BBC series machines in their unexpanded state,
whereas the IEEE filing system and the Teletext filing system (for
example) are only available with specific expansion hardware.

Filing System ... [m] BREAK... .| tempfsname . 1 ‘command [vorsp:
L. b Y EEY
no filing system selected | & T]
1200 baud CFS i SPACE | -TAPE- or -CFS- “TAPE a0
300 baud CF$ 2 -TAPE- or -CFS- “TAPE 3 0|0
ROM filing system 3 |SHIFT-SPACE -ROM- ‘RCM 08 1]
Disc filing system 4 D -DISC- ‘DISC or*DISK 9] 2
Network filing system 5 N *NET 212
Teletext filing system 6 T *TELESOFT |23
IEEE filing system 7 IEEE 201
ADFS B AorF -ADFS- *ADFS or "FADFS| 6 | 1
Hest filing system 9
Videodisc filing system |10 Qorl ‘VFS or 'LVFS

The workspace column indicates the number of 256 byte pages which are
claimed by the filing systems as private or absolute workspace (see
section 17.5.1).

16.3.1 The Cassette Filing System

Magnetic tape recorders are a relatively inflexible device for the
storage of data. Reflecting the limitations of the storage medium, the
cassette filing system can only implement a sub-set of the filing system
calls. Variations from the standard filing system specification are :

OSFILE - only load and save operations are supported

OSARGS - only filing system identification supported

OSGBPFB - not implemented except on the Master where A=2 and A=4
are implemented.

OSFIND - only input and output supported (up to 2 files)

OSFSC - calls 0 to 6 are implemented, call 3 returns a Bad command
error.

File handles given are always 1 for input and 2 for output.

The following OSBYTEs are implemented by the cassette filing system:

261

Switch cassette motor relay QSBYTE call

Call address &FFF4
Indirected through &20A
A=&R89 (137)

This OSBYTE call is the equivalent of the *MOTOR command.

On entry:
X=0 relay off
X=1 relay on

On exit:
X and Y are undefined.

Select CFS OSBYTE call

Call address &FFF4
Indirected through &20A
A=&8C (140)

This OSBYTE call is the equivalent of the *TAPE command. Following

this call the cassette filing system is selected; the baud rate is specified by
the X value.

On entry:
X=0 default baud rate ¢(1200)
X=3 300 baud
X=12 1200 baud

On exit:

Xand Y are preserved.

262

Read or write CFS/RFS switch OSBYTE call

Call address &FFF4
Indirected through &20A
A=&B7 (183)

This OSBYTE call is used to read or write the flag used to determine
selection of either the cassette filing system or the ROM filing system.
This switch is required because the two filing systems use some common
code.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old status value is returned in X.

This location contains Q for *TAPE and 2 for *ROM, all other values are
meaningless.

The cassette tape format

[ofiset | description | iengt

[&EA asynchronlsa on byte 1
1 file name {1-10 chars.} n
1+n &00, a file name terminator 1
2+n load address {lo byte first 4
H . ress {10 byte first) o g
640 execution address {lo byte first) 4 T RONon
10+n | block number (lc byte first) 2 y
- 1 not used
12+n blcck length (m, in bytes) 2
2 | notused
144n block flag 1
3 | notused
15+n 4 bytes - unused 4 4 | notused
18+n header CRC {1 to 18+ni 2
e 5 | notused
6 | nodata
2140 data (0 - yies) 7 last block
21+n+m | data block CRC 2

Cyclic Redundancy Check (CRC) values are a way of generating a
unique fingerprint for a block of data. If the data becomes corrupted

then the CRC value stored with the data will not match the CRC value
calculated from the data recovered from the storage media. A routine

for calculating CRCs is given in section 17.5.7 as part of the ROM filing
system example.

263

16.3.2 The *ROM filing system

An account of this filing system is given in section 17.5. Variations from
the standard filing system are:

OSFILE - only load operations are supported

OSARGS - only filing system identification supported

OSBPUT - not implemented

OSGBPB - not implemented except on the Master where A=4 is
implemented.

OSFIND - only input is supported (only 1 file)

OSFSC - calls 0 to 6 are implemented, call 3 returns a Bad command
error.

File handle given is always 3 for input only.
Select RFS OSBYTE call

Call address &FFF4
Indirected through &20A
A=&8D (141)

This OSBYTE call is the equivalent of the *ROM command.
No entry parameters.

On exit:
X and Y are undefined.

The *ROM data format is given in section 17.5.6

16.3.3 Acorn DFS

The disc filing system differs from the standard filing system in the
following ways.

The file attributes accessed using the OSFILE call are represented by a
single bit. This bt is called the lock flag. A file is locked if either the 'you
cannot write' or the 'you cannot delete’ bits are set when the file
attributes are written using the QSFILE call.

The OSFILE call never returns values of 0 or 2; instead a 'File not found'
error is returned.

Directory names consist of a single character and file names are upto 7
characters long.

264

The media title is the disc title, and is up to 12 characters in length.

OSWORD calls with A=&7D, &7E and &7F are also implemented by
the DFS.

The DFS catalogue format

The catalogue information on a disc is contained in the first two sectors
of each disc surface. The catalogue contains information which
identifies the disc and information about each file on the disc (uptoa
total of 31 files).

The disc information consists of:

A file name

The file's directory

File locking information

A load address

An execution address

The file's length (in bytes)

The file's sector address on disc

The actual layout of the catalogue information is designed to make
optimum use of the space and to enable the DFS to access files as
rapidly as possible. The DFS uses 10 bit addresses which do not fit
neatly into ordered bytes. This leads to the most significant 2 bits of
these addresses being stored remotely from the least significant two
bytes.

The format of the catalogue sectors is :

265

Sector 0
| offser T deséription - =~~~
&00
First B8 bytes of the 12 byte disc title
&07
&08
1st filename
&0E
&0F | Directory of 1st file + file access Rag (bit 7)
&10
2nd filename
&1E

&1F

Directory of 2nd file + file access flag (bit 7)

2F8

for remaining 30 file entries

31st filename
&FE
&FF | Directory of 31st file + file access flag (bit 7)
Sector 1
&00
Last 4 bytes of 12 byte disc fitle

403

804 | Cycle no. (BCD count of catalogue writes) 0 mast signiican 2 bis

&05 | Number of catalogue entries*8 | | toal o, of seefors on disq

&06 1 Dboot option + sector information i

&07 | Total number of sectors on disc (LSB} 4 | 1BOCT start option as

203 _ 5 | setby "OPT4n

409 1st file's load address (least sig. 16 bits) 3

&0A ! ‘ ’

R0B 1st file's execution address (least sig. 16 bits)
0 | Top 2 bits of 1st lilg's

80C1 1ot fle's fength in byles (ieast sig. 16 bits) 1§ stan sector

&0D ' 2 | Top 2 bits of 15t filg's

80E | Most signifcant bits of addresses 3 | load address

&0F | 1stfile's sector address on disc 4| T2 t.’“s of 1t fies
5 | length in bytes

the format of last B bytes is repeated § | Top2bis ol istiles

7 | sector address

266

16.3.4 The Advanced Disc Filing System

The ADFS is provided with the Master series computers and with the
Plus 3 expansion unit for the Electron. The original BBC model B is
unable to use ADFS5 unless a suitable 1770 upgrade has been fitted.This
replaces the 8271 floppy disc controller chip, which is unable to use
double density disc formats.

The ADFS implements the full filing system facilites as described in
section 16.1.

The ADFS disc format

The ADFS uses tracks divided into 16 x 256 byte sectors. The sectorson a
disc are given absolute sector numbers between 0 and the total number
of sectors per disc. There are 640 sectors on a 40 track single sided disc,
1280 sectors on an 80 track single sided disc and 2560 sectors on a double
sided 80 track disc.

The first two sectors of the disc are used to house the free space list as
described in the following table.

Sector 0 Sector 1

B0 start sector of 1st free space 800 no. of sectors in 1st free space

&02 802

&03 &03 ‘

805 start sector of 2nd free space 805 no. of sectors in 2nd free space

406 start sector of 3rd free space 806 no. of secters in 3rd free space

&08 &08

§Fd start sector of 82nd free space aF3 no. of sectors in §2nd frae spe.

&F5 &F5

876 reserved &7 reserved

&FB &FA

:Eg fotal no. of sectors (LSB 1st) z:ch disc identifier

&FF | checksum onsector 0 &FD | boot cption number ("OPT4,n)
&FE | pointer to end of free space list
&FF | checksum on sector 1

The root directory is stored in the following 4 sectors of the disc. The
format for any directory on the disc (root or sub-directory) is shown in
the following table.

267

Sectors 2-6 (for root directory)
&0 | BCD cycle number for directory

&0 . o .

%04 directory identifier string

zg% name and access string for 1st file in directory
&0F ‘

212 load address for 1st file

:: : exacution address for 1st file

:111 length of 1st file (or sub-directory) in bytes
::g start sector for 1st file {or sub-directory)

&1E | sequence number for 1st fils

:;g nama and access string for 2nd file in directory
&29

82C load address for 2nd file

&20 ‘)

%30 execution address for 2nd file

:gl length of 2nd file (or sub-directory) in bytes
:g‘;’ start sector for 2nd file {or sub-dizectory)

&38 | sequence number for 2nd file

82C6 [0

&4C7 | ‘
8405 directory name & access string
S:Bg start seclor of parent directary
i:gg directory title

gjg reserved

&4FA | BCD cycle number for directory
:Z:E directory identifier string

&4FF | 0

16.3.5 The Network Filing System

Acorn’s NF5 software implements a full standard filing system with the
following characteristics:

268

The second and third bytes of the attribute block are used to store the
date when the file was created.

The device identity is not applicable, and its length is zero.

Directory and file names consist of 1 to 10 characters.

The media title is the disc title, and may be up to 16 characters long.
The NF5 also implements a number of OSBYTE and OSWORD calls.

Very limited information about the Econet filing system is given here.
For further information about this highly sophisticated system the
reader should refer to the 'Econet User Guide' and the 'Econet
Advanced User Guide',

16.3.6 The Telesoft filing system

Files may be read from the teletext data broadcast by the television
organisations as part of their teletext services.

Variations from the standard filing system implementation are:

OSFILE - only load operations are supported

OSARGS - only filing system identification supported

OSBIUT - not implemented

OSGBPB - not implemented

OSFIND - only input is supported (only 1 file)

QOSFSC - calls 0 to 6 are implemented, call 3 returns a Bad command
error.

File handles given are &14 or &15 for input only.

OSWORD call with A=&7A provides access to the various teletext
commands from assembly language.

The Telesoftware ROM claims a total of 23 pages of absolute and
private workspace.

16.3.7 IEEE filing system

The IEEE488 interface is a general purpose system for exchanging data
between a number of devices in a local area. The control of transmission
and reception of this information is handled by an IEEE filing system.
This filing system behaves in the same way as other filing systems even

269

though the source or destination of the filing system data may not be a
data storage device.

The IEEE filing system differs from the filing system standard in the
following respects.

OSFILE - not supported

OSARGS - only filing system identification supported
OSGBPB - not implemented

OSFIND - only input and output (up to 16 channels.)
OSFSC - limited implementation

File handles given are in the range &F0 to &FF.

OSWORD call with A=&80 is used to invoke IEEEFS commands from
assembler.

The IEEEFS paged ROM claims 2 pages of absolute workspace and 1
page of private workspace

16.4 Floppy Disc Hardware

Introduction

When the model B was first launched by Acorn most people used the
cassette filing system and an attached audio tape recorder for storage
and retrieval of programs. In the intervening years the price of floppy
disc drives and control hardware has fallen dramatically. The stage has
now been reached where practically all serious users have at least one
floppy disc drive attached to their computer.

For everyday usage the typical user of the Acorn-BBC range will make
all accesses to the floppy discs via the DFS or ADFS filing systems.
However, the disc format employed by these filing systems (see the
appropriate user manual for details) is not compatible with most other
common computers like the IBM PC or CP/M machines. This normally
means that data transfer between these machines can only be effected
over a standard interface like the R5232 serial link. It would however
sometimes be useful to be able to read and write discs from other types
of computers. This would for example allow a colleague from overseas
to send you a disc written on his IBM PC and containing his memoires!
By directly controlling the floppy disc drive system you could actually
read his memoires into your BBC Micro.

270

The remainder of this section describes how data is organised on a
floppy disc and how you can achieve direct control of the disc hardware.
This is followed by a simple example which reads a sector from a PC
compatible diskette.

16.4.1 Floppy disc organisation

Each floppy disc consists of a double-sided flat disc coated in
magnetically sensitive material. Data can be written to and read from
this magnetic surface by a miniature read /write head. Single-sided
drives have only one head and can therefore only access one surface of
the floppy disc. Double-sided drives have two heads, one for each side
of the disc. Near to the centre of the disc is a small hole. This is called the
‘index hole'. A small light sensor is placed below the hcle with a light
emmiter above the hole. An 'index pulse’ is therefore produce once per
revolution of the disc, thereby defining the start position for reading or
writing data. To allow the read/write head to access data stored at any
position on the disc surface, it can step in towards the centre of the disc
or out from the centre of the disc. Most drives have either 40 or 80 steps
between the inner and outermost tracks on the disc. The head must be in
close contact with the magnetic surface to read and write data (just like
the head in a conventional cassette tape recorder). To allow the discs to
be removed, the head is only loaded onto the disc surface briefly to allow
read or write operations. It is unloaded or removed a short distance
away from the surface when reading or writing has been finished.

Centre hole

Index hole
Tracks

The surface of a floppy dise

The diagram illustrates a typical disc surface. Note the index hole and
the tracks. Each track is divided into manageable sector sizes typically
256 or 512 bytes long. To enable each sector to be identified each one has
an associated ID field.

271

16.4.2 Floppy disc controller chips

To ensure that data can be written and read reliably, it is essential to
ensure that all operations occur at precisely the correct instant. Each
byte of data must be written consecutively as a stream of bits. Each
sector must have a gap between it and the next sector to allow for minor
fluctuations in the speed of disc revolution (all drives vary slightly).
Extra checksum data must be written to detect when read data differs
from the data which was written. Time must be allowed for the motor
to spin the disc up to speed before attempting to read or write data.
Because of the complex nature of these problems and more, the chip
manufacturers produce a range of specialised controller chips. These
interface to microprocessors like the 6502 and allow the programmer to

issue a range of simple commands to position the heads and read or
write data.

The model B used an early disc controller chip called the 8271. This was
a very expensive chip which rapidly became obsolete. The model B+ and
Master series use the WD1770 range of interface controller chips. It is
this chip family which is covered in detail here.

1770 Control Registers

Model B+ Master | Read function | Write function
address | address

&FE84 | &FE28 | Status register | Command register
&FE85 | &FE29 | Track register | Track register

&FE86 &FE2A | Sector register | Sector register
&FE87 &FE2B | Data register | Data register

&FES0 &FE24 | none Drive control register

The drive control register is actually a separate chip from the WD1770.
It controls drive selection and various other functions as follows:

272

Master Drive Conirol Register
(&FE24)

[7]6]s[4[3]2]1 0]
T

B Plus Drive Control Register
{&FE80)

[7]s]s]af3]2]1]o]
.

DDEN - this bit controls whether the 1770 is operating in single density
(FM) or double density (MFM) mode. It must be set to '0’ for double
density or '1' for single density.

SEL - side select controls which side of the disc is accessed. When set to
'T", side 1 is selected and when set to '0', side 0 is selected.

DS2, DS1, DSO - are the drive select bits. When set to '1' the associated
drive will be selected. Up to three drives can be attached to the Master
and two drives can be attached to the B Plus. Only one drive should ever
be selected at any one time, the other drive select bits must be set to '0".
Note that actual selection of the drive only occurs when the motor is
turned on.

RES - this bit should be pulsed low for at least 50ys to reset the 1770
chip.

16.4.3 1770 operational overview

Before attempting to read or write data to a disc, the read /write head
must be positioned at the correct location on the disc surface. The
relevant disc drive is first selected using DS0, DS1 or DS2, the correct
side is selected using SEL, and the correct recording density is selected
using DDEN. The head can then be moved to the correct track. This is
achieved using a 'type I' command including restore, seek, step-in and
step-out. The next stage is to actually read or write data. This is
achieved with either a 'type II' command which reads or writes a single
sector, or a 'type III' command which reads or writes an entire track of
data (multiple sectors).

?

Each command generates an NMI to the 6502 after completion. Data is
also read or written by the 6502 in the NMI routine. Each byte read or

273

write has an associated NMI so the servicing of these interrupts needs . .
to be exceptionally fast.
1770 Status Register - &FE28 Master
1770 command summary table . . (&FE84 B Plus)
716[5]4[3]2(1]0
Typd Command |57 _|b6_[b5_[bd b5 b2 _[bi_[t0 [7TeIsT4]a]2]1 o]
1 Restore 0 Q 0 0 h |v rl |0 . .
I Seek 0 0 0 1 h |v rl |0 DRQ/ID
i gtep 0 0 1 u |(h v rl |0
tep-in 0 1 0 u h v rl (rd
1 Step-out 0 1 1 u |h v rl |r0 . .
II [Read sector 1 0 0 m |h e 0 0
II | Write sector 1 0 1 m |h e a0
Il |Read address |1 1 0 0 h e g 0 . .
I |Read track 1 1 1 0 h |e 0 0
T | Write track 1 1 1 1 h e 0 ; i
IV |Force interrupt |1 1 0 1 i3 i2 E i0 . . MON - motor on signal =1 when the motor is turned on.
WRP - write protect, when set during write operation means that the
disc is write protected
oot TS 0
motor on control h:O exliable d1§c spin up sequence RT/SU - record type/spin-up. On type I commands means that the
h=1 disable disc spin up sequence i is bi
v = verify posifion —0d - motor spin-up sequence has completed. On types Il and 11l this bit
P :: 1 vgrli]f; ;'Ifge);t‘;gziecf;t:aci . . indicates the record type 0 = data mark, 1 = deleted data mark.
= Tac
rl, 10 = stepping rates rl r0 WDI1770 WD1772 RNF - record not found, when set means that the desired track, sector
0 0 6ms 6 ms . . or side was not found. Reset when updated.
0 1 12ms 12 ms
1 0 20 ms 2 ms CRC - if set this bit indicates that a CRC (cyclic redundancy check) error
1 1 30 ms 3ms . . was found in one or more ID fields or a data field.
u = update track regist =
P register u_O do not update . LD - lost data/byte indicates that the 6502 did not respond to the NMI
u=1 update track register L i is bit i
— - - _ for data read within one byte time. On type I commands this bit is set to
m = multiple sectors m=0 do single sector ti p l
el do mu%tiple s:ctc?z?s;a otr_ls . . 1 except when the head is on track zero when it is set to 0.
= erations
a0 = data address mark a0=0 wr.ite normal data mark DRQ/ID - data request/ index. When set it indicates that the DR is full
- a0=1 write deleted data mark during read or empty during write. It should never be necessary to test
e = 15ms settling delay e=0 do not delay . . this bit because an NMI is generated whenever data is ready or needed.
_ e=1 delay 15ms for head settling On type 1 commands this bit reflects the status of the index hole sensor.
p = write precompensation | p=0 enable write precompensation P i i
p=1 disable write precompensation . . BUSY - when set indicates that a command is currently under execution.
i3-i0 interrupt condition 10=1 ot used When reset ne command is under execution. You should NOT read from *
i1=1 not used the status register to check if a command is under execution, as this will
2=1 NMI on index pulse . . reset the NMI if it occurs just at that moment.
i3=1 immediate NMI
i3,2,1,0=0 terminate without NMI . . 1770 Type I commands
274 . . 275

For all types of commands except type IV interrupt control the, h bit
should be set to 1 to enable a delay of 6 index pulses (i.e. 6 complete
revolutions of the disc) to allow the motor to reach its operating speed.
If, after finishing a command, no more commands are issued within 9

revolutions, the motor automatically turns off. Consecutive read and/or

write operations can be carried out once the motor is running at speed
without waiting for the spin-up period. The rl1 and r0 bits control the
track to track stepping rate. The verify bit if set will ensure that the first

encountered ID field is read and compared with the contents of the track

register. If the track and ID field track number compare, and the CRC is
correct, an NMI is generated with no errors. If the tracks match, but
there is a CRC error, the CRC error status bit is set and the next
encountered ID field is read to check for a match.

Restore (seek to track 0) - when issued by the 6502 instructs the 1770 to
step until track 0 is reached. When reached, the track register is loaded
with 0 and an NMI is generated. If track 0 is not reached within 255
steps (faulty drive) the 1770 stops stepping, generates an NMI and sets
the 'seek error’ status bit if v=1.

Seek - assumes that the track register holds the current track position
(you must update this correctly if using multiple drives). Load the data
register with the desired track location and issue a seek command. The
head will be stepped to the relevant track, and verified against data
there (if v=1). It will then be followed by an NMI.

Step - this command steps one track in the same direction as the
previous stepping operation. If u=1 the track register is updated. A
verification occurs if v=1. NMI occurs on completion.

Step-in - same as step, but steps towards innermost track.

Step-out - same as step, but steps towards outermost track.

1770 Type II commands

These are the read and write sector commands. When issued, the ID
fields on the track are compared with the desired sector number until a
match is found, at which point the data field is either written into or
read from the data field. If no valid ID field is found within 5
revolutions of the disc, the record not found (RNF) bit in the status
register is set and the command terminates with an NMI.

The m bit controls whether multiple sectors are to be read or written. If
m=0, a single sector is accessed and an interrupt is generated at the
completion of the command. If m=1, multiple sectors can be accessed
and the sector register is internally updated so that the next

276

encountered 1D field will be valid. The sector register is incremented by
one after each sector read or write until the sector register exceeds the
number of sectors on the track or until the force interrupt command is
loaded into the command register.

Read sector - when this command is issued, the 1770 reads the ID fields
on the current track until a sector match is found. The 'data address
mark' (DAM) should then be found within 30 bytes (single density) or 43
bytes (double density) of the last 1D field CRC byte. If the DAM is not
found, the process is repeated for up to 5 revolutions, after which the
RNF status bit is set and the command is terminated. When the first byte
of data is ready to be read into the DR, an NMI is generated to the 6502.
The byte must be read within 32us (double density) or 64ps (single
density) otherwise the DR will not be free to receive the next byte read
from disc. If this occurs the last character is lost and the ‘lost data’ status
bit is set. This sequence of reading bytes continues until the last byte in
the sector has been read by the 6502. If a CRC error is detected at this
point the command is terminated (even if it is a multiple sector read) and
the CRC error status bit is set. At the end of the read operation the type
of data address mark found in the data field is recorded in the status
register.

Write sector - similar to read sector. Once an ID field with the correct
track number, sector number, and the CRC is located, an NM1 is
generated. The 1770 counts 11 bytes (single density) or 22 bytes (double
density) from the CRC field end. Assuming that the 6502 has loaded the
first byte to be written into the DR, the 1770 writes 6 bytes of zeros
(single density) or 12 bytes of zeros {double density) followed by the
DAM as defined by a0. The data bytes are then written, an NMI being
generated as soon as the next data byte can be loaded into the DR. If the
byte is not loaded within 32us (double density) or 64ys (single density)
the 'lost data’ status bit is set and a byte of zeros is written on the disc.
The command is not terminated. A two byte CRC is computed by the
1770 and written after the last data byte. To write part of a sector,
always write the whole sector with the unwanted bytes padded with
Zeros.

1770 Type III commands

Read ID field - the next 6 byte ID field encountered after issuing this
command can be read by the 6502. An NMI is generated when each byte
becomes available in the DR. The bytes read contain:

Byte 1 = track address
Byte 2 = side number
Byte 3 = sector address

277

Byte 4 = sector length
Byte 5=CRC 1
Byte 6 =CRC 2

The 1770 still checks the CRC and sets the status bits accordingly. An
NMI is generated after all 6 bytes have been read.

Read track - this command reads all gap, header and data bytes present
on the track. It may prove useful for diagnostic purposes. The first byte
is read immediately after detecting the index pulse. The 'busy’ status bit
is set whilst this command is in operation. Once completed, the ‘busy’,
status bit is reset and a final NMI is generated.

Write track formatting the disc - this is normally performed only once
when the disc is first formatted. A detailed discussion of the many
different requirements for successful compilation of the necessary data
is rather complicated and would take too much space to include here.
The gory details can be found in the full manufacturer's data sheet on
the WD1770.

1770 Type IV commands

To terminate a multiple sector read or write command, or to ensure type
I status in the status register, a forced interrupt command can be issued.
If a command is currently under execution, it will immediately be
terminated and the busy status bit will be reset.

i3 = 1 causes and immediate interrupt
i2 = 1 causes an interrupt on every index pulse
13,i2,i1,i0 ALL = 0 terminates current command without an INMI

Animmediate interrupt is not automatically cleared by writing a new
command or reading the status register. It must be cleared by issuing
command &D0. Wait for at least 16us (single density) or 32us (double
density) before writing a new command after issuing a forced interrupt.

16.4.4 Using the 1770 disc controller; an example
program

The following example enables a file on a 360 Kb IBM format disk to be
examined on an Acorn BBC micro with a 1770 disc controller.

The IBM disc format may be found in The Peter Norton Programmer’s
Guide to the IBM PC published by Microsoft Press. The IBM disc format
relies on a directory containing the filename etc. and a file allocation
table (FAT) which contains information about the allocation of clusters

278

(groups of disc sectors) to cach file. The FAT contains a series of 12 bit
values, one for each cluster, containing the cluster number of the next
cluster in that particular data chain. This limited information may help
the reader follow this program but unfortunately there is not room for a
more detailed description here.

1 REM IBM disc dump utility program by Mark Holmes
2 machine3="MASTER": REM if using B+ replace string with "B+"

10 REM Main program loop

20 MODET

30 DIM buffer &1500

40 puffer=(buffer+sFF) AND &FF00

50 PROCsetup

60 REPEAT

¢ PROCprempt ("Press D{ir),F(ile dump) or Q(uit)™
a0 K&=GET

a0 IF K%=ASC"D®" OR K$=ASC"d" PROCdisplay directory
110 IF K#=ASC"F" OR K%=ASC"f" PRCCfile dump

120 UNTIL K%=ASC"Q" OR K¥=A5C0"gq"

130 MODE7?

140 END

200 REM Print cut IBM disc directeory

210 DEF PROCdisplay directory

220 CLS

230 cluster=FNget_dir{"display directory™
240 ENDPROC

300 REM Dump contents cf file to screen

310 DEF PRCCfile dump

320 vDy 28,3,24,39,24,12

330 INPUT TAB({4);"Enter Filename", name$

340 vDU 28,0,23,39,2

350 PROCprompt (name§)

360 CLS

370 cluster=FNget_dir (FNname_convert {name))

380 IF cluster=-1 PRINT TAB{(10,5);name$;" not found":
PROCprompt. {"Press any key te continue™):
K%=GET : ENDPROC

390 IF cluster=0) PRINT TAB(10,5);name$;" has no data”:
PROCprompt ("Press any key to continue™):
K%=GET : ENDEROC

400 block addresst=0

410 REPEAT

420 PROCconvert (cluster)

430 cluster=FNnext cluster (cluster)

44¢ PROCAump {buffer, 4200, klock address%)

450 block_addressi=block_addressi+&200

460 UNTIL cluster>&FEF

470 ENDPROC

500 REM Loop until WD1770 is not busy

510 DEF PROCwait

520 REPEAT:UNTIL((?status_reg) AND busy bkit}<>1
530 ENDPROC

600 REM Read sector from disc

610 DEF PROCread sector{side,track, sector,address}

620 IF address<>0 2 (savetl)=-address MOD 256: ?{save+2)=address DIV 256
630 IF side=1 walue={value OR &£10) ELSE value={value AND &LEF)

640 2dr_ctrl_reg=value

650 ?data_reg=track

640 Zcomm reg=&19

279

670
680
690
700
710
720

730
740

800
810
820
230
240
850
860
879
B0
B9cC

900
910
920
930
940
950
960
970

1000
1001
1010
1020
1030
1040
~050
1060
1070

1080
1090

2000
2010
2020
2030
2040
2030
20860
2070

3000
3010
3020
3030
3040
3050
3060
3070

4000
4010
4020
4030
4040
4050

FROCwait
2track_reg=track DIV 2
?sector_reg=sector
Toomm reg=&i4
PROCwait
IF ((2status_reg) AND error bit)=£10
- PRINT"DATA ERROR",side,track,sector:53TOP
?track_reg=track
ENDPROC

REM Initialise disc drive control register
DEF PROCdisc init (drive,side,density)
value=4

IF drive=1 value=value+2 ELSE value=value+l
IF side=! wvalue=value+&l0

IF density<»2 value=value+&20
?dr_ctrl_reg=value

?comm_reg=&0%

PROCwait

ENDPROC

REM Search for filename in directory
DEF ENget_dir(search$)
I=dir buifer
REPEAT
IF ?1<>&E5 B=FNshow_name
I=I+32
UNTIL (I=dir buffer+112*32) OR {?2I=0) QR B<>-1
=B

REM Compare search name to directory entry,

REM return cluster number or -1 if no file.or (if empty file

DEF FNshow_name

fnam$=ll n

FOR J=0 TO 10

fname$=fnameS$+CHRS (17J)

NEXT

fat=(1!26) AND &FFFF

IF search$="display directory™ PRINTLEETS {fname5,8);".";
RIGHT3 (fname$, 3} ;" ™7

IF FOS=2 VDU 13

IF fnameS=search$ =fat EL§E =-1

REM Return next cluster from the file alleccation table
DEF FNnext_cluster(start)}

fat entry=fat_buffer!({start DIV 2)*3)

bytel=fat_entry AND EFF

byteZ=(fat_entry AND &FFQ0)/&100

byte3={fat entry AND &FF0000)/&10000

IF start MOD 2=0 =bytel+((byte2 AND &F)*&l00Q)

IF start MOD 2=1 =byte2/&§10+(byte3d*sl0)

REM convert cluster number to vhysical disc lecation

DEF PROCconvert {(cluster_no)

log sector=(cluster_no-2)*2+12

phys_side=(log_sector DIV %) MOD 2

phys_track=log sector DIV {9 * 2)
phys_sector=1+log_sector MOD 9
PROCreadmsector(phys_side,phys_track*Z,phys_sector,buffer)
ENDPROC

REM dump data to screen

DEF PROCdump {where% how_much%,file offset?)

FOR I%=where% TO where%+how_much%-8 STEFB
@t=6
PRINT CHR$(129);~file_cffset¥+I%-where%,CHRS (135);
Q=1

280

4060
4070
4080
4090
4100
4110

4120
4130
4140
4150

5000
5010
502¢
5030
5040
5050
5060
5070
3080
5080
51400

5110
5120
5130
5140
5150
5150
5170
5150
5190
5200
5210
5220
5230
5240
5250
5260
5270
5320
5330
5340
5350
5360
5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500
5510
5520
5530
5540
5550
5560
5570
5580
5590
5600

FOR J%=0 TC 7
PRINT~ (I%?J% AND §F0)/&10,~I1%?J% AND &F," ™;
NEXT
PRINT CHRS(B) ;CHR$(131);
FCR J%=Q TO 7
IF {I%?J%>31) AND (I%$?J%<127) PRINTCHRS (I%72J%}:
ELSE FRINT".";
NEXT
PRINT
NEXT
FENDPROC
REM setup variables, load directory and FAT etc.

DEF PROCsetup

IF machine$="MASTER" dr ctrl_req=&FE24 ELSE dr ctrl reg=&FEB{
IF machine$="MASTER" WD1770_addr=&FE28 ELSE WD1770_addr=&FEE4
cormm_reg=WD1770 addr

status_req=wD1770_addr

track_req=WwDl1770_addr+l

sactor_reg=WD1770_addrt2

data_reg=WD1770_addr+3

busy bit=&01

errcr_bit=&l0

FOR opt%=0 TC 3 STEP 3

P3=5£0D00: REM NMI address

vDuzl

[
OPT opt%
PHA \ save accumulatcr on stack
LDA status_reg \ get status register wvalue
AND #&lF % mask out unwanted bits
CMP #&03 \ data ready & busy bits
BNE exit \ not interested in this NMI
LDA data reg \ get data from data register

.save STA &2000 \ store data
INC save+l \ increment save address LSB
BNE &(D18 \ not page boundary sc exit
INC save+2 \ increment save address MSB

.exit PLA \ restore accumulator
RTI Y return from interrupt

]

NEXT optt

vDuUe
VDU23,1:0:0;0;0

PRINT CHRS (135) ;CHR%{157) ;CHRS (132) ;CHRS$ (141} ;
PRINT TAB{8);"IBM disc dump utility"™

PRINT CHRS$ (135) ;CHRS{157) ;CHRS (132) ; CHR§ {141) ;
PRINT TAB(8);"IBM disc dump utility"”

PRINT TAB{0,24) ;CHR${135) ;CHR$(157) ;CHRS (132} ;
PRINT TAB(0,23) ;CHR${135) ;CHR$ (157) ;CHRS {132) ;
PROCprompt {("Press any key Lo continue")

vDU 28,0,23,39,2,12

PRINT TAB(5,5);"Put IBM format disc in drive 0O*
K%=GET

CLS

fat_buffer=buffer+s200

dir buffer=buffer+&200+&400
drive=0:density=2:side=0

PROCdisc init{drive,side,density)

PROCread sectcr(0,0,2,fat_buffer)

PRCCread secter(0,Q,3,0)

PRCCread sector(0,0,4,0)

FRCCread _sectcor(0,0,5,0)

PROCread sector(0,0,6,dir_buffer)

PROCread sector(0,0,7,0}

PROCread sector(0,0,8,0)

281

5610
5620
5630
5640
5650

8000
£010
6020
6030
6040
6C50

7000
7010
7020
7030
7040
7050
7060
7070
7080

7090
7100

7110

7120

PROCread_sector(0,0,9%,0)
PROCread sector(l,0,1,0)
PROCread_sector(1,0,2,0)
PROCread sector(l,0,3,0)
ENDPROC

BEM Place message at bottom of screen

DEF PROCprompt (message$)

VDU 28,3,24,39,24,12

PRIKNT TAB((34~LEN(message$)ll2,0);messaqe$;
VDU 28,0,23,39,2

ENDPROC

REM Convert filename into directory type format

DEF FNname_convert (string in$)

string out§=wr B

I%=1

REFEAT
string out$=string_out$4MIDS (string ing, I%,1)
I$=T3+1 B

UNTILMIDS (string_in$,I%,1)="." QR I%$=LEN(string in$)+1

IF LEN(string out$)<8 REPEAT strinq_out$=string_cut5+“ "

UNTIL LEN{string ou-35)=8
IF MIDS {string_in$, I%,1)="." I%=T%+1
IF I¥<=LEN{string in$) REPEAT

string_outS=string_outS+MID$(string_ins,I%,l):

T%=I%+1:
UNTIL I%=LEN(string :in$)}+1
IF LEN(string out$)<l1 REPEAT -
string_ out$=string out$+n v
) UNTIL LEN(string out$)=11
=string_out$ -

282

17 Paged ROMs

The Acom BBC microcomputers allow a number of ROM based
programs to be resident in a machine in the same address space. Each
ROM is selected (paged in) as required and then de-selected (paged out)
as software in another ROM is required. The B+ and Master series BBC
microcomputers contain additional RAM which may be used in the same
way as paged ROMS. This memory is described in chapter 12 and the
description of paged ROMS below is equally applicable to this sideways
RAM.

Paged ROMs work broadly in one of two ways. They act either as
languages such as BASIC and LISP or as utilities such as filing systems
and device drivers. Languages may also include such things as werd
processors and CAD graphics packages.

At any one time only one language should be active. Thus most machines
will enter BASIC as the default language. The current language has
access to, and control over the user RAM, which it can allocate to users
e.g. for BASIC programs or word processing text.

While the one language is active any other ROM offering a service may
be called upon as is appropriate. When a request for a service is
generated the operating system interrogates each paged ROM in turn
until the request is acknowledged and acted upon. Different types of
request are indicated to each ROM by the operating system entering the
service entry point of that ROM with an accumulator value
representing the reason. These calls are called paged ROM service calls.
If the service entry point is entered with A=7 this indicates that someone
has asked the operating system for an OSBYTE call which the operating
system failed to recognise and so is now asking the paged ROMs if they
claim it. If a service call is recognised then the ROM should act upon it
and clear the accumulator before returning control back to the operating
system. If the ROM does not wish to claim the call it should return
control to the operating system with the accumulator value unchanged.

There are two sets of paged ROMs, service ROMs and language
ROMs. All language ROMSs should respond to paged ROM service calls
and so should be service ROMs as well. BASIC is an exception to this
rule and the operating system recognises it by virtue of the fact that it is
a language ROM not offering a service entry.

283

17.1 Paged ROM header format

In order to enable the operating system to recognise ROM types and
treat them accordingly a protocol has been drawn up for a standard

ROM format.

[Romotiset | size | description B
0 3 language entry (JMP address)
3 3 service entry (JMP address)
8 1 ROM type flag
7 1 copyright string offset pointer (=1 Q+tev)
B 1 version number (binary)
9 [title string
9+t 1 zero byte
10+ [v] varsion string
10+t+v 1 zero byte
11+tev | [€] copyright string
Tieevic| 1 zero byte
12+4t4vec | 4 2nd processor relocation address
16+4v+e rest of ROM, code and data

Below is a full description of each field of the paged ROM format.

17.1.1 Language Entry

This should consist of a three byte JMP instruction referring to the
language entry point. This code is called upon when a language 1s ,
initialised. When a Tube is active, the language may be copled qcxc';)ss o
the second processor and then entered. When a language is copied
across the tube it may be relocated to a different address (see section

17.4).
If a ROM is not a language ROM this field should contain zeros.

17.1.2 Service Entry

This should consist of a three byte JMP instruction referring to the
service entry point. All paged ROM service calls are passed to each

ROM service ROM present in a machine via this entry point (see section

17.4.1). All paged ROMS should have a service entry

284

17.1.3 ROM Type Byte

The value of this byte gives information to the operating system about
the nature of the ROM.

The first 4 bits indicate the processor type for which the code is intended.
This is of importance to second processors who may get languages
copied across to them. A second processor will look for the correct value
of these bits before attempting to run the language. The following
values have been assigned:

bitvalues [dec. [processortype
3] 201 [o|value

glojo|lo} ¢ 6502 BASIC
ojoqo)pt1f 1 reserved
ojol1)0| 2 6502 code (not BASIC)
0lQl1]1) 3 6800 code
110100 8 280 code
1]of0{1] 9 32016 code
11010 10 reserved
170711 1 BO186 code
11110]0[12 | 80286code

11 1] 0] 1| 13 | reserved

Bit 4 of the ROM type flag is not used on machines other than the

Electron where it indicates the presence of firm key expansions (see
section 17.3.2).

If bit 5 is set, this indicates that the language code in this ROM has a
relocation address on a second processor. This normally means that the
machine code contained in the ROM can only run in the second
processor when it is located at that address. Service routines are not
executed from the Tube copy.

If bit 6 is not set, this indicates that the ROM is not a language and will
not be considered for initialisation following a hard reset. This does not
mean that the ROM cannot have a language entry point. However, if
the language is entered via a service call (i.e. *<name>) a soft reset will
reinitialise that language. Master series computers are more rigorous in

their interpretation of this bit and will not allow any type of language
entry if this bit is not set.

Bit 7 is used to indicate that a ROM has a service entry. All ROMs
should have this bit set.

285

17.1.4 Copyright Offset Pointer

This is an offset value from the beginning of the ROM to the copyright
string. It is important that this points to a string starting w:th the
character values &28, &43 and &29 e.g. " (c} Adder 19877 The 1
operating systems use this data to determine whether a ROM physically

exists in a ROM position.

17.1.5 Binary Version Number

This eight bit version number of the software contain_ed in a ROM helps
identify software. This byte is not used by any operating system and
need not correspond to the version string.

17.1.6 Title String

This is a string which is printed out as the operating system enters the
ROM as a language.

17.1.7 Version String

i ing i ifyi f the software.
This should be a string identifying the release number o
The format of this string should be A.BB where A and B are ASCII

characters of decimal digits.

On entering a language the error pointer is set to the start of this str.ing.
If there is no version string, the error pointer is directed to the copyright

string.
17.1.8 Copyright String
This string is essential for the operating system recognition of a paged

ROM (sece section 17.1.4 above). The copyright string sho'uld always be
preceded by a zero byte and start with the characters '(c)".

17.1.9 The Tube Relocation address

This is the address which is used when a ROM is relocated during
copying across the Tubetoa second processor.

286

The language code should be assembled to run at this address, but the
service code should be assembled to run from &8000 as it will be
executed within the ROM in the I/O processor.

Executing Software in Paged ROMSs

1t is possible to execute machine code in a paged ROM in cne of three
ways; via the language entry point after a reset, via the service entry
point when the operating system performs a service call or via an

extended vector (which is usually set up by a paged ROM in response to
a service call).

17.2 Paged ROM/RAM installation

In the BBC microcomputer there were originally only 5 ROM sockets
but with the addition of expansion hardware up to 16 paged ROMs may
be made available. The BBC Master microcomputer is supplied with the
equivalent of 7 paged ROMs already in the computer. A total of 64 K of
sideways RAM is available for use as another 4 paged ROMs and the
two ROM cartridges can hold another 4 paged ROMs between them.
Three further ROM sockets may be found on the circuit board but this
does not mean that the Master can use more than a total of 16 paged
ROMs. Only one of the empty, en-board, sockets may be used without
interfering with use of the sideways RAM. Use of each of the other two
sockets leads to the loss of two 16k banks of sideways RAM.

The hardware for selecting ROMs was covered in section 12.3. Here we
consider the practical requirements which are necessary to instsall
paged ROMs and select sideways RAM.

It is useful to briefty consider the various chips which may be plugged
into the Acorn-BBC range of machines. Typically, commercially
available software will be shipped in EPROMs (Prgrammable Read
Only Memories). These are easily recognisable because of the window
on top which allows ultra violet light to illuminate the chip surface
directly and consequently erase it. These chips are initially erased or
'empty’ with all locations containing &FF. A programmer (many are
available for the BBC Micro) writes data into the chip, where it remains

even when the power is disconnected. The following EPROM types are
commonly used:

EPROM | size microcomputer

2764 | 8Kx38 model B only

27128 | 16K x 8 model B, B Plus & Master
27256 | 32K x 8 model B, B Plus & Master
27513 | 16K x 4 x 8 | Master only (ROM cartridge)

287

Each paged ROM can contain up to 16K bytes of data. Some ROM
software doesn't occupy the full 16K and may fit into an 8K chip. When
the model B was designed, the largest available EPROMs at acceptably
low prices were the 27128s. As the prices for larger chips have fallen, the

Note: Some old chips have longer access times than 250ns. To allow
these chips to work reliably, the access speed can be slowed down by
links 18 and 19 as follows:

on board sockets have been changed to accept the larger capacity chips. Socket Slow access Fast access
IC100 Link 18 SOUTH i
When installing extra ROMs remember that ROM number 15 is the IC52, 88, 100 Li;lk 19 WEST E?Jl: 11 g EN ,SE‘§TH

highest priority ROM, whilst ROM 0 is the lowest priority.
Always use fast access chips if possible.

17.2.1 Installing ROMs in the model B
17.2.2 Installing ROMs in the B Plus

O
|
B2 oM
E S‘D D
T sis o8 ku ky
f Y}
a sn
LK18 -
O
LK22 LK33 o
LK?[&J[I LK32
LK18
IC81 IC52 IC88 1C100 IC101 ROM socket and link positions for mode B Pius

ROM socket and link positions for model B The B Plus has 5 ROM sockets available to the user, located in the top

left-hand corner of the board. These sockets can each accept either a 16K
or a 32K EPROM depending upon the setting of the associated links. If

32K EPROM s are used, two 'logical’ paged ROMs can be stored in each
physical chip.

The model B has four paged ROM sockets (IC52, IC88, IC100 & IC101)
on the main board, located in the lower right hand corner. The 16K
BASIC ROM is normally plugged into IC52 and the DFS ROM (if fitted)
is usually in IC88. All four sockets can be configured with hardware links
to accept 8K/16K ROMs (or EPRCMs). For all combinations described
here, the following links should be set:

LINK 20 NORTH

LINK 22 NORTH ,
Socket ROM ID | Link selections 16K Link selections 8K
1C52 12 S32 WEST 532 EAST
1C88 13
1C100 14 533 WEST S33 EAST
IC101 15

288

289

Sacket [ROM ID |Link
(West = 16K , East = 32K)
IC68 | 10/11 518
IC62 18/9 515
1C57 |6/7 59
1C44 |4/5 511
IC35 |[2/3 512

The MOS and BASIC are both contained in a 32K byte ROM. BASIC
occupies ROMs 15/14.

17.2.3 Installing ROMs in the Master 128
m|

ROM socket and link positiens for Master 126

Unlike the earlier machines, the Master comes equipped with a massive
1Megabit ROM. This provides 128K bytes of ROM. 16K is allocated to
the MOS at &C000-&FFFF. The remaining 112K is allocated as:

ROM ID | Contains
15 MOS extras, including the cassette filing system
14 VIEW - Acorn wordprocessor
13 Advanced Disc Filing System (ADFS)
12 BASIC language
11 EDIT - Acorn screen editor
10 Viewsheet - Acorn spreadsheet
9 Disc Filing System (DFES)

ROM number 8 can be plugged directly into the vacant 16K socket
(IC27).

290

Master computers are shipped with four internal banks of 16K sideways
RAM selected in ROM positions 4, 5, 6 and 7. These can be conveniently
loaded with ROM software from disc. Users who wish to plug in more
ROMSs on the main board have to sacrifice the use of at least two of
these sideways RAMs. ICs 41 and 37 can each accept a 32K physical
ROM which may contain two 'logical' ROMs numbers 4/5 and 6/7
respectively.

ROM ID | Link selecting RAM [Link selecting [ROM socket
6/7 LK19 WEST LKI9 EAST | I1C37
4/5 LK18 WEST LKI18 EAST | IC41

The remaining four ROM/RAM slots 0,1,2,3 address a cartridge
plugged into the socket on the keyboard. One cartridge contains ROMs
0,1 and the other contains 2,3. To achieve extra ROM capacity, two
27513 chips can be used in each cartridge. More details are available in
section 23.7 which describes the cartridge hardware.

17.2.4 Installing ROMs in the Master Compact

The Master Compact is supplied with a 128K system ROM. As in the
Master, 16K is allocated to the MOS from &C000 to &FFFF and the
remaining 112K is allocated as 7 x 16K paged ROMs numbers 9-15. Four
16K paged RAMs are located as paged ROMs numbers 4,5,6 and 7.

In addition to the system ROM, there are four sockets on the Compact's
main circuit board. Three of these are hard-wired to accept only 16K
EPROMSs. The fourth can accept either a 16K or a 32K EPROM.

Sacket [ROM ID| Type
IC38 0/1 |16K/32K
IC23 2 16K
IC17 3 16K
1C29 8 16K

Since the ROM select to the cartridge interface also selects ROMSs 0/1, it
is necessary to select the correct position of these ROMs using link PL11,
Setting this link SOUTH enables ROMs on the internal socket 1C38
whilst setting the link NORTH enables ROMs in the cartridge ROM
module. i

17.3 Language ROMs

The term language ROM is something of a misnomer given that
language ROMs need not contain languages. In the context of paged

291

ROM software, the language is the paged ROM that is in overall
control. Other paged ROMs may perform functions transiently but
control is then returned to the current language ROM. The language
ROM receives a large allocation of zero page workspace and is
allocated pages 4 through to 8 as private workspace. In addition to this
the language has control of the user RAM which may or may not be used
as additional workspace. BASIC, for example, uses a variable portion of
the user RAM (from LOMEM to HIMEM) for the storage of program
variables.

Languages are most typically implemented in language ROMs as would
be expected. BASIC, FORTH, LISP and BCPL are all language ROMs.
Other software implemented as language ROMs include word
processors and terminal emulators,

No paged ROM software should be executed unless a service call has
been performed first. The language entered after a hard reset will be the
language ROM identified by the ROM type byte in its header occupying
the highest priority socket. Following a soft reset the language active
when the reset occurred will be reinitialised. The service entry code of a
language ROM should recognise an unknown *command to allow entry
of the language via the command line interpreter.

17.3.1 Language initialisation

When the language is selected a language ROM will be entered via the
language entry point with an accumulator value of &01. The selected
language is entered with a JMP instruction and no return is expected.
The stack pointer should be reinitialised as the stack state is undefined
on entry.

The carry flag is clear if the language has been entered from a reset
(BREAK) and is set otherwise. The type of reset can be checked with
OSBYTE &FD.

The language ROM should also be able to respond to service calls which
may affect it (see section 17.4.1) e.g. be able to respond to the service call
which warns of a changing OSHWM due to font explosion.

17.3.2 Electron firm keys

On the Electron the function keys are implemented as a combination key
press requiring the use of the CAPS LK/FUNC key with the number
keys. In addition to these soft keys there are a number of non-
programmable firm keys which also produce text strings when pressed.

292

The other character keys (A to Z plus the comma, full stop and slash
keys) pressed in combination with the CAPS LK/FUNC key constitute
the firm keys.

A language ROM indicates that it has the facility to expand these keys
by bit 4 of the ROM type byte being set (see section 17.1.3).

When the operating system detects that a firm key has bEEI“i pressed it
calls the language via its entry point to request the expansion of the key.
The language should then yield the firm key string one character at a
time in response to further calls.

The two calls made through the language entry point are:

A=2 This call expects the next key in the firm key expansion to be
returned in Y.

A=3, Y=firm key code This call is an initialising call. The language
should return the length of the firm key string in Y.

The key values passed to the language with this call are:

&80 to &8% FUNC+0 to FUNC+9
&90 to &A9 FUNC+A to FUNC+Z

&AA FUNC+:
&AB FUNC+;
&AC FUNC+,
&AD FUNC+=
&AE FUNC+.
&AF FUNC+/

The operating system inserts these key values into the input buffer as
they are received.

OSBYTE &CC (204) may be used to read or write the OS copy of its firm
key pointer and OSBYTE &CD (205) may be used to read or write the
length of the current firm key string being expanded.

17.3.3 Memory allocated for language ROM use

Four pages of workspace are allocated for use by the c‘urrently selected
language and 144 bytes of zero page in addition to main memory. Zero
page workspace is required so that zero page addressing modes can be
used and the language workspace is important because of its fixed
position in the memory map in comparison to main memory whose
boundaries are variable.

293

OSHWM to HIMEM main memory (boundaries variable)
&400 to &7FF language warkspace
&00 to &8F language zero page workspace

These areas are reserved for the use for languages running on non-Tube
machines and on 6502 second processors.

17.3.4 Language ROM compatibility

The first question that a programmer should consider before
implementing software in a Language type ROM is whether it actually
needs to be a language ROM? Many utilities are only required
transiently and it is better to implement them as service type ROMs. A
routine in a service type ROM can then be used from the language
environiment.

The language should have a service entry point so that it may be
selected by a *command and be able to respond to changes in OSHWM.
It must be remembered however that a 6502 language ROM is copied
across to a 6502 second processor when the Tube is active. When
running on a second processor, service calls will not be received by the
language ROM. The service code should not use the language work
space (&400-&7FF or language zero page) because the service code is
executed in the i/o processorand has the equivalent status of the current
language’. The language code should not attempt to perform any
manipulation of hardware by direct poking as this would make it
machine dependent. The programmer may wish to implement hardware
dependent routines in the service section of the ROM. The language
code should communicate with the service code using unknown
OSBYTE calls etc. for this purpose.

17.4 Service ROMs

Service ROMs contain code which is entered via the service entry point.
Service ROM code will always be executed in the ROM itself i.c. always
in the i/0 processor ¢.f. language ROMs. The calls made by the
operating system to service ROMs are called paged ROM service calls
but will usually be referred to as just ‘service calls'.

The type of software which might be implemented in service type ROMs
are filing systems, user printer drivers, extension VDU commands and
languages; In fact just about anything. It should be noted that extreme

care should be taken to implement paged ROM service routines
correctly.

294

For example let us take a graphics extension ROM. This would be a
service ROM because it has to be initialised by using the unknown
*command service call {or possibly by the boot program call). However,
the actual extension to the graphics commands would be performed by
intercepting the VDU extension vector. This would be directed at the
ROM code using an extended vector (see section 17.4.3). It would be
foolish to call routines by the unknown *command mechanism which
then returned values to BASIC by poking into BASIC's single letter
integer variable storage space. This is because when a Tube is active the
graphics routines would corrupt the Tube routines in the language
workspace. It is also foolish not to take advantage of the elegant
expansion capabilities which are provided.

To understand how software can be incorporated into a paged ROM, be
interfaced correctly with the operating system and thus executed at the
appropriate time, an understanding of paged ROM service calls is
essential.

When a hard reset occurs the operating system makes a note of which
paged ROM sockets contain valid ROMs. Subsequently, as the machine
carries out its various tasks, service calls and language requests are
offered to these ROMs.

17.4.1 Paged ROM service calls

The mechanism by which a service call is performed is as follows. The
operating system pages in each paged ROM in turn starting with the
ROM in the highest priority socket (paging is performed by writing to a
value to a hardware latch, the hardware responds to the value written
to this location and performs the relevant switching of the chip select
signals). If the ROM has a service entry point then this code is executed.
Before entering the code the accumulator is loaded with a reason code.
On entry, the X register will contain the current ROM number (a ROM
is thus able to tell which socket it is in) and the Y register will be loaded
with any further relevant information. The paged ROM can return
control to the operating system following an RTS instruction. If the
ROM has responded and does not wish any further action to be taken
then the accumulator should be set to zero, otherwise all registers
should be unchanged.

Below is a list of the reason codes which may be presented to a paged
ROM when a service call is performed.

295

Reason code &00 No Operation

No operation, this service call should be ignored because a higher
priority ROM has already claimed it.

Reason code &01 Absolute Public Workspace Claim

This call is made during a reset. The operating system is interrogating
each ROM to determine how much workspace memory would be
required if that ROM were called. This workspace is available
temporarily while the ROM is active. Pages &EQ0 and above are
available as a fixed area on the BBC micro and the Electron. Each paged
RCM is entered with A=&01, X=ROM number and Y=top of fixed area.
For the highest priority ROM on a BBC micro the Y register will contain
&OE. The Y register value should be increased in accordance with the
requirements of the ROM. If the Y register setting is sufficient or
greater than that required then the service routine should return the Y
register unaltered.

Reason code &02 Relative Space Claim

This call is made by the operating system during a reset to determine
how much private RAM workspace is required by each ROM. The
position of this private area will start from the top of the absolute space
claimed by the ROMs and on the relative space claimed by higher
priority ROMs. This call is made with the Y register containing the
value of the first available page. This value should be stored in the
ROM workspace table at &DF0 to &DFF (for ROMs 0 to 15
respectively) and the Y register returned with its value increased by the
number of pages of private workspace required.

Reason code &03 Auto-boot call

This call is issued during a reset to allow each service ROM to initialise
itself. It enables the highest priority filing system to set up its vectors
automatically rather than require explicit selection with a *command.
To allow lower priority services to be selected, the service ROM should
examine the keyboard and initialise only if either no key is pressed or if
its own ROM specific key is being pressed (e.g. D+BREAK for Acorn
DFS). If the ROM initialises it should attempt to look for a boot file
(typically 'BOOT) to RUN, EXEC or LOAD if the Y register contains
zero. This call is made during a reset after the start-up messages have
been printed.

296

Reason code &04 Unrecognised *command

When a line of text is offered to the command line interpreter (CLI), the

operating system will pass on any unrecognised command to eqch of .the
paged ROMSs and then, if still unrecognised to the currently active filing
system. When an unrecognised command is offered to the paged ROMs
this service call is made.

Entry parameters:
A=&04
X=ROM number
Y contains an offset which if added to the contents of &F2 and
&F3 point to the beginning of the text with the asterisk. and
leading spaces stripped off and terminated with a carriage
return
On exit:
Registers restored
A=(if recognised

Filing systems should not intercept filing system commands (wl_mich will
be common to all filing systems) using this service call but may intercept
some filing system utilities (e.g. *DISC, *NET).

Reason code &05 Unknown interrupt

An interrupt which is not recognised by the operating system or which
has been masked out by software will result in this call being generated.
A service ROM that services devices which might cause interrupts
should interrogate such devices to determine if they have generated the
unrecognised interrupt. If the interrupt is then recognised and
processed, the accumulator should be returned with zero to prevent
other ROMs being offered the interrupt. The routine should terminate
with an RTS not an RTIL

Reason code &06 BRK has been executed

If a BRK instruction is encountered this call will be generated before
indirection occurs through the BRK vector (BRKVEC, &202). BRKs are
usually used to indicate that an error condition has occurred.

Entry parameters:
A=&06
X=ROM number
Y is undefined but should be preserved
&F0 contains the value of the stack pointer

297

&FD and &FE point to the error number which is not necessarily
in the current ROM (OSBYTE &BA vields this ROM number)
On exit:
All registers should be preserved

Reason code &07 Unrecognised OSBYTE call

When an OSBYTE call has been made and is not recognised by the
operating system, it is offered to the paged ROMs by this service call.
The contents of the A, X and Y registers at the time of the OSBYTE call
are stored in locations &EF, &F0 and &F1 respectively.

Reason code &08 Unrecognised OSWORD call

This service call is performed in response to the user issuing an
OSWORD call not catered for in the operating system. The contents of
the A, XandY registers at the time of the call are stored in locations
&EF, &F0 and &F1 respectively. Unrecognised OSWORD calls with
accumulator values greater than or equal to &EQ are offered to the user
vector (USERV, &200). An OWORD call with A=7 (equivalent to the
SOUND command in BASIC) which has been given an unrecognised
channel will also generate this service call.

Reason code &09 *HELP command interception

This service call is generated when the *HELP command is passed
through the CLL The remainder of the command line is pointed to by the
address stored in locations &F2 and &F3 plus an offset in Y. Each ROM
is required to respond to this call. If the remainder of the command line
is blank ,the ROM should print its name and version number followed
by a list of subheadings to which the ROM will respond.

e.g. Acorn DFS (version 0.90) outputs:

DFS 0.90
bES
UTILS

Indicating that this ROM responds to *HELP DFS and *HELP UTILS

If the rest of the command line is not blank, the service routine should
compare it against its subheadings and if a match occurs should output
the information under that subheading.

e.g. Acorn DFS responds to *HELP UTILS with:

DFS 0.9%0
BUILD <fsp>

298

DISC
DUMP <fsp>
TYPE <fsp>

If there is more than one item on a line then the ROM should deal with
these items individually. All registers should be preserved across the
service routine.

Reason code &0A Claim absolute workspace

This service call originates from a paged ROM which requires the use of
the absolute workspace. When a ROM is active and requires use of this
workspace it should issue an OSBYTE call &8F with X=&0A which will
generate this service call. The previous owner of the absolute
workspace is then able to save any valuable contents of this memory in
its own private data area in the relative workspace. The previous
owner should also update a flag within its private data area indicating
that it no longer owns the absolute workspace. The active filing system
is selected independently of the ownership of the absolute workspace.
Thus while a filing system ROM may have ownership of this workspace
the tape filing system may be selected (the tape FS does not require any
absolute workspace). Problems may arise when the active filing system
paged ROM is called upon but does not have ownership of the absolute
workspace. The active filing system should then issue this service call to
obtain the use of the absolute workspace.

Reason code &0B NMI released

This service call also originates from paged ROMs and should be
generated by using OSBYTE call &8F. This call should be issued when a
ROM no longer requires the NMI. This releases the zero page locations
&AOQ to &A7 and the space for the NMI routine in page &D00. On entry
the Y register contains the ROM number of the previous owner and this
should be compared to the ROM's own identity before reasserting
control of the NMI.

Reason code &0C NMI claim

This call should be generated by a paged ROM using OSBYTE &8F
when it wishes to take possession of the NMI. The service call should be
generated passing &FF in the Y register (i.e. OSBYTE A=&8F, X=&0C
and Y=&FF). The current owner should relinquish control by returning
its ROM number in the Y register in response to this call.

299

Reason code &0D ROM filing system initialise

This call is issued when the ROM filing system (RFS) has been activated
in response to a "ROM command and is now searching for a file. On
entry the Y register contains 15 minus the ROM number of the next
ROM to be scanned. If this ROM number is less than the current ROM's
ID this call should be ignored. Otherwise the active ROM number
should be stored in &F5 (in the form 15-ROM number) where the RFS
active ROM number is stored. The current ROM should indicate that
the service call has been claimed by returning zero in the accumulator
and should store a pointer to the data stored within the ROM in
locations &F6 and &F7 set aside for use by the RFS.

See chapter 17.5.7 for an example of an RFS ROM.

Reason code &0E ROM filing system get byte

This service call may be issued after a ROM containing RFS data has
been initialised with service call &0D. A ROM should respond only if it
is the active RFS ROM as indicated by the value in location &F5 (stored
in the form 15-ROM number). The fetched byte should be returned in the
Y register.

See chapter 17.5.7 for an example of an RFS ROM.

Reason code &O0F Vectors claimed

This service call should be generated by any paged ROM (using
OSBYTE &8F) which has been initialised and subsequently changes any
operating system vector. This call warns paged ROMs that a change
has occurred.

Reason code &10 Close any *SPOOL or*EXEC files

This call is also issued by filing systems during their initialisation to
allow the previously selected filing system to close any open spool or
exec files.

Reason code &11 Font implosion/explosion warning

In the Electron or BBC model B, when OSBYTE &14 is used to change
the RAM allocation for user defined characters, this service call is
issued. This call is issued to warn languages that the OSHWM has been
changed and thus the user RAM allocation has also changed. The font is
permanently exploded in the Master series computers.

300

Reason code &12 Initialise filing system

This call enables third party software to switch between one or more
filing systems without having to issue *commands. A program may
want to switch between two filing systems in order to transfer files. A
filing system ROM should respond to this call if the value in the Y
register corresponds to its ROM number. All filing systems should allow
files to be open while inactive and on receiving this call should restore
any such files.

Reason code &13 Character placed in R5423 buffer

This call is made when the Electron OS has placed a character in the
R5423 buffer. Expansion software handling R5423 hardware should
respond to this call. If not claimed the operating system purges the
RS5423 buffer.

This service call is not implemented on other Acorn BBC series
machines.

Reason code &14 Character placed in printer buffer

This call is made when the Electron OS has placed a character in the
printer buffer. Expansion software controlling printer hardware should
respond to this call.

This service call is not implemented on other Acorn BBC series
microcomputers.

Reason code &15 100 Hz poll

The Master series or Electron operating systems will provide a 100 Hz
polling call for the use of paged ROMs. A paged ROM requiring this call
should increment the polling semaphore using OSBYTE &16 (22) on
injtialisation and decrement it using OSBYTE &717 (23) when polling is
no longer required. The operating system will issue this service call
when the semaphore is non-zero. The semaphore itself may be read
using OSBYTE &B9 (185). This facility is implemented mainly so that
hardware devices may be supported as a background task without being -
interrupt driven. This would be suitable for hardware which does not
require urgent servicing. The Y register contains the semaphore value
which should be decremented by the service routine by the number of
times that the service ROM nmakes use of it.

This service call is not implemented on the BBC model B.

301

Reason code &16 A BEL request has been made

When the external sound flag (OSBYTE &DB/219) is set this call is
issued by the Electron OS in response to an ASCII BEL code being
written (VDU 7). This is to enable the external sound system to respond
appropriately.

This service call is only implemented on the Electron.

Reason code &17 SOUND buffer purged

This call is made when an external sound system is flagged on the
Electron and an attempt has been made to purge any of the SOUND
buffers.

This service call is only implemented on the Electron.

Reason code &18 Interactive *HELP request

This call is implemented on the Master series computers only where the
ANFS responds to this call by typing a text file from disc. Otherwise this
call is issued following a call with A=9 and appears to operate in the
same manner.

Reason code &21 Claim private workspace in Hazel

This call is available only on the Master series computers. This call
operates in the same way as service call &01 but memory is allocated in
the filing system shadow RAM from &C000-&DCFF. No claims should
be made for workspace outside this range. If further workspace is
required a response should be made following the service call &01 which
follows this call.

Reason code &22 Claim absolute workspace in Hazel

This call is available only on the Master series computers and operates
in the same way as service call &02 and is subject to the same additional
restraints as service call &21.

Reason code &23 Reports top of private workspace

This call is available only on the Master series computers. This call
reports the limit of private workspace claimed in the filing system
shadow RAM to allow filing systems to make use of the surplus memory
as temporary workspace if available.

302

Reason code &24 Absolute workspace in Hazel count

This call is only issued by the Master series computers. The value of Y
issued by the call should be decremented by the number of pages of
absolute workspace a filing system would like to claim.

Reason code &25 Return filing system information

This call is issued by the Master series computers in order to provide the
filing system handler with information to allow the use of temporary
filing systems. The 11 byte filing system information block as described in
section 16.2 should be written to at the address pointed to by (&F2),Y.

Reason code &26 *SHUT command issued

The Master series operating system issues this call following a *SHUT
command and filing systems should respond by selecting itself and
closing all files. The current filing system will be reselected by the
operating system.

Reason code &27 Hard Reset call

This call is issued following a power on reset or a control break and is
only available on the Master series computers.

Reason code &28 Unknown *CONFIG. command

Available on on the Master or Master Compact this call enables ROMs
to add options to the *CONFIGURE command. The remaining
command line is pointed to by (&F2),Y.

Reason code &29 Unknown *STATUS command

As for service &28 this call enables ROMSs to respond to the
corresponding *STATUS commands.
Reason code &2A Language about o be initialised

This call is issued by the Master series computers and is intended to
allow the activation of any language support ROMs.

303

Reason code &2C Compact Joystick call . . 17.4.2 Service ROM example

This call is used on the Master Compact to allow paged ROMs to The program below is a ROM based version of a printer buffer
respond to devices attatched to the user port. . . program. This program may be assembled and then loaded into
sideways RAM for testing or blown onto an EPROM. The example is
On entry: offered as a complete example of a service type ROM to pull together
Y contains offset from &200 pointing at a parameter block . . and illustrate some of the descriptions given above.
&200+Y+0 ADVAL least significant byte
&200+Y+1 X co-ordinate, LSB firet . . 10 REM Assembler program printer buffer ROM
k200 V12 20 DIM code% 5400
code &
8200+Y+3 , : 30 INSV=§22A:nI=g2a/2
8200+Y+4 Y co-ordinate, LSB first . . 40 RMV-§220:nReg2C/2
50 CNPV=&22E:nC=42E/2
8200+Y+5 2 soar b 60 ptrblk=&70
&200+Y48 spare byles 70 ip_ptr=ptrblk+2

80 op_ptr=ptrblk+4
90 old bfr=5880

100 begin=old bfr

110 end=0ld bfr+2

120 wrkbt=old bfr+4
130 size=old bfr+5
14D vec_cpy=old bfr+6
150 line=gF?2

160 OSASCI=&FFE3

170 OSBYTE=&FFF4

Reason code &FE Post initialisation Tube system call

The operating system makes this call during a reset after the OSHWM
has been set. The Tube service ROM responds to this by exploding the

user defined character RAM allocation.
180 FOR I=4 TO 7 STEP 3
190 P%=%8000:0%=code}

200 [
210 OPT 1

Reason code &FF Tube system main initialisation 220 .romstrt EQUB O \ null language entry point
230 EQUB O

This call is issued only if the Tube hardware has been detected. This call ggg E%EBSO . N co ent -~

: . . s e rie s . ervice servi entry poin

is made prior to message generation and filing system initialisation. 360 FQUB &82 \ ROM type byte, servics ROM
270 EQUB {copyr-romstrt) \ offset to copyright string
280 EQUB 0 N null byte

' 290 .title EQUB &A \ title string
The fact that these calls are shared by all the service ROMs can lead to §98 gggg ;lSUFE‘ER" * o1t Do
. T nu yte

widespread consequences if a service (.:all is misused by one of th? 320 EQUS "1.0Q" \ version string

ROMs. The programmer should consider the consequences of his ROM 330 EQUB &D \ carriage return

claiming calls (or not claiming calls) when present. 340 .copyr EQUB 0 \ terminator byte
350 EQUS "{C)1984 Mark Holmes" \ copyright message
360 EQUB 0 \ terminator byte

370 \ End of RCM header, start of code
380 .name EQUS "REFFUB" \ command name
320 \ Service handling code, A-reason code, X=ROM id & Y=data

400 .service CMP #4 \ is reason unknown command?
410 BEQ command N\ if so goto 'command®

304 305

420
420
440
450
4€0
470
480
490

500
510

520
530
540
550
580
570
580
550
600
610
620
630

650
860
670
680
€690
700
710
720
730
740
750
760

T70
780

790
80¢C
810
820
830
840
850
860
870
880
890
300
910
920
930
94Q
95G
9560

CHMP #5%

BEQ help
CMP #2

BEQ wkspclnm
CMP 43

BNE notboot
JMP autorun

.notkoct RTS

Pl S

is reason *HELP

if so goto 'help’

is reason private wrkspace
if so goto 'wkspclm®

is reason autcboot call

if NOT goto "notboot'

BEQ autorun, ocut of range
other reason, pass on

\ Unknown command, is it ¥*BUFFER ?
\ {command line address in 8F2,5F3 (line) + offset Y)

.command TYA:;PHA:TXA:PHA
LDX #6

LDA (line), Y
CMF name-1,X
BNE notme

INY
DEX
BNE

.loopl

loopl

BEQ parmch
PLA:TAX :PLA:TAY
LDA #4

RTE

.notme

P N

\ *HELF response (parameters as
.help TYA:PHA: TXA :PHA
LDX %@

LDA title,X

BNE overl

LDA #£20

JSR GSASCT

INX
CPX

.loopz

.overl

(copyr-title)
BNE loop2
PLA:TAX:PLA:TAY
LDA #9

RTS

PPl P G B S S

\ COportunity
\

.wkspclm TYR \
STA &DFO,X 5\
PHA \
LDA #4FD
LDX #0

LOY #&FF
JSR OSBYTE
CPX 40

BEQ softrst
LDA #8

STA size
CLC
FLA
ADC
TAY
LDX &F4
LDA #2
RTS

softrst

size

PPl G P

306

save registers

¥=length of name

E=pnext letter of command
compare with my name

not equal, gote 'notme!
for next letter of command
for next letter of name

if ¥<»0 round again

& letters matched, do ‘urp
rno match, restore registrs
restore reason code

pass on call

for call above)

save registers

use X as index counter
A=next letter from title &
if A<>0 jump next instrctn
replace 0 by space char.
write character

increment index counter
end of title ?

if not get another char.
restore registers

restore A

pass on *HELP call

to claim private workspace
. (Y=1st page no. free, call inc's Y by

no. pages claimed)

copy page no. to A
table for ROMs' workspace
save page no. on stack

OSBYTE call to read last
BREAK type

X=0 after soft reset

soft brk, dont reset size
B8 pages for printer buffr
location for buffer size
clear carry, for add
original Y on stack

A=h+7?size

Y=2A

}=ROMid

restore A (reason code)

pass on workspace call

97¢ \ *BUFFER command issued,

980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

1470

1480
1490
1500
1510
1520
1530
1540

.parmch

.ok_init

.default

.protmes

.loopb

.message

.rngerr
loep?

.errdata

\ Routine for

.deinit

.loop8

LDA
CME
BNE
LDA
JMF
INY
CMP
BEQ
SEC
SBC
CMP
BEQ
BMI
cMp
BPL
CLC
ASL
STA
LDA
JSR
TYA
TAX
Loy
ipa
JSR
TAX
INX
LDA
JSR
CcMP
BNE

PLA:

LDA
RTS

(line), Y
#&D
ok init
#$1
defaulit

#620
parmch

#530
$0
deinit
ragerr
#6
rngerr

A:ASL A:ASL A
size

#&87

QS3YTE

4&F8
#&FF
OSBYTE

message, X
OSASCI

#&D

loopb

TAX :PLA;TAY
%0

EQUB &A
EQUS "Press BREAX to
BQUB &D

LDX
INX
LDA
STA
CMP
BNE
JMF

#SFF

errdata, X
£100,X
#&FF
loop7?
£100

EQUE 0
EQUE 0

EQUS

"Tnvalid huffer

EQUE 0

EQUE

LDA
JSR
SET
LDY
STY
LDA
STA

&FF

#3
OSASCI

40

size
vec_cpy, ¥
INSV, ¥

307

reseat

PP A P P A S P P A i A

buffer size

get char, from cmnd line

car.ret.? end of line ?

if not, cont. line input

no parameters so set
default buffer size

increment index counter

was char. a space?

if so get next character

set carry for subrtact

A=A-ASC"{O"

was character zero

if so, switch off

char.<0, out of range

compare char. to 6

A>»=h, out of range

clear carry for ASL

A=A*§

store for buffer size

Use OSBYTE &87 to read
current screen MCODE

A=Y

X=a

Use OSBYTE &FF to write
MODE selected on reset
{i.e. MODE preserved}

I=&FF

increment index counter

A=next byte of message

print character

was it carriage return
if not get next character
restore registers

claim call, 0 reason code
return

message string

change buffer size"™

set index counter
increment index counter
A=character from string
copy to bottom of stack
was byte terminator

if not loop again

goto &100 (BRK)

BRK opcode

error number 0

size" \error message

\ message string end

\ terminator byte

P g e g e

deselecting buffer ROM routines

\ VDU3, just in case

disable interrupts
size=0

load old vector contents
store in vector

Py

1550 INY
1560 CPY
1570 BNE
1580 CLI
1530 JMP

1600 \ Initialise

1610 .autorun TYA:
1620 LDA
1630 EEQ
1640 LDA
1€50 JSR
1660 STY
1670 LDA
1680 JSR
1690 CPY
1700 BCC
1710 JMP
1720 .room JSR
1730 .no_init PLA:
1740 LDA
1750 RTS
1760 .init LDA
1770 LDX
1780 LDY
1790 J5R
1800 5TX
1810 5TY
1820 Loy
1830 LDA
1840 SEI
1850 STA
1860 INY
1870 LCA
1880 STA
1890 INY
1800 LDA
1910 STA
1920 INY
1930 LDA
1940 STA
1950 INY
1960 LDA
1970 3TA
198¢ INY
1990 LDA
2000 5TA
2010 INY
2020 LDA
2030 STA
2040 INY
2050 LDA
2060 STA
2070 INY
2080 LDA
2080 STa
2100 TAX
2110 LDY
2120 .loop3 LDA
2130 STA

\ increment index counter
#6 \ copied ¢ bytes vet
loop8 \ if noct loop again

\ enable interrupts
protmes \ print message + return

buffer routines automatically

PHA:TXA:PHA \ preserve registers
size \ A=buffer size in pages
nc_init \ B=C, don't initialise
#6084 \ HIMEM OSBYTE number
OSBYTE \ make call
end \ store page address
#£83 \ OSHWM OSBYTE number
OSBYTE \ make call
end \ is OSHWM > HIMEM
room \ if so0 continue
no_room \ noc room S0 cause error
init \ call initialise routine
TAX :PLA:TAY \ restore registers
#3 \ restore A

\ return
#&A8
#0
#&FF OSBYTE to read address of
OSEBYTE extended vector table
ptrblk set up zero page locations
ptrblk+1 for indirect indexed adr.
#3*nI offset into table (INSV)
#ins AND &FF address of new routine

disable interrupts
{ptrblk), Y copy address to vector
Y=¥+1
#ins DIV &100 high byte of address

(ptrblk), Y copy to extended vector
Y=Y+1

&F4 A=ROMid

(ptrblk), Y complete extended vector
Y=Y+1

#rem AND &FF REMV new routine address

(ptrblk}, ¥ 1o byte to extended vector
¥=Y+1
#rem DIV &£100 Hi byte of new routine

//////‘//‘/////////////////‘///

{(ptrblk), Y place in extended vector
Y=Y+1
&F4 A=ROMid
(ptrblk), Y complete REMV 3 byte vect.
¥=Y+1
#cnp AND &FF repeat, store address of
(ptrblk}, ¥ new CNFV routine in the
extended vector together
#cnp DIV £100 with ROM number.
(ptrblk), Y
&F4
(ptrblk), Y
\ X=ROMid
$0 N Y=0
INSV, Y \ A=old vector contents
vec cpy,Y \ copy to workspace
308

2140
2150
2160
2170
2180
2180
2200
2210
2220
2230
2240
2250
2260
2270
2280
229Q
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2449
2450
2469
2470
2480
2490
2500
2510
2520
2530

2540

2550
2560
2570
2580
2590
2600
2610

2620
2630

2640
2630
20860
2670
2680
2880

INY
CPY #¢
BNE loop3
LDA &DFQ,X
STA begin+l
CLC
ADC size
STA end+1:DEC end+l
LDY #&10
STY begin
LDY #&FF
5TY end
JSR rstptrs
LDA #nI*3
STA INSV
LDA #nR=*3
STA RMV
LDA #nC*3
STA CNPV
LDA #&FF
STA INSV+1
STA RMV+1l
STA CNPV+1
CLI
RTS
.no_room CLI
- LDA #&7F
STA &FEA4E
LDX #&FF
LDA nrmerr,X
STA &100,X
INX
CMP

loop9

#5FF
BNE locp9
JMP &£100
EQUB 0
EQUB O
EQUS
EQUB 0O
EQUB &FF

.ormerr

Y\ Purge buffer by sezting i/p

.rstptrs LDA begin
STA ip ptr
STA op_ptr
LDA begin+l
STA ip ptr+l
STA op_ptr+l
RTS

.wrnghbfl PLA:PLP:JMP

\ Naw insert char.
PEP :PHA
CPX #3
BNE wrngbfl
PLA:PLP:PHA
LDA ip ptr
PHA

.ins

309

"Wot encugh room fo

g i G G A S S T T g v i e

Pl o I il P e i

+

EAV A A e s

(vec_cpy)

PP Al g

Y=Y+1

copied € bytes yet ?

if not loop again

A=workspace addr. hi byte

store in zerc page

clear carry for add

add bkegin+size

store in zerc page, -1

lo byte of begin
{room for return vect's)

lo byte of end

store in zero page

reset ip+op ptrs

for the extended vector
system the vectors must
now point to &FF00 +
vector number*3

enable interrupts

return

clear interrupts

disable system VIA this
makes BREAK power on rst

set up index counter

fetch next byte of data

store at bottom of stack

increment index counter

reached terminator ?

if not loop again

execute BRK (not in ROM)

BRK instruction opcocde

error number 0

print buffer, Press BREAK"

string terminator

data end

o/p ptrs to buffer start

lo byte bufr start address
store input pointer

store output pointer

hi byte of buffer start
store input pointer

store output pointer
return

\ old INSYV routine

into buffer routine

save S and A on stack

is buffer id 3 2

if not pass to old routine
not passing on, tidy stack
A=lo byte of input pointer
store on stack

2700 LDA ip ptr+l % A=hi byte of input pointer . . 3250 LDA ip ptr N o/w free space reguest
2719 PHA \ store on stack 3260 PHA
2720 LDY #0 \ ¥=0 so ip ptr incremented 3270 IDA ip ptr+l \ store ip_ptr on stack
2730 JSR inc ptr % by the inc ptr routine 3280 FHA
2740 JSR compare \ compare the two pointers . . 3290 LDX #0 % X=0 for use as counter
2750 BEQ insfail \ if ptrs equal, buffer Full 3300 STX wrxbt % wrkbt=0 for hi counter
2760 PLA:PIIJA:PLA \ don't need ip ptr copy now 3310 LDY 40 \ ¥Y=0, so ip ptr incr'd
2770 STA (ip_ptr),¥ \ A off stack, insrt in bufr 3320 .loopl JSR inc ptr \ increment ip_ptr
2780 CLC \ insertion success, C=0 3330 JSR compare \ does it equal op ptr
2790 . ., TS \ finished . . 3340 BEQ finshdl Y if so count=fres space
2800 .insfail PLA \ buffer was full so must 3350 INX N\ X=X+1
2810 STA ip ptr+l \ restore ip ptr which was 33€0 BNE nc_inc \ if X=0 don't inc wrkbt
2820 PLA \ stored on the stack 3370 INC wrkbt \ hi byte of count inc'd
2830 STA ip_ptr . . 3380 .no_irc JMP loopl Y\ locp round again
2840 PLA 3390 .finshdl PLA \ restore ip_ptr off stack
2850 SEC % insertion fails so C=1 34¢0 STA ip ptr+l
2860 RTS \ finished 3410 PLA
. . 3420 STA ip ptr

2870 ,wrngbf2 PLP:JMP (vec_cpy+2} \ old REMV routine 3430 LDY wrkbt % ¥=hi byte of free space

3440 PLP \ restore status register
2880 \ New remove char. from buffer routine 3450 RTS \ finished

. 3460 .len LOA op_ptr \ store op_ptr on stack

2890 .rem PHP \ save status register 3470 PEA
2900 CPX #3 \ is buffer id 3 ? 3480 LDA op_ptr+l
2910 BNE wrngbf2 % if not use 0S routine 3490 PHA
2920 PLP \ restore status register 3500 LDX #0 Y X=0 for use as counter
2930 BVS examine % V=1, examine not remove . . 3510 S5TX wrkbt \ wrkbt=0 hi byte of count
2940 .remsr JSR compare \ compare i/p and o/p ptrs 3520 LDY #2 \ ¥=2 s0 op ptr incremented
2950 BEQ empty \ if the same, buffer empty 3530 .loop?2 JSR compare \ are ptrs equal ?
2960 LDY %2 \ ¥=2 so that increment ptr 3549 BEQ finshd2 \ if so buffer empty
2970 JSR inc_ptr \ routine inc's op_ptr . . 3550 JSR inc ptr \ increment op_ptr
298D LDhY #0 \ ¥=0, for next instructiocn 3560 INX - % ilncrement count
2890 LDA (op_ptr),Y \ fetch character from bufr 3570 BNE no inc2 \ if X=0 then increment hi
3000 TAY \ return it in Y 3580 i INC wrkbt \ kyte of count
3C10 CLC % buffer not empty, C=0 . . 3590 .no inc2 JMP loop2 \ leop round again
3020 RTS \ return 3600 .finshd2 PLA \ restore op_ptr off stack
3030 .empty SEC \ buffer empty, C=1 3610 STA op_ptr+l
3040 RIS \ return 3629 PLA
3050 .examine LDA op_ptr % erxamine only, so stores a . 3630 STA op_ptr
3060 PHA \ copy of the o/p pointer 3640 IDY wrkbt \ ¥=hi byte of length
3070 LDA op_ptr+l % on the stack to restore 3650 FLP \ restore status register
3080 PHA \ ptr after fetch 3660 RTS % finished
3990 JSR remsr \ fetch byte from buffer 3670 .purge JSR rstptrs \ reset i/p & of/p pointers
3100 FLA \ restore ptr from stack . . 3680 PLP \ restore status register
31190 STA op ptr+l \ (if buffer was empty 3690 RTS \ return
3120 PLA N C=1 from fetch call)
3130 STA op_ptr 3700 \ Increment pointer routine. Y=0 op ptr, ¥Y=2 ip ptr
3140 TYA \ examine requires ch. in A . . R
3130 RTS \ finished 3710 .irc_ptr CLC \ clear carry for add

3720 LDA ip ptr,¥
3160 .wrngbf{3 PLP:JMP (vec _cpy+4) \ old CNPV routine 3730 ADC #1

) . . 3740 STA ip_prr. Y J

3170 \ Few count/purge buffer routine 3750 LDA ip ptr+l,Y

3780 ADC #0
3180 .cnop PHP \ save status reg. on stack 3770 STA ip_ptr+l,Y \ pointer=pointer+l
3190 CPX ¥3 \ i5 buffer id 3 ? . 3780 CMP end+l \ hi byte reached buffr end?
3200 BNE wrngbf3 v if not pass to old subr 3790 BNE home \ if not finish
3210 PLP \ restore status register 3800 LDA ip ptr,Y
3220 FHP \ save again 3810 CME end %\ lo byte reached end ?
3230 BVS purge N 1f v=1, purge reguired 3820 BNE home \ if not finish
3240 BCC len Y if =0, amount in buffer . . 3830 LDA begin \ reached end of buffer

310 311

3840 STA ip ptr,Y \ so reset pointer to
3850 LDA begin+l \ start address of buffer
3860 STA ip ptr+l,Y

3870 . home RTS \ return

3880 \ Compare pointers. if egual 2=1 don't care otherwise

3890 .compare LDA ip ptr+l

3%00 CMP op ptr+l \ compare ptr high bytes
3910 BNE return % if not egual return

3920 LDA ip ptr

393Q CMP op_ptr % compare pointer low bytes
3340 .return RTS \ return
3950]

39€0 NEXT

39700SCLI"*S.BRM "+STR$~coded+" "+3TRS~0%

This program may be run to assemble a ROM image which can be
loaded into sideways RAM or blown into an EPROM. When this ROM
is present in a machine an enlarged printer buffer of 2k is automatically
initialised following a reset. Typing *BUFFERn' with n from 1 to 5
selects a buffer size of n*2K ,next time a reset occurs. *BUFFER('
deselects the enlarged buffer and re-initialises the normal OS routines.
*BUFFER' (no parameters) reselects the default buffer size (2K).

17.4.3 Extended Vectors

In the example above the operating system buffer maintenance vectors
had to be set to point to routines held within the service ROM. The
operating system supports a system of extended vectors to enable each
of the OS vectors to point to routines held in paged ROMs.

Each OS vector is identified by a number which may be calculated by
subtracting &200 (the vector space base address) from the vector
address and dividing by two (each vector is two bytes).

The extended vectors themselves are three byte values stored in the
extended vector space (the address of which is returned by OSBYTE
&AB8). Each extended vector consists of a 2 byte address followed by a
byte containing the ROM number.

An extended vector routine is reserved for the use of each of the
operating system vectors and uses an assigned extended vector. These
routines are located in the operating system starting at &FF00, To
calculate the calling address of the reserved extended vector call the
vector number multiplied by three should be added to &FFQ0. The
extended vector routines use The address of the extended vector used

312

by this routine is given by multiplying the vector number by three and
adding the vector space address.

The procedure for a paged ROM to intercept a vector is:

(a) Determine buffer number n

(b) Establish extended vector space, V using OSBYTE &AS8
() Store new routine's address in (V+3*n)

(d) Store ROM number following address ‘

(e) Make copy of OS vectors contents if required for return
() Store address (&FF00+3*n) in OS vector (&200+2*n)

It is usually a good idea to disable interrupts during this change-over so
that an interrupt routine is not able to use the vector during the change.

17.5 Serially accessed ROMs & the *ROM filing
system

The BBC microcomputer and the Electron have been designed to use
software contained in ROM cartridge packs. The ROM packs which
plug into paged ROM sockets may contain up to about 16K of data
and/or programs. On the BBC microcomputer the facility also extends
to phrase ROMs (PHROMS) associated with the speech upgrad.e. '
When the programs or data stored in these ROM packs are required it
may be loaded into user RAM in the same way as programs or data
may be loaded off tape or disc.

These ROM packs are intended to provide a reliable and rapidly
accessible medium for the distribution of programs. This product is very
useful for owners of tape based machines who wquld other'wise have to
rely upon the much slower and inherently less reliable medium.

The advantage to the software producer is that there is no r_equirepnent
for a special version of the program to be written. A system is required
for the formatting of the program for inclusion in a ROM pack but there
is no need to modifiy the program itself.

The *ROM filing system is a subset of the tape filing system. Paged
ROMs are interrogated to determine whether they contain information
intended for this filing system and are then serially accessed by the ‘
*ROM filing system.

313

Paged ROMs containing information intended for access via the *ROM
filing system are no different from other paged ROMs. They are service
type ROMs and as such have service entry points. They are
distinguishable as *ROM filing system ROMs only by their response to
paged ROM service calls issued by the *ROM filing system code. When
the user selects the *ROM filing system any further requests for files
result in the *ROM filing system section of the operating system
scanning the paged ROMs for these files. A paged ROM containing files
intended for the *ROM filing system should respond to one of two
paged ROM service calls.

The two service calls and the responses expected from ROMs
containing *ROM data are described in detail below. One call expects
the ROM to prepare to yield any data it has and the second call is used
to extract this data, one byte at a time. The data should be formatted in
a similar way to the data stored on tape but is modified in such a way as
to minimise the storage overheads involved in using such a format. The
reason for adopting this format is to minimise the requirements for
extra code in the operating system while utilising the exhaustive error
checking already in existence. Accompanying these advantages there is
a concurrent reduction in response time performance but this is of little
importance to the users of tape based machines who are still able to
appreciate a substantial improvement on their system's existing
performance.

17.5.1 Converting files to *ROM format

In order to produce a ROM containing files which will be recognised by
the *ROM filing system it is necessary to fulfil two criteria. The first
requirement is for some header code which will recognise the *ROM
filing system paged ROM service calls and respond accordingly. The
second requirement is that the data which makes up the files is
formatted in the manner in which the *ROM filing system expects to
find it.

17.5.2 The header code

As has been stated above a paged ROM which is to be recognised by the
*ROM filing system is a perfectly standard paged ROM which responds
to the appropriate service calls. As a result of this requirement the first
part of each *ROM filing system ROM consists of a standard format
paged ROM header followed by a small amount of code which responds
to the necessary service calls. By convention *ROM paged ROMs do

314

not respond to the *HELP service call since the space occupied by the
necessary code would leave less space for programs and data.

The two paged ROM service calls which should elicit a response from
*ROM paged ROMs are described in the next two sections.

17.5.3 Paged ROM service call with A=&D

This call is the *ROM filing system initialise call. When the filing system
is active and wishes to scan the next ROM this call is issued.

The initialise service call is made with the ROM number of the next
ROM to be scanned in the Y register. Having received this service call a
filing system ROM should only respond if its own ROM id (stored in
location &F4) is greater than or equal to the ROM number passed in the
Y register.

Having decided to claim this service call the ROM should place its own
ROM number in location &F5 which marks it as the currently active
*ROM filing system ROM. It should then write the address of the start
of its data in locations &F6 and &F7. This provides a zero page pointer
which is used by the filing system code to extract bytes of data serially
from the ROM.

Having performed these two operations the service routine should
return with the accumulator containing zero to indicate that the call has
been claimed. In the case of the paged ROM id being less than the ROM
number in the Y register the service routine should exit with &D in the
accumulator and the operating system will then offer the call to the next
ROM.

The actual mode in which the *ROM filing system ROM numbers are
represented differs from the way in which the paged ROM id's are
usually represented (i.e. as stored in &F4, a number 0 to 15). The filing
system ROM numbers are represented by a value which is 15 minus the
physical paged ROM number. One way of converting numbers from one
form to another is given below.

EOR #&FF
AND #&F

The number to converted is passed in the accumulator. This code
performs the necessary conversion and returns the result in the
accumulator. These instructions will always convert a number into the
other representation.

315

17.5.4 Paged ROM service call with A=&E

Having obtained a response from a paged ROM to service call &D the
*ROM filing system will use this service call to read bytes from the data
contained in the ROM.

There is a difference in how the service routine can be implemented on
the BBC Microcomputer OS 1.00 and later OS versions (including the
Electron). The actual response required from the service call is
essentially the same however.

When called by OS 1.00 a paged ROM should only respond to this call if
its own ROM id is the same as the current *ROM filing system ROM
number. A comparison of the contents of memory location &F4 (current
paged ROM) should be made with the inverted contents of &F5 (current
*ROM). If these are not the same the call should be returned unclaimed.

The service routine for OS 1.00 should return the byte of data pointed to
by the pointer in &F6 and &F7, in the Y register (e.g. LDA (&F6) , Y:TAY
) and increment this pointer so that it is ready for the next call.

Later operating system versions contain a routine (OSRDRM) which
given the paged ROM id of the current *ROM filing system ROM in the
Y register will read a byte from this paged ROM using the pointer at
&F6+&F7. Thus this paged ROM service call may be serviced by the
highest priority *ROM filing system ROM and the operating system
does not have to scan all the ROMs before getting a response. This
leads to a significant improvement in performance of the *ROM filing
system.

-

The service routines are able to determine which operating system has
called them by the value of the Y register passed with this service call.
On operating systems supporting the OSRDRM call the Y register
contains a negative value, while other versions of the operating system
make this call with a positive value in the Y register.

The example given at the end of this section shows how the service
routine at the head of a *ROM filing system ROM detects the operating
system type and responds appropriately. This example will function on
both types of operating system but will take advantage of OSRDRM
routine if available. *ROM filing system ROMs designed for use on the
earlier operating systems will still work with later versions.

316

17.5.6 *ROM data format

The format in which data should be stored in *ROM filing system
ROMs is very similar to the tape data format. The data is divided into
blocks which may be up to 255 bytes long. Each block of data is preceded
by a header which contains information about the block. Both the block
of data itself and the header are followed by a 16 bit cydlic redundancy
check (CRC) value. The filing system calculates its own values for these
CRCs during the loading process and compares them. If the filing
system's value differs from the stored value then the filing system flags
an error and rejects the data. (A routine for calculating CRCs is included
in the example at the end of this section.)

The *ROM filing system data format is as follows:

[offset | descrption | fongi]
0 &2A, a synchronisation byte 1
1 file name {1-10 chars.) n
1+n &00, a file name terminater 1
24N load address (lo byte first) 4 - .
6+n execution address {lo byte first) 4 ! :nemng
104n block number (lo byte first) 2 0 AUN only
1240 block lsngth {m, in bytes) 2 1 not used
140 | block flag 1 2 | notused
1540 address of next file 4 3] notused
37 | header GRC (110 16+n inclusive) | 2 4 | ot used
5 not used
19n | data m ® | nodata
19+n+m | data block CRC 2 7_| lest block
prev. bik+1| 823 (#)
end &2b, end of ROM marker 1 p

For the *ROM filing system the headers for all but the first and last
blocks may be replaced by a single byte header of value &43 ('#) with no

CRC. This is implemented to reduce the memory overheads inherent
with the tape style data format.

317

By convention the first file in a *ROM filing system ROM should be a

270 EQUS "Serial Rom" \ ROM title string
e o . . - 280 EQUE 0
title file. This is a f_1le of. zero length which serves to identify the ROM. 590 BQUS "ow \ ROM version string
The name of this file will appear on catalogue listings of the ROM. The 300 .copyr EQUE 0
file name of this title file should consist of a name and a version number g%g EQUS "(C) 1982 Acorn (iomputers" \ copyright$
: ™ e % o+ EQUB 0 end of paged ROM header

preceded and followed by an asterisk e.g.*Mon00*" or *GAMESO05"". 330 .gervice CMP $&D \ service routine

240 BEQ initsp \ initialise call?

350 CMP #4F

360 BEQ rdbyte \ read byte call?

370 RTS \ not my call

17.5.7 An example of a *ROM filing system ROM

380 N\ Routine for paged ROM service call &D

The program below is written in BASIC 2 to assemble 2a ROM image 338 -initsp FHA \ save accumulator
: [} . r) . *
which can be blown' into an EPROM and placed in a BBC e 0 gﬁf; RoMag Q ég;gi . ﬁoiiihnggﬁei q
microcomputer paged ROM socket or into a ROM cartridge slot on the 420 BCC exit \ if *ROM > me, not my call
Electron Plus 1 expansion. 430 LCA #data AND 255 \ low byte of data address
440 STA ROMptr % store in pointer locaticn
. . . : 450 LDA #data DIV &100 \ high byte of data address
Included in the program below is a roum}e for calcglatmg C.RC values 450 STA ROMptr+l \ store in pointer location
(FNdo_crc). The actual CRC values required for this ROM image are 470 LDA ROMid \ get my paged ROM number
included in the comments so that the actual values may be inserted ig 8 g 25 iﬂ"géﬁ t inﬁe rt it e
. . . - 3er make me current R
dlrectly if someone wanted to reduce the typing load when trying out 500 .claim LA \ restore accumulator/stack
this example. 510 LDA 40 \ service call claimed
520 RTS \ finished
530 .exit PLA \ call not claimed restore
10 REM ***hkhhkhadkkkuk kKX ARA Xk hhhk kAR XX R KX KK 540 RTS N accumulateor and return
20 REM * *
30 REM X *ROM filing system ROM example * 550 \ Routine for paged ROM service call &E
40 REM *) *
SO REM *A*AkkdhxhkhxkhhkhAhhkk kxR ARk kR kR k Kk 560 .rdbyte PHA \ save accumulator
570 TYA \ copy Y to A
§0 REM Assemble CRC calculating routine 580 BMI o0s5120 \ if Y -ve 0S5 has QOSRDRM

70 DIM MC% &100:PROCassm 590 \ this part for 0S5 with no OSRDRM

80 REM Set up constants required for ROM assembly 600 JSR invsno \ invert *ROM number

610 CMP ROMid Y is it my paged ROM no.
90 serROM=&F5 620 BNE exit \ if not do not claim call .

100 RCMid=&F4 630 LDY #0 N\ ¥Y=0

110 ROMptr=&F6 640 LDA (ROMptr},Y \ load A with byte

120 OSRDRM=&FFBY 650 TAY \ copy A to Y

130 wversion=0 €60 .claiml INC ROMptr \ increment ptr low byte
670 BNE claim N no overflow

140 REM Reserve space for ROM image and prepare to assembie 680 INC ROMptr+l \ increment ptr high byte
690 JMP claim \ claim call and return

150 DIM code% &4000
160 FORI=4 TO 7 STEE3
170 P%=£B8000:0%=code}

700 \ this part for 0S5 with OSRDRM

180 [710 .o0s120 JSR invsno \ A=current *ROM number A
190 OPT I 720 \ not necessarily me

200 .ROMstart EQUB 0 % null language entry 730 TAY \ copy A to ¥

210 EQUB 0 740 JSR OSRDRM N OS will select ROM

220 EQUB 0 750 TAY \ byte returned in A

230 JMP service \ service entry point 760 JMP claiml \ incremnt ptr & claim call
24Q EQUB &82 \ ROM type, service ROM

250 EQUB copyr-ROMstart \ offset to copyright$ 770 \ Subroutine for inverting *ROM numbers

260 EQUB version \ binary version number

318 319

780 .invsno LDA serROM \ A=*RCM number . . 1310 |
730 .invert EOR #&FF \ invert bits 1320 OPT I
800 AND #&F \ mask out unwanted bits 1330 .crc LDa #0
B10 RTS \ finished 1340 STA Hf crc
. 1350 STA Lo crc
820 \ End of header cocde/beginnirg of data 1360 TAaY
. 1370 .labell LDA Hi crec
830 .data EQUB &2R \ gynchronisation byte 1380 EOR (start addr),?¥
840 .hdstrt EQUS "*EXAMBLE*" \ *ROM title . . 1390 STA Hi_crc '—
850 EQUB 0 \ name terminator 1400 LDX 43
860 EQUD 0 \ lcad address=0 1410 .label2 LDA Hi cre
870 EQUD Q \ execution address=C 1420 ROL A
£80 EQUW D \ block number=0 1430 BCC label3l
890 EQUW O \ block length=0 . . 1440 LDA Hi cre
900 EQUB &C0O \ block flag 1450 EOR #8
210 EQUD eof \ pointer to next file 1460 STA Hi crc
320 .hdcrc EQUW FNdo_crc (hdstrt,hdere) CRC (&246F) 1470 LDA Lo cre
930 .eof . . 1480 EOR #510
) . j 1490 5Ta Lo crc
940 \ No data block for this file 1500 .label3 ROL Lo orc
. 1510 ROL Hi_ crc
950 EQUB &2A % synchronisation byte . . 1520 EX —
960 ,filel EQUS "TEXT" \ file title 1530 BNE label?
970 EQUEB © 1540 INY
98B0 EQUD O N\ null load address 1550 CBY len
950 EQUD 0 \ null execution address . . 1560 ENE labell
1000 EQUW 0 \ first block 1570 RTS
1010 EQUW dat2-datl \ length of data 1580 }
1020 EQUE &80 \ first & last block 1590 NEXT
1030 EQUD eofl %\ pointer to end of file . . 1600 CALL crc:ENDPROC
1040 .hdcrcl EQUW FNdc crc(filel,hdercl) \ CRC (&E893)
1050 .datl EQUS "REM This is a very short text file."
1060 EQUB &D \ The file contents ! . . . B .
1070 .dat2 EQUW ENdo_cre (datl,dat2) \ Block CRC (£655D) Z\.fhlen the resultant ROM is installed in the machine the following
1080 .eofl . . lalogue may ensue.
1080 EQUR &2B % end of ROM marker
1100 .eocr >*ROM
1110 1] >*CAT
1120 NEXT . . *EXAMPLE *
1130 PRINT" =5.R0OM ";~code%;" ";~0% TEXT
1140 END >*EXEC TEXT
>REM This is a very short text file,
1150 REM Define function which calculates CRC .
1160 REM Requires start and end of block upto 255 bytes
1170 DEF FNdo_erc {start,end) 17.6 Paged ROM associated routines
1180 ?582=(start-&8000+code%)} AND &FF . . Th s] dnh
1190 ?&83~(start-&8000+code%) DIV £100 e calls listed here have miscell i i i
1200 Sehioondontart ROMa. ellaneous functions in relation to these
1210 CALL crc
1220 =(!&80) AND &FFFF .
1230 REM Define procedure which assembles CRC routine . 17.6.1 OSRDRM, read byte from paged ROM ’
1240 DEF PROCassm routine
1250 start addr=s82 . .
1260 Lo_crc=&81 Call address &FFB9
1270 Hi_ crc=&80 No indi .
1280 len=£84 o indirection address
1290 FORI=0 TO 3 STEP3
1300 P%=MC%
320 321

This routine is implemented on the BBC microcomputer and the
Electron but is not available in the Tube operating system.

This call returns a byte read from a paged ROM.

Entry parameters:
ROM number stored in Y.
Address stored in &F6 and &F7.

On exit:
A contains the value of the byte read.

17.6.2 Enter language ROM OSBYTE call

Call address &FFF4
Indirected through &20A
A=&BE (142)

Entry parameter:
X determines which paged ROM is entered

The selected language will be copied across to a second processor if one
is present. The action of this call is to printout the language name and
enter the selected language ROM at &8000 (or the language’s
relocation address if relocated across the Tube) with A=1. Locations
&FD and &FE in zero page are set to point to the copyright message in
the ROM.

There is no exit from this call.

17.6.3 Issue paged ROM service call OSBYTE call

Call address &FFF4
Indirected through &20A
A=&8F (143)

Issue paged ROM service call
See Paged ROMs section 17.5.1.

Entry parameters:
X=reason code
Y=parameter passed with service call

On exit:
Y may contain return argument (if appropriate)

322

X=0 if a paged ROM claimed the service call

A is preserved
C is undefined

17.6.4 Read address of ROM pointer table
OSBYTE calls

Call address &FFF4

Indirected through &20A

A=&AS (168) - low byte of address
A=&A9 (169) - high byte of address

When used across the Tube the address returned refers to thei/o
processor's memory.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location are
returned in Y.

This table of extended vectors consists of 3 byte vectors in the form
Location (2 bytes), ROM no. (1 byte). See Paged ROM section 17.4.3 for
a complete description of extended vectors.

On exit:
X=low byte (if called with A=&AS)
Y=high byte (if called with A=&AS8)

A is preserved
C is undefined

17.6.5 Read address of ROM info table OSBYTE
calls

Call address &FFF4

Indirected through &20A

A=&AA (170) - low byte of address
A=&AB (171) - high byte of address

This call is implemented on the BBC microcomputer and the Electron.
When used across the Tube the address returned refers to the i/o
Processor’'s memoty.

<NEW VALUE>={(<OLD VALUE> AND Y} EOR X

323

The old value is returned in X. the contents of the next location are
returnedin Y.

This call returns the origin of a 16 byte table, containing one byte per
paged ROM. This byte contains the ROM type byte contained in offset
&06 of the ROM or contains 0 if a valid ROM is not present.

On exit:
X=low byte (if called with A=&AA)
Y=high byte (if called with A=8&AA)

A is preserved
C is undefined

17.6.6 Read BASIC ROM number OSBYTE call

Call address &FFF4
Indirected through &20A
A=&DB (187)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old ROM number is returned in X.

Basic is recognised by the fact that it is a language ROM which does not
possess a service entry. This ROM is then selected by the *BASIC
command. If no BASIC ROM is present then this location contains &FF.

17.6.7 Read current language ROM number
OSBYTE call

Call address &FFF4
Indirection address &20A
A=&FC (252)

<NEW VALUE>={<OLD VALUE> AND Y) EQR X
The ocld ROM number is returned in X.

This location is set after use of OSBYTE &8E /*FX 126. This ROM is
entered following a soft BREAK or a BRK {error).

324

l Ni.

17.6.8 100Hz paged ROM polling system

On the Electron and Master series computers a mechanism has been
implemented to provide ROMs with a paged ROM service call at
centisecond intervals. This polling call with A=&15 is described in
section 17.5.1. The following calls are used to manipulate the polling
semaphore.

17.6.8.1 Increment polling semaphore OSBYTE
call

Call address &FFF4
Indirection address &20A
A=&16 24)

This call is only implemented on the Electron and Master series
computers.

This call increments the semaphore which when non-zero makes the
operating system issue a paged ROM service call with A=&15 at centi-
second intervals.

On exit:
A and X are preserved
Y and C are undefined

17.6.8.2 Decrement polling semaphore OSBYTE
call

Call address &FFF4
Indirection address &20A
A=&17 (25)

This call is only implemented on the Electron and Master series
computers.

This call decrements the semaphore which when non-zero makes the
operating system issue a paged ROM service call with A=&15 at centi-
second intervals. ‘

On exit:
A and X are preserved
Y and C are undefined

325

17.6.8.3 Read/write polling semaphore OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&B9 (185)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old semaphore value is returned in X.

This location contains the semaphore. This semaphore should only be
read using this call.

17.6.9 Check for 6502 code OSBYTE

Call address &FFF4
Indirected through &20A
A=&A4 (164)

On entry:
X and Y contain the address of the code to be checked.

This call first checks that the code is in a paged ROM format by looking
for the copyright string at offset &07. It then checks the processor type
byte at offset &06. If bit 7 is clear a BRK is generated with the error
string "This is not a language'. If the processor type bits (bits 0-3)
indicate that the ROM is not 6502 code or 6502 BASIC then a BRK is
executed with the error message 'I cannot run this code'.

326

18 Second processors and the
Tube™

The BBC Acorn range of machines are designed to interface to a second
processor via a hardware device/software protocol called the Tube. A
number of different microprocessors may be used as second processors
stch as the 6502, the 780, the NS 16032 and the Acorn RISC Machine.
The Tube provides an interface between two microcomputers allowing
data to be exchanged at a clocked rate of 2MHz.

Each second processor is a very basic microcomputer consisting of a
microprocessor, some RAM, an operating system ROM and a Tube
ULA. All its input and output (i/0) eminates from a host processor such
as the BBC microcomputer. When a second processor is powered up it
immediately starts looking at the registers in its Tube ULA; it listens for
instructions from its host or i/o processor. The second processor may be
called a parasite processor because it is totally reliant onits i/o
processor for all input or output.

By using a different microprocessor as the second processor it is possible
to considerably increase the flexibility of the microcomputer system. A
system comprising of a BBC microcomputer and a Z80 second processor
is able run a vast range of CP/M software in addition to the software
written to run on the BBC micro's own 6502. The Master 512 provides
an 80186 second processor and emulates the IBM PC.

18.1 Tube system 32 bit addressing

The relevance of the 32 bit addressing scheme used by filing systems and
the ‘machine high order address’ returned by OSBYTE &82 become
apparent in the context of the Tube. The 32 bit address defined by Acorn
is designed to provide a 4 Gigabyte logical address space which includes
the memory of both the i/o processor (the host BBC microcomputer) and
the second processor.

Addresses in the region &FFFF0000 to &FFFFFFFF (the top 64Kb of the
4 Gb) refer to the i/0 processor memory map leaving the rest of the
logical address space for second processor memory. When filing systems
fail to detect the presence of a second processer then only the least
significant two bytes of the address are used. These two bytes are used

to refer to the 64K of addressable memory in the Acorn BBC
microcomputer series machine.

327

18.2 OS calls made from second processors

The 6502 based second processors provide almost identical facilities for
executing operating system calls to those present on normal BBC
microcomputers. Clearly this is important so as to allow programs
which run on unexpanded machines to run on second processors.

Non-6502 based second processors clearly have no requirement to be
identical to the host environment and cleatly this would be difficult to
achieve since the register names and functions are different on different
microprocessors. However Acorn have made every attempt to provide
the same operating system facilites available on different second
processors. These equivalent calls have been designed to make them as
similar as possible. Thus on the Z80 second processor the OSBYTE and
OSWORD call addresses remain &FFF4 and &FFF1 respectively with
the accumulator value selecting the routine but the H and L registers of
the Z80 are used in place of the X and Y registers of the 6502.

Most second processors run a proprietary operating system of their
own which provide calls which provide the usual i/o facilities.

18.3 The Tube ULA

The Tube ULA is a custom chip designed by Acorn to allow extremely
rapid communication between the second processor and itsi/o
processor. To each of the two processors the Tube resembles a
conventional peripheral device which occupies 8 bytes of memory in the
i/o space. There are four, 8 bit wide read-only ports and four & bit wide
write-only ports with their associated control registers.

The following table gives a brief description of the Tube registers. This
amount of detail is excessive for most users and is included to indicate

the general design of the tube rather than to provide a reference for low
level tube use.

328

Status Register1 | R1STAT &FEEQ &FEF8
bit 7 | DA1 | data present in 1st data register
bit 6 | NFt | 1stdata register not filled
bit 5 P set parasite reset active low
bit 4 v gnable 2 byte fifo use of 3rd data register
bit 3 M enable parasite NMI from 3rc data register
bit 2 J enable parasite IRQ from 4th data register
bit 1 | enable parasite IRQ from 1st data register
bit 0 G enzble host IRQ from 4th data register
Data Register 1 R1DATA &FEE1 &FEF3
used for OSWRCH, events and ESCAPE handling
writing to this register generates an 1RQ in the co-processor
Status Register2 | R2STAT &FEE2 &FEFA
bit 7 DA2 data present in 2nd data register
bit 6 NFZ 2nd data register not filled
bits 50 not used
Data Register 2 R2DATA &FEE3 &FEFB
used by other operating system calls
Status Register3 | RISTAT &FEE4 &FEFC
bit 7 DA2 data present in 3rd data register
bit 6 NF2 3rd data register nof fillad
bits 5-¢ not used
Data Register 3 R3DATA &FEES &FEFD
user register for data transfer and Vo errors
writing to this register generates an NM in the co-processor
Status Register 4 | RASTAT &FEE6 &FEFE
bit 7 DA2 data present in 4th data register
bit 5 NF2 4th data register not filled
bits 50 not used
Data Register 4 R4DATA &FEE7 &FEFF
system register used for control of data transfer
writing to this register generates an IRQ in the co-processor

The byte-wide communication channels fall into two distinct categories.
The first are simply latches, so data written to them on one side can be
read directly at the other. The second set are FIFO (first in first out)
buffers allowing the temporary storage of data within the Tube ULA in
the same way as the printer buffer temporarily stores the characters for
the printer. The FIFO buffered channels enable the second processor to
queue certain operating system call requests in a limited way.

329

The user will have no need to interfere with the Tube ULA directly
except when implementing custom filing systems (see section 18.6). The
operating system on the second processor will allow the use of all the
facilities on the i/0 processor by duplicating any appropriate i/o
processor OS call in the second processor OS.

18.4 The Tube software on the i/o processor

The software which services any i/o requests from the i/o processor
presented via the Tube assumes the current-language status in the i/o
processor. The DNFS ROM will recognise an active Tube during a reset
and copy the Tube servicing routines from within itself down into the
language workspace. The Tube servicing routines are not executed from
within a paged ROM to reduce unnecessary switching between ROMs.
The i/0 processor and the Tube servicing code never knows the identity
of the processor on the other side of the Tube; requests presented via the
Tube are handled in the same manner for each of the second processor

types.

During a reset or following a language re-selection,, the selected
language is copied across the Tube and execution in the second
processor is attempted. This process can be considered like a *RUN
request to a filing system and indeed language ROMs may be stored on
disc and executed in exactly this way on a second processor. It is up to
the user to ensure that the language or file selected for running on a
second processor is appropriate for that processor type. Language
ROMs should contain processor type information (see Paged ROMs
section 17.1.3) to enable a second processor to recognise languages not
intended for it. It is also possible to provide a re-location address in
language ROMs so that the language is copied to a specific address in
the second processor's memory (see section 17.1.9).

The Tube code starting at &400 in the i/0 processor contains a number of
entry points used by the operating system. There is only one entry point
which may be used by other software such as filing systems; this is

described in section 18.6. The Tube code entry points are described in the
following table.

%400 | Copy languags to second processor
8403 | Copy ESCAPE flag to second processor
8406 | Transfer data batween host and second processor

330

18.5 The 6502 as a typical second processor

The 6502 second processor is described below in detail. The use of other
second processors requires the same considerations but they are unlikely
to be used in a similar manner. Many problems are encountered by users
of the 6502 second processor because they are not fully aware that their
programs are running on a different physical microprocessor. Users of
other microprocessor types rarely need reminding of this fact but they
will occasionally require an understanding of the nature of the
relationship between the second processor and the i/o processor.

When a 6502 second processor is active on a BBC microcomputer system
the user should not be aware of the fact his programs are now running
on a different microprocessor. While this statement is largely true for
BASIC programmers, word processors and the like, it is not entirely true
for those programming in machine code. Acorn computers have
constantly emphasized the importance of using official operating system
routines in software written for use on the BBC Acorn range of
machines. Once a knowledge and understanding of these has been
gained the advanced programmer can take every advantage of the
extra facilities available on a second processor while writing code which
also functions effectively on an unexpanded BBC Microcomputer or
Electron.

While the 6502 second processor provides the user with increased user
RAM and a faster microprocessor it is not just a composite RAM and
turbo-charger expansion card. An extra 64K of memory is added to the
system but all this memory is not available as a contiguous block on top
of the memory on an non-Tube machine. The second processor in this
case is a separate microcomputer which offers an identical
programming environment to that of other Acorn BBC range machines.
Within the second processor a miniscule amount of RAM is used by the
operating system thus an increased amount of user RAM is available
(up to 44K with BASIC relocated to &B800). Meanwhile the user RAM
on the i/0 processor is released for the use of an exploded font (default
state on a Tube machine, see OSBYTE &14), service type paged ROMs
and miscellaneous independent user routines (e.g. event handling
routines, see section 17.4.1).

The reason that Acorn stress the importance of using official operating ~ +
system rotitines for all i/o is because there is a limit to the mimicry of the
BBC microcomputers features that can be copied onto second

processors. The Tube operating system cannot distinguish between
different types of memory use. Software which assumes it is running on

a non-Tube machine and pokes screen memory directly, will not have

the desired effect when running on a second processor.

331

The systems programmer should bear in mind the information laid out
in this chapter when writing software which will be required to work
across the Tube. A microcomputer with an active second processor is
referred to as an i/o processor.

18.6 Using OS calls and vectors

The operating system in the 6502 second processor implements most of
the OS routines available on the i/0 processor as well as the vectors in
page &02. Most of these second processor operating system routines
involve passing the request across the Tube to the i/0 processor where
the operating system proper performs the required function.

Each routine such as OSRDCH, OSWRCH etc. is implemented in the
second processor's operating system at exactly the same address as on
the i/0 processor's operating system. Where the equivalenti/o
processor's OS routine is indirected through a vector the second
processor's OS indirects its routine through a vector at the same
address.

The dialogue which is invoked across the Tube following operating
system calls is described in the following table. The operating system in
the second processor initiates communication with the host i/o
Pprocessor by writing a reason code to one of the tube registers which
defines which service is required.The Tube hardware causes an
interrupt to be generated in the i/o processor which then immediately
services the request from the second processor. Indiscriminate writing
to the Tube registers can crash the i/0 processor by causing
unserviceable interrupts.

This table describes the data register set used by operating system calls
and the parameters exchanged across the tube as the call is invoked and
returns.

332

i " Call Parameters -+ Retum Par
1 idate ey, no-cladd bytes . " 317416 of-bytes retiped 57 ¢

imeters: ..

OSRDCH 2 1800 {0 2 | Cflag {bit 7), then character
oscLl 2 |&02 |var.| command line terminatedby 400 |1 | &7F when completad
OSBYTE (A<&B0) |2 |804 |2 | Xregister then Acc. values 1 X register resuil
QSBYTE (A-&7F) |2 (&06 |3 | X, YandAccumulator values 3 | carry (bit 7), Y and X resulls
OSWORD (A<>0) |2 |&08 |var| no. of byles, then data var.| mo. of byles, then data
OSWORD (A=) 2 |&DA |5 | max, min &length, bufler adar. |var| &FF if ESC or &7F ack. then line
OSARGS 2 |80C |6 | Yreg, 4 byles, Accumulator 5 | A register result, 4 bytes returned
OSBGET 2 |&0E |1 Y register value 2 | C flag (bit 7), then Accum. result
QSBPUT 2 |310 |2 | ¥ register then Acc. values 1 &7F when completed
OSFIND 2 812 |var} Acc.then'¥ reg or filename 1| filehandle or &7F
QOSFILE 2 |&14 117 | bytes 3-18 of block, Accum. 17 | Acc. then returned param. block
OSGBPB 2 |&18 |14 | OSGBPB params, A vaiue 15 | param. block, C flag, Accum.
OSWRCH 1 |nfa |1 | character 0

Calls made from the second precessor and passed to the ifo processor
host BRK 4 | &FF then vig reg. 2: §00 - BRK, error code, emor message temminated by &00
events 1 800, Y reg value, X reg value, Accumulator value
ESC flag change 1t one byte: bit 7=1, bit 6=new flag
begin cata transfer |4 8406 entry value, claim id number, 4 byte address (hi byte 1s1), reset value

Calls originaling in the % processor which require action form the second processor

It should be noted however that operating system calls originating in
the i/o processor will not be offered to the vector on the second
processor. This means that filing system messages for example cannot
be intercepted by the OSWRCH vector on the second processor, output
originating from the current language, however, will be offered via this
vector (the current language is copied across to the second processor).

The description of the operating system calls in chapter 6 includes
individual comments on the use of these calls over the tube. In addition a
few relevant points are made in the following sections.

18.6.1 Events

Events are passed to the event vector on the second processor in exactly
the same manner as they are passed to the event vector in the i/o
processor (see section 7.1}. In addition to the rule that event handling
routines should not last more than 10ms on second processors, event
handling routines should not use operating system routines. It should be

333

remembered that event handling routines may still use operating system
routines on a Tube machine if the event handling code is resident in the
i/o processor. The example below shows how a program rgsidenF ina
6502 second processor can place an event handling routine in thei/o
processor.

This program sets up an event handling routine which causes a short
sound to be emitted in response to each key press. The frequency of the
sound varies according to the key value.

10 OSWORD=&FFF1
20 OSBYTE=&FFF4
30 EVNTV=&220

4OREM*******
50REM
GOREM*******

Read OSHWM on 1i/0 processor

70 A%=180:X%=0:Y3=6FF

30 OSHWM={(USR OSBYTE) AND &EF00
90 DIM MC% 100,X% B:Y¥%=X% DIV 256
100 FOR opt%=4 TO 7 STEP3
110 P%=05HWM

120 0%=MC%

130 [

140 OFT opt3

150.entry PHP

160 PHA

170 TXA

180 PHA

1580 TYA

200 PHA \ save registers

214 STY sound+4 \, SOUND pitch=key ASCII wvalue
22C LDX #sound AND 255

230 LDY #sound DIV 256

240 LDA #7

250 JSR QSWORD \ perform SOUND command
260 FLA

270 TAY

280 PLA

290 TAX

300 PLA

310 PLP \ restore registers

320 RTS \ return from event handler
330.sound RQUD &FFF50001 \ set up SOUND 1,-11,x%,1
340 EQUD &00010000

350]

360 NEXT opt%

37OREM*******

380REM Copy routine over to i/o processor
BQOREM*******

400 I=0

410 REPEAT

420 PROCWRITETIO(I?MC%,OSEWM+I)

430 I=I+1

334

440 UNTIL I+OSHWM=P%

450REM*******
460REM
47OREM*® * % % % & &

Set up EVNTV in i/o processor

480 PRCCWRITEIC(entry AND 253,EVNTV)
490 PROCWRITEIC (entry DIV 256, EVNTV+1)

SOOREM*** %% %%
510REM
S2OREM* k% %k %

Enable keyboard event

530 *FX14,2
540 END

SE50REM* &k & % %
560REM

Procedure for writing byte to i/o processor
G7OREMK * % & % *

580 DEF PRCCWRITEIC (data,addr) :!X%=addr:X%7?4=data
580 A%=56:CALL OSWORD:ENDPROC

An alternative method of loading and initialising this event handling
routine would be to include an initialising routine in the machine code
part of the program and *SAVE a copy of the routine using a high order
address specifying the i/o processor (precede addresses with &FFFF)
for the execution and reloading addresses. *RUNning this file would
then cause it to be loaded and executed within the i/o processor. (For an
example of this look at the example in the introduction of chapter 6.)

18.6.2 Interrupts

Interrupts from the i/o processor are not passed to the second processor
and so the vectors IRQ1V and IRQ2V are not implemented by the second
processor's operating system. Thus interrupts generated by the i/o
processor hardware can only be trapped by code on the i/o processor.
Interrupt handling routines should be implemented in service type
paged ROMs where possible. When a user wants to implement an
interrupt handling routine resident in i/o processor RAM (like the event
handling routine above) the problem arises as to how to change the
interrupt vector in the i/o processor. The interrupt vectors should not be
changed while interrupts are enabled and it is not possible to disable
interrupts on the i/o processor from a second processor while the ’
vectors are being written. A way round this would be to design an event
handling routine running in the i/0 processor which initialises the
interrupt handling routine. Event number 4 (start of vertical sync) will
occur within 0.02s of being enabled. The event handling routine can
disable the event and restore the vector after initiating the interrupt
handling routine. Alternatively the interrupt handling initialisation can

335

be performed by *RUNning a program which has i/o processor
addresses as described above.

18.6.3 OSBYTE calls

Calls &00 to &7F only return a value in the X register. The high number
calls return the X and Y registers and the carry flag. On a non-Tube
machine some of these calls return information beyond these limits.
Acorn would like to stress that this information is officially undefined
and not supported. The non-standard use of these calls may lead to
problems when trying to run software on a second processor and will
lead to incompatibility with future Acorn products.

18.7 Memory allocation and usage

The mechanisms for dynamic allocation of user memory are the same
for Tube and non-Tube machines.

The i/0 processor's memory map can be represented by the diagram
below.

SFFFF
&FF00
&FC00
&Coog

88000

screen memory
HIMEM

main (user) memory

OSHWM

O3SHWM-&600

40000

This memory map is essentially unchanged from the memory map of a
non-Tube machine. There are two aspects which should be noted by

336

programmers wanting fo use the user memory on the i/o processor. The
default state of the font RAM allocation is such that it is fully exploded
when a Tube is active (see OSBYTE &14 for more information about
font explosion). This means that an extra &5FF bytes are taken up by
the operating system workspace. The OSHWM in the i/0 processor may
be read using OSBYTE &B4. This value will be &600 greater than the
value when the Tube is inactive on the same machine e.g. &2100 on a
BBC microcomputer with DFS only (please note that programs should
ALWAYS interrogate the machine for the current value of OSIHTWM i.e.
do not assume a fixed value for it when writing programs.)

The Tube software in the i/0 processor is allocated the memory which
would otherwise be used by the current language on a non-Tube
machine. The DNFS ROM actually copies down the Tube software to
the language workspace (pages 4 to 7) in the i /o processor.

The memory map on the second processor is described in the diagram
below.

&FFFF

&F800
user memory
&C000
curr. language (not refocated)
&B000

main (user) memory

OWHWM (80800)

40400

80000 L

Zero page is available for users up to location &EE. Page 2 locations not
used for indirection vectors by the second processor OS are also
available to users.

The language workspace (pages 4 to 7) may be used by the user when
not running a language.

337

18.8 Protocol for transferring data across the
Tube

Software running in the i/o processor may require to transfer data to
and from the second processor. Filing systems will obviously need to do
this. OSWORDs &05 and &06 may be used for small amounts of data
(see section 18.9) otherwise the following protocols should be used.

Routines are implemented within the Tube handling software in the i/o
processor to enable this to be done. These routines must be used in
accordance to a strict protocol if they are to function correctly.

The paragraphs below describe how software may use the Tube.
(a) Claiming the Tube

Before a piece of software can use the Tube it must first claim it
successfully. A claim will not necessarily be immediately siuccessful
because there may be a number of other processes wanting to use the
Tube at the same time. The Tube software has to overcome the problems
of background and foreground tasks clashing. The type of problem
which might occur is an attempt by interrupt code to use the same
routine that the interrupted code was using at the time of the interrupt.
These problems occur because not all of the Tube subroutines are re-
entrant and interrupts cannot always be disabled.

Before attempting to use any of the Tube routines an OSBYTE call with
A=&EA, X=0 and Y=&FF should be made to establish whether a Tube is
present on the machine. The X register will be returned with the value
&FF if a Tube is present and with zero otherwise. When this call has
confirmed the presence of a Tube, the Tube code entry point may be
used; if this entry point is used when no Tube is present you will be
attempting to execute the language workspace.

To claim the Tube a call is made to the Tube code entry point at &406.
This code should be entered with a reason code and a caller's ID in the
accumulator. The reason code for this call is &C0 to which should be
added a 6 bit ID code which identifies the caller uniquely. This call
returns with the carry flag set if the claim was successful or with the .
carry flag clear it failed. The calling routine should continue to attempt
to claim the Tube until successful. The Tube will be re-allocated when
the background task has completed its transaction.

338

A typical claiming routine might be:

.claim PHA
.re_try LDA $#&C1
- JSR 40408
BCC re_try
PLA
RTS

Some caller IDs have been allocated to filing systems. They are:

&0 Cassette filing system

&1 Disc filing system

&2 Econet filing system (low level primitives)
&3 Econet filing system (high level primitives)

The actual ID is a 6 bit value which should be added to the reason code
giving the accumulator value to be used for claiming and relinquishing
Tube ownership.

(b} Relinquishing the Tube

When a routine has finished with the Tube it must release the Tube so
that other users may claim it. The use of the caller ID prevents software
which did not originally claim the Tube from releasing it. A reason code
of &80 to which is added the caller's ID should be placed in the
accumulator and the Tube code entry point called.

A typical releasing call might be:

.release PHA
LDA #&81
JSR &0406
PLA
RTS

(¢} Data transfer or Execution

To transfer data and execute code in the second processor the Tube code
entry point is called with accumulator reason codes in the range 0 to 7.
The X and Y registers should contain values pointing to a parameter
block in the i/0 processor's memory. This parameter block should

contain a 16 bit address in the second processor. Depending on the ;
reason for the call the address passed to the routine indicates an address
in the second processor from which or to which data should be
transferred or an execution address. These addresses should be stored

as low byte - high byte.

339

When using calls for the transfer of data the Tube system requires to be
allowed a certain response time before being called again. Therefore the
protocol requires that there is an initial delay after using the calls

- described below and susbsequently a delay after reading each byte or
pair of bytes before attempting to read the next byte or pair of bytes.

The actual bytes transferred are read from or written to location
&FEES5. This i/0 processor address represents the address at which one
of the Tube ports is wired. The read or write operation is initiated by
making a call to the Tube code entry point with the appropriate entry
parameters. After control returns to the calling routine there should be a
pause to cover the initial delay before the first read or write to the Tube
port. Thereafter there should be a pause between each subsequent read
or write. Unless there is an implicit release of the Tube within the call
definition, the calling routine should explicitly release the Tube when
the transfer is complete.

Call address = &406

A = reason code
X = least significant byte of parameter block address
Y = most significant byte of parameter block address

Parameter block:

XY + second processor address LSB

wlr| =]

second processor address MSB

340

Reason Code Summary:

reason | description
code

i 5)

0 multiple single byte transfer [2nd | /O 24 24
1 multiple single byte transfer | /0 | 2nd 0 24
2 multiple double byte transfer | 2nd | /0 % %
3 multiple doubie byte transfer | LU0 | 2d] %
4 execute code in 2nd processor

5 reserved

] 256 byte transfer ’d § IO 19 10
7 256 byte transfar 0o | d 0 10

{* for each byle transferred)

Reason code 0

Multiple single byte transfer: second processor to i/o processor.
Initial delay 24 pS

Transfer delay 24 uS per byte read

This call may be used to read any number of bytes from the second
processor. Repeated reads of &FEES5 yield a sequence of bytes read from
the second processor's memory starting at the address specified in the
parameter block.

Reading should be terminated by releasing the Tube or selecting another
mode of operation.

Reason code 1

Multiple single byte transfer: i/o processor to second processor
No initial delay

Transfer delay 24 puS per byte written

This call may be used to write any number of bytes to the second
processor. Repeated writes to &FEE5 place a sequence of bytes in from
the second processor's memory starting at the address specified in the
parameter block.

Writing should be terminated by releasing the Tube or selecting another
mode of operation.

Reason code 2

Multiple double byte transfer: second processor to i/o processor
Initial delay 26 uS

Transfer delay 26 pS per byte pair read

341

This call provides a faster protocol for the reading of pairs of bytes from
the second processor.

Reading should be terminated by releasing the Tube or selecting another
mode of operation.

Reason code 3

Multiple double byte transfer: i/o processor to second processor
No initial delay

Transfer delay 26 uS per byte pair written

This call provides a faster protocol for the writing of pairs of bytes to
the second processor.

Writing should be terminated by releasing the Tube or selecting another
mode of operation.

Reason code 4
Execute code in the second processor

This call forces execution of code in the second processor at the address
contained in the parameter block.

This call contains an implied release and does not return to the caller.

Reason code 5
Reserved for use by operating system calls

Reason code 6

256 byte transfer: second processor to i/o processor
Initial delay 19 u5

Transfer delay 10 pS per byte read

This call provides a very fast protocol for reading 256 bytes. This call
functions in the same way as the call with reason code 0 but transfers
exactly and only 256 bytes.

After the 256 bytes have been read the Tube should be released or
another mode of operation should be selected.

Reason code 7

256 byte transfer: ifo processor to second processor
No initial delay

Transfer delay 10 pS per byte written

This call provides a very fast protocol for writing 256 bytes to the second
processor. The call functions in the same way as the call with reason
code 1 but transfers exactly and only 256 bytes.

342

After 256 bytes have been written the Tube should be released or another
mode of operation selected.

Below is an example of an assembly language routine which reads a
page of the second processor's memory into the i/0 processor's memory.

Page zero locations &80 and &81 should be set to point to the
destination page in the i/o processor.

Locations &3000, &3001, &3002 and &3003 contain the source address in
the second processor.

LDA #&80+510
JSR &40¢6

release code + caller ID
relinquish Tube

.claim LDA #5C0+&1C \ caller ID=&10
JSR &406 \ claim Tube
BCC claim
LDX 40 \ low byte of parameter block address
LDY #&30 \ high byte of parameter block address
LDA #6 \ reascn code for 256 byte read
JSR §40%6 \ make call
LDX #6 \ delay loop 37 machine cycles
.wait DEX \ at 2 MHz this is 18.5 microseconds
BNE wait
LDY #0
.loop LDA &FEE5 \ read byte from port
STA {(&80),Y \ store hyte
NQP
NOF \ delay, loop total 10.5 microsecoads
NOP
INY \ increment loop counter
BNE loop \ get next byte
N
\

.end

This routine has been loosely incorporated into the next example. The
program assembles a paged ROM which responds to the command
*TUBE by copying 20 Kb from second processor memory into the I/O
processor's memory. The program fills the IO processor's screen
memory with data from memory at the same address in the second
processor.

The program uses two bytes of zero page workspace (io_ptr,

io ptr+1) as a pointer into I/O processor memory, and four bytes of
main memory as a parameter block for the tube call. The variables
io_address and sp_address define the target address in the I/O
processor and the source address in the second processor respectively.
The variable page s defines the number of pages of memory to be
transfered.

343

The til’l"lil"lg delay IOOpS have been set up to giVE the minimum delay on . . 420 DEX \).{=X_1 for next char. in name
the fastest microproce ; BBC : : . . 430 BNE loopl \ if X<»>0 then comp. next char.
e . p ssor in a BBC series micro (ie. 3 MHz). It is worth 440 BEQ init \ otherwise command = 'TUBE'
reducing the delay loops when using a slower processor. 450 .potme PLA:TAX:PLA:TAY \ not for us, restore registers

) . . 460 LDA #4 \ restore reason code
This example has been presented as a paged ROM but it would be j;g ol ﬁi CHA :TXA:FHA k and r?t;‘r“
3 . -he : H : save reglsters
possn’t:;e to placeaprc_)grammthe I/O processor and execute it from the 490 P DA #13 \ A=Carri§ge return
second processor (using, for example, the *LINE or *CODE facilities . . 500 JSR OSASCI \ perform CR,LF
via ti‘lc;} user vector). The most natural way of implementing this code gég Loon? ig: tqtl . Q i“‘fe;‘ rigi“?r' t:‘.{:{l) -
i : .loop itle, =1st char. in title string
gg!?vo]g% to lncor]_borate t.wo new OSWORD:s in a paged ROM. One 530 BNE overl \ if A=0 (end of string) branch
to provide rapid data transfer from the second processor to 540 LDA #&20 \ A=space character
the I/O processor and the other to provide the reciprocal service . . 550 .overl JSR OSASCI \ print space
' 560 INX N X=M+1
- 570 CPX #{copyr-title) \ if X hasn't reached cpyr.str.
1 REM *** Tuhe Transfer ROM 580 BNE locp2 A\ then print next string
3 REN <+ cospaae ot aoats transfer across the Tube O 800 TSR esAsCT \ perform or,Tr
nas to ' ’
4 REM **x* P BE 610 PLA: TAX:PLA;TAY \ restore registers
;8 DIM code% &4Q0 ggg Egg #9 Q re:toie reason code
line=&F2 . retur
30 OSASCI=&FFE2 . 640 Linit LDA #&EA \ *FX 234,0,255
40 OSBYTE=&4LFFF4 228 LDX t&O % is tube active OSBYTE
50 io ptr=&80 LDY #&FF
&0 paprlk=&2poo €70 JSR OSBYTE
70 ioggddr555=&3ooo:pages:&50 680 CPX $#0 \ X=5FF if tube present
80 sp_address=&3000 680" BEQ notube \ abkort if tube inactive
90 id_code=§0F 700 LDA #&0 \ set up tube call parameters
189 St e I mr iy
10 release code=&80 par_
120 read 256=6 T30 LDA #sp address DIV 256
130 FOR I=4 TO 7 STEF 3 740 STA par_blk+l
140 P%=&8000:0%=code} 750 LDA #sp_address AND 255
150 [. . 160 STA par blk \ !par_blk=sp address
160 OPT I 770 LDA #io_address DIV 256
780 STA 1 tr+l ?io ptr+l=io add 1
:ngg romsert gggg g \ no language entry 790 LDA #EBPagdress AND 255 P eddress (o)
290 EQUB 0 . . 800 STA io _ptr \ ?io_ptr=io_address (hi)
200 JMP servi : 810 JSR claim \ claim tube
210 EQUR &8§lce ‘\\ ;gév;‘ce erfltry 82Q JSR readsp %\ read data from 2nd proc.
220 EQUB (co — ype lag 830 JSR release \ release tube
530 o &Oopyr romstrt) \ copyright message offset . . 840 PLA:TAX:PLA:TAY %\ restore registers
ggg .title Eggg ;gUBE TRANSFER ROM " \ ROM title string ggg ;I:JPI; #&0 : ;:Eii?ze reason code
260 EQUS "0.00™ , B B70 .claim PHA %\ save accumulator
270 .copyr EQUE 0 \ ROM version string . B0 .re try LDA #claim code+id code \ A-reason code + id code
280 " " . . B90O JSR &04086 \ call tube code
290 gggg o(c)1987 Mark Holmes" N\ copyright string 900 BCC re_try \ loop if claim fails
" 910 PLA \ restore accumulat
ggg 'Eifiice E%S#EEEUT \ data for command recognition 920 RTS \ i azrld returﬁﬁ arer
320 BEQ command Q [.:lcf’es B=5 ' . . 930 .release PHA \ save accumulator
330 CMP #9 \ éoe:C’Ag;Ocess command line 940 LDA #release code+id code \ A=reason code + id codd
340 BEQ help \ 4 - 950 JSR &0406 % call tube code
350 RTS \ ;Eh:gwgzgc‘;:: *HEE‘P request 960 PLA \ restore accumulatar
. . . : ve alone 870 RTS d t
;gg .command EE)A;J;ZIA.TXA.PHA Q)scize registers . . a80 .readsp LDA io_ptr+l t A=??S_Pii+111rn
380 .loopl 1DA (line),¥ —4, {length of name 'TUBE') 590 CMP #(To ptr/256)+pages \ if A=&80
390 CMP name—]_’x t A=first lett}er in comnd. line 1000 BEQ finish \ . then we've finished
200 ENE notme | foibare A with our name 1010 LDX #par_blk AND 255 \ X=lo byte of param. block
410 INY Lo not equal, not our name . 1020 LDY #par_blk DIV 256 1\ Y=hi byte of param. block
\ ¥=Y+1 for next char.in comnd. 1030 LDA #read 256 \ A=reason code
344 345

1040 JSR &406 \ call tube code

1050 LDX #9

1060 Jwait DEX

1070 BNE wait Y total delay >19 microsecs
1080 LDY #0 \ index register, ¥=0
1090 .loop LDA &FEES \ read byte from tube reg.
1100 STA (io _ptr),Y \ store byte in memory
1210 NOP : NOP

1120 NOP : NOP

1130 NOP : NOP % delay >10 microseconds
1140 INY \ Y=Y+l

1150 BNE loop \ read next byte if ¥Y>Q
2160 CLC \ clear carry flag

11790 LDA #1 \ A=l

1180 ADC ic_ptr+l \ A=A+7i0 ptr

1190 STA ic_ptr+l \ ?io ptr=a

1200 CLC

1210 LDA #1

1220 ADC par_ blk+l

1230 STh par blk+l N 282F01=7&2F01+1

1240 JMP readsp \ loop back

1250 .finish RTS \ return when finished
1260 .notube ILDX #0 \ print message when no tuke
1270 .messlp LDA message,Xx

1280 BEQ guit

1290 JSR OSASCI

1300 INX

1310 JMP messlp

1320 .quit PLA:TAX:PLA:TAY \ restore registers

1330 LDA #0 \ service call claimed
1340 RTS M .. and return

1350 .message EQUS "Tube not active"+CHRS$13+CHRSO

1360]

1370 NEXT

1380 OSCLI“*S.TBRM "+STR$~code%+" "+S5TR$~0%

The short listing below tests the Tube Transfer ROM. The nested loops
set up a chequer-board pattern in the screen memory when run with the
Tube disabled (non-shadow RAM mode also necessary). The message
‘Tube not active'should also appear when not used on a second
processor. Running the program on the 6502 second processor will
result in the screen image being formed in second processor memoty
before being transferred to the screen memory in the I/0 processor.

In order to test the ROM and test program on a 32016 second processor
with Bas32 it will be necessary to change the value of sp_addressin
the ROM listing to &8000 and change the value of block in the listing
below to the same value. This is because otherwise the data will over
write the basic interpreter itself.

1C REM *** This program creates a bit pattern
20 REM *** ywhich is then transferred to the I/Q processor's
30 REM *** screen memory using the *TUBE command

40 MODE O

346

50 block=&3000 ’
60 FOR I=block TC block+&4D80D STEP &500
70 FOR J=0 TO &270 STEP 16

g0 IN(I)=—1 T} (J+4}=-1:I!{J+B)=0:1! {T+12)}=0
90 NEXT

100 FOR J=&280 TO &4r0 STEP 16

110 I =0:TI1(J+4}=0:T1 {J+8y=—1:1! {TJ+12)=-1
120 NEXT

130 NEXT

140 *TUBE

18.9 Tube OSBYTE and OSWORD calls

Read/write Tube flag OSBYTE call

Call address &FFF4
Indirected through &20A
A=&EA (234)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old flag value is returned in X. A value of 0 indicates that no Tube is
present; a value of 255 indicates that a Tube is present.

Read/write byte of /o processor memory OSWORD calls

Call address &FFF1

Indirected through &20C

A=&05 (5) read i/0 processor memory
A=&06 (6) write i/0 processor memory

Entry parameters:
X and Y registers contain the address of a 5 byte parameter block.
This parameter block contains a 4 byte i/0 processor address. The
byte read is returned in the last byte of the block. If XY+2=&FE
and XY+3=&FF then sideways RAM may be read.

18.10 The Z80 second processor

One of the chief reasons for the immense popularity of this particular
microprocessor is the adoption of Digital Research’'s CP/M operating
system by many manufacturers using this microprocessor for their
microcomputers. Software designed to run under CP/M requires very
little modification to allow it to be used on a wide variety of CP/M
machines. Acorn have adopted CP/M as the operating system on the
Z80 second processor so that a vast library of software is potentially
available to users. Normally the only problem with using CP/M

347

software initially designed for use on another machine is obtaining a
copy on a disc in the correct disc format.

18.10.1 Operating system calls

The operating system calls implemented on the i/o processor are
available for use from the Z80. Calls may be made by Z80 machine code
via a jump table starting at address &FFCE. This area of the memory
map is RAM on the Z80 processor and 50 there is no requirement for
additional indirection vectors in page 2 as the calls may be intercepted at
this level.

All the OS calls, except OSARGS take parameters in Z80 registers A, L
and H according to the A, X and Y registers on the 6502. Any calls using
the carry flag use the same flag on the Z80.

Interception of any of these calls may be achieved by changing the
address field in the jump table entry to point to the replacement routine.

The following calls are implemented:

address | call

&FEFFE | INT vector - used by Z80 OS
&FFEC | Event vector
&FFFA | BRK vector
&FFF7 QSCLI
&FFF4 QOSBYTE
&FFF1 OSWORD
&FFEE | OSWRCH
&FFE7 OSNEWL
&FFE3 OSASCI
&FEFEQ OSRDCH

&FFDD | OSFILE
&FFDA | OSARGS
&FFD7 | OSBGET
&FFD4 | OSBPUT
&FFD1 | OSGBPB
&FFCE | OSFIND
&FFC8 | TERM
&FF82 | Fault pointer
&FF80 Escape flag

These calls are documented in appendix] of the CI’/M 2.2 manual.

348

18.10.2 The Z80 OSWORD call

An additional OSWORD call is available from the Z8

: 0 second processor.
An OSWORD call with A=&FF may be used to read or write bl%cks of
the i/o processor's memory.

On entry the H and L registers point to the following parameter block:

HL +] &0D
1 &01
2-5 IfQ processor addrass
6-9 Z80 processor address
&A - &B Number of bytes to be transferred
4c Cperation type, O=read, 1=write

18.10.3 1/O processor me:mory usage

Eleven pages of i/0 processor memor
_ y are used by the Z80 OS and
CP/M. This memory should not be corrupted by user programs.

&2500 - &25FF is reserved for the Z80 OS
&2600 - &2FFF is reserved for CP/M

18.10.4 Acorn CP/M disc format

The format of a CP/M disc is defined in logi
; gical terms by the CP/M
operating system but the physical organisation of data):)n the disc

surfaces is normally hardware dependent. The Acorn CP/M disc format
is:

80 tracks per disc surface
10 sectors per track
256 bytes per sector

Each double sided disc drive is re i i
‘ _ garded by CP/M as a single logical
drive accessing 160 tracks numbered from 0 to 159. In orde%'lto ogpltirmse

disc drive performance the followi i i i
& performgd; e following logical to physical track mapping

Logical CP/M frack Physical disc track

0to 79 0 to 79 (first surface)
80 to 159 79 to 0 (second surface)

349

The first 3 tracks are reserved for use by the CP/M system.

The disc directory is stored in 4K starting from the 4th track. Up to 128
directory entties are available for each disc. The remainder of the disc
may be used to store up to 388K of data or programs.

To enable the use of a physical disc sector size (256 bytes) greater than
that of the CP/M logical record size (128 bytes) a process called
deblocking is used. The effective physical disc sector size may be
considered to be 256 bytes as all disc operations handle two sectors at a
time using an appropriate sector skew. The table below defines the
logical record to physical sector relationship.

Logical CP/M
record
(128 bytes)

Logical disc Physical disc
sector size
(512 bytes) (256 bytes)

OC RN AR W —O

—

<o
%@ﬁ#mummwmmm»—n—n—n—aoooc
ﬂﬂmmmmmmw@mmmmphﬂaoo

18.11 The 32016 second processor

The 32016 microprocessor is one of a hew generation of of 32/ 16 bit
processors. Its internal structure operates on 32 bits supporting a
powerful instruction set. This processor is designed to suit the
implementation of high level languages such as Pascal and Fortran.
Acorn provide a UNIX like operating system, called PANOS, together

with Pascal, Fortran, C, BBC Basic, Lisp and a 32016 assembler bundled

350

with the hardware. The Acorn Cambridge Co-Processor may have 512
or 1024 Kb of RAM while the Acorn Cambridge Workstation may have
up to 4 Mb. An operating system kernel is provided in 32 Kb of EFROM
and is referred to as PANDORA.

It is beyond the scope of this book to describe the 32016 hardware or
software in any more detail as these are covered quite adequately in the
documentation provided with the systems. However the following
points may be of some use.

The PANOS operating system uses normal Acorn file and disc formats
but some characters which appear to be legal in DFS may cause

problems when trying to access files under panos. Non alpha-numeric
characters are best avoided. PANOS also makes use of directories in a

specific way to enable mimicry of three letter filename extensions when
using Acorn filing systems.

The original 32016 second processor design was carried out with the
intention of marketing an 8 MHz machine. Due to the non-availability
of the § Mz chip sets, Acorn launched the 32016 with a 6 MHz chip set.
Unfortunately an unforeseen problem arose with the use of the normal
ADFS software and the slower 32016's which meant that a special
version of ADFS had to be written for use with the slower machines.
The changes which had to be made meant that there was no room to
include the floppy disc drivers in this version of ADFS (i.e. it can only be
used with a winchester hard disc).

The best way to circumvent this problem is to replace the 6 MHz chip set
with B or 10 MHz chips and to replace the 12 MHz crystal with a 16 or
20 MHz one (the crystal frequency is halved for the main clock
frequency). Once this is done normal ADFS software works perfectly
well with floppy or hard discs.

351

19 Clocks, timers and CMOS
RAM

All Acorn-BBC series machines maintain at least two internal clocks.
The Master 128 has an additional real time clock which is powered by a
battery and keeps its time even when the computer is switched off.

The two main OS clocks, the system clock and the interval timer, are
updated every centisecond. They are both 5 bytes long. Thg system clock
is used by BASIC for its TIME function; the interval timer is used to
generate the timer crossing zero event (see chapter 7).

19.1 System clock OSWORD calls

Call address &FFF1

Indirected through &20C

A=&1 - Read system clock

A=&?2 - Write system clock

X and Y point to a parameter block

The clock value is written to or read from the five bytes at the address
specified by the X and Y registers.

XY + Least significant clock byte

alw| N =]

Most significant clock byte

19.2 Interval timer OSWORD calls

Call address &FFF1

Indirected through &20C

A=&3 - Read interval timer

A=&4 - Write interval timer

X and Y point to a parameter block

The timer value is written to or read from the five bytes at the address
specified by the X and Y registers.

352

XY + Least significant timer byte

lwi| =]

Most significant timer byte

19.3 Read timer state switch OSBYTE call

Call address &FFF4
Indirected through &20A
A=&F3 (243)

<NEW VALUE>=(<OLD VALUE> AND ¥) EOR X
The old timer state is returned in X.

For each internal clock the operating system maintains two copies. The
two copies are incremented alternately, and while one copy is being
incremented the other copy is available for use. This ensures that a clock
value is not used half-way through being incremented. This flag is
toggled between the value 5 and the value10 by the operating
system.These values represent offsets from the location &28D, and
point to the 5 byte value of the system clock.

19.4_ CMOS Real Time Clock

The real time clock on the Master 128 allows the correct time and date
to be provided to application programs. To check the current time, the
MOS command *TIME prints out the current settings. The Master
Compact has no real time clock, but still supports the *TIME function.
The time on the Compact will always be printed as;

Fri,31 Dec 1999.23.5%.59

Two OSWORD:s are provided to allow the time to be written and read.

19.4.1 Read CMOS clock OSWORD &0E(14)
Call address &FFF1

Indirected through &20C
A=&0E(14) - Read real time clock

353

This OSWORD provides three different ways for reading the real time
clock. The desired function is selected by the value placed at the XY
location in the parameter block.

Read clock time and date string

Onentry XY =0

On exit the parameter block contains the date as a 24-byte character
string starting at XY+0. The format of the string is:

ddd, rn mmm yyyy.hh:mm:ss

ddd three character abbreviation for day (eg. Mon)
nn the day number (eg. 25)

the three character month abbreviation (eg. May)
yyyy | the vear (eg. 1988)

hh the hour in 24hr notation (eg. 22)

mm number of minutes past the hour (eg. 07)

] number of seconds (eg. 59)

followed by carriage return (&0D)

Read time in BCD format
Onentry XY =1

On exit the parameter block contains the BCD clock value in 7 bytes.

Location | Contains Range

XY year 00-99

XY+1 month 01-12

XY+2 day of month | 01-31

XY+3 day of week | 01-07 (Sun-Sat)
XY+4 hours 00-23

XY+5 minutes 00-59

XY+6 seconds 00-59

Convert BCD time to text time string

Onentry XY =2

The remainder of the parameter block XY+1 to XY+7 contains the time
in BCD format (as described above, hut note that it is stored from XY+1
and not XY+0).

354

On exit the parameter block contains the 24 byte time and date siring as
for the option with XY=0 on entry.

Please note that this conversion OSWORD option does not work with
some early external 6502 second processors. Interrupts are enabled
during this call.

19.4.2 Write CMOS clock OSWORD &0F(15)

Call address &FFF1
Indirected through &20C
A=&0F(15) - Write real time clock

This OSWORD provides three methods for updating the real time clock.
It allows the time only, date only or time & date to be altered with any
one call.

Write new time only

On entry XY =8
XY+1 | hh | hours time (00-23)
XY+3 [' | ASCI code 58
XY+4 [mm| minutes time (00-59)
XY+6 | ' ASCII code 58
XY+7 | ss | seconds time (00-59)

On exit the parameter block is unchanged.

Write new date only

On entry XY =15

XY+1 [ddd day of the week (eg. Tue)
XY+4 | CHR$(44) | (comma)

XY+5 | nn date in month (eg. 26)
XY+7 | CHR$(32) | (space)

XY+8 | mmm month (eg. Feb)

XY+11| CHR${32) | (space)

XY+12| yyyy year (eg. 1995)

On exit the parameter block is unchanged.

355

Write new time & date together

Onentry XY=24
XY+1 to XY+15 = the date string as above
XY+16 to XY+24 = the time string as above

On exit the parameter block remains unchanged.

19.5 CMOS RAM/EEPROM

The Master 128 and Compact both contain areas of non-volatile RAM
in which the data can be changed by the 6502. The contents of this
memory is not lost when the machine is switched off. Information, such
as the default settings for screen mode, ROM selected etc., is stored in
this area. On the Master 128 there are 50 bytes of CMOS battery-
backed RAM associated with the 146818 real time clock chip (see section
19.6). The Compact does not have a real time clock, but has extra non-
volatile memory in the form of either a 128 or 256 byte EEPROM. This
device has a limited lifetime of apporximately 10,000 write cycles to each
location, but it is very unlikely that information stored here will be
altered that much!

Two new OSBYTEs are provided in the Master series machines to read
and write data into the non-volotile RAM. These are required because
the RAM does not appear directly in the 6502 system memory map.
Instead it has to be accessed through the slow databus on the system
VIA. The OSBYTEs are perfectly adequate for most applications which
only require to change the data in the accessible part of the CMOS RAM
or EEPROM.

19.5.1 Read CMOS RAM/EEPROM OSBYTE

Call address &FFF4
Indirected through &20A
A=&AT(161)

Entry parameters:

X = the byte to be read
0-49 on the Master 128
0-127 or 254 on the Compact
X = 255 (Compact only) determines if the EEPROM is 128 or 256
bytes long.

356

The following table describes the use of the CMOS RAM/EEPROM.

0 Econet station number
1 File server station number
2 File server network number
3 Printer server station number
4 Printer server station number
5 d0-3 | Default diling system ROM number
d4-7 | Default language ROM number
6 ROMs 0-7 inserted=1, unplugged=0, ROMQ=d(
7 ROMs 815 inserted=1, unplugged=0, ROM8=d0
| Allocated to EDIT ROM
g Reserved for telecommiunications appicatiens
dg-2 Default screen mode (0-7)
10 d3 Defautt screen select 0=main, 1=shadow
dd Default intarlace setting 0=on, 1=o0ff
d5-7 | Default "TV selting (100=-4 to 011=+3)
d0-2 | Default FDRIVE seltings
Default CAPS seftings Shift lock b3=1
" d3-5 onlyonetobesetalany Na lock bd=1
time! Caps lock b5=1
d6 Load DIR at switch ON 0=no, 1=ADFS kad DIR
d7 Default drive O=floppy, 1=hard disc
12 Keyboard autc-repeat delay
13 Keyboard aulo-repeat rate
14 Printer ignore characler (selected by 15 bit d1}
do Default Tube selection D=no Tube, 1=Tube
5 d1 lgnore character O=yes, 1=n¢
d2-4 | Defauk seral baud rate (000=75 to 111=19200)
d5-7 | *FX5 setting (000="FX5,0 1o 100="FX5,4)
do Unused
d1 Defautt BEEP loudness D=quiet, 1=loud
16 d2 Tube selection 0=Intetnal, 1=Exiernal
d3 Default scrolling 0=enabled, 1=protected
d4 Detault BOOT mode 0=no boot, 1=zutoboot
d5-6 Default serial data format
17-19 Reserved for ANFS
20-29 Reserved for new Acorn firmwarediling systems
30-39 Allocated t6 ROMs 0-9
40-49 Allocated for user applications

357

On exit,
X = corrupt
Y = contents of specified CMOS RAM/EEPROM location

if X was 255 on entry with the Compact, Y returns
Y = 0 with NO EEPROM present
Y = &7F with 128 byte EEPROM present
Y = &FF with 256 byte EEPROM present

19.5.2 Write CMOS RAM/EEPROM OSBYTE

Call address &FFF4
Indirected through &20A
A=&A2(162)

Entry parameters:

X = address in CMOS RAM/EEPROM
Y = the byte to be written at location in X

On exit,
X is preserved
Y is corrupt

19.6 CMOS RAM/RTC hardware (Master only)

The CMOS battery-backed RAM/RTC chip is fitted on Master 128
computers in place of the model B/B+ speech processor or the Master
Compact EEPROM. The operating system provides a suitable series of
OS calls to set and read the clock and access the battery backed RAM
(see previous sections).

For specialised applications it may prove necessary to access the chip
directly. This is particularly true for users who wish to use the alarm
interrupt feature supported by the chip. The chip is able to generate
IRQs to the 65C12 at pre-programumed periods every second, minute,
hour or at any specific time during the day. This feature may prove
useful in circumstances where an interrupt must be generated at a
specific time of day whenever the machine is powered up. We must
emphasise that Acorn do not guarantee to support this feature on future
versions of the Master. To implement the TRQ feature, it is first
necessary to make the link 1.K4 on the main Master pcb (see section
17.2.3 for link position). This link is un-made when machines are
shipped.

358

Function

0 Seconds

1 Seconds alarm

2 Minutes

3 Minutes alarm

4 Hours > Binary or BCD
5 Hours alarm contents
6

7

8

9

Day of week
Date of month
Month

Year J
10 Register A
N Register B
12 Register C
13 Register D

14-63 | 50 bytes of RAM

The CMOS RAM address map is illustrated above. There are 64
locations, 50 bytes of which are user RAM, the remaining 14 bytes being
time and control registers. The Master uses part of the RAM for storing
system variables, as described in section 19.5. The remaining bytes can
be allocated to user applications requiring parameter storage over a
power-down period. To access one of these locations from a user
program you are recommended to use OSBYTEs &A1(161) and
&A2(162).

Address locations 0-9 contain the time, alarm setting, and date. Each
parameter can be stored in either a binary or a BCD format as defined

by the DM bit in register B. For example, suppose you wish to program
the value decimal 21. In binary data mode this is &15 whereas in BCD
mode it will be &21. These locations can only be accessed directly by
manipulating the hardware (as in the example at the end of this !
section), or indirectly using the OSWORDs covered in section 19.4.

359

Address | Function Decimal range

location

0 Seconds 0-59

1 Seconds alarm 0-59

2 Minutes 0-59

3 Minutes alarm 0-59

4 Hours (12hrs mode) 1-12 (am) add &80 (pm)
Hours (24hrs mode) 0-23

5

Hours alarm (12hrs mode) | 1- 12 (am) add &30 (pm)
Hours alarm (24hrs mode) | 0 - 23

6 Day of week (Sunday =1) [1-7

7 Day of the month 1-31

8 Month 1-12

9 Year 0-99
Interrupts

There are three separate sources of interrupts to the CPU. The alarm
interrupt can be programmed to generate interrupts from once per
second to once per day. The periodic interrupt can range from 122is to
500ms. The end of update interrupt can be used to inform the processor
that an update cycle is complete.

The time registers are updated every second. During updating, which

lasts for 1.984ms, the CPU cannot access the RTC. The 'UIP bit is set to
‘1" whenever an update is in progress.

Registers

There are four registers accessible to the CPU. These are resident at
memory locations &0A - &0D in the CMOS RAM address space.

Register &0A - Read /Write except UIP which is read only

b7 |b6 |[b5 |kt |b3 (b2 [b1 |bO
UIP |DVZ|DVI|DVD|RS3 |RS2 |RS1|RSO

UIP - indicates that an update is in progress, or will start within 244ps.
When clear, this bit indicates that an update is not in progress and will
not start for at least 244pus. All accesses to the time data must be effected
within 244us of reading a '0' from the UIP bit.

DV2, DV1, DVO - control the divider chain from the crystal oscillator. Tt
should always be set to DV2=0, DV1=1 and DV0=0.

360

RS3,2,1,0 control the periodic interrupt rate as per the table below:

RS3| RS2 |RS1|RS0 | Periodic interrupt rate
None
3.90625ms
7.8125ms
122.07us
244 141ps
488.281us
976.5628
1.953125ms
3.90625ms
7.8125ms
15.625ms
31.25ms
62.5ms
125ms
250ms
500ms

e e e e = S OO0 OO0
—t b e e OO OO RO OO0
[e G o W o B S SR v B e B e e
O OO RO, OSSP o= O

Register &0B - Read /write

o7 6 o5 bd 3 b2 b1 10

SET PIE AlE UIE |SQWE| DM | 24/12 | DSE

SET - when '0' the update cycle advances the counts of the clock once
every second. When set to '1' any update cycle in progress is aborted and
the time and calendar bytes can be modified without the time being
updated in the midst of modification. The bit must be reset to '0’ for
normal timer operation.

PLE - When set, enables periodic interrupts at a rate determined by R53
to RS0 to be generated.

AIE - the alarm interrupt enable bit when set to '1* allows the alarm flag
AF to assert IRQ. An alarm interrupt occurs for each second that the
three time bytes equal the three alarm bytes. The alarm time bytes can be
set to a "don't care” state by loading &FF. For example, loading &FF
into the minutes alarm and seconds alarm bytes will allow one interrupt
whenever the hour selected by the hours alarm byte is reached.

UIE - the update ended interrupt enable when set to '1' allows the UF bit/
to assert an IRQ.

SQWE - not used in the Master.

361

DM - the data mode bit indicates whether time and calendar updates

should use binary or BCD data. DM sh ' .
and to '0' for BCD data. should be set to '1" for binary data

24/12 - selects either 24 hour mode "1’ or 12 hour mode ‘o
Register &0C - Read only

b7 3 b5 B 3 b2
IRQF | PF | AF | UF 0 0 %1 %0

IRQF - the inte.rl"upt request flag is set to '1' whenever one of the
following condition becomes true:

PF=PIE="1"
AF= AIE="1"
UF = UIE = "1"

The IR} state is cleared whenever the i i
e inter i
from register &0C. TUP! service routine reads

PF - periodic interrupt flag is set to '1" at the end of i
each
defined by the rate selection bits RS3 to 0. It is reset to 'O'Pv:II:Od o

&0C is read. en register

AF - alarm interrupt flag indicates that th i
1 . e current time
alarm time. It is reset by reading register &0C. fas reached the

UF - update-ended interrupt fla

is set aft i
by reading from register &0C. B 19 set after each update cycle. It s reset

b3 - b0 are read as '0's and cannot be written.

Register &0D - Read only

b7 b6 |b5 |b4 (b3 |b2 [b1 [bO
VRT|0O [0 o o [0 1o o

VRT - the valid RAM and time bit is set by read

. in fr -
is reset to ‘0" when the power is turned oft. g from register &0D. It

b6-b0 are always read as '0's.

The following example sets the alarm to interrupt eve i

produce a beep. Remember that LK4 must be ma%e on?lqén nl-Il:-il;eIfIndt
peb before interrupts from the RTC will be accepted. Note that e
OSWRCH is used to send the CTRL-G or BELL character to generat
beep. Using OS routines inside interrupt routines is not recor.fmenede)
although it does work in this particular instance. It would be better to

362

use one of the supported timer funtions for a serious application. For
example, the interval timer crossing zero event could be used with the
same effects. The cmos access subroutine is useful because it allows all
locations within the CMOS RAM to be written and read.

10 DIM M% 200
20 FOR opt%=0 TO 3 STEP 3

30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
186
190
200
210
220
2390
240
250
260
270
280
240
300
310
320
330
340
3590
360
370
3a0
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

P3=M%
oswrch=(FFEE

slowbus=&FE4F :REM System VIA port A output

regbh=&FE40 :REM System VIA pert B contreol
ddra=sFE43 :REM System VIA port A directicn
[
OPT optd
.init SEI \Disable interrupts
LDA &206
STA oldv \Save old vector
LDE &£207
STA oldv+l
LDA kint MOD 256
STA &206 \Replace with new vector int
LDA #int DIV 256
STA &£207 ZVIRQZV high byte set
CLI
RTS
Jint LDA &FC \Interrupt processing routine
PHA \Save registers on the stack
PHX
PHY
LDX #&0C \Set CMOS RTC interrupt £lags address
SEC \SET carry flag to read
JER cmasaccess
TYA \Value returned in ¥ register
BIT #&20 \Test for alarm interrupt flag set?
BEQ exit \interrupt not recognised
LDa #7 \BELL character to make a BEEF
JSR oswrch \Using 0$ routines inside intexrzupt
.exit PLY \code is mot recommensed, but often warks
PLX
PLA \Pull registexrs from stack
5TA &FC
JMP {oldv) \Continue down interrupt chain
.eldv EQUW 0 \space to store old interrupt vector

.cmgsaccess PHP \This routine will read or write data
\to/from CMOS RAM, inciuding registers not directly accessible
‘through the OSCLI Address to r/w in X, €=1 to read, C=0 to
\write. Y is the byte to write, or the byte read back.

SEI \Interrupts off
BCC write
.read JSR address
LDA #4949 ‘select read
STA regh
5TZ ddra \set slow databus to input
LDA #&4A \set D5 active
STA regb

LDY slowbus ‘walue to be read in Y register
BRA finish

.write JSR address
LDA #&41
STA regb
LDA #&4A
STA regb
STY slowbus
BRA finish

\select WR on addressable latch

\take DS active

363

600
610
€20
630
640
650
660
670
680
630
TC0
710
720
730
740
750
760
770
780
790
200
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
980
970
240
950
1040
1010
1020
1030
1040
1050
1060

.address LDA #2

.finish

.setup

1
NEXT opt3

STA
Lpa
STA
LDA
STA
STX
DA
STA
1Da
STA
RTS
LDA
STA
LDA
5TA
FLP
RTS
LDX
LDY

regb
#5082
regh
$EFF
ddra
slowbus
#aC2
regb
542
ragh

¥&42
regh
#4602
regb

*1
¥0

CLCA\Write

JSR
LDX
LDY
CLC
JSR
LDX
DY
CLC
JSR
LDX
SEC
JSR
TYA
QRA
AND
TAY
CLC
JSR
RTS

Cmo3acCe3s
#3
$&FF

CMoOIaccess
#5
$EFF

cmosaceess
#L0B

CMGIACCesd

520
#&207

cmosaccess

\enter with X=selected address

\Write CE & DS inactive to system via
\AS5 active

\slow databus as output

\write register address
\Take CE active

\strobe AS low to latch data

\deactivate DS

\deactivate CE

\Seconds alarm address
\Interruptwhenever seconds = 0

\Minutes alarm
\Don't care about minutes value
\Write

\Hours alarm

\Don't care about hours value
\Write

\Flags register

\Read

\Alarm interrupt enable bit te '1°'
\Ensure other interrupts disaled

\Write

\alarms enabled so return

REM Grab the interrupt vector

CALL init

REM Set the interrupt parameters and enable
CALL setup

END

364

20 ADC system

20.1 ADC operating system calls

The model B, B+ and Master 128 computers are all provided with an
integral analogue to digital converter system. This system provides four
input channels which can each measure a voltage between
approximately 0 and 1.8 volts. This ability to read analogue voltages
and convert them into a digital format which can be processed by the
6502 is very useful. The most commeon application is to use the four
channels to read the X and Y axes of two joystick control levers. Other
applications include measuring anything which can be represented by an
analogue voltage, from the light level to air pressure.

Although the Electron in its basic form does not possess an analogue to
digital converter, one can be fitted with the Plus 1 expansion. The
Master Compact is altogether different. Instead of a true analogue
system, it runs an analogue simulator. This analogue simulation is
supported by the MOS on the Compact, and allows 'Atari style'
switchable joysticks to be used instead of the usual analogue devices.
There is a switch for left, right, up and down. The values returned by the
OS are consistent with values returned by an analogue joystick, and can
even be programmed to produce changing values (rather than a fixed
value for particular switch combinations). Unfortunately, the Compact
cannot measure voltages without the addition of extra hardware.

20.1.1 Read ADC channel OSBYTE call

Call address &FFF4
Indirected through &20A
A=&80 (128)

X>0

The read-buffer-status functions of this call are described in section 9.7,

On the Electron this call will generate an unknown OSBYTE paged

ROM service call when passed a positive value in the X register. If this
service call is not claimed then the values in page 2 of memory allocated ¢
to storing ADC information are returned.

The ADC functions of this call are implemented on the Plus 1 expansion

software for the Electron, otherwise this call is implemented identically

on the B, B+, Master 128 and the Electron. The Compact returns a value
for compatibility, but this has no real meaning.

365

X=0 - returns the channel number indicating which channel was last
used for an ADC conversion. If zero is returned this indicates that no
conversion has been completed; this occurs following OSBYTEs &10
and &11 (described below). The two least significant bits of X indicate
the status of the fire buttons. This is equivalent to the BASIC ADVAL(0)
function.

X=1to 4 - returns the ADC conversion from the channel

specified by X in the X and Y registers. This is similar to BASIC's
ADVAL(1) to ADVAL(4). On the Compact the same value is normally
returned by ADVAL(1), (3), (5), (7) and ADVAL(Q2), (4), (6), (8). If a sprite
pointer ROM is fitted to the Compact, the ROM then supplies the
values to ADVAL(7) and ADVAL(8) according to the pointer movements.

On exit:
A is preserved
C is undefined

20.1.2 Select ADC channel OSBYTE call

Call address &FFF4
Indirected through &20A
A=&10 (16}

This routine is passed on to paged ROMs in the Electron as an unknown
OSBYTE paged ROM service call and is implemented in the Plus 1
expansion software. On the Compact it is possible to set the number of
channels to be sampled to 128, but the only meaningful values are 2 or
less.

Entry parameters:
X value selects number of channels sampled

X=0 Sampling disabled
X=n Number of channels to be sampled
If n>4 then n is taken as 4.

On exit:
A is preserved
X contains the old *FX 16 value
Y and C are undefined

366

20.1.3 Force ADC conversion OSBYTE call

Call address &FFF4
Indirected through &20A
A=&11(17)

This routine is passed on to paged ROMs in the Electron as an unknown
OSBYTE paged ROM service call and is implemented in the Plus 1
expansion software. Again, this call is implemented on the Compact for
compatibility, but it has no real meaning.

Entry parameters:
X value specifies ADC channel

X=n Force ADC conversion on channel n
If n>4 then nis taken as 4

On exit:
A is preserved
If X=0 to 4 it is preserved otherwise X=4
. Y and C are undefined

20.1.4 Read current ADC channel OSBYTE call

Call address &FFF4
Indirected through &20A
A=&BC (188) Read current ADC channel

This call is implemented on the BBC microcomputer and in the software
of the Plus 1 expansion for the Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The ADC channel currently being converted is returned in the X register.
This call should not be used to attempt to force an ADC conversion.

20.1.5 Read maximum ADC channel number
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&BD (189)

This call is implemented on the BBC microcomputer and in the software
of the Plus 1 expansion for the Electron.

367

<NEW VALUE>={<OLD VALUE> AND Y) EOR X

The maximum channel number to be used for ADC conversions in the
range 0 to 4 is returned in the X register.

20.1.6 Read/write ADC conversion type OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&BE (190)

This call is implemented on the BBC microcomputer and in the software
of the Plus 1 expansion for the Electron. The Compact uses this call in a
different manner.

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X
B, B+, Master 128 and Electron with Plus 1

A value is returned in the X register indicating the previous ADC type
setting,

&00 - default (12 bit)
&08 - 8 bit conversion
&0C - 12 bit conversion

Other values have undefined effects. 8 bit conversion creates values in
the same range (0 to &FFFF) but with less precision and two to three
times as fast.

Master Compact
The setting of the X parameter bits have the following effects:

b7 0=update ADVAL values from cursor keys and /or digital joystick
1 =do not update ADVAL from keys/joystick, but allow updating
to be handled by a sideways ROM,

b6 1f set, key values are entered into the keyboard buffer, depending
upon the following ADVAL(0) settings. Note that this feature does
not emulate the INKEY function as well, so whilst INKEY -106 will
detect if the COPY keyboard key is pressed, it will not recognise
the FIRE button on the joystick being pressed.

368

bit | function ASCII key

b7 |Joystick RIGHT | &89 cursor RIGHT
b6 | Joystick UP &8B cursor UP

b5 | Joystick DOWN| &BA cursor DOWN
b4 | Joystick LEFT | &88 cursor LEFT
b3 |Mouse RIGHT |&7F DELETE

b2 | Mouse MID. &0D RETURN

bl |Mouse LEFT |&87 COPY

b0 |Joystick FIRE | &87 COPY

b5 0= return varying emulated numbers to ADVAL(1) etc.
1 = return fixed values to ADVAL(1) and ADVAL(2) as:

LEFT = &FFFF to ADVAIL(1)
CENTRE (horizontal) = &7FFF to ADVAL(1)
RIGHT = 0to ADVAL(1)
DOWN = &FFFF to ADVAL(2)
CENTRE (vertical) = &7FFF to ADVAL(2)
UP =0to ADVAL(Q2)

b4 reserved

b3-0° Emulate analogue speed of joystick movement by returning
rapidly or slowly changing values related to setting of joystick. 7 =
fastest, 0 = slowest.

20.2 ADC Hardware

The analogue to digital converter chip is a 7002 integrating type of ADC
converter. It has four input channels which can be selected under
software control. By applying voltages between 0 and Vref (about 1.8
volts} to the channel inputs, a 12 bit binary number proportional to the
applied voltage will be generated.

20.2.1 Programming the ADC

An analogue to digital conversion is initiated by writing to the data latch
and conversion start register situated at Sheila address &FECO. The
bits written into this register have the following effects:

b0-1 Select input channel CHO - CH3 and start conversion.
b2 flag input to be set to 0.

b3 0= select 8 bit conversions (~4ms long)
1 = select 12 bit conversions (~10 ms long)

369

b4d-7 not used

There are three registers which can be read. The status register is
located at Sheila address &FECO. This can be tested for conversion
completed status.

b0-1 Returns currently selected channel CHO to CH3
b2 notused

B3 Retgrns 0 if in 8 bit conversion mode and 1 if in 12 bit conversion
mode.

b4-5 Two MSBs of conversion

b6 0 =busy
1 = not busy

b7 0= conversion completed
1 = conversion not completed

Reading the converted value

Then_e are two data registers containing the converted value. The high
byte is read.fror‘n Sheila address &FECI. The four least significant bits
are 10¢?ated in bits _7-4 as read from Sheila address &FEC?2. These four
b;tfhw%ll (I;e hcliggl?; B%;cmﬁlra te in 8 bit mode, depending upon the qualities
of the individu chips. The values as returned

ange from 0 to bason, p rmed by ADVAL are left to

[1
5 Ad|)8 o, O 65 o, O, 0O, O,
Pao Nggnd CHI OV Amgond CH3 oy v
P30 l CHO Vit c;ag oz~ viel PR PN EIE‘L
bunon(? 915 914 13 91_2_ 911 010 09 ff hutton
CHO -+
- CHz CH3
JOVSTICK 1 JOYSTICK 2

View into analogue port showing cannections for both joysticks

370

The analogue port connector on model B, B+ and Master 128 machines
is shown above. A pair of joysticks can be connected as shown. Apart
from the information needed to construct a joystick, this diagram will be
helpful to anyone wishing to be a bit more adventurous with their
hardware. One possible use would be the production of a graphics
tablet. A series of levers and pulleys connected to a pointer will allow
the X-Y position of that pointer to be determined. This allows drawings
to be entered into the computer. Some other possible applications
include measuring temperature, light level, pH (hydrogen ion
concentration), current, voltage, resistance or pressure

Joystick port on the Master Compact

A\ User port CB1
o

User port CB2
fand LPSTB) 4 | Userport PB4
o
o 30 User port PB1
7
+5V &

2 o User port PB2

User port PBO
1
N} User port PB3

Master Compact Joystick/User port connector

For readers who may want to construct their own Compact joystick
devices, the diagram illustrates the allocation of signals to the various
pins. For further details about accessing the user port directly, you
should refer to chapter 22. The joystick switch allocations are:

PB4 Joystick RIGHT/ mouse Y-axis

PB3 Joystick UP/ mouse X-axis

PB2 Joystick DOWN/ mouse right button
PB1 Joystick LEFT/ mouse middle button
PBO Joystick FIRE/ mouse left button

371

21 Sound and speech systems

21.1 Sound and Speech system calls

The following calls have effects on the speech and sound systems.

21.1.1 SOUND command OSWORD call

Call address &FFF1

Indirection address &20C

A=&7

Xand Y contain the address of a parameter block.

This routine takes an 8 byte parameter block addressed by the X and Y
registers. The 8 bytes of the parameter block may be considered as the
four parameters used for the SOUND command in BASIC.

XY + Channsl - least significant byle

Chanpel - most significant byte
Amplitude - least significant byte
Amplitude - mest significant byte
Pitch - least significant byte
Pitch - most significart byte
Duration - ieast significant byte
Duration - most significant byte

~Nlojlo| ol alo

21.1.2 ENVELOPE command OSWQORD call

Call address &FFF1

Indirection address &20C

A=&8

X and Y contain the address of a parameter block

The ENVELOPE parameter block should contain 14 bytes of data each of
which correspond to the 14 parameters described in the ENVELOPE

command. This call should be entered with the parameter block address
contained in the X and Y registers.

372

This call has exactly the same effect as the SOUND command in BASIC,

21.1.3 Read/write sound suppression OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&D2 (210)

«NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old status value is returned in X.

If this location contains any value other than 0 then sound cutput is
disabled.

21.1.4 Read/write speech suppression OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&D1 (209)

This location is not used in the unexpanded Electron and is reserved for
future expansion.

<NEW VALUE>=(<OLD VALUE> AND Y) FOR X
The old status value is returned in X.

i i i h processor when
This location contains the value sent to the speech p _
sp;ech is output. A value of &50 represents the SPEAK op. code anc.l is
the default value (speech enabled). Writing &20 (NOP) to this location
will disable speech.

21.1.5 Test presence of speech processor
OSBYTE call

Call address &FFF4
Indirected through &20A ,
A=&EB (235)

This location is not used in the unexpanded Electron and is reserved for
future expansion.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X.

373

it is.

21.1.6 Read/write speech processor register
OSBYTE calls

Call address &FFF4

Indirected through &20A

A=&9E (158) - read from speech processor
A=&9F (159) - write to speech processor

These calls are implemented on the BBC microcomputer only. On the
Electron this call causes the operating system to issue an unknown
OSBYTE paged ROM service call but makes no further actions.

Entry parameter:
Data/command in Y for write command

In order to read from the speech ROM a read byte command must have
previously been sent to the speech processor using OSBYTE call &9F. If
the speech processor has not been primed in this way then a copy of the
speech processor's status register is returned in the Y register.

On exit:
A is preserved
X and C are undefined

21.1.7 Read/write CTRL G sound OSBYTE calls

Call address &FFF4

Indirection address &20A

A=&D3 (211) - channel (default value 3)

A=&D4 (212) - amplitude/envelope number (default value 144)
A=&D5 (213) - frequency (default value 101)

A=&D#6 (214) - duration (default value 7)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location are
returned in Y.

374

This location contains 0 if the speech processor is not present and &FF if . .

21.1.8 Electron external sound OSBYTE call

Call address &FFF4
Indirected through &20A
A=&18 (24)

This call is only implemented on the Electron.
This call is used to select an alternative sound system.

Entry parameters:
X contains an undefined parameter

On exit:
A is preserved _
All other registers are undefined

21.1.9 Read/write external sound semaphore
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&ES8 (232)

This call is only implemented on the Electron.

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X

The old semaphore value is returned in X.

21.1.10 Reset Electron sound system OSBYTE call

Call address &FFF4
Indirected through &20A
A=&74 (116)

This call is only implemented on the Electron. Where it resets the
internal sound system. This call has no effect on the B-.I-, Master or
Compact. On the BBC model B a bad command error is generated.

21.2 The 76489 sound chip
The sound chip on the BBC microcomputer is in itself a very simple chip.

There are three channels for which the frequency and volume of output
can be defined. There is also a fourth white noise generator. The cutput

375

from all of these channels is automatically mixed on chip. The complex
sound commands available from BASIC are very powerful but require a
large amount of time to process, especially if complex envelopes are
defined. In fast machine code programs it may sometimes be
advantageous to write directly to the sound chip. The example program
shows how this can be done. The data to be written into the sound chip
is first of all put onto the slow databus. Note that interrupts are disabled
before this is started. The data defines which sound chip register is
updated, and with which parameters. The sound generator write enable

line is then pulled low for at least 8 pis then pulled high again to write
the data into the sound chip.

Sound chip register address field

!
N

R1 Description

Tone 3 frequency
Tone 3 volume
Tone 2 frequency
Tone 2 volume
Tone 1 frequency
Tone 1 volume
Noise control
Noise volume

e = OO0 O
Ll e T s RS e B

'—‘OHDD—‘D»—\OE

Tone generators

There are 3 tone generators. The frequency of each channel is
determined by 10 bits of data. F9 is the most significant bit. The
frequency of each channel can be calculated as :-

frequency = 4,000,000

32 x 10 bit binary number

The volume level for each channel is variable to 16 different levels these
are:

376

Bit Volume
A3 | A2 | AT | AD

0 0 0 0 15 (MAX)

0 0 0 1 14

0 0 1 0 13

0 0 1 1 12

0 1 0 0 11

0 1 0 1 10

0 1 1 019

0 1 1 1 8

1 0 0 0 7

1 0 0 1 6

1 0 1 0 5

1 0 1 1 4

1 1 0 013

1 1 0 1 2

1 1 1 t] 1

1 1 1 1 0 (OFF)

Noise generator

The noise generator comprises a noise source and volume control. The
noise generator parameters are defined by three bits.

FB - this bit when set to "0" causes PERIOCDIC NOISE to be generated.
When set to "1" it causes WHITE NOISE to be generated.

Noise frequency control - the noise base frequency can be defined in 4
possible states by bits NF1 and NFO.

NF1|NF0Q| Frequency
0 0 [low
0 1 | medium
1 0 | high
1 1 | tone generator 1 frequency

21.2.1 Programming byte formats

The sound generator is programmed by sending it bytes in the following

J
format:-

Frequency (First byte)

b7 |b6 |5 |b4 |b3 b2 |bl |bO
1 R2 {R1 (RO |F3 |F2 |F1 |FO

377

Frequency (Second byte)

This byte can be written after the frequency first byte has been written to
select the channel.

b7 |b6 (b5 (b4 |b3 b2 |bL |BO
0 X F9 |F8 |F7 |Fé |F5 |F4

Note that the second low order frequency byte may be continually
updated without rewriting the first byte.

Noise source byte

b7 |b6 |b5 |bd
1 |R2 [R1 |RO

FB [NF1|NFO

Update volume level

b7 |b6 |b5 (b4 b3 (b2 (bl
1 |R2 |R1 |RO |A3 [A2 JAl

)

21.3 Sound chip example program

10 REM bBemonstration of direct poke to sound chip

20 PROCINIT

30 REPEAT

40 INPUT"Byte to send tc sound chip";AS$

50 A% = EVAL{AS)

60 CALL DIRECT -

70 UNTIL FALSE

80 DEF PROCINIT

90 DIM Q% 40
200 OSBYTE = &FFF4
110 FOR C=0 TC 3 STEP 3
120 P% = Q%
130 [OPT C
140 .DIRECT SEI
150 PHA
160 LDA #&97
170 LDX #&43
180 LDY #&FF
130 JER GSBYTE
200 LDX #&41
210 PLA
220 TAY
230 LDA #&97
240 JSR OSBYTE
250 LDX #440
260 LDY #&0Q0
270 JSR OSBYTE

\Disable interrupts

\Data direction register A&
\Set all 8 bits as output
\Write to SHEILA OSBYTE CALL
\Output register A

\Y holds byte to sound chip
\Write to SHEILA OSBYTE CALL
\Output to slew data bus
\Output register B

\Set scund chip write pin low

378

280 LDY #&08

\Set sound chip write pin high
290 J3R OSBYTE

300 CLI \Enable interrupts
310 RTS:]
320 NEXT

330 ENDPROC

Run the example program and enter &80, &20 and &90 to generate a
frequency at maximum volume on channel 3.

21.4 The speech chip (model B and B+ only)

The Speech processor can be added as an optional upgrade. It can be
programmed through OSBYTE CALLS &9E, &9F and SOUND &FFxx.
The speech data is held in a special serial speech ROM. The standard
one provided with the Acorn speech upgrade kit has a selection of words
spoken by the news reader Kenneth Kendall. It is also possible to
purchase serial ROMs for the speech system which contain games.
These plug into the slot on the left hand side of the keyboard. Again,
system software is available to read data from these ROMs using
OSBYTE calls &9E, &9F and *ROM. For more information about the
speech system, refer to the Speech System User Guide.

379

22 User/printer and system VIAs

There are two 6522 VIAs (Versatile Interface Adapters) inside the Acorn-
BBC micros. One of these is dedicated to the MOS and controls the
keyboard, sound, joystick fire buttons, CRTC 50Hz, light pen and
analogue to digital conversion interrupts, speech (where fitted) and
CMOS clock/RAM (Master only). The other drives the parallel printer
port and the user port. The 6522 in general will be considered first of all,
since it applies to both units. Separate sections on the MOS VIA and the
printer/user VIA then follow on with detailed programming and
interfacing information.

22.1 6522 Versatile interface adapters in general

Each VIA chip contains two fully programmable bidirectional 8 bit
input/output ports. These are designated port A and port B, each one
having two handshaking lines for controlling data transfer. There are
two 16 bit programmable timer/counters, a serial /parallel or
parallel/serial shift register and latched input/output registers.

22.1.1 Pin Descriptions

PAQ-PA7 (peripheral port A)

These 8 lines can be individually programmed as inputs or outputs under
control of a Data Direction Register. The logic level on the output pins
is controlled by an output register and input data can be latched into an
internal register under control of the CA1 line. The various modes of
operation are all controlled via internal registers which are .
programmed directly by the 6502 CPU.

CA1, CA2 (port A control lines)

These two lines can act either as interrupt inputs or as handshake
outputs. Each line controls an internal interrupt flag which has a
corresponding interrupt enable bit. In addition, CA1 controls the
latching of data on port A input lines.

PB0-PB7 (peripheral port B)

The 8 bidirectional port B lines are controlled by an output register and a
data direction register in a similar way to port A. The logic level of the
PB7 output signal can also be controlled by one of the interval timers.
The second timer can be programmed to count pulses on the PB6 input.

330

These cutputs are capable of sourcing up to 1 mA at 1.5 volts in the
output mode. This allows direct drive of Darlington transistor circuits.

CB1, CB2 (port B control lines)
The port B control lines act as interrupt inputs or as handshake outputs

just like port A. They can also be programmed to act as a serial port
under the control of the shift register. These lines can only source 100pA.

22.1.2 Electrical specification

Inputs

Input voltage for logic 1 2.4 VDC minimum

Input voltage for logic 0 0.4 VDC maximum
Maximum input current 1.8 mA

Qutpuls

Output logic 1 voltage 2.4 VDC minimum at a load

of 100 A maximum (except
PB0-PB7 1.5 VDC at TmA)
0.4 VDC maximum when
sinking up to 1.6 mA

Output logic 0 voltage

22,2 The User/Printer VIA
Sheila addresses &FE60-&FE6F

All of the port A lines PAO-PA7 are buffered before being connected to the
printer connector. This means that they can only be operated as output
lines, but they da have a much larger drive capacity than do unbuffered
lines. CA1 can be used directly as described in the general section on
6522s, but note that it is connected to +5 volts via a 4K7 resistor. CA1
normally acts as an "acknowledge” input to the computer from the

printer. CA2 usually acts as the printer STROBE output from the
computer.

381

woliod
d0l

Master Compact printer port connector looking inte socket
Note that pins 1 and 24 are connacted to the wires at the edge of the ribbon cable

Fig 22.1 - the printer port connectors

382 383

22.2.1 PORT A - The printer port . . 22.2.2 PORT B - The user port
All of port B lines, i.e. PB0-PB7 and CB1, CB2 are available directly on
ne —C3 IO nie . . the user port connector. The diagram below (figure 22.2) illustrates the
oy —F02¢ 2804+— nic connector. The view is shown looking into the board-mounted
sy —1+02 2A04—— nic connector from outside the case. Wires 1 and 20 are the two outermost
ov —F02 1904—— Acknowledge . . wires on the ribbon cable. The "female” part to the connector is a
oy ——F0OB 1704+—— D7 standard 20 way IDC connector. IDC stands for "insulation
| 516 150 D6 displacement connector”. The plug is normally connected to users'
oV [516 1204 D5 . . circuits via a length of special 20 way ribbon cable which is available
ov 2 1o from most good computing or electronics shops. This cable can be
ov © D4 connected to a circuit directly by soldering the wires to the circuit board,
ov —9O® 804—— D3 . or indirectly by another IDC plug and header or a DIL header. A DIL
ov —108 704+—— D2 . header will plug into any ordinary integrated circuit socket.
gy —10¢ 30x+—— DO
oV L O 2 104 Strobe . .
3) PB7 — 102 ©9O0+—— gy
= ® pBs —FO® 17O4+—— gy
g . . pgs —+O1B BO+—— oy
8, B+ and Master printer port connactor looking into socket PB4 — 1O 130 oV
Note that pins 1 and 26 are connected to the wires at the edge of the ribbon cable . . Eg: —-—g :s 1 ; 8- — gg
PBI —T1C8& 704+—— ov
oy —F02¢ RO4+—— nic . . PBp —T1+0 6 504—— pv
oy OB MO i cB2 — 04 304—— .5y
oy —t+02 1004—— Acknowledge CB1 Lo 2 10 +5V
oy —to2 904+—— p7 . . - -
ov —1-0®» 80+—— Db) 1 2
oy —O® 701+—— D5 :g_'
oV o e604+— p4 . .
oy —10O17 5C4+—— D3 USER PORT connector looking into socket
oy —1t0O® 40 D2 Note that pins 1 and 20 are connacted to the wires at the edge of the rivbon cable
oy —ons 30+—— Df ¢ ®
gy —t+O1 204+—— DO
oV Q Strobe . .

A\ User port CB1

9
User port ¢82 | ©

(and LPSTB) 4o | Vser port PB4
OB

oV 0 User port P31
7
+5V O

20 User port PB2

6
User port PB0 &

1
w User port PB3

Master Compact Joystick/User port connector

Figure 22.2 - User port connector

22.3 The System VIA

Sheila addresses &FE40-&FE4F

The System VIA controls the speech system, sound system, keyboard and
(only on the Master) the CMOS RAM/EEPROM and clock. Several
other functions are also controlled from this VIA. These are the

- hardware scrolling, vertical sync. pulse interrupt, joysticks input, end of
conversion input from the ADC and a light pen strobe input.

22.3.1 System VIA line allocation

PAQ-PA7 Slow peripheral data bus

The 6502 CPU does not communicate with the speech system, CMOS
RAM, clock, sound generator or keyboard directly over its data bus.
Instead, it writes to and reads from the 8 bit port A 1/O lines. This forms
a "slow" peripheral databus over which the CPU can communicate. To
write to this databus, the data direction register A at Sheila &FE43
should set all lines as outputs. The 6502 can then write directly into
output register A at Sheila &FE41. To read from the slow data bus,
DDRA must set all lines as inputs by writing &00 to Sheila address
&FEA43. A direct read from input register A at Sheila &FE41 can then be
made. NOTE that any reading or writing over this slow databus will
have to be done from machine code with ALL 6502 interrupts disabled.
This is because the interrupt routines themselves will make extensive
use of the system VIA and keep changing the register values. Since the
devices hooked onto the slow peripheral bus are well supported by

384

‘..

MOS routines, you are strongly recommended to avoid accessing the
hardware directly unless it is absolutely necessary.

CAl input

This is the vertical sync. input from the 6845. CAL1 is set up to interrupt
the 6502 every 20 ms (G0 Hz) as a vertical sync. from the video circuitry is
detected. The operating system changes the display flash colours on this
interrupt so that they occur during the screen blanking period.

CA2 input

This input comes from the keyboard circuit, and is used to generate an
interrupt whenever a key is pressed.

PB(-PB2 outputs

These 3 outputs drive an 8 line addressable latch which addresses the
peripherals attached to the slow peripheral bus.

PB3 output

This bit controls the level of the selected line on the addressable latch.
PB4 and PB5 inputs

These are the inputs from the joystick FIRE buttons. They are normally
at logic 1 with no button pressed and change to 0 when a button is

pressed. OSBYTE &80 can be used to read the status of the joystick fire
buttons.

PB6 and PB7 inputs from the speech processor (model B and B Plus)

PB6 is the speech processor "ready” output and PB7 is from the speech
processor "interrupt"” output. Speech is also mentioned in section 21.4.

PB6 and PB7 outputs to Master CMOS RAM/RTC

'B6 operates the 146818 chip enable when set to "1". PB7 operates the
146818 address strobe line. For an example using these control lines see
section 19.6.

CB1 input ’

The CB1 input is the end of conversion (EOC) signal from the 7002
analogue to digital converter. It can be used to inte:rupt the 6502

whenever a conversion is complete. See chapter 20 on the analogue
port.

385

CB2 input

This is the light pen strobe signal (LPSTB) from the light pen. It also
connects to the 6845 video processor (see section 13.3) CB2 can be
programmed to interrupt the processor whenever a light pen strobe
occurs. For more details see the light pen example in chapter 13.

22.3.2 The addressable latch

This 8 bit addressable latch is operated from port B lines 0-3 inclusive.
PBO0-PB2 are set to the required address of the output bit to be set. PB3 is
set to the value which should be programmed at that bit. An example
illustrating how to use this latch from BASIC is described in conjunction
with the sound generator, see section 21.3. The functions of the 8 output
bits from this latch are:-

BO - Write Enable to the sound generator IC.
Bt - READ select on the speech processor (B and B+)
R/nW control on CMOS RAM (Master only)
B2 - WRITE select on the speech processor
DS control on CMOS RAM (Master only)
B3 - Keyboard write enable
B4,5 - these two outputs define the number to be added to the start
of screen address in hardware to control hardware scrolling.
Screen types No.to add
Mode| Size | Start of screen Size |[B5 B4
0,1,2 |20K | &3000 1ZK |1 1
3 16K | &4000 16K |0 0
4,5 |10K | &5800 (or &1800) (22K |1 0
6 8K | &6000 (or &2000) (24K |0 1
B6 - Operates the CAPS lock LED
B7 - Operates the SHIFT lock LED

386

22.4 6522 VIAs Functional Description

Register] Address. for | Address for 1 Reglster Description

number | SystemVIA | UserviA rame Write Road

0 &FE4D &FE60 ORB/RB | Quiput register B Input register B

1 &FE41 &FES1 ORA/MRA | Culput register & Input register A

2 AFE42 &FE62 DDRE Dala direction register B

3 &FE43 &FE63 DDRA Data direction register A

4 &FE44 &FEG4 T1C-L T1 Low-order lalch I T1 Low-order counter
5 8FE45 &FEBS T1C-H T1 High-order saurter

€ &FE48 &FEBE TiL-L T1 Low-order latch

7 &FE47 8FEGT7 TiL-H T4 High-order latch

8 4FE48 &FE68 T2C-L T2 Low-order laich T2 Low-order counter
] &FE49 &FEBS T2C-H T2 High order counter

10 AFE4A &FEGA SR Shift register

11 &FE4B &FESB ACR Auxiliary conlrol register

12 &FE4C &FEBC PCR Peripheral contral register

13 &FE4D &FEBD IFR Interrupt flag register

14 RFE4E &FEBE IER Interrupt anable register

15 &FE4F BFEBF ORA/IRA | Same as register 1 but with No handshake

Figure 22.3 - 6522 Internal Register Summary

22.4.1 Operation of port A and port B

There are two data direction registers DDRA and DDRB which specify
whether the peripheral pins are to operate as inputs or outputs. Placing
a "0" in a bit of a DDR will cause the corresponding bit of that port to be
defined as an input. A "1" will cause it to be defined as an output.

Each of the port's I/O pins is controlled by a bit in an output register
(ORA or ORB) and an input register (IRA or IRB). When programmed as
an output, a port line will be controlled by the corresponding bit in the
output register. If the line is defined as an input then writing data into
its output register will have no effect. Reading from a peripheral port
will read the value of the input register (IRA or IRB). With input latching
disabled IRA will contain the value present at PAO-PA7 when the read is
performed. If input latching is enabled then IRA will contain the value
present at PAO-PA7 when the latching occurred (via CA1).

The IRB register is similar to the IRA register, but there is a difference
for pins programmed as outputs. When reading IRA, it is the voltage
level on PAO-PA7 which determines the level read back. When reading

387

IRB, it is always the bit in the output register which is read back. This
means that with loads which pull an output "1" low or an output "0"

high, reading IRA may indicate a different logic level to that written to

the output. Reading IRB will however always read back the value
programmed no matter what loading is applied to the pin.

REG 0 - ORB/IRB

716 |5

PB4 (-

OUTPUT REG B

ar

INPUT REG B

PORT B DATA
DIRECTION

WRITE FUNCTION

READ FUNCTION

OUTPUT
DDRB ="1"

Write output levels to
ORB

Reads setting of output
register bit

INPUT
DDRB ="0"

Writing to ORB doas
update internal registers
but only affects outputs
when DDRB is changed

Reads input level on PB
pin with input latching
disabled.

Reads |IRB bit containing
the level at PB pin when
CB1 had last active
transition if input latching
is enabled.

Figure 224

388

REG 1 - ORA/IRA

716 |5

PAG (~

QUTPUT REG A

or

INPUT REG A

PORT A DATA
DIRECTION

WRITE FUNCTION

READ FUNCTION

OUTPUT
DDRA="1"

Write output levels to
ORA

Reads level on PA pin
with input latching
disabled - nct relevant
onuser VIA asport Ais
output only to printer.

With input latching
enabled reads the IRA
bit reflecting level of PA
at last active CA1
transition.

INPUT
DDRA ="0"

Whiting to ORA does
updats internal registers
but only affects outputs
when DDRA is changed

Reads input level an PA
pin with input latching
disabled.

Reads IRA bit containing
the leve! at PA pin when
CA1 had last active
transition if input
latching is enabled.

Figure 22.5

389

REG 2 (DDRB) and REG 3 (DDRA)
Data direction registers port A = DDRA, port B = DDRB

7/6/5(4/3|2|1(0
[peopao)

PB1/PA1
PB2/PA2
PB3/PA3 | "0"=input

PBS5/PAS
PBG/PAS

PB7/PA7
Py

Figure 22.6

22.4.2 Write handshaking data transfer

Handshaking allows data transfers between two asynchronous devices.

Write handshaking operates with "data ready” and "data taken" signals.

The 6522 provides the "data ready” (CA2 or CB2) signal and accepts the
"data taken" (CA1 or CB1) signal from the peripheral device. This "data
taken" signal sets the interrupt flag and clears the "data ready” output.

See the timing diagram figure 22.7.

Write ORAVORB command 1 1

"Dataready” handshake CA2, B2~ L[| I

"Data ready” pulse mode CA2, CB2 L |

*Data taken" CA1, CB1 W -7 R

IRQ to 6502 1 |
Figure 22.7

Selection of operating modes for CA1, CAZ, CB1 and CB2 is controlled
by the Peripheral Control Register, see figure 22.8.

390

PB4/PA4 [~ "1" = oulput

~. .

REG 12 - The Peripheral Control Register

CB1 Interrupt control CA1 Interrupt control
0| CB1 negative aclive edge 0| CA1 negative active ecge
1| CB1 positive active edge 1| CA1 positive active edge

' !

7/6/5|/4(3[(2|1/|0

7| 6| 5 CB2 Control made

3 2|1 CA2 Control mode

0] of 6| Negative edges active on input

0l o 1 Independent interrupt, input negaltive edge
o] 1] ol Pasitive edges active on input

o] 1] 1| Independent interrupt, input positive edge
1] of 0] Handshake output mode

1] ©of 1 Pulse output mode

1] 1] 0 Low output

1] 1| 1} High output

Figure 22.8

22.4.3 Timer operation

The interval timer, referred to from now on as "T1", consists of two 8 bit
latches and a 16 bit counter. After it has been loaded, the counter
decrements at the system clock rate {1 MHz} until it reaches zero. When
it reaches zero, an interrupt flag will be set and an interrupt will be
requested of the 6502, if enabled. The timer then disables any further
interrupts, or automatically transfers the contents of the latches into the
counter and continues to decrement. The timer may also be
programmed to invert the output level on an output line every time its
count reaches zero. Figure 22.9 and figure 22.10 illustrate the T1 counter
and latches.

391

REG 4 - Timer 1 low-order counter
REG 6 - Timer 1 low-order latches
REG 8 - Timer 2 low-order counter

7(6(5(4|13|2(1|0

Count
16 value

Figure 22.9

REG 5 - Timer 1 high-order counter
REG 7 - Timer 1 high-order latches
REG 9 - Timer 2 high-order counter

716543210

> Count
4096 value

Figure 22.10

22.4.4 Timer 1 one-shot mode

This mode allows a single interrupt to be generated for each timer load
operation. The delay between writing TIC-H and generation of the
interrupt to the 6502 is a direct function of the data loaded into the
counter. T1 can be programmed to produce a single negative pulse on

392

the PB7 peripheral pin as well as generating a single interrupt. With
output enabled (ACR7=1), writing T1C-H will cause PB7 to go low. PB7
will go high again when T1 "times out”. The overall result of this is a
programmable width pulse on PB7.

Writing into the high order latch has no effect on the operation of T1 in
the one-shot mode. It is however necessary to ensure that the low order
latch contains the correct data before initiating the count-down by
writing T1C-H. When the 6502 writes into the high order counter, the T1
interrupt flag is cleared, the contents of the low order latch are
transferred into the low order counter, and the timer begins to
decrement at IMHz. If PB7 output is enabled then it will go low after
the write operation. Upon reaching zero, the T1 interrupt flag is set, an
interrupt is generated (if enabled) and PB7 goes high. The counter
continues to decrement at the system clock rate. The 6502 is then able to
read the contents of the counter to determine the time since the interrupt
occurred. The T1 interrupt must be cleared before it can be set again.

22.4.5 Timer 1 free-run mode

The advantage of having latches which remember the initial value put
into the counter is that the initial value can be restored after the counter
has decremented to zero. If this is done automatically then the timer
enters a free-running mode. In the free-running mode, PB7 is inverted
and the interrupt flag is set each time the counter has decremented to
zero. The contents of the 16 bit latch are then transferred to the counter,
which decrements to zero again and so on. This produces a true square
wave of variable frequency on the PB7 output. The interrupt flag can be
cleared by writing T1C-H, by reading T1C-L, or by writing directly into
the flag.

All of the timers in the 6522 can be retriggered. This means that
rewriting the value in the counter will always re-initialise the time-out
period. Time-out will therefore be completely inhibited if the processor
continues to rewrite the timer before it reaches zero. T1 operates in this
way if the 6502 writes into the high order counter (T1C-H). If the 6502
only loads the latches, this will not affect the counter until the next time
zero is reached. The timer can be read without affecting its value. This
can be very useful because the new timer time doesn't come into effect
until zero is reached. If the 6502 responds to each interrupt by
programming a new value into the latches, the period of the next half
cycle on the PB7 output will be determined. Waveforms with complex
mark-space ratios can be generated in this way.

4

393

22.4,6 Timer 2 operation

Timer 2 operates either as an interval timer (in the one-shot mode only)
or as a counter for counting negative pulses on the PB6 pin. A single
control bit in the Auxiliary Control Register selects between these two
modes. Timer 2 comprises a "write only" low order latch (T2L-L), a
“read only” low order counter and a read /write high order counter. The
counter register contents are decremented at 1 MHz. Figure 22.11
illustrates the timer 2 counter registers.

Register Write function

REG 4 - T1| Loads T1 low-order latches.
low-order | Latch contents transterred to
counter low-order counter when high-
order counter Reg 5 is loaded.

REG 5-T1| Loads T1 high-order latches
high-order | and transfers high and low
counter order latch contents to counter
and resets T1 interrupt flag.

REG 6 -T1| Leads T1 low-order latch in
low-order | identical manner 10 writing
latch Reg 4.

REG 7 -T1| Loads T1 high-order latch but
high-order | does not transfer latch to
latch counter.

REG 8 - T2| Writes count valus into T2 low- | Reads T2 low-order counter
low-order | order latches. and resets T2 intsrrupt flag.
counter
REG 8-T2| Writes T2 high-order counter
high-order | value and transfers T2 low-
counter order latch contents to low-
order counter. Also resets T2
interrupt flag.

Read function

Reads low-order counter and
rasets T1 interrupt flag bit in the
interrupt flag register.

Reads T1 high-order counter
contents,

Reads low-order latch but does
not resat T1 interrupt flag.

Reads high-order latch
contents.

Reads T2 high-order counter.

Figure 22.11

22.4.7 Timer 2 one-shot mode

In the one-shot mode, the operation of timer 2 is similar to that of timer
1. T2 provides a single interrupt for each time out after T2C-H had been
set. The counter continues to decrement after time-out, but the interrupt
is disabled after the initial time-out so that it will not be set again each
time that the timer decrements through zero. T2C-H must be rewritten
to re-enable the interrupt flag. The interrupt flag is cleared by reading
T2C-L or by writing T2C-H.

394

22.4.8 Timer 2 pulse counting mode

In this mode, T2 counts a predetermined number of negative going
pulses applied to PB6. This can be accomplished by first of all loading a
number into T2. Writing into T2C-H will clear the interrupt flag and
allow the counter to decrement every time that a pulse is applied to PBé.
The interrupt flag is set when T2 counts down past zero. The timer
continues to decrement with each pulse applied to PB6. T2C-H must be
rewritten to allow the interrupt flag to set on subsequent down counts.

REG 11 - The Auxiliary Control Register

PB latch enable | |PA latch enable
disable

T2 Timer control
0 | Timed interrupt 0| disable

1 | Count down with pulses on PB6& 1] enable enable

T | |
7654 2110
PR

(%)

|

Y

7] 6f T1 Controt PB7 4 3 2[Shift register control modes
Timed interrupt Disablad 0] O] 0] Shift register disabled

o| of each time T1is 15308 o] o] 1] shift in under contral of T2

e gadt'?d' ol 1| of Shift in using 1MHz clock
ontinuous — - -
interrupts. 0| 1| 1] Shift in using CB1 as input clock
- - 1] 0| o] Shift out free-running at T2 rate
Timed interrupt [One-shot 3 T Shif ovtond ——

1| of eachiime T1is putput. 0 Tt Out under control o
loaded. 1] 1| o] Shift out using 1MHz clock
Continuous Square 1 1] 1] Shift out using CB1 as clock

1l 1 interrupts. wave out,

Figure 22.12

22.4.9 Shift register operation

The shift register (SR) enables serial data to be transferred into and out
of the CB2 pin under the control of an internal modulo-8 counter. Pulses

395

from an external source can be applied to CB1 to shift a bit into or out of
CB2. Alternatively, with proper mode selection, shift pulses generated
internally will appear on the CB1 pin for controlling external devices.

The control bits which select the various shift register operating modes
are located in the Auxiliary Control Register. The configuration of the

SR data bits and the SR control bits of the ACR are illustrated in figure
22.12 and figure 22.13.

REG 10 - The Shift Register
ouT - IN

>
4L76543210<L

Note: when shifting out, bit 7 is first out and rotates back into bit 0.
when shifting in, bits enter at 0 at shift towards bit 7.

Figure 22.13

22.4.10 Shift register modes of operation

Shift Register Disabled (SRMODE 0)

In this mode the SR is disabled. The 6502 can however write or read the
SR and the SR will shift one bit left on each CBI positive edge. The logic
level present on CB2 is shifted into bit 0. The SR interrupt flag is always
disabled in this mode.

Shift in under control of T2 (SRMODE 1)

In mode 1 the shifting rate is controlled by the 8 low order bits of T2.
Shift pulses are generated on the CB1 pin to control shifting in external
devices. The time between transitions of this output clock is controlled
by the low order T2 latch.

Reading from or writing to the SR will trigger a shifting operation if the
SR flag in the IFR is set. If it isn't set then the first shift will occur when
T2 next times out after a read or write SR. Data is shifted first into the
low order bit of the SR, then into the next higher order bit and so on on
the negative edge of each shift clock pulse. The input data should then
change before the next positive going edge of CB1. Data is shifted into
the shift register on the positive going edge of the CBI pulse. After 8

396

CB1 clock pulses, the shift register interrupt flag will be set and an
interrupt will be requested of the 6502.

Write or read shift r..l

register ~

le [12 ~
/7 89, O O IN7 &,
1RQ |

Figure 22.14

CB1 output shift clock
period (N+2) x1pis L]

CB2 input data

\\E;
AN

[~

-

Shift in under control of system clock (SRMODE 2)

In mode 2 the shift rate is a direct function of the IMHz system clock.
Pulses for controlling external devices are generated on the CB1 output.
Timer 2 has no effect on the SR and acts as an independent interval
timer. The shifting operation is triggered by reading or writing the SR.
Data is first shifted into bit 0 and then into successively higher order bits
on the trailing edges of system clock pulses. After 8 clock pulses, the shift
register interrupt flag will be set and output clock pulses from CB1 will
cease.

Read shift register

et T Uy

CB2input data X Y G X6 X7 X Yo
RQ L
Figure 22.15

Shift in under control of external CB1 clock (SRMODE 3)

CBl is a clock input in mode 3 5o that external devices can load the shift
register at their own pace. The shift register counter will generate an
interrupt each time that 8 bits have been shifted in. The SR counter does
NOT stop the shifting operation, it simply operates as a pulse counter.
Reading from or writing to the shift register resets the interrupt flag
and initialises the SR counter to count another 8 pulses. Note that data
is shifted in on the first system clock cycle following the positive going

397

edge of the CB1 shift pulse. Data must therefore be held stable during
the first full system clock cycle after CB1 has gone high.

e e Sl
Vi X KX XX 3R X X
" T

Figure 22.16

CHB1 input shift clock

CBz2 input data

Shift out free running at T2 clock rate (SRMODE 4)

In this mode the shift rate is controlled by timer 2 (T2). Unlike mode 5,
the SR counter will not stop the shifting operation. Shift register bit 7 is
recirculated back into bit 0, so the 8 bits loaded into the shift register will
be clocked onto CB2 repetitively. The shift register counter is disabled in
this mode.

Write shift register

_TI1

CB1 output shitt clock
period (N+2) x 1us

L[l o] ~1ef teof
zzK o X 2 X el X2 X

CB2 output data

Figure 22.17
Shift out under control of T2 (SRMODE 5)

The shift rate is controlled by T2 as in mode 4. If the SR flag in the IFR is
set, then the shifting operation is triggered by the read or write of the
SR. Alternatively the first shift will occur at the next timeout of T2 after
a read or write of the SR. With each write or read of the SR, the SR
counter is reset and 8 bits are shifted onto CB2. Eight shift pulses appear
on the CB1 output to facilitate the control of shifting into external
devices. When the 8 shift pulses have occurred, shifting is disabled, the
SR interrupt flag is set and CB2 remains fixed at the last data bit level.

398

Write shift register

a

CE1 output shift clock
pariod (N+2) x 118

e e ~1le
22X 5 X 2 XA]

RQ
Figure 22.18
Shift out under control of the system clock (SRMODE 6)

CB2 output data

In this mode, the shift rate is controlled directly by the IMHz system

clock.

ggo‘:lgﬁ;putshilldock ——|1 |_|2 l—-ls |_~-|8 l—
27222 0 X2 X el DX e]
RQ |

Figure 22.19
Shift out under control of external CB1 clock (SRMODE 7)

Write shift register

CB2 output data

In this mode shifting is controlled by pulses applied to the CB1 pin by an
external device. The SR interrupt flag is set each time that the SR
counter counts 8 pulses, but the shifting function is not disabled. The SR
interrupt flag is reset and the SR counter is initialised to begin counting
the next 8 shift pulses on CB1, each time that the 6502 writes or reads
the shift register. The interrupt flag is set after 8 shift pulses. The 6502
can then load the next byte of data into the shift register.

Write shift regisler_l_l

CE1 input shift clock

AN R EN B N S 4
CE2 output data W1 X 2 X 3 I ~
RQ L

Figure 22.20

399

22.4,11 Interrupt operation

Interrupt flags are set either by an interrupt condition in the chip (e.g.
from a counter), or an interrupt condition on an input to the chip.
Interrupt flags normally remain in the set condition until the interrupt
has been serviced. The source of an interrupt can be determined by
reading these interrupt flags in order from highest priority to lowest
priority. This is best performed by reading the flag register into the
processor accumulator, shifting either right or left and using conditional
branch instructions to detect an active interrupt.

There is an interrupt enable bit associated with each interrupt flag. If
this enable bit is set to a logic 1 and the associated interrupt occurs, then
the 6502 will be interrupted. If the enable bit is set to 0 then the 6502 will
not be interrupted.

All interrupt flags are contained in the interrupt flag register (IFR - see
figure 22.21). To enable the 6502 to check the 6522 without checking each
bit in the IFR, bit 7 will be set to a logic 1 if the 6522 has generated the
interrupt. In addition to reading the IFR, individual bits may be cleared
by writing a 1 into the appropriate bit of the IFR. Note however that
IER bit 7 is not a flag as such and will not be cleared by writing a 1into
it. It can only be cleared by clearing all the flags in the register or by
disabling ALL of the active interrupts.

The 6502 can set or clear selected bits in the interrupt enable register
without affecting the other bits. This is accomplished by writing to the
IER. If bit 7 of the byte written is a 0 then each 1 in bits 0-6 will clear the
corresponding bit in the IER. For each zero in bits 0-6, the corresponding
bit will not be affected. Selected bits can be SET in a similar manner. In
this case, bit 7 of the written byte should be set to 1. Each 1 in bits 0-6 will
then SET the selected bit. A zero will cause the corresponding bit to
remain unaffected. The contents of the IER can be read by the 6502. Bit 7
is then always read as a logic 1.

400

e
e9

REG 13 - The Interrupt Flag Register

Bit | Set by Cleared by

0 CAZ2 Active edge Read or write reg 1 (CRA)"

1 CA1 Active edge Read or write reg 1 (ORA}

2 Shift register B bits shifted| Read or write shift register

3 CB2 Active edge Read or write reg 0 {ORB)"

4 CB1 Active edge Read or write reg 0 (ORB)

5 Time-out of T2 Read T2-low or write T2-high
6 Time-out of T1 Read T1-low or read T1-high
7 Any enabled interrupt Clear all interrupts

* Reading or writing ORA/ORB will not clear the flag bit if the CA2/CB2
controt in the PCR is selected as "indepandent” interrupt. The bit must
be cleared by writing into the IFR.

Figure 22.21

REG 14 - Interrupt enable register

716541312110

L caz

— CAft
Shiftreg. | 0 =interrupt
cB2 disabled
CB1 1 = intarrupt
Timer 2 enabled
Timer 1
Set/clear

-~

Notes:

(1) With bit7 = "0" a "1" in bits 0-6 disables the corresponding interrupt

(2) With pit? ="1" a "0" in bits 0-6 enables the corresponding interrupt.

(3) Reading this register bit7="1" and cther bits show enable/disable state..

Figure 22.22

401

23 The One Megahertz bus &
cartridge interfaces

23.1 Introduction to the IMHz bus

There are basically two routes which a user can take towards adding his
own hardware; the USER port and the IMHz bus (on the Master series
this includes the ROM cartridge slot interfaces). The problem with the
USER port is that there are only 8 1/O lines and a couple of control lines.
For more complex peripherals, direct access to the 6502 address and
data buses is required. This interface is provided by the one megahertz
bus.

Physically, the one megahertz bus interface has two different forms. On
all machines except the Compact and Electron it is found as a 34 pin
connector mounted at the front edge of the main circuit board. This
connector is accessed from underneath the keyboard. A buffered databus
and the lower 8 bits of the address bus are connected to this socket
together with a series of useful control signals. An extended set of
signals are also available from the cartridge interface on the Master
series and Electron, albeit in slightly varying forms (see later). Whilst the
designer could use the one megahertz bus in innumerable different
configurations, Acorn has defined how the bus should be used to
maintain compatibility with other devices.

The standard uses of the one megahertz bus allow up to 64K bytes of
paged memory to be used as well as 255 memory mapped devices (plus
the paging register). Page &FC (commonly called "FRED") is normally
assigned as the memory mapped 1/0 page and page &FD (commonly
called "JIM") is normally assigned as the 64K memory expansion page.
Communication between FRED, JIM and programs should be
implemented using OSBYTEs &92, &93, &%4 and &95.

Access memory mapped IO OSBYTEs

These OSBYTESs read or write bytes to the three pages of memory
mapped IO.

402

OSBYTE calls

read write Memory addressed | Name
&92(146) | &93(147) |&FC00 to &FCFF FRED
&94(148) | &95(149) |&FD0O0 to &FDFF |JIM
&96(150) | &97(151) | &FEQ0 to &FEFF SHEILA

Entry parameters:
X= offset within page to be read or written
Y= byte to be written (if write)

On exit:
Y= byte read (if read operation}
A is preserved
C is undefined

23.2 "FRED" and Memory Mapped Hardware

In all Acorn-BBC microcomputers page &FC is reserved for peripheral
devices with small addressing requirements. These devices are normally
accessed via the IMHz bus interface.

The Master can also access devices at page &FC in the cartridge slot (as
well as being able to access paged RAM and ROMs there). When
accesses are made to the cartridge slot rather than the older and slower
1MHz bus interface, these accesses are run from the system 2MHz
clock. Since only IMHz or 2MHz accesses can be selected at any time, it
is not possible to use the cartridge interface for memory mapped
hardware at the same instant as IMHz accesses are made. The access
speed at these addresses is controlled by the 'TFJ’ bit in the Master
ACCCON register, and is supported by OSBYTE 107. Take care when
devices which generate NMIs are being used on the IMHz bus. It is
necessary to ensure that no interrupts can occur whilst the cartridge is
enabled for access because any 1MHz bus devices will then be switched
out of page &FC.

403

The current allocations of space in FRED are:-

&FC73 - &FC7F

&FC80 - &FC8F

&FC90 - &FC9F

&FCAOQ - &FCAF
&FCBO - &FCCF
&FCDO0 - &FCDF
&FCEO - &FCEF
&FCF0 - &FCFE

&FCFF

currently undefined
test hardware

currently undefined
currently undefined
currently undefined
currently undefined
currently undefined
currently undefined
JIM paging register

Address 1MHz Bus Cartridge interface
&FC00 - &FCOF | test hardware currently undefined
&FC10 - &FC13 | Teletext currently undefined
&FC14 - &FC17 | currently unused currently undefined
&FC18 - &FCIF | reserved reserved
&FC20 - &FC27 | IEEE 488 Interface currently undefined
&FC28 - &FC2F | currently undefined reserved
&FC30 - &FC3F | Cambridge Ring reserved
&FC40 - &FC47 | Winchester Disc currently undefined
&FC48 - &FC4F | reserved currently undefined
&FC50 - &FC5F | currently undefined currently undefined
&FC60 - &FC72 | currently undefined reserved

currently undefined
test hardware
reserved

currently undefined
reserved

currently undefined
reserved

currently undefined
JIM paging register

When designing circuits to add on to the one megahertz bus, the "Not
page &FC" (NPGFC) signal together with the lower 8 address lines
should be decoded to select the add-on circuit. Note that a "clean up”
circuit will be required on the NPGFC signal in most applications. This
is described in section 23.5. For very keen constructors who require more
than the 63 page &FC locations reserved for User Applications, either
page &FD can be used for memory mapped peripherals or other FRED
locations can be used. Using reserved FRED locations in this way will
mean that the hardware add-ons specified for those locations cannot be
added in future if user hardware is already using the slot.

23.3 "JIM" and 64K Paged Memory

23.3.1 General description of JIM

Page &FD in the BBC microcomputer address space can be used in
conjunction with the paging register in FRED to provide an extra 64K of
memory. This memory is accessed one page at a time. The particular
page being accessed is selected by the value in FRED's paging register,
and is referred to as the "Extended page number". Note that a "Not

404

page &FD" (NPGFD) signal is available on the one megahertz bus
connector. Accessing memory through the IMHz bus will generally be
much slower than accessing memory directly.

23.3.2 Extended page allocation

"Extended pages" &00 - &7F in JIM are reserved for use by Acorn. The
other pages &80 - &FF are reserved for user applications.

23.4 Bus signal definitions

A7 —1+03 3304+—— AB
A5 —1 032 3104—— A4
A3 —FH030 204+—— a2
AM—T028 ZO4+—— A0
ov Q% (04— D7
D6 02 23049—— D5
D4 02 2A04+—— D3
D2 Q20 1WVWO4+—— DI
ne OB’ 7TO04—— oV
ANALOG IN 0® BO4+—— oV
RST Q14 1303+——— qV
NPGFD O NO4—— gV
NPGFC 01 804+—— oV
NIRQ 08 704+—— oV
NNMI 08 50+—— oV
{MHZE C4 304+—— ov
R/W 02 10 oV

[u1] —

3 2

(=}
=

1MHZ BUS connector logking into socket
Note that pins 1 and 34 are connected to the wires at the edge of the ribbon cable

Figure 23.1 - The 1MHz bus connector.

The one megahertz bus connector is illustrated in figure 23.1. The
specification for the signals on the one megahertz bus is:-

405

0 volis

R/W (pin 2)

1MHzE (pin 4)

NNMI (pin 6}

NIRQ (pin 8)

NPGFC (pin 10)

This is connected to the main system 0 volts line. The
reason for putting OV lines between the active signal
lines is to reduce the interference between different
signals.

This is the read-not-write signal from the 6502 CPU,
buffered by two 74L504 inverters.

This is the IMHz system timing clock. It is a 50% duty-
cycle square wave. The 6502 CPU is operating at
2MHz, so the main processor clock is stretched
whenever IMHz bus peripherals are being accessed.
The trailing edges of the IMHzE and 2MHz processor
clock are then coincidental.

Not Non-Maskable Interrupt. This is connected
directly to the 6502 NMI input. It is pulled up to +5
volts with a 3K3 resistor. Use of Non-Maskable
Interrupts on the BBC microcomputer is only advisable
after the section on interrupts has been read and
thoroughly understood. Both Disc and Econet systems
rely heavily upon NMIs for their operation so take
care. Note that NMIs are triggered on negative going
edges of NMI signals.

Not Interrupt Request.This is connected directly to the
6502 IRQ input. Any devices connected to this input
should have open collector outputs. The line is pulled
up to +5 volts with a 3K3 resistor. Interrupts from the
1MHz bus must not occur until the software on the
main system is able to cope with them. All interrupts
must therefore be disabled after a reset. Note that the
main system software may operate very slowly if
considerable use is made of interrupts. Certain
functions such as the real time clock which is
incremented every 10 mS will be affected if interrupts
are masked for more than this period. Refer to the
chapter on interrupts, chapter 8 for more information.

Not page &FC. This signal is derived from the 6502
address bus. It goes low whenever page &FC is
written to or read from. FRED is the name given to
this page in memory which is described in more detail
in section 23.2.

406

NPGED (pin 12) Not page &FD. This signal is derived from the 6502

NRST (pin 14)

Analogue Input
(pin 16)

Do -D7

(pins 18 - 24)

A0-A7
(pins 27 - 34)

address bus. It goes low whenever page &FD is
accessed. JIM is the name given to this page in memory
which is described in section 23.3.

Not RESET. This is an active low output from the
system reset line. It may be used to initialise
peripherals whenever a power up or a BREAK causes
a reset.

This is an input to the audio amplifier on the main
computer. The amplified signal is produced over the
speaker on the keyboard. Its input impedance is 9K
Ohms and a 3 volt RMS signal will produce maximum
volume on the speaker. Note however that signals as
large as this will cause distortion if the sound or speech
is used at the same time.

This is a bidirectional 8 bit data bus which is connected
via a 741.6245 buffer to the CPU. The direction of data
transfer is determined by the R/W line signal. The
buffer is enabled whenever FRED or JIM are accessed.

These are connected directly to the lower 8 CPU
address lines via a 7415244 buffer which is always
enabled.

407

23.5 "Cleaning up" FRED and JIM's page selects

M . .

gt 0 0 S

NPGFG | ’
orNPGFD

P Q p Q R .
CNPGFCH
or CNPGFDA . '

Q Q 5 U
CHPGFC2 .
or CNPGFD2
" ®

Figure 23.2 - IMHz bus timing showing page select signals .

All IMHz peripherals are clocked by a 1IMHz 50% duty cycle square
wave, designated as IMHZE in figure 23.2. This clock rate was chosen
to allow chips such as 6522 VIAs to use their internal timing elements .
correctly. The system 6502 CPU is normally clocked at twice the speed of
the peripherals and so it operates at 2MHz on the model Bs and 4MHz
on the Master series (the Master series have a 2MHz peripheral bus as
well - see section 23.7). However, if the CPU wishes to access any device .
:)1:1' thia IM‘;{Z bus, the processor has to be slowed down. The effect of
1s slow down circuit is illustrated in figure 23.2. Af i
valid IMHz address, the slow down circ%ﬁt stretches tgegsgiiaf:i?;%a .

period.. Unfortunately, two major problems arise from this mode of
operation:

23.5.1 Spurious address decoding "glitches" -
PROBLEM 1 8 getes

Addresses on the system address bus will only usually change when the
2MHz processor clock is low. However, the IMHz clock is alternately

408

low, then high when the CPU addresses change. This gives rise to the
address decoding glitches labeled "P* and "Q" in figure 23.2. The "Q"
glitches are not normally important because the IMHZE clock is then
low. The "P" glitches can cause problems because the IMHZE signal is
then high. Spurious pulses may therefore occur on the various chip
select pins, leading to possible malfunction of some devices.

23.5.2 Double accessing of IMHz bus devices -
PROBLEM 2

If a IMHz bus device is accessed during a period when the 1IMHZE clock
is high (point "R" in figure 23.2), that device will be accessed
immediately. The device will then be accessed again when IMHZzE is
next high (point "V" in figure 23.2). This is because the CPU clock is held
high until the next coincident falling edge of the 2MHz and 1MHz clocks
(point "U"). Double accessing a peripheral does not normally present a
problem. However, if reading from or writing to a device has some
other function, such as clearing an interrupt flag, a problem may occur.

23.5.3 "Clean up" circuit 1

1MHzE
NPGFC—— Clean NPGFC
{or NPGFD} {or clean NPGFD)

Circuit to ramove glitches frem NPGFC or NPGFD on 1MHz bus

Figure 23.3 - "clean up" dircuit 1

The standard "clean up" circuit for the page select signals is shown in
figure 23.3. Three NOR gates are used to create a standard R-S flip-flop
with a gated input. The "clean page select” output (CNPGFC1) can only
be set low if IMHzE is low. The net effect of the circuit is illustrated in
figure 23.2. Both of the problems outlined above are overcome, since the
"P" glitches are removed and the page select only goes low at "S", after
the IMHZzE clock has gone low. The "Q" glitches due to spurious
addresses whilst IMHZE is low are still present. In most applications,
this will not affect circuit operation, but occasionally a totally glitch free
page select will be required. Circuit 2 will provide this type of page
select.

409

23.5.4 "Clean up" circuit 2

+5v
NPGFC D CLR Q CNPGFC2
{or NPGFD) {or CNPGFD2)
LS74
1MHzZE CLK PR

=2 -

Figure 23.4 - "clean up” circuit 2

In situations in which a 100% "clean" page select signal is required,
circuit 2 can sometimes be used. Before CNPGFC can go low, a valid
page address with IMHZE low must occur. The page low is then latched
into a D-type flip-flop on the rising edge of the IMHZE clock. As shown
in figure 23.2, CNPGFC2 will go low a time flag (40nS) after IMHzE
goes high and it will remain valid until 40nS after IMHZE has gone low
again. Take care if any of the lines on the IMHz bus are buffered,
because delays introduced by buffers could make data invalid when it is
latched. Refer to the precise timing information in section 23.6.5 for
more details. Some peripheral circuits cannot be used with this clean-up
circuit because the decoded chip select will not remain valid for a
sufficient period.

23.6 Hardware requirements for IMHz bus
peripherals

All additional hardware designed to operate from the IMHz bus must
conform to the following standards:

23.6.1 Power supply

No power should be drawn from the BBC microcomputer. All
peripherals should have their own integral power supply, or use a
separate power supply unit.

410

23.6.2 Logic line loading

No more than one low power Schottky TTL load should be presented to
any of the logic lines by a peripheral. In most instances, this means that
all logic lines will have to be buffered for each peripheral.

23.6.3 Connection to the BBC microcomputer

Connection to the BBC microcomputer should be via a 600mm length of
34-way ribbon cable terminated with a 34-way IDC socket. The IMHz
bus connections should "feed through” the unit, i.e. a 34-way output
header plug connector should be provided so that more devices can be
connected as required.

23.6.4 Bus termination
All bus lines except NRST, NNMI and NIRQ should be provided with
the facility for adding optional termination. The recommended way of

terminating lines is to connect each one to +5V with a 2K2 resistor and
to 0V with a 2K2 resistor.

411

23.6.5 Timing requirements

e I b
Address and ﬁ X
AW nes . :

e ow e
NPGFC, NPGFD : /

o e
D (W) :

ldst _..).E_._'
i

Data (RD}

Figure 23.5 - 1IMHz bus timing requirements

The IMI1z bus timing requirements are illustrated in the timing
diagram, figure 23.5. It should be noted that these timings are based on
the assumption that only one peripheral is attached to the bus. ITeavier
loading may extend the rise and fali times of IMHzE with possible
adverse effects on timings.

412

The timing requirements are:

Description Symb.| Min. | Max.
Address (and Read/Write)

Set-up time tas 300n5 1000nS
Hold time t ah 30ns -
NPGFC & NPGFD

Setup time t pgs 250n5 1000nS
NPGFC & NPGFD

Hold time t pgh 30ns -

Write data set-up time t dsw - 150nS
Write data hold time t dhw 50nS -

Read data set-up time tdsr 200nS -

Read data hold time t dhr 30nS -

23.7 Master, Compact & Electron Cartridge
Interface

This interface was originally implemented on the Electron Plus 1
expansion unit. It allowed the Electron to accept modules containing
paged ROMs (there is no facility on the main Electron peb for plugging
in such ROMs). Two similar ROM cartridge slots are provided on the
Master 128. Typically these will be used with extra RAM or ROM plug-
in modules. Additionally it is possible to plug fairly sophisticated pieces
of peripheral hardware into these slots. The Master Compact cartridge
interface has a similar set of signals, but the connector is slightly
different and is not directly compatible with Electron or Master 128
cartridges.

Select IMHz bus/cartridge OSBYTE

Call address &FFF4
Indirected through &20A
A=&6B(107)

Entry parameters:
X=0 selects the external bus running at 2MHz
X=1 selects the internal bus running at IMHz
Y=0

On exit,

X is preserved
Y is corrupted

413

To facilitate the use of peripheral hardware devices, the normal "TMHz
bus' signals are present on the cartridge connector together with several
additional signals. It must be noted that the 1IMHz bus' signals present
on the cartridge interface actually operate at '“MHz' on the Master and
Compact! On the Master it is necessary to select between the normal
1MHz interface (present on the connector below the keyboard) and the
cartridge interface using OSBYTE &6B. The Compact does not have a
normal 1MHz bus connector, so the cartridge is always selected.

Care must be taken when producing hardware for connection to the
cartridge sockets. Many of the lines are not buffered, especially on the
Electron and Master Compact.

Fl

23.7.1 Using 128K bytes of EPROM in Master
ROM slots

The ROM cartridges are each designed to provide up to two normal
16K paged ROMs or RAMs in the Master's memory map. Typically one
32K byte EPROM (a 27256) will be used. The chip will be selected by the
ROMOE signal (on pin A2) with the low order bit of the ROM paging
register (QA on pin A16) being used to switch between the two halves of
the memory in the chip.

To extend the memory which can be present in each slot, it is possible to
use two 27513 chips. These EPROMSs are each organised as 4 x 16K byte
blocks. Only one of these four blocks is selected to appear in the chip at
any instant. The current block is selected by writing the block select
number 0 - 3 to any address within the EPROM, thereby loading the
EPROM's internal ‘block select register'. This will usually be done by
code within the EPROM itself. For example, the following code changes
between blocks within the EPROM:

#newblk)\ this switching code is duplicated at
\ the same location in each 16K byte block
\ on entry A contains block to select.

LDA

.blksw STA &8000

\

To produce a paged ROM which resides in a 27513, interception of
system calls to the ROM will normally occur in block 0. This is the 16K
block which always appears at power-up. Once the ROM has detected
that it should be selected, it can access the extra 48K of EPROM by
switching between blocks in the manner described.

Interrupts can only be properly handled by duplicating the interrupt
processing code, or by placing code at the start of blocks 1,2 and 3 to

414

switch to block 0 when an interrupt service call is made by the OS. A
record of the currently selected page number in the EPROM should be
kept in RAM. After processing any interrupt calls from the OS, the
correct page in EPROM must be re-selected before returning.

23.7.2 Bus signal definitions

Screen (0V)
+5V
ROMOE
RESET

CS RW
A8

Al3

Ai2

PHI2

n/c

n/c

RIW

N

IRQ
NPGFC
NPGFD
ROMOA
8MHz

oV

User port PB7
User port PB6
User port PB5
Polarising s'ot
ov

Screen (0V)

" W E EE N ENSESESNEENSNESENSNER =

Screan (OV)
+5v

A10

D3

A1

A9

07

D6

D5

D4
QOE2/LPSTB
BA7

BAG

BAS

BA4

BA3

BA2

BA1

BAO

0o

02

Dt
Polarising slot
ov

Screen {0V)

Cartridge slot on the Master Compact

+5V
ROMQE
RESET
CS RW
A8

A13
Al12
PH2
BV

CSYNC/MADET

RW RDY
NMI

IRQ
NPGFC
NPGFD
RCMQA
8/16MHz

ROMSTB/CRTCRS

ADOUT
AGND
AD'N
v

Cartridge slot on the Master and Electron

W -~ ;N AW N

—- =

Y

E m=u
e}
=

BA7
BAG
BAS
BA4
BA3
BA2
BA1

BAO

OE2/LPSTB

The two types of ROM cartridge connectors are shown above. The
current specifications for the signals on both the Master, Compact and
Electron (as viewed from within the cartridge) are:

+5v

Do-D7
BAO-BA7

AB-Al13

PHI2
ROMOE

RST

Connected to the system +5 volt supply. Up to 50mA
can be drawn from a slot in an Electron Plus 1. Up to
150mA can be drawn from a slot in a Master fitted
with internal co-processor and disc drives. On the
Master Compact total current drain from the ROM
cartridge connector, RGB connector and the
joystick/mouse port should not exceed 200mA.

Zero volts system earth return for digital circuits.

This negative 5 volt supply at up to 20mA may not be
present on all Acorn cartridge interfaces, so to
maintain compatibility negative voltages should be
generated from the +5v supply using a small inverter.
This is not connected on the Master Compact.

Data bus lines 0-7. TTL level input/output lines.

Address line inputs from A0-A7. On the Master these
are buffered and are guaranteed to hold addresses
valid for 125ns after PHI2 goes low. On the Electron
these are un-buffered address lines.

Address line unbuffered inputs from system address
bus.

CMOS level input from computer's PHI2 clock.

Output enable used to switch on the output buffers of
cartridge memory devices when low during the PHI2
period of the system clock, not guaranteed low at other
times. Active low CMOS input. This can be used
directly as the chip enable to 32K byte EPROMsS, with
QA used to select which half of the EPROM is
accessed.

System reset - active low CMOS input.

416

CSRW

R/W or RDY

NMI

IRQ

NPGFC

NPGFD
ROMOQA

CLOCK

Read/write line input from the 6502 on the Electron.
On the Master the function of this signal varies
depending upon the area of memory being accessed. It
is equivalent to the CPU read/write line during
accesses to &FC00 - &FEFF during PHI2. For accesses
to all other areas of memory it is an active high chip
select for memory devices during PHI2, but is not
guaranteed low at other times.

On the Electron this is an open collector active low
ready output to the CPU WAIT control. The CPU will
extend its cycle when this signal is low, but only works
with CMOS CPUs. On NMOS CPUs only the read
cycles are extended. On the Master and Compact this
is the R/W data direction control input. Cartridges are
being written to when this TTL signal is low and they
may drive the bus during PHI2 if this signal is high and
the cartridge device is selected.

Active low open collector Non-maskable interrupt
output to the system NMI line.

Active low open collector Interrupt request output to
the system IRQ line.

Page &FC select input. On the Master this signal only
becomes active when bit IF] in ACCCON Tegister is set
(see section 12.2).

Page &FD select input. See note for NPGFC signal.

Memory paging select bit. This TTL level input is the
least significant bit of the ROM select latch located at
&FE30 in the Master and &FE05 in the Electron ULA.

Electron 16MHz input clock. On the Master the
operation is defined by links in the computer which

select the signal as an 8MHz input to cartridge or
16MHz output to the computer system clock! (see

Master reference manual 1). On the Compact this is an
8MHz input to the cartridge. J

417

ROMSTB/
CRTCRST

On the Master CRTCRST is an active low output
signal of CRTCRST, the system CRTC reset input;
provided for genlock use. On the Electron this is an
active low input which selects &FC73 and is intended
for use as a paging register. It is connected to Ov on the
Compact.

CSYNC/

This is not connected on the Electron and Compact. On
MADET

the Master it has two possible functions, as defined by
link 12 in the computer. MADET is the default link
setting. It allows cartridges to detect which machine
they are plugged into and is connected to Ov in the
Master. With CSYNC selected (position B), the
composite sync. signal (TTL level) is available for
genlock use.

ADOUT Audio output providing the sum of all audio inputs to
the computer. No significant load shouild be taken from
this pin.

AGND Audio ground should be used as the ground line for
audio circuitry instead of the system Ov line to

minimise audio noise.

ADIN Audio output from the cartridge to the computer.The
computer's audio amplifier input impedance is at least
1K ohm and only one cartridge should use this at any
time. On the Master, this may be used as an output

from a speech systern module fitted in the cartridge.

OE2/LPSTB This provides a connection between the two cartridges
on the Master if link 21 is removed. With the link in
place it connects to the CRTC light pen strobe input
and is pulled high by a resistor. On the Compact it
connects to the CRTC lpstb input. On the Electron it
provides an active low ROM enable for ROM number
13. It is low during the active low portion of PHI2 and
is not guaranteed high at other times.

PB5-PB7 Master Compact only. These are three lines connected
to the User 6522 VIA. The other user port lines on the

Compact are accessible on the joystick/mouse port.

Note: Acorn may change these specifications, so it is advisable to check
with their technical support department before assuming that the exact
operational details are as described above!

418

24 Miscellaneous topics

24.1 BREAK/reset associated calls

The following calls have functions which come into effect following a
reset. A hard reset refers to the CTRL+BREAK key combination and a
soft reset is caused by pressing the BREAK key alone. A power on reset is
selected when the system 6522 interrupts are not enabled. A power on
reset may be caused by masking the system 6522 interrupts before
forcing a reset. This is done by writing the value &7F to SHEILA
address &4E (i/0 processor address &FEAE).

24.1.1 Read/write ESCAPE+BREAK effects
OSBYTE call

Call address &FFF4
Indirected through &20A
A=&C8 (200)

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X

The old flag value is returned in X.

bit 0=0 Normal ESCAPE action
bit 0=1 ESCAPE disabled
unless caused by OSBYTE &7D /125
bits 1 to 7=0 Normal BREAK action
bits 1 to 7=1 Memory cleared on BREAK

e.g. A value 0000001x (binary) will cause memory to be cleared on
BREAK.

24.1.2 Read/write message suppression OSBYTE
call

Call address &FFF4
Indirected through &20A
A=&D7 (215)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old flag value is returned in X.

419

bit7 If clear then ignore OS startup message.
If set then print up OS startup message as normal.

bit 0 If set then if an error occurs in a !BOOT file in *ROM,
carry on but if an error is encountered from a disc
'BOOT file because no language has been initialised the
machine locks up.
If clear then the opposite will occur, i.e. locks up if
there is an error in *ROM.

This can only be over-ridden by a paged ROM on initialisation or by
intercepting BREAK, see OSBYTE calls &F7 to &F9.

24.1.3 Read/write reset intercept code OSBYTE
calls

Call address &FFF4
Indirected through &20A
A=&F7 (247)

A=&F8 (248)

A=&F9 (249)

<NEW VALUE>=(<QLD VALUE> AND Y} ECR X

The old value is returned in X. The contents of the next location are
returned in Y.

The contents of these locations must be JMP instruction for BREAKS to
be intercepted (the operating system identifies the presence of an
intercept by testing the first location contents equal to &4C -JMP). This
code is entered twice during each break. On the first occasion C=0 and is
performed before the reset message is printed or the Tube initialised.
The second call is made with C=1 after the reset message has been
printed and the Tube initialised.

24.1.4 Read type of last reset OSBYTE call

Call address &FFF4
Indirected through &20A
A=&FD (253)

<NEW VALUE>=(<OLD VALUE> AND Y} EOR X

The old BREAK type is returned in X.

420

This location contains a value indicating the type of the last BREAK
performed.

0 = soft BREAK
1 = power up reset
2 = hard BREAK

24.1.5 Read/write start-up option byte OSBYTE
call

Call address &FFF5
Indirected through &20A
A=&FF (255)

This location is used similarly on the BBC microcomputer and the
Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old start-up byte value is returned in X.

On the BBC microcomputer this location is determined by the 8 links on
the right hand front corner of the keyboard pcb following a hard
BREAK.

On the Electron there are no keyboard links, the default value of this
location is &FF (255) and this OSBYTE is the only way of resetting the
start up options. The bits referring to disc drive timings are not relevant
on this machine.

bits 0 to 2 screen MODE selected following reset.(MODE number =
3 bit value)

bit 3 if clear reverse action of SHIFT+BREAK.

bits4and 5 used to set disc drive timings {see below)

bits6and7 not used by operating system.(reserved for future

applications)

421

Disc drive timing links :- 24.2.2 Read/write printer destination OSBYTE
call
link |link |step |settle 1 head a
3 |4 |timejtime |load Call address &FFF4
1 1 4 |16 0 Indirected through &20A
L o 16 16 10 A=&F5 (245)
0 1 6 50 32
o |0 124 |20 64 <NEW VALUE>=(<OLD VALUE> AND Y} EOR X

The old value is returned in X. The contents of the next location are
returned in Y.

24.2 Printer OS calls

This call is used by OSBYTE &5/*FX 5. Using this call does not check for
the printer previously selected being inactive or inform the user printer
routine,

24.2,1 Select printer destination OSBYTE call

Call address &FFF4
Indirected through &20A

Acls (5) 24.2.3 Set printer ignore character OSBYTE call
Call address &FFF4
Indirected through &20A

A=&06 (6)

Entry parameters:
X determines print destination

X=0 Printer sink (printer output ignored) Entry parameters:
X=1 Parallel output X contains the character value to be ignored
X=2 R5423 output (will act as sink if
RS423 is enabled using OSBYTE with A=3) On exit:
X=3 User printer routine A is preserved
X

=4 Net printer

X contains the previous setting
X=5-255 User printer routine

Y and C are undefined

Default settings:
BBC Micro *FX 5,1

24.2.3 Read/write printer ignore character
Electron *FX 5,0

OSBYTE call

On Exit:
A is preserved Cal} address &FFF4
X contains the previous setting Indirected through &20A
Y and C are undefined A=&F6 (246)

Interrupts are enabled by this call
This call is not reset to default by a soft break

<NEW VALUE>={(<OLD VALUE> AND Y) ECR X
The old value is returned in X.

This call is used by OSBYTE &6.

122 423

24.2.4 User print vector, UPTV
Indirection address &222

A user print routine can be implemented by intercepting this vector.
Whenever a change in printer type is made using OSBYTE &05 the print
vector is called. A user print routine should respond when printer type 3
is called.

The operating system will activate the user printer routine and
thereafter call it regularly at intervals of 10 milliseconds. Characters
will be placed in the printer buffer, and it is up to the user printer routine
to remove characters and send them to the printer hardware. When the
printer routine finds that the buffer is empty it should then declare itself
inactive. The operating system will then re-activate the routine when
characters start entering the buffer again.

The user printer driver should preserve all registers and return via the
old UPTV value.

On entry:
X contains the buffer number to be used
Y contains the printer number (i.e. the *FX 5 value)

N.B. The routine should only respond if it recognises the printer number
as its own. .

The accumulator contains a reason code for the call:

A=)

When the printer driver is active the operating system makes this call
every 10 ms. The printer driver should examine its hardware and if it is
ready for another character should remove a character from the
assigned buffer and send it to the printer. A call to the REMV vector
should be made to obtain the character (see section 6.9.2). When the
printer driver has emptied the printer buffer it should then declare itself
inactive by making an OSBYTE call &7B. This will allow the user to
select a new printer driver using OSBYTE &5, will stop further calls
with A=0 and thereafter when the printer buffer is used again will cause
a call with A=1 to be made (see below).

A=l

When a printer driver is inactive this call is made to tell the routine that
the printer buffer is no longer empty and the printer driver should now
become active. If the printer driver is able to become artive it should
remove a character from the assigned buffer. If the buffer is not empty it
should return with the carry flag clear to indicate that it is now active.

424

Having thus signalled itself as active, the printer driver will receive the
10 ms calls with A=0.

A=2

When the VDU drivers receive a VDU?2, this call is made. Characters
may be printed even when this control character has not been received if
certain *FX3 options are selected.

A=3
This call is made when a VDU3 is received.

A=5
The selection of a new printer driver will cause this call to be made to
the printer vector. Any OSBYTE &S5 call causes this call to be made.

24.2.5 Printer driver going dormant OSBYTE call

Call address &FFF4
Indirected through &20A
A=&7B(123)

Entry parameters:
X should contain the value 3 (printer bufferi.d.)

This OSBYTE call should be made by user printer drivers when they go
dormant. The operating system will need to wake up the printer driver
if more characters are placed in the printer buffer.

On exit:
A and X are preserved
Y is preserved in the i/o processor
(N.B. but not passed across the Tube)
Cis undefined

24.3 *CODE and *LINE

*CODEx,y (*CO.)
OSBYTE &88

Call address &FFF4
Indirected through &20A
A=&88(136)

Entry parameters:
X and Y registers passed on to user vector (USERV)

425

. . . . 30 USERV=£200
This command enables the user to incorporate his own command into . . 40 FOR opti=0 TC 3 STEP3
the operating system command table. *CODE executes machine code 50 Pa=MC%

indirected through the user vector (USERV) at locations &200,&201 -6;8 C[>P'I‘ opts
(low-byte, high-byte). The default contents of the user vector produce . . 80 .write \ *CODE L INE?
" " : - 1 * or 2
the "Bad Command" message. The machine code at USERYV is entered 138 ggg gode \ enecute machine code if *LINE
with A=0, X=x and Y=Y- 110 BRE \ otherwise print out error message

120 NOP
For example: . 130]

140 $P%="*CODE not enabled"
10 DTM MC% 100 150 P2=P%+LENSPS%

20 OSASCI=&FFE3 160 [
30 USERV=£200 . 170 BRK
40 FOR opt%=0 TO 3 STEE3

180 .code STX &70 \ *LINE code entry point and store
50 Pa=MCH 181 STY &71 \ string address: low-byte,high-byte
60 [182 LDY #0 \ set up Y register for 1nlde;<1ng
70 OPT opt% . . 183 .loop LDA (&70),Y \ Post-Indexed Indirect addressing
80 .write 10 JSR OSASCI \ print out character
90 cMP #0 \ *CODE or *LINE ? 19t INY t ;ncgerfnent 13613; string
100 BE d % if *CODE call act it 192 CMP 480D test for en .
110 BRE Foce \ if *LINE c:ll ;ginltlngr;: message . . 193 BNE loop \ if not last character go round again
120 NOP 200 RT3 \ finisked
230] 210]
140 $P%="*LINE not enabled" 220 NEXT
150 P%$=P%+LENSES . 230 ?USERV=write MOD 256
160 { . 240 ?(USERV+1l)-=write DIV 256
180 oo ' OSBYTE call
180 .code TXA \ transfer contents of X reg. to Acc. i neous calls
130 JSR OSASCI \ print ASCII character . 24.4 Miscellane
200 RIS \ return to BASIC .) . .
210] - This section contains a collection of miscellaneous operating system
220 NEXT calls.
230 ?USERV=write MOD 256
240 ?(USERV+1)=write DIV 256 . .
24.4.1 Identify Machine/OS version OSBYTE
This example prints out the ASCII character corresponding to the value . calls
of the first parameter given to the *CODE command. After this .
program has been run typing in "*CODE 65" or "*FX 136,65" will cause OSBYTE &00 - Read OS version number
a letter "A" to be printed. The second parameter (stored in Y) if included,
is ignored. . . Call address &FFF4
Indirected through &20A
*LINE<text> (*LL) A=0
This command executes machine code at the location pointed to by the . . Entry parameters: .
contents of the user vector (USERV) at locations &200,&201 (low- X=0 Execute BRK, print OS5 version
bytehigh-byte). The command enters this code with the A=1, X=least . X<>0 RTS with OS5 version returned in X
significant byte of string address and Y=most significant byte of string . ’
address. *LINE provides an easy method of incorporating a user
function into the operating system command table. .
e.g. .
10 DIM MC% 100
20 OSASCI=SFFE3 .
427

426

On exit:

X=0, OS5 1.00 (Early BBC B or Electron OS 1.00)
X=1, OS 1.20 or American OS

X=2, 0§ 2.00 (BBC B+)

X=3, 05 3.2 (Master 128)

X=4, OS 4.0 (Master ET)

X=5, 0S5 5.0 (Master Compact)

A and Y are preserved

Cis undefined

OSBYTE &81 - Read machine type
Call address &FFF4

Indirected through &20A
A=81
Entry parameters:
X=0 Execute BRK, print OS5 version
Y=&FF RTS with OS version returned in X
On exit:
A=(BBC microcomputer OS 0.10
A=1 Acorn Electron OS 1.00
A=&FF BBC microcomputer OS 1.00 or 1.20
A=&FE BBC microcomputer OS 1.10 (USA)
A=&FD Master 128 OS 3.20
A=&FC BBC microcomputer OS 1.20 (West Germany)
A=&FB BBC B+ OS 2.00
A=&FA Acorn ABC OS
A=&F5 Master Compact OS 5.10

OSBYTE call &F0 - Read country code

Call address &FFF4
Indirected through &20A

A=&F0 (240)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The country code value is returned in X.

This location contains a value indicating the country for which this
version of the operating system has been written.

country code country

0
1

United Kingdom
United States

428

24.4.2 Set user flag OSBYTE call

Call address &FFF4
Indirected through &20A
A=1

Entry parameters:
The user flag is replaced by X

On exit:
X=old value

Read/write user flag OSBYTE call

Call address &FFF4
Indirected through &20A
A=&F1 (241)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old flag value is returned in X.
This location is reserved as a user flag for use with *FX 1.

Default value 0.

429

Glossary

Address bus - 16 electrical connections between the CPU and memory.
Each line can be at logic0 or 1, allowing 216 (65336) different locations.

Active low - signals are valid when they are at logic level 0.

ADC (Analogue to digital converter) - an electronic circuit which can

accept an analogue voltage and provide a digital output of that voltage.

Asynchronous - two devices operate asynchronously when they both
operate independently.

Baud rate - defines the rate at which a serial data link transfers data.
One baud is equal to one bit of data transferred per second.

Bidirectional- a communication line is bidirectional if data can be
transmitted and received over it. The databus is bidirectional.

Bit of memory - this is the fundamental unit of a computer's memory. It
may only be in one of two possible states, usually represented by 0 or 1.

Buffer - a software buffer is an area of memory set aside for data in the

process of being transferred from one device or piece of software to
another.

Byte of memory - 8 bits of memory. Data is normally transferred
between devices one byte at a time over the data bus,

CMOS (Complementary metal oxide semiconductor) - a type of chip
manufacturing technology which produces low power chips. The
CMOS RAM and real time clock can therefore operate from a small
battery for long periods.

CPU (Central processing unit) - the 6502 in the Acorn-BBC computers is

the chip which does all the computing work associated with running
programs.

Data bus - a set of eight connections over which all data transactions
between devices are sent.

EEPROM (Electrically erasable programmable memory) - as used in the
Master Compact to store variables without power applied to the
memory chip. Unlike the Master 128 CMOS RAM, no battery is needed.

EPROM (Erasable programmable memory) - will retain data written
into the device by a special programming unit even when power is

430

switched off. Erroneous data can be removed by exposing the chip to UV
light, allowing the device to be re-programmed.

File handle - a single byte value which uniquely identifies an open file.

ination of pressing the CAPS
irm keys - only on the Electron. The combination of p
ill?;lFUeNysé keys?f with other keys on the keyboard produces the codes for
the normal function keys (which aren't present on the Electron), and
produces a range of text strings when pressed.

Handshaking- this type of communications protocol ig used when dat'a.1
are being transferred between two asynchronous devices. The esse}r:tla

feature of the handshaking signal is to inform the sender of data when

the receiver of data is able to accept data.

High - sometimes used to designate logic level 'T".

Latch - is used to retain data applied to it after that data has been "
removed. It is rather like a memory location, with the output from the
bits within the location being connected to some hardware.

LED (Light emitting diode) - an electronic device which emits light.
Low - sometimes used to designate logic 0".

Mnemonic - the name given to the text string which deﬁn_es a Rarticular
6502 operation in the BASIC assembler. LDA is a mnemonic which
means load accumulator.

MOS (Machine operating system) - see OS (operating system).
Nibble of memory - 4 bits of memory.

i i 02 instruction. For
de - the name given to the binary code of a 65
gcgigpﬁa, &AD is th%al hex opcode which means load accumulator.

Open collector - this is a characteristic of a transistor output. It simply
means that the collector pin of the transistor is not driving a resistive

load, ie. it is open.

i i ident in ROM
OS (Operating system) - the machine code program resi i
which Ic::.ontrolsg all the basic functions for the computer. These include. 4
handling input and output to/from the screen, memory, discs, keyboar
etc. and handling all low level functions like interrupts.

Page - a page of memory in the 6502 memory map is &100 (256) bytes
long. There are 256 pages in the 65536 byte memory map.

Parallel - data transfers occur along several lines simulataneously.

431

Poll%ng - a method of interrogating devices to check if they need to be
serviced.

RAM (Random access memory) - memory which can be both written to
and read from.

Rollover-— z.illows two keyboard keys to be pressed simultaneously. The
f1rst. key Is in the process of having a finger removed, whilst the next is
having a finger applied.

ROM (Bead only memory) - memory which can only be read from, but
not written to. ’

Serial - data transmitted along only one line is t i i i
. ransmitted
one bit at a time. 8 Y ' serially,fe

Stack - page &01 of memory used for tem i

' porary data storage. Data is
pushed onto the stack In sequence, then removed by pullingigt off. The
last byte to be pushed is the first byte to be pulled. The stack is mainly
used to store return addresses from subroutines.

TTL (Transistor transistor logic) - a type of chip manuf: i
ctur
technology used in many small scale lrcyhpipe;. ¥ e

ULA (Uncommitted logic array) - a silicon chip which has been specially
committed by Acorn to perform a particular function.

Word of memory - two bytes of memory, fe. 16 bits.

432

. »
Bibliography
6502 Assembly Language Programming, L.A Leventhal, OSBORNE/Mc
Graw Hill, Berkeley, California

6850 Asynchronous Communications Interface Data Sheet, Thomson
Semiconductors, 1981

Advanced User Guide for the Acorn Electron, Dickens & Holmes, Adder
Publishing Ltd., 1984

Advanced User Guide for the BBC Microcomputer, Bray, Dickens &
Holmes, Cambridge Microcomputer Centre, 1983

BASIC ROM User Guide for the BBC Micro, M.D.Plumbley, Adder
Publishing Ltd., 1984

BBC Microcomputer system User Guide, John Coll, BBC Publications
1981, revised by Acorn Computers, 1985

Disc System User Guide, Brian Ward, BBC Publications, 1982
Mastér Operating System, David Atherton, Dabs Press, 1987
Master Reference Manual part 1, Acorn Computers Ltd., 1986
Master Reference Manual part 2, Acorn Computers Ltd., 1986
Programming the 6502, Rodnay Zaks, Sybex, 1980

Speech System User Guide, Acorn Computers Ltd., 1983

433

*CODE, 425
*FX calls: OSBYTE, 110
*LINE, 426
*ROM data format, 317
*T'V commrand., 184
TMHz bus, 402
1MHz bus/cartridge selection, 413
2's Complement, 15
65c12: addressing modes, 25, 27
BCD, 18
100Hz paged ROM polling system, 3235
177¢ Control Registers, 272
6502 second processor, 331
6522 IR bit mask OSBYTE, 130, 131
6522 VIAs, 380
6845 CRTC, 188
6850 control register, 244
6850 IRQ bit mask OSBYTE, 131
32016 second processor, 350
76489 sound chip, 375
Absolute addressing, 20
Absolute, X or Y addressing, 22
ACCCON, 162
Accumulator - A, 28
Accumulator addressing, 19
Active low, 430
ADC system, 365
ADC, 32
conversicn complete event, 120
ADC, 430
Add with Carry, 32
Address bus, 430
Addressing Modes, 19
Analogue to digital converter, 365, 430
AND, 13
Animation, 202
Arithmetic Shift Left, 34
ASCII character values, 165
ASL, M4
assembler, 6
BRK handling, 12
CALL and USR, 12
conditional assembly + macros, 13
delimiters, 7
EQUates, 10
labels, 10
location counter (P%), 9
mnemonics, 29
option, 8
two pass, 10
zero page, 14
Asynchronous, 430
BASIC ROM number, 324
Baud rate setting, 242
Baud rate, 430
BBR*, 35
BBS**, 36
BCC, 37
BCD, 17
65C12, 18
BCS, 38

BEQ, 39
Bidirectional, 430
binary coded decimal, 17
Bit of memory, 430
BIT, 40
BMI, 41
BNE, 42
BPL, 43
BRA, 44
Branch always, 44
Branch if negative flag set, 41
Branch if overflow clear, 46
Branch if overflow set, 47
Branch on Bit Reset, 35
Branch on Bit Set, 36
Branch on Carry Clear, 37
Branch on Carry Set, 38
Branch on positive result, 43
Branch on result not zero, 42
Branch on result zero, 39
Break flag - B, 29
BREAK, 419
BRK, 12, 45
associated OS calls, 132
BRK vector, 132
example BRK handling routine, 133
interrupt handling, 125
BRKY {(&202), 132
Buffer, 430
Buffers control and management, 136
buffers: example program, 139
id numbers, 136
using the buffer vectors, 138
BVC, 46
BVS, 47
Byte of memory, 430
CALL, 12
Carry flag - C, 28
Cartridge Interface, 413
Casette/R5423 setection, 246
Cassette system interrupt use, 126
Character input, 105
Character output, 103
Character set, 165
Chatacters, user defined, 171
CLC, 48
CLD, 49
Clear carry flag, 48
Clear decimal flag, 49
Clear interrupt disable flag, 50
Clear memory. 51, 91
Clear the overflow flag, 52
CLI, 50
Clocks, 352
CLR, 51
CLV, 52
CMOS RAM, 352
CMOS RAM/EEPROM, 356
CMCOS Real Time Clock, 353
CMOS, 430
CMP, 53

434

CNPY, 137
Colours: logical & actual, 207
Compare memory and accumulator, 33
Compare memory with X register, 55
Compare memory with Y register, 56
Conditional assembly, 13
Converting files to *ROM format, 314
Count/ purge buffer vector, 137
country code, 428
(CP/M disc format, 349
CPU, 430
{rX, 55
CrY, 56
CTRLG, 374
Cursor width control, 206
cursor editing, 225
Cursor, 195
Data bus, 430
DEC/A, 57
Decimal mode flag - D, 29
Decrement memary by one, 57
Decrement the Y register by one, 59
Decrement X register by one, 58
DEX, 58
DEY, 59
EEPROM, 430
Electron external sound, 375
FElectron firm keys, 231, 292
Electron ULA [RQ mask OSBYTE, 132
ENVELOPE command, 372
EOR, 80
EPROM, 430
ESCAFE character setting, 232
ESCAPTE, 419
escape: escape detected event, 121
related OS5 calls, 147
Events and second processors, 333
Events, 119
enable/disable OSBYTEs, 121
event generation call, 113
event vector, EVNTV, 119
example program, 122
EVNTYV, 113, 11%
Exarnine buffer status OSBYTE, 145
Exclusive OR, 60
Exploding character definitions, 171
Extended Vectors, 312
File handle, 431
Filing System Calls, 112
Filing system: RAM control, 164
Filing systems, 250
*ROM, 264
cassette, 261
disc, 264
IEEE488, 262
network, 268
telesoft, 269
Firm keys on Electron, 231
Firm keys, 431
flashing colours, 178
Floppy Disc Hardware, 270

Flush specific buffer OSBYTE, 143
Forced interrupt, 45
FRED, 153
FRED, 403
Function keys, 225
FX command: OSBYTE, 110
Get character from buffer OSBYTE, 145
graphics cursor position, 175
GSINIT, 107
GSREAD, 108
Handshaking, 431
High, 431
1/Q0 routines, 103
Immediate addressing, 19
Implicit addressing, 19
INC/A, 61
Increment memory by one, 61
Increment the Y register by one, 63
Increment X register by one, 62
Indexed Addressing, 22
Indirect addressing, 21
INKEY, 221
Input stream selection, 241
input buffer: buffer full event, 120
character entry event, 120
insert character OSBYTE, 146
input stream, 105
Insert value into buffer OSBYTE, 144
insert value into buffer vector, 136
Installing ROMs in the B Plus, 289
Installing ROMs in the Master 128, 290
Installing ROMs in the Master Compact, 291
Installing ROMs in the medel B, 288
INSV, 136
Intercepling interrupts, 129
Interlace, 193
Interrupt disable - 1, 28
Interrupt Request Vector, 129
Interrupts and second processors, 335
Interrupts, 124
interrupt interception, 12%
05 interrupt handling routine, 125
Interval timer, 352
interval timer: event, 120
INX, 62
INY, 63
IRQIV (&204), 125
IRQ1V, 129
1RQ2V, 129
JIM, 153
1M, 403
JMF, 64
joystick, 365, 371
J5R, 65
Jump Subroutine, 65
Jump to new locatior, 64
Kev values, 219
Keyboard scan, 221
keyboard auto-repeat delay, 224
keyboard disable, 228
Language ROMs, 291

435

language ROM number, 324
Languages in ROM, 284
LDA, 66
LDX, 67
LDY, 68
LED, 431
Light pens, 196
Load accumulator from memory, 66
Load X register from memory, 67
Load Y register from memory, 68
Logical AND, 33 ’
Logical Shift Right, 69
Low, 431
LER, 69
Machine Code Arithmetic, 15
Machine ¢perating system, 431
machine code, 3
Macros, 13
Maskable Interrupts, 125
memory, 155
access control register, 162
calls concerning memory use, 157
O5 allocation + use, 114
shadow, 158
Mnemonic, 431
mnemonic, 30
MOs, 431
Negative flag - N, 29
network: error event, 121
Nibble of memory, 431
NMI, 125
No operation, 70
Non Maskable Interrupts, 125
Non-vectored OSRDCH, 106
Non-vectored OQSWRCH, 103
NOP, 70
Opcode, 431
Open collector, 431
Operating Systemn Calls, 102
Operating system, 431
operating system: use of memory, 114
zero page use, 114
OR memory with accumulator, 71
ORA, 71
OS startup message, 420
OS5 version, 427
0s, 431
OSASCI, 104
OSBYTE, 109
&00 identify OS version number, 427
&01 set user flag, 429
&02 select input stream, 105
&02 select input stream, 241
&03 select output stream, 108
&03 select output stream, 241
&04 enable/disable cursor editing, 225
&05 select printer destinaticn, 422
406 set printer ignore character, 423
&07 set receive baud rate, 242
&08 set transmit baud rate, 242
&9 set flash mark duration, 178

436

&0A set flash space duration, 179
&0B set keyboard auto-repeat delay, 224
&O0C set keyboard auto-repeat rate, 224
&0D disable events, 121
&0E enable events, 121
&OF flush selected buffer(s}, 143
&10 select ADC channel, 366
&11 force ADC conversion, 367
&12 reset function keys, 227
&13 wait for vertical sync., 182
&14 explode character definition RAM, 172
&14 restore default font definitions, 172
&15 flush specific buffer, 143

&16 increment polling semaphote, 325
&17 decrement polling semaphore, 325
&18 select external sound (Electron), 375
&19 restore default font definitions, 173
&44 Test for sideways RAM, 159

&54 sideways RAM allocation, 160
&68B select 1MHz bus/cartridge, 413
&6C direct screen memory for access, 157
&6D make temporary fs permanent, 260
&70 select memery for VDU, 158

&71 select memory for display, 158

&72 write shadow memory use, 159

&73 blank or restore palette (Electron), 181
&74 reset sound system {Electron}, 375
&75 read VDU status, 176

&76 make LEDs show keyboard status, 228
&77 close "SPOOL/*EXEC files, 257
&78 write current keys pressed, 222

&79 keyboard scan, 221

&7 A keyboard scan from &10, 222

&7B printer driver going dormant, 425
&7C clear ESCAPE condition, 147

&71) set ESCAPE condition, 147

&7E clear ESCAPE + effects, 147

&7F check for EQF, 258

&80 read ADC channel, 365

&80 read buffer status, 143

&81 read key with time limit, 221

&81 read machine type, 428

&82 read high order address, 257

&83 read OSHWM, 117

&84 return HIMEM, 157

&85 return HIMEM for a given mode, 157

&B6 read i/p cursor position, 175

&86 read o/p cursor position, 174

&B7 read chr and screen mode, 174

&88 *CODFE, 425

&89 *MOTOR, 262

&BA insert value into buffer, 144

&8B "OPT, 258

&BC *TAFTE, 262

&8D *ROM, 264

&8E select language ROM, 322

&8BF issue ROM service call, 322

&90 *"TV command, 184

&1 get character from buffer, 145

&92 read from FRED, 403

&93 write to FRED, 403

&94 read from JIM, 403
&95 write to JIM, 403
496 read from SHEILA, 403
&97 write to SHEILA, 403
&98 examine buffer status, 145
&99 put character into i/p buffer, 146

&9A reset flash cycle (Electron), 180

&YA write video ULA & OS copy (B/M), 180
&9B write ULA palette & OS copy, 181
&9C r/w 6850 controi register, 244

&9D fast tube BPUT, 254

&9E read from speech processor, 374

&SF write to speech processor, 374

&AQ read VDU variable value, 183

&A1 read CMOS RAM/EEFROM, 356

&A2 write to CMOS RAM/EEFROM, 358

S A4 check for 6502 code, 326

L&AG-&AT7 r/w address of OS variables, 118
A8 read lo address ROM pointer table, 323
&A9 read hi address ROM pointer table, 323
&AA read lo address ROM info. table, 323
&AB read hi address ROM info table, 323
&AC read key translation table lo addr., 223
&AD read key translation hi address, 223
&AE read VDU variables lo address, 183
&AF read VDU variables hi address, 183
&B0 r/w CFS timeout counter, 249

&B1 read input source, 105

&B2 r/w keyboard semaphore, 230

&B3 read /write primary OSHWM, 117
&B4 read/write OSHWM, 117

&B5 r/w R5423 mode, 243

&B6 read character explosion state, 173
&B7 CFS/RFS switch, 263

&B8 read ULA control OS copy, 182

&B9 r/w polling semaphore, 326

&B9 read ULA palette OS5 copy, 182

&BA read active ROM at last BRK, 135
&BB read BASIC ROM number, 324

&BC read current ADC channei, 367

&BD read maximum ADC channel, 367
&BE 1/w ADC conversion type, 368

&BF r/w R5423 use flag, 244

&CD0 read 6850 O5 copy, 245

&C1 r/w flash counter, 180

&C2 r/w flash mark duration, 179

&C3 r/w flash space duration, 179

&C4 r/w keyboard autc-repeat delay, 224
&C5 1/w keyboard auto-repeat rate, 225
&C6 r/w *EXEC file handle, 258

&C7 r/w *SPOOL file handle, 258

&C8 r/w ESCAPE+BREAK effects, 419
&C8 r/w ESCAPE/BREAK effect, 148

&C9 r/w keyboard disable, 228

&CA r/w keyboard status, 229

&CB r/w Electren IRQ bit mask, 132

&CB r/w R5423 handshake level, 246
&CCr/w firm key pointer (Electron), 231
&CC 1/w R5423 input suppression flag, 246
&CD r/w firm key string len. (Electron}, 231
&CD 1/w R5423/ cassette flag, 246

&CE-&DO
&D1 r/w speech suppression flag, 373
&D2 r/w sound suppression flag, 373
&D3 set BELL channel, 374
&M set BELL amplitude/envelope, 374
&D?5 set BELL frequency, 374
&D6 set BELL duration, 374
&D7 r/w OS startup message suppression, 419
&D8 1/ w soft key string length, 227
&D9 r/w lines since page halt, 176
&DA r/w VDU queue, 168
&DB r/w TAB key character, 231
&DC «/w ESCAPE character, 148
&DC 1/w ESCAPE character, 232
&DD r/w chrs &CO-F status, 226
&DE r/w chrs, &D)-F status, 226
&DF r/w chrs. &EO-F status, 226
&EQ r/w chrs, &F0-F status, 226
&E1 r/w fn. key status, 226
&E2 r/w shift + fn. key status, 226
&E3 r/w ctrl + fn. key status, 226
&E4 r/w ctrl+shift+n. key status, 226
&E5 t/w ESCAPE key status, 148
&E6 r/w ESCAPE effects, 149
&E7 t/ w user via IRQ bit mask, 130
&EB r/w 6850 IRQ bit mask, 131
&EB r/w 6850 IRC} mask, 247
&E8 r/ w ext. sound semaphore (Electron), 375
&E9 r/w system via IRQ mask, 131
&EA r/w Tube flag, 347
&EB test presence of speech processor, 373
&EC r/w output stream flag, 109
&EC select output stream, 242
&ED r/w cursor editing status, 225
&EE set base for numeric keypad, 230
&F0 read country code, 428
&F1 r/w user flag, 429
&F2 read serial ULA OS copy, 247
&F3 read timer state, 353
&F4 r/w soft key consistency flag, 227
&F5 r/w printer destination, 423
&F6 r/w printer ignore character, 423
&F7 r/w reset intercept code, 420
&F8 r/w reset intercept code, 420
&F9 r/w reset intercept code, 420
&FA r/w flag used by osbyte &70, 158
&FB r/w flag used by osbyte &FB, 159
&FC read language ROM number, 324
&FD read last BREAK type, 420
&FE r/w shift key effect, 230
&FE RAM size, 160
&FF r/w start-up cption byte, 421
r/w 05 call interception status, 118 !
unknown, 111
QOSCLI, 112
QOSEVEN, 113, 122
OSNEWL, 104
OSRDCH, 105
OSRDRM, 113
QOSRDRM, 321
QOSRDSC, 113

437

OSWORD, 109
&00 read string, 106
&01 read system clock, 352
&02 write system clock, 352
&03 read interval timer, 352
&04 write interval timer, 352
&05 read i/0 processor memory, 347
&06 write i/0 processor memory, 347
&07 SOUND commard, 372
&08 ENVELOPE ccmmand, 372
&09 read pixel value, 175
&0A read character definition, 171
&0B read palette, 178
&0C write palette, 177
&0D read previous graphics position, 175
&0F read real time clock, 353
&O0F wrtite real time clock, 355
OSWRCH, 103
OSWRSC, 113
Output stream selection, 241
output buffer: buffer empty event, 120
output stream, 108
Overflow flag - V, 29
Page, 431
Paged ROMs, 283
Paged ROMSs: hardware control, 161
palette, 177, 207
FANDQRA., 351
PANOS operating system, 351
Parallel, 431
PHA, 72
TFHP, 73
PHX, 74
PHY, 75
PLA, 76
PLOT numbers, 169
PLP, 77
PLX, 78
PLY, 79
Polling, 432
Post-indexed indirect addressing, 24
Pre-indexed absolute indirect addressing, 25
Pre-indexed indirect addressing, 23
Printer driver going dormant, 425
Printer ignore character, 423
Printer OS calls, 422
Printer VIA, 351
program counter: 6502, 29
Pull accamulator off stack, 76
Pull status register off stack, 77
Pull X from stack, 78
Pull ¥ from stack, 79
Push accumulator onto stack, 72
Push Status register onto stack, 73
Push X register onto stack, 74
Push Y register onto stack, 75
RAM Access Control, 161
RAM, 432
RAM: size (BBC model A or B), 160
Read buffer status OSBYTE, 143
Read character from, 108

438

Read line from input OSWORD, 106
Relative addressing, 24
Remove value from buffer vectar, 137
REMV, 137
Return from Interrupt, 82
Return from subroutine, 83
ROL, 80
Rollover, 432
ROM paging register, 161
ROM, 432
ROM/RAM installation, 287
ROR, 81
Rotate one bit left, 30
Rotate one bit right, 81
R5232, 233
R5423 handshake level, 246
R3423 system interrupt use, 126
R5423/cassette selection, 246
RS423: error event, 121
RTI, 82
RTS, 83
SBC, 84
Screen mode memory maps, 210
Screen state, reading, 174
screen format, 189
Scrolling with hardware, 200
SEC, 85
Second processors, 327
SED, 86
SEI, 87
Select 1IMHz bus/cartridge, 413
Select input stream, 241
Select output stream, 241
Serial system interrupts, 126
serial port, 240
Scrial, 432
Service ROM example, 305
Service ROMs, 294
Set carry flag, 85
Set decimal mode, 86
Set interrupt disable flag, 87
Shadow RAM, 163
shadow memory for display OSBYTE, 158
SHETLA, 152
SHEILA, 403
Sideways scrolling, 201
sideways RAM: allocation, 160
test for OSBYTE, 159
Soft keys, 227
Sound, 372
76489 chip, 375
Speech processor, 379
Speech, 372
STA, BB
Stack Pointer - SP, 29
Stack, 432
Status Register, 28
Store accumulator, 88
Store X, 89
Store Y, 20
string input, 107

STX, 89 addressing modes, 22, 26
STYI 90 05 allocations, 114
STZ, 91

Subtract memory from, 34

System clock, 352

System VIA interrupts, 127
System VIA, 384
TAB character setting, 231
TAX, 92
TAY, 93
Teletext, 205
Test and reset bits, 94
Test and set bits, $5
Test memory bits, 40
Transfer A to X, 92
Transfer Ato Y, 93
Transfer 5 to X, 96
Transfer X to A, 97
Transfer X o 5, 98
Transfer Y to A, 99
Transistor transistor logic, 432
TRB, 94
TSB, 95
TSX, 96
TTL, 432
Tube™, 327
TXA, 97
TXS, 98
TYA, 99
ULA, 432
Unknown OSWORD, 111
unknown OSBYTE calls, 111
Unused flag, 29
UPTV, 424
User defined characters, 171
User event, 121
User print vector, 424
User VIA interrupts, 129
User VIA, 381
user flag, 429
user vector (USERV), 425
USERYV, 426
USERV: unknown OSWORDs, 111
USR, 12
VDUJ code table, 166
VDU extension vector, 170
VDU23 expansion, 168
vDUV, 170
Versatile Interface Adapters), 380
vertical sync: event, 120
Video hardware, 187
Video memory use, 184
videc system, 165
Word of memory, 432
X Index Register - X, 28
Y Index Register - Y, 28
Z80 OSWORD call, 349
Zero flag - Z, 28
Zero page indirect addressing, 26
Zero page X addressing, 22
zero page, 14, 20

439

