
Me & My Micro
Eight games on cassette for the Yorkshire Television series

If you write computer programs such as HOPPER, STARSHIP COMMAND or
SNAPPER then this cassette isn't for you. Most of us will never be able to
write programs that good in a million years (Some people don't even want
to!). But you can still create a fairly challenging action game, or game of
strategy, or whatever appeals to you, without being a micro whizz kid. That's
what this cassette is about. It's a way of getting to grips with your micro by
means of simple games. Once you have been introduced to using the micro
by these, you can try progressing to programming whatever you want to do;
be it controlling equipment, calculating tax refunds, or playing better games.

The "Me & My Micro" television series is a Yorkshire Television Production,
written and presented by Fred Harris.

Acornsoft Limited, Betjeman House, 104 Hills Road, Cambridge CB2 1LQ,
England.
Copyright © Acornsoft Limited 1984 SLX18

 2

Contents
__

Introduction 3
__
Loading instructions 3
Breaking into the programs 4

Playing instructions 5
__
Modifying the programs for the BBC Microcomputer 6

Program 7
__
Monsterzap 8
Bomber 12
Mazerace 14
Kongo 17
Anagrams 21
Twister 23
Matchem 26
Pairs 29

Acknowledgements to Richard Freeman
Downloaded from www.acornelectron.com

 3

Introduction
__

The eight games included in this package are:

MONSTERZAP ANAGRAMS
BOMBER TWISTER
MAZERACE MATCHEM
KONGO PAIRS

The games on this cassette are extensions to the ‘core’ programs featured in
the Yorkshire Television series, ‘Me and My Micro’. They have been designed
to encourage you, the player or programmer, to find out more about BASIC
programming.

These games are much slower and less dramatic than most arcade games.
But they are all written in BASIC, and clearly laid out, using labeled
subroutines, so that you can follow exactly how they work.

To find out what is going on you should break into the programs and look at
the listings. Then you can alter them, slow them down, speed them up, and if
you find a more elegant way of doing something, or an improvement, then
produce your own version. These programs are the starting point from which
you can get to grips with your micro, and make it work for you.

Loading instructions

To load and run the first program place the cassette (fully rewound) in the
cassette recorder and type:

CHAIN “MONSTERZAP”

and press RETURN; the ‘Searching’ message should appear on the screen as
you do this. Now press the PLAY button on the cassette recorder and wait
approximately one minute for the program to load. The game will start as
soon as loading is complete.

 4

The other programs can be loaded in the same way using the CHAIN
command.

If you don’t want to run the program then simply LOAD it off the cassette
rather than CHAINing it. For example, type:

LOAD “TWISTER”

and press RETURN; the ‘Searching’ message should appear as you do this.
Now press the PLAY button on the cassette recorder and wait for the program
to load.

Breaking into the programs

If you want to break into the program while it is running, then answer N to
the question

Do you want another game (Y/N)?

This will set MODE 6 and return to BASIC, ready for you to LIST. Then you
can go to work and change things if you want. If you don’t want to wait until
the end of the program then press ESCAPE; this will cause the game to stop
at that point. You can then clear the screen and LIST as above.

 5

Playing Instructions
__

To play any of the games refer to the following instructions.

MONSTERZAP
The Microids have invaded our streets. Use the F key to fire your laser. You
have to zap the monsters within your 20 shots, without hitting the buildings
that they sit between.

BOMBER
Your aeroplane is gliding downwards over a deserted city. Use the F key to
level the skyscrapers to the ground before you crash into them. You have
only 20 shots to ensure a safe landing for your aeroplane. Good luck.

MAZERACE
Manoeuvre the Quacman through the maze in the shortest time possible.
Watch out for the delaying puddles of glue. Use these controls:

X - Right, * - Up, / - Down

KONGO
Kong the gorilla is leaping towards the damsel to carry her off. You must
collect a basket at each level in order to climb the ladder and rescue the
damsel from Kong. Use these controls:

Z – Left, X – Right, * - Up

ANAGRAMS
The first player enters a word. The computer rearranges it, and the second
player must guess that word, letter by letter.

TWISTER
Rearrange the jumbled numbers into the correct sequence in the fewest
number of twists.

MATCHEM
Remember where particular cards are, and try to find all the matching pairs in
the least number of tries. Alternatively try to match more than your
opponent.

 6

PAIRS
There are only three pairs. To pick a card simply press the right number key.
Having mastered PAIRS the younger members of the family might like to
attempt MATCHEM.

Modifying the programs for the BBC Microcomputer

Most of the games will have to be slowed down. You can do this by FOR –
NEXT loops just to hold up the program at some point, or you could add more
sounds, colour, movement and so on.

Getting the programs to run, load and breaking in are all exactly the same as
on the Electron.

 7

Program Outlines
__

The arrangement and theory of each game is explained here along with
certain points specific to the Electron. By looking at both the structure of each
program, and the listings, you should be able to see how ideas can be broken
down, detail by detail, and turned into BASIC.

All the programs use PRINT TAB(column, row); when printing such things as
gorilla, aeroplanes, and anagrams on the screen. In the action games look for
the variables ‘c’ and ‘r’ – column and row. (Most variable names bear some
relation to their use in the program). Other more advanced methods of
printing characters on the screen have been deliberately ignored in order that
the games remain simple, standard and easy to understand.

In these programs the standard method of moving an object, or character,
has been to delete the object, change its co-ordinates, and reprint it at the
new position. Again more advanced methods have been ignored.

Further information, or clarification of commands you do not understand (in
particular the use of Envelopes of *FX calls) can be obtained by referring to
the User Guide for your machine.

 8

MONSTERZAP

Program outline

Below is an outline of the program:

Program structure

Each procedure making up the program outline is broken down into more
details here:

Initialise procedure

 Set up user-defined character definitions
 Set variables to initial values
 Set up envelopes

Draw the scenery

 Print sky and ground
 Plot random stars
 Print skyscrapers

Movement procedure

 Print the ship and then wait for a while so it can be seen well
 Look at the keyboard to see if the F (fire) key is being pressed, if it is
 then carry out the firing procedure
 Print a space at the ship’s present position to delete it
 Change the ship’s coordinates by one column

Initialise procedure

Draw the scenery

Move ship back and forth until all
shots used up or all monsters shot

 9

Firing procedure

 Make a firing sound
 Print a zap effect on the screen
 Print the rubble left over
 Mark which monster is hit, if all the monsters are gone then finish
 Add one to the shots count
 Display the amount of shots used
 If all the shots are used then finish

Finish

 Print the score and ask if another game is required

Notes

The following notes contain comments on some of the BASIC used in the
program.

Ideally the MODE statement will be in the initialize procedure, but MODE
doesn’t work in procedures.

VDU 23,1,0;0;0;0; is a method of turning the cursor off to improve the
appearance of the game. Changing MODE will bring the cursor back again.

*FX 11,0 is an FX call which stops the auto repeat of a key being pressed
down. This means the shots can be more precise as you won’t fire off five at
once.

*FX 15 (or *FX 15,0) is a FX call which flushes (empties) the keyboard buffer.
Here, the program prevents you typing several shots ahead, as it clears the
stored keypresses away each time it loops around.

*FX 12 is a FX call to reset the auto-repeat delay back to their default values
so you can type normally again.

If the column number is MOD with 7 (which gives the remainder after division
by 7, ie numbers in the range 0 to 6) then the monsters lie from 4 to 6.

 So the part of a line
 IF (c MOD 7)>3 AND (c MOD 7)<=6
checks if it is a monster that has been hit

 10

 AND hit(c)=0
checks it hasn’t been hit already
 THEN … … :hit(c)=1
marks this spot down as hit.
When the array hit(x) is full of 1’s, then all the monsters have been hit.

SOUND &11,1,200,4 uses the ENVELOPE number one, and interrupts any
sound that was previously being made. (The &11 part means use channel 1
and interrupt it.)

An idea for extending the program

Mark down which buildings are hit, and print a suitably scathing message if all
the buildings are destroyed.

 11

BOMBER

Program outline

Below is an outline of the program:

Program structure

Each procedure making up the program outline is broken down into more
detail here:

Initialise procedure

 Similarly to MONSTERZAP, set up the envelopes, user-defined

characters, variables and palette

Draw the scenery

 Print sky ad ground
 Print the two star characters at random positions
 Print some sets of skyscrapers

Main movement loop

Initialise procedure

Draw the scenery

Move the aeroplane from left to
right, one row lower on each pass

Fire if key is pressed

Carry on until the aeroplane crashes or all
the buildings are leveled to create a safe landing

 12

 Move the aeroplane’s column position from left to right in a loop
 If a building is detected at the aeroplane’s position then use the crash

routine
 Print the aeroplane
 If the aeroplane’s row is equal to the ground then use the successful

landing routine
 If the F key is being pressed then carry out the firing procedure
 Print the character that was there before the aeroplane (ie blank the

aeroplane out)
 Increase the aeroplane a column by one
 Loop back until the right hand side of the screen is reached
 Bring the aeroplane down by one row (increase the row position value

by one)
 Loop back until your crash into a building, or a safe landing is

achieved.

Firing procedure

 Make a firing sound
 Wipe out the building in the aeroplane’s present column (if there is one

there)
 Add one to the shots counts
 Display the amount of shots used
 If all the shots have been used then print goodbye

Crash

 Flash the background different colours
 Print the crashed message
 Ask if another game is wanted

Success

 Print the success message
 Make a successful sound
 Ask if another game is wanted

Notes

The following notes contain comments on some of the BASIC used in the
program.

 13

If a building is hit, it is marked down in an array, in a very similar way to
MONSTERZAP.

VDU 23;10,32;0;0;0; is another way to turn the cursor off. This is the
command to use if your cursor is to disappear on the Electron and all models
of the BBC microcomputer.

VDU 19 is used to change the colours on the screen. In MODE 1, only 4
colours are allowed (including background), but these can be selected from
any in the palette. Refer to page 102 in the Acorn Electron User Guide or
page 162 in the BBC Microcomputer System User Guide.

Operating system routines may be called from machine code programs and
values may be passed to them or passed back by them in the X and Y
registers. The normal way of accessing operating system calls from BASIC is
to use an *FX call. Parameters may be passed to the operating system in this
way but no values can be returned. The LOOK function has been defined to
allow values to be returned. The reason it is used here is to keep the program
using PRINT and TAB positions, instead of using graphics coordinates and
PLOTing, or using VDU 5. The *FX call used in *FX135, which returns the
character at the text cursor in the X register and the graphics mode in the Y
register. The function only extracts the X register value to read what
character is at a certain TAB position so that stars can be replaced after the
aeroplane has moved over them, and the aeroplane crashing into a building
can be detected.

BBC users are referred to page 432 of their User Guide where there is a
similar routine.

An idea for extending the program

Try making the shot fall as the aeroplane is moving instead of stopping the
aeroplane while the shot is being fired. Also try and demolish the object that
the shot hits first. (Rather than demolishing the object where the shot hits
the ground.)

 14

MAZERACE

Program outline

Below is an outline of the program:

Program structure

Each procedure making up the program outline is broken down into more
detail here:

Initialise procedure

 Set up envelopes for sound effects
 Set all the variables to their initial values – the racer’s starting row and

column and the column the first glue puddle appears in
 Draw the maze walls
 Select the required colours from the palette
 Wait for a key to be pressed to start
 Set up user defined characters

Make a hole/two holes and plant a glue puddle

 If the racer is just about to finish the maze then don’t make another

hole

Initialise procedure

Make first hole and puddle of glue

Repeatedly move the racer until
he is through the maze

Print time and fastest time

Play again if required

 15

 Pick two rows at random for the two possible holes to appear in, and if
only one hole is wanted then make the two row numbers the same

 Print the two holes
 If a puddle of glue is needed then print it, and set a flag to shot it

hasn’t been stepped in yet

Move procedure

 Print racer
 Make a sound
 Look at which key is being pressed
 Print the time taken so far
 Delete the racer
 If the X key is pressed and the racer is opposite a hole then move right

by two columns, and draw the next hole/puddle
 If the / key is pressed then move down by a row
 If the * key is pressed then move up by a row
 If the row coordinates are too large or too small then bring them back

into the maze

Stick in glue

 Make a sound (using an envelope)
 Cancel the possibility of getting stuck again in this puddle by setting a

flag to show it has been stepped in
 Wait until some time has gone by before continuing

Notes

The following notes contain comments on some of the BASIC used in the
program.

*FX11,17 is a *FX call to reduce the delay before a key starts repeating when
held down. This makes the game easier to play as the racer moves off
instantly at its steady pace (it can make typing difficult if you leave your
fingers on the keys).

*FX15 (which is the same as *FX15,0) is a *FX call to flush all the buffers
(short term memories). The particular buffer to be emptied in this case is the
keyboard buffer. While the racer is stuck in the glue the computer stores
away all the key presses in that time, and then uses them when the delaying

 16

routine is finished. Flushing (emptying) the buffer means that you start afresh
(in terms of key pressing) when you are freed from the glue puddle.

An idea for extending the program

Try a more complicated maze where the holes are remembered (in an array
perhaps) and the racer can go back through them. This means dead ends
could be introduced as well.

 17

KONGO

Program outline

Below is an outline of the program:

X

Program structure

Each procedure making up the program outline is broken down into more
detail here.

Initialise procedure

Print the layers of girders,
damsel, Kong and man

Choose ladder and object positions for this
level

Move Kong if needed

If over object then pick it up

If the man is under the ladder and has picked up
the object then move up, by one level

Look at keyboard, delete man and
change his position

Continue until damsel is rescued,
or until Kong has reached damsel

Print results and play again if wanted

 18

Initial procedure

 Define envelopes
 Define user-defined characters
 String user-defined characters together in a string variable
 Set all variables to starting values

Print layers of girders, damsel and Kong

 Print rows of user-defined girder characters in chosen colour for this

level of play
 Print the damsel
 Print Kong in starting position

Choose object and ladder positions

 Pick two random numbers along girder for positions of ladder and

object. If numbers match then choose again until they are different.
Print ladder and object at the two chosen points.

Decision procedures

 If the counter is at a multiple of the difficulty then move Kong towards

the damsel. So if the difficulty was 6, then Kong would be moved once
every six counts of the counter (six times slower than the man).

 If the man’s column is the same as the object’s then pick it up
 If the up key is being pressed and the man is carrying the object and is

over the ladder, then move the position up three tows and go to the
next level.

 If the man is currently over the ladder then delete him by re-printing
the ladder, if not print a space to delete him.

Move the man

 Negative inkey produces zero when not pressed, and –1 when pressed,

so the values returned by testing for the two keys can be used in a
little sum to change the man’s coordinates without an IF statement (Ifs
are fairly slow)

Climb ladder

 19

 Reprint ladder and change character’s position, by three rows, to the
next level

 If the man has reached the damsel then increase the level, score and
level of difficulty

Move gorilla

 Print Kong and change the column variable to be one space to the right
 Subtract 100 from the bonus added to the score for this level because

Kong is one step nearer to the damsel
 If Kong has reached the damsel then end game

End of game

 Read a line of characters from a data statement into a string variable

and replace any stars found with a user-defined character to form large
sized letters

 Print the score
 Make a ‘got her’ noise!
 Ask if another game is wanted; if it is then rerun, if not then change to

MODE 6 and finish

Notes

The following notes contain comments on some of the BASIC used in the
program.

Negative INKEYs, for example c=INKEY(-67), have three advantages over the
ordinary c=INKEY(5) type of statement in this program. It is faster than an
ordinary INKEY (even if the time limit is set to zero). More than one key being
pressed can be detected because it tests for individual keys. Also it does not
look at the keyboard buffer, just at the key itself, so the response when
playing is immediate.

The characters with ASCII codes 8 to 11 will move the cursor about on the
screen when printed (for example PRINT CHR$ 8 will move the cursor left by
one column). These characters can be put into a string variable along with
the user-defined characters of a large shape (for example Kong) to make an
easy way of using this shape. For example string$=CHR$224 + CHR$8 +
CHR$10 + CHR$225 will produce, when string$ is printed, character 224
followed by a move left and then down to print character 225 underneath.
VDU224,8,10,225 does the same thing but is not so friendly.

 20

Since the gorilla only moves to the right, if the shape is extended by adding a
column of spaces to be printed on its left-hand side, then when the gorilla is
printed one character to the right, the spaces will blank out what is left of the
previously printed shape. This means a blanking out shape doesn’t need to be
used as the blanks are part of the gorilla shape.

An idea for extending the program

Try animating the man. For example, make two user-defined characters for
each direction and print one in the even columns, one in the odd columns.
Two suitably designed characters could create the impression of walking. The
same kind of treatment could be applied to Kong. Try making the damsel
rescue the man!

 21

ANAGRAMS

Program outline

Below is an outline of the program:

Program structure

Each procedure making up the program outline is broken down into more
detail here:

Initialise procedure

 Set string variables to null (“”) and clear screen

Player 1 input

 Get a string from player 1; if he has just pressed RETURN then repeat

until he actually types a word in
 Store a copy of this word to check the guesses against

Shuffle word

Initialise procedure

Input player 1’s word to be scrambled

Shuffle the word

Input player 2’s guesses letter
by letter until solved

Show results

Play another game if wanted

 22

 The shuffled version is built up from nothing by extracting a letter
randomly from the original string and adding it to the shuffled string.
The letter is then removed from the original so it isn’t chosen again.
Repeat this until all the letters in the original word have been used
(shuffled)

Player 2 input

 Print the scrambled version
 Set the error count to zero
 Using a FOR-NEXT loop, let player 2 guess the word, one letter at a

time
 If the guess is wrong then increase the error count by one, and make a

sound

Results

 Print accolades
 Make a sound to signal success
 Print the number of errors

Notes

The following notes contain comments on some of the BASIC used in the
program.

After the random colouring of the background at the end of the game, VDU
20 is used. This resets all the colours to their default states, that is,
background black, colour 1 red and so on.

In a copy of the anagram, each time a letter is chosen it is changed to a ‘*’
and on the screen it is coloured in. This means if there are repeated letters
they won’t be coloured in twice as the first occurrence has been changed to a
‘*’.

An idea for extending the program

Try adding a one player option where the computer chooses the word from a
set of words in a DATA statement.

 23

TWISTER

Program outline

Below is an outline of the program:

Program structure

Each procedure making up the program outline is broken down into more
detail here.

Initialise procedure

 Store a copy of the correct sequence and a copy to be shuffled
 Set counter to zero
 Set mode

Instructions

 Print title and explanation of game
 Print example
 Wait for a key to be pressed before starting

Shuffle

Initialise procedure

Instructions

Shuffle

Input the number of digits to be twisted. Twist
That amount until the sequence is correct

Success routine

 24

 Similarly to the ANAGRAMS shuffle, but the string is composed of
numerical characters rather than a word typed in

 The shuffled version is created from nothing by extracting a character
at random from the original and adding it to the shuffled string. The
character is then removed from the original to prevent it from being
chosen again. This is repeated until the original is used up (ie use up
all the numerical characters in original).

Twister Routine

 Check the shuffled version isn’t in order already
 Store the position that the sequence is printed at, and a copy of the

sequence at this stage
 Print over the previous sequence in an ordinary colour (using the

stored copy of that stage and its position)
 Print the new arrangement, in highlighting colour
 Decide how many characters to twist by choosing a number between 0

and 9
 Increase the tries count by one
 Take the letters in reverse order one by one from the section to be

twisted, and put them (now backwards) in another string variable
 Add the right hand section to the twisted part
 Compare this version with the original to see if it is in order, repeat this

routine again if it is not

Success routine

 Print the correct sequence
 Print the number of tries it took
 Flash the background and make a success sound
 Ask if another game is wanted, go back to the beginning if it is

Notes

The following notes contain comments on some of the BASIC used in the
program.

The old arrangement and position of the sequence are stored away so that it
can be printed over later in the non-highlighted way when the new
arrangement is printed up in highlights.

 25

POS is a BASIC function to give the current column of the text cursor and
VPOS gives the current row.

An idea for extending the program

Use a longer sequence, and enable the player to twist any part of that
sequence eg from position 5 to position 12.

 26

MATCHEM

Program outline

Below is an outline of the program:

Program structure

Each procedure making up the program outline is broken down into more
detail:

Introduction

 Print a welcoming screen
 Find out whether one or two players are taking part. If there are two

players then ask their names and set up for two players

Initialise procedure

 Zero the scores and number of guesses taken

Introduction

Initialise procedure

Shuffle the cards

Check to see if the cards match, and
continue until all of the cards are matched

Display the back of the cards

Display the current scores

Find out which two cards have
been chosen, and display them

 27

 Set up variables, particularly a string variable to represent the cards

Shuffle cards

 This is the same theory as ANAGRAMS and TWISTER, but the

characters in the string now represent the 20 cards

Display the back of the cards

 Use two loops: one to go along the columns, one to go down the rows.

Print the back (ie the number from 1 to 20 which you need to type to
turn that card over) at the relevant position

Display scores

 If there is only one player then print his score
 If there are two players then carry out the procedure to swap turns,

print both scores, and print whose turn it is along with effects

Choose cards

 Get the number of the card chosen
 Find which card it is, and if has already been matched, or the number

is too large or small, then ask for another choice
 Work out the column and row of this card
 Look through the list of cards until the chosen one is found, then print

the shapes for that card at the column and row worked out for it
 Choose a second card in the same way, ensuring it is different from the

first, and show the card in the same way as well

Check for match

 Increase guess count by one
 If the shape on the first card matches the shape on the second card

then mark those two as matched, increase the score of the player, and
loop back for the next go

 If the cards don’t match then make a sound, and turn the cards over
again so the number is showing

 Loop round for another go until all the cards have been matched up
 When all the cards are matched, print a finish message and ask if

another game is wanted

 28

An idea for extending the program

Change the characters to user-defined characters. After the game to allow
one player to continue his go until he makes an incorrect match.

 29

PAIRS

Program outline

Below is an outline of the program:

Program structure

Each procedure making up the program outline is broken down into more
detail:

Initialise

 Set all variables to starting values

Initialise

Shuffle the cards

Draw the cards’ backs

Find out which card the child has chosen
and turn the card over (draw the front face)

Set up graphics and sound and the
functions for the cards positions

Get a second card and turn it over

Check to see if cards match

If all the cards have been matched then
play a tune, if not then loop back for another

turn

 30

 Dimension array
 Define any envelopes needed
 Choose a tune at random
 Define functions to give the column and row of each card from its

number

Shuffle cards

 This is the same shuffle routine as explained for ANAGRAMS, TWISTER

and MATCHEM, but for even fewer characters (6).
Draw cards’ backs

 Print each card’s number at the relevant column and row
 Draw a frame round each card

Get which card has been chosen and turn it over

 Get the number of a card
 Check it has not been chosen, or isn’t too large or small a number
 Define the characters for the shape of this card, and its colours
 Print this card at the relevant coordinates

Get a second card and turn it over

 This is done in the same way as the first card, but check that they are

different cards
 Make a different sound for each type of card turned over

Check for a match

 If the type of each card is the same then make a success sound and

increase the score by one
 If the cards do not match then make an unsuccessful sound and turn

them both over again (just showing their numbers)

Check if all the cards are matched

 If the score is 3 then all the cards have been matched, so play the tune

selected randomly from the three available, and flash the background
 Then ask if another game is wanted
 If all the cards are not matched then loop back to get another two

choices

 31

Notes

The following notes contain comments on some of the BASIC used in the
program. Each time a card is chosen, its picture is found and the 16
characters used each time for the pictures are redefined to the correct
picture, (by RESTOREing to the right lines of data) and printed out.

Since there are four types of picture, one has to be left out of each game as
there are only three pairs. This is done just before the shuffle routine.

DEF FN is used similarly to DEF PROC here. It is more convenient than a
procedure for these two one-line functions.

An idea for extending the program

Try showing all the cards before the game is started. This gives the player a
chance of remembering them (this may possibly require a few more cards to
make it hard enough).

