

RE\’\E\NS 7

FEATURES o P
. ders
The Hidden Persué 8 REGU LARIT EMS :
MUS\ca\ MUSK.(atSD m 13 Editor's Jottings 5
Wordwise User's NOt& 93 Hintsand Tips 58
Cross Reference Lister RISC Uset 59
; urse: 29 postoad 60
First COdO_\, ariadles () personal AdS % 6
Pseu : ot intions & Back \ssu
. The Final conflic Subscrip 63
7eus - 37 Magal\ne DisC
512 Forum
hop: 0 & TIPS
EEBUG Worksnor ok 4 1S 7
B Finding @ Routend N?;N 44 ‘\;:);r‘a\:\m'mg the f-Keys for Mode 7
Public Dornain S corner AT NextBestThINg
\ N\a(;\'\\ﬂe Code You Spe\\ ADFS
Mr Toad's! 49 towDoY0
Storeprint
BUG Function 51
BE\Erocedure Liorary (10

PROGRAM INFORMATION

All listings published in BEEBUG magazine are
produced directly from working programs. They are
formatted using LISTO 1 and WIDTH 40. The space

following the line number is to aid readability only,
and may be omitted when the program is typed in.
However, the rest of each line should be entered
exactly as printed, and checked carefully. When
entering a listing, pay special attention to the

difference between the digit one and a lower case |
(L). Also note that the vertical bar character (Shift \)
is reproduced in listings as |.

All programs in BEEBUG magazine will run on any
BBC micro with Basic II or later, unless otherwise
indicated. Members with Basic I are referred to the
article on page 44 of BEEBUG Vol.7 No.2 (reprints

isplay
-1t ke change! 0¥ Key to disP

Brian

:%?’T.\i'r-‘rThack"a‘J' o

- available on receipt of an A5 SAE), and are strongly
advised to upgrade to Basic II. Any second processor
fitted to the computer should be turned off before the
programs are run. -

Where a program requires a certain configuration,
 this is indicated by symbols at the beginning of the
article (as shown opposite). Any other requirements
- are referred to explicitly in the text of the article.

Program is for Master 128 and Compact
only.

Wi2re s b SR AR

Ldivors Jottings -~
e

At a recent one day show for teachers which we
attended, there was quite a lot of discussion of the
relative merits of the BBC micro’s keyboard-oriented
user interface, and the more sophisticated Wimp
interface (using a mouse to point and select) of the
Archimedes.)

When using computers with younger age groups
within the primary school environment, there was a
feeling that simplicity of use and display had a lot
going for it. Typically, a program would be started by
placing the disc in the drive and pressing Shift-
Break. Choices within a program are often made by
pressing a number key to make a selection.
Familiarity can be very important in ensuring that
both children and teachers are able to make the best
possible use of expensive equipment.

The discussion arose from a dilemma which must
face many schools, and indeed all users, from time
to time. If your computer should break down, is it
worth spending money on repair, or is it better to
upgrade to a Wimp system like the A3000? This is
by no means a simple question to answer, as it
depends so much on individual circumstances.

Perhaps it is easier for the home user with a single
system. He only has to decide for himself, and it is
his money. My view would be that if you are entirely
happy with the performance of your existing system,
and the software you use on it, then there is little
point in upgrading, an option which will nearly
always cost more money anyway. However, like all
things there ultimately will come a time when BBC
micros will become just too expensive to repair
(unless they attract an inflated value as a collector’s
item!), and the necessary spare parts will become
increasingly difficult to find (in our last clearance
sale 20 Beeb power units were snapped up in no
time at all). At present there is not too much of a

4

S

problem, and a BBC micro has a future life of many
years yet as I have said before.

The position for schools is different. Many schools,
even primary schools, will have several machines
and there are clear advantages in maintaining sets
of the same type - that supports repairing BBCs as
necessary. However, the requirements within schools
will not remain static, but will continue to grow, and
whilst this may not demand intrinsically more
sophisticated machines (i.e. Wimp-based systems),
there is and will be a growing demand for systems
with more power than the BBC micro can ever hope
to muster. And this is as true of primary schools
where graphics and animation can have an
important part to play as it is at higher levels.

Schools are also likely to be working under much
tighter budgetary constraints - any expenditure has
to be made in competition with many other
demands, and a wider variety of pressure groups will
have to be considered. What I would venture to
suggest is that every school, including primary
schools, should at least try to evolve a strategy for
its on-going computing provision.

An old principle, which still holds sway today in my
view, says that any hardware provision should be
driven by the software which you need to use. As long
as your software needs can be met by a BBC micro, or
even some of them, then there is value in maintaining
these machines. Add systems like the A3000 where
there is a clear educational need for software of a type
which cannot be run on anything simpler.

And at the end of the day, remember that much of
the simpler software which runs so well on the BBC
micro can be used very often on an Archimedes,
thereby getting the best of both worlds.

MW.

Beebug April 1992

BETT 1992

We conclude our summary of products and
companies catering for the BBC micro which we
have identified following the BETT show in
January.

Micro-Aid provides software to compile family
trees, and includes a Royal family sample, used
in GCSE projects. Microvitec was showing two
new touchscreens for use with the BBC model B
and Master. MJP-Geopacks offers an automatic
weather station, and a dual measurement
Flowmeter for measuring wind and water velocity.
MUSE is another organisation with software for
the BBC micro, and runs supporting courses.

Northwest SEMERC launched the Oldham
Overlay Keyboard, a touch sensitive A3 keypad
for use with overlay keyboard software. Storm
Software was showing new titles and enhanced
versions of its role-play and adventure programs
for the BBC and other systems. Vision Software
(Disney) Ltd. has a range of subject specific
educational software for use in schools, colleges
and at home. Specialising in special needs and
primary, Wigit Software also has products for the
BBC micro range.

Micro-Aid, Kildonan Courtyard, Barrhill, South
Ayrshire, Scotland KA26 0PS, tel./fax (0465)
82288.

Microvitec plc, Bolling Road, Bradford, West
Yorkshire BD4 7TU, tel. (0274) 390011, fax (0274)
734944,

MJP-Geopacks, P.O.Box 23, St Just, Penzance,
Cornwall TR19 7JS, tel. (0736) 787808, fax (0736)
787880.

MUSE, P.O.Box 43, Houghton on the Hill,
Leicestershire LE7 9GX, tel. (0533) 433839.

Beebug April 1992

Northwest SEMERC, Hlitton Hill CDC, Rosary
Road, Oldham, Lancashire OL8 2QE, tel. 061-627
4469, fax 061-627 2381.

Storm Software, Beth House, Poyntington,
Sherborne, Dorset DT9 4LP, tel. /fax (0963) 22469.

Vision Software (Disney) Ltd, 6 Pilkington
Avenue, Sutton Coldfield, West Midlands B72
1LA, tel. 021-354 3981, fax 021-355 6929.

Wigit Software, 102 Radford Road, Leamington
Spa CV31 1LP, tel. (0926) 885303, fax (0926)
825683.

ALL FORMAT FAIRS

Latest dates and venues for All Formats Computer
Fairs are as follows:
Apr 12 Northumbria Centre, Washington,
County Durham, A194(M).
Apr 26 National Motorcycle Museum, NEC,
M42]6.

May 16 Sandown Exhibition Centre, Esher, M25.
May 17 Brunel Centre, Temple Meads, Bristol.
For information and tickets contact John Riding
on (0225) 868100. Note that the Sandown

- Exhibition Centre will be the venue for all future

London fairs instead of the Horticultural Hall,
Westminster.

EDINBURGH INTERNATIONAL
SCIENCE FESTIVAL

Heriot-Watt University will be exhibiting various
data-logging systems using BBC micros at this
exhibition which takes place from April 11th to
25th. The systems were partly described in
Practical Electronics for February 1991. For more
more information contact R W.Goulding, Dept. of
Building, Heriot-Watt University, Riccarton,
Edinburgh EH14 4AS. B}

5

The Hidden Persuaders

David Holton investigates hidden features of the Master Operating System.

The BBC computer’s various ROMs have
all sorts of people’s names scattered
about in various places - programmers
just can’t resist leaving their signature on
their work. If you have a memory editor
that can handle sideways ROMs, just
look at the last five bytes of the Master’s
Basic ROM; if not, type in this line of
Basic:

FOR n%=0 TO 4:PRINT CHR$(n%?&BFFB);
:NEXT

DIG DOWN DEEP

That’s only the tip of the iceberg! You
may already be aware that hidden away
in the Master’s MOS ROM is a long list
of names of people who worked on the
production of the machine. It runs from
&FCO00 to &FEFF, and is normally paged
out of the memory-map, as I/O devices
are mapped to this area - pages FRED,
JIM and SHEILA - but setting bit 6 of the
access control register ACCON (&FE34)
will select this part of the ROM and the
names may be read. The program Secret
is a short machine-code routine which
does just this, copying the three pages of
ROM into shadow screen memory; it
then restores the old value in ACCON.
Type it in and run it; it will assemble and
call the machine-code routine.

Note that interrupts are disabled, as
there is not quite time to do the copying
between one interrupt and the next, and
some interesting crashes occur if you try.
The I/O area has to be mapped in during
interrupts: if you fiddle around with this
part of the code, make sure you've saved
anything of value first!

My first thought was to copy the ROM to
main memory, tidy up, then write a
second loop to print out the data. I soon
realised, however, that if we were forcing
ACCON’s bit 6, we might as well force

bit 2 as well, which selects shadow
memory &3000 to &7FFF, and copy the
names to &7C00 onwards, placing them
directly on the screen. This shortens the
code a lot and, incidentally, is startlingly
fast. You can do this in Teletext mode, in
which the screen memory just holds the
ASCII values of the characters and the
Teletext chip outputs the video.

(C> 1984 Acorn Computers Ltd.Thanks at
due to the following contributors to 4
BBC Computer (among others too numerc
to mention):- David Allen,Clive Angel
avid Bell,Paul Bond,Allen Boothroyd, Ju
an Brown, Tudor Brown,Brian Cockburn,Pe
Cockerell,Mark Colton,Chris Curry, Joe
unn,Paul Freakley,Steve Furber,Martyn
lbert, John Harrison,Hermann Hauser,Mik
Hill,John Horton,Neil Johnson,Richard
ng,David Kitson,Julian Lomberg,Rob Mac
llan,Richard Manby,Peter McKenna,Andre
McKernan,Mick Neil,Ian Miblock,Glen Ni
olls,Robert Hokes,Richard Page,Steve P
sons,Ed Phipps, John Radcliffe,Rick Ran
Brian Robertson,Richard Russell,Gordon
age,Terry Scotcher,David Seal,Paul Swi
ell,Jon Thackray,Hugo Tyson,Adrian War
;,Jgss Wills,Roger Wilson,Graham Winte
ood.

In modes 0 to 6 screen memory contains
bit-maps of the display and this trick
wouldn’t work; you might as well call
OSWRCH for all normal purposes. While
we are at it, we might as well force bit 0
of ACCON as well - set shadow mode -
just to be on the safe side. Two drawbacks
to this direct poking of screen RAM: you
can’t send the data to the printer, and I
had to write the equivalent of a PRINT
TAB(statement to get the text out of the
way of the cursor, since OSWRCH
wasn’t updating the cursor position.

The list contains some well-known
names and the three pages are quite full;
only the last 3 bytes are ‘wasted’,
containing spaces. I also find it very
interesting that you can write to ACCON
to restore the I/O devices even though
ACCON itself, being in SHEILA, has

Beebug April 1992

The Hidden Persuaders

mapped itself out. The ROM is read 130 P%=&900
correctly - &FE34 contains the capital E in 140 [OPT 2
the name ‘Ed Phipps’ - but any write still 150 .code
goes to ACCON. It's a question of write- 160 LDA #&FC:STA &8D
access and read-access not necessarily 170 LDA #&7C:STA &8F
being the same. If it were not so, we’d be 180 STZ &8C:LDA #&50:STA &8E
stuck with the list and a hung-up 190 LDX #3:LDY #0
computer until power-off! 200 LDA accon:PHA
210 LDA #&45:TSB accon:SEI
Incidentally, Acorn’s reason for having 220 .loop
text in this area of ROM appears to be 230 LDA (&8C),Y:STA (&8E),Y
that it’s useful for testing the hardware. 240 INY:BNE loop
On page F.2-3 of the Master Reference 250 INC &8D:INC &8F
Manual (Part 1), where each bit of 260 DEX:BNE loop:CLI
ACCON is given a separate name, bit 6 is 270 PLA:STA accon:RTS
called TST and the book says it must be 280 |
reset at all times. 290 CALL code
GOING DEEPER 10 REM Program Reveal
As 1 said, that particular list of names is 20 REM Version Bl.o
quite well-known and is documented in 30 REM Author David Holton
at least one book. The next thing I'm 40 REM BEEBUG April 1992
going to show you isn’t known at all: I 50 REM Program subject to copyright.
think I am the only person to have 60 :
discovered it, although one can never be 100 osprint=4FFEE
quite sure of these things in computing. 110 acon=4FD34
Again, a short routine will reveal 120 key=&E530
something you didn’t know was there. 130 P%=&7000:0%=P%
The text is rather well hidden - type in 140 [OPT 2
the Reveal listing, run it to assemble the 150 EQUD &18B900A0
machine code and then type: 160 EQUD &701159E2
CALL code 170 EQUD &C8FFE320
See what I mean? The text is clearly 180 EQUD &F2D012C0
subject to some kind of protection. It can 190 EQUD &ABCEA360
be got at, though, by a more devious 200 EQUD &6CC3CID6
stratagem: type: 210 EQUD &6180919A
CALL !&043C 220 EQUD &BE8SB7EA
and all will be revealed. 230 EQUD &00C7DB86
240 :
Interesting, isn't it! 250 .code
260 LDA acon:ORA #&80
10 REM Program Secret 270 STA acon:LDX #0
20 REM Author David Holton 280 .loop
30 REM Version Bl.o 290 LDA key,X:PHP:JSR osprint
40 REM BEEBUG April 1992 300 INX:PLP:BNE loop
50 REM Program subject to copyright 310 LDA acon:AND #&7F
60 : 320 STA acon:RTS
100 MODE 135 330]
110 accon=&FE34 340 REM First type <CALL code> .
120 osasci=&FFEE 350 REM Then do <CALL !&043C> B
Beebug April 1992 7

Musical Muskrats

Philip Prior breathes new life into a BEEBUG classic.

Dr.C.A.A.Wass’s music printing and

transposition program MUSTRAN

(BEEBUG Vol.6 No.8 January/
February 1988) is a valuable aid to
anyone producing musical scores.
However, I found it useful to add
facilities to save and load data files
of the music previously entered
and these additions form the basis
of the amendments described in
this article. Also included is a
method by which the program can
be terminated from the symbol
entry section.

Let’s start by looking back at the
original program, the full listing of
which is provided again this month.

MUSTRAN

MUSTRAN is a program to display and
print music on normal five-line staves,
with automatic transposition if selected.
It will cope with all the different types of
note and sharps, flats, naturals and rests
as well other features. All input is coded
and entered via the standard keyboard.

USING THE PROGRAM

Type the program in and save it. When
the program is run the screen first
prompts for transposition up (U) or
down (D) and for the number of steps. If
transposition is not required then either
U or D may be pressed, followed by 0.
Note that neither here, nor elsewhere on
input, is the use of Return needed.

Either mode 4 or mode 0 may be selected
for the screen display. Mode 4 may be
used for demonstration and easier
reading of prompts, but mode 0 will

8

i

Na s

usually be needed to display a full line of
music.

P

CU;-1 C to change: any key to display

Three staves are displayed on the screen
with the lines of the lowest stave
numbered 01, 03, 05, 07, 09, and the
spaces 02, 04, 06, 08. For clarity, only the
even numbers are displayed. Above the
stave the numbers continue with 10, 11,
12 etc., and below the stave the numbers
descend, with 00 ,-1, -2, etc. Notes are
entered using two-letter codes and
displayed on the bottom stave, then
transposed by the program on to the top
stave. Once this line of music is complete
further notes may be entered and
transposed to the middle stave.

A flashing prompt appears at the bottom
of the screen for the entry of a symbol
and position. All the symbols are entered
with one of the following codes:

SH — Sharp
NA — Natural
FL — Flat

WW — Semibreve (‘“W’=White; ‘S’ is
used for semiquaver)

MU — Minim with stem up

MD — Minim with stem down

Beebug April 1992

Musical Muskrats

CU — Crotchet with stem up

CD — Crotchet with stem down
QU — Quaver with stem up

QD — Quaver with stem down

SU — Semiquaver with stem up
SD — Semiquaver with stem down
DT — Dot

RW — Semibreve rest

RM — Minim rest

RC — Crotchet rest

RQ — Quaver rest

RS — Semiquaver rest

BL — Barline

CS — Change stave

BQ — Single joining bar (quavers)

BS — Double bar (semiquavers)
E_ " ="Erase
P — Print

Enter symbol and position

Enter the two letter code followed
immediately by a TWO digit position
number. Once these codes have been
entered they will be displayed, and if
they are correct then any key except C
may be pressed. This will display the
symbol in its correct place on the lower
stave and also in its transposed position
on the top stave. If C is pressed after the
entries have been displayed, then they
will be ignored, and you will be
prompted for a new entry. C may also be
pressed with the same effect after the
entry of just the two-letter code.

Beebug April 1992

If you need to display a pair of quavers
or semiquavers with a bar or double bar
joining their stems, then they should first
be entered and displayed as crotchets.
The bar can then be added by pressing
BQ or BS as appropriate.

If any symbol that has just been
displayed on the stave needs to be
changed then key E may be used. This
will draw a black vertical stripe on both
staves, and repeated use will erase a
rectangular patch. This is rather slow, but
it is useful because the left-hand edge of
the next symbol will appear at the
position of the last black stripe. If more
space is needed to the right of the last
displayed music character, then entering
any two-letter combination, other
than those in the above list, will
print an invisible character, and the
position for the next character will
be moved along by that amount.

This position can be found by
pressing key E once, and the space
can be reduced by repeated
presses of E. The E key can also be
used to reduce the space between
symbols, for example to compact a
key signature.

When the top line of music is complete,
code CS should be entered. The bottom
stave will then clear and entering
symbols can continue. They will be
displayed as before on the bottom stave
but now the transposed version will
appear on the middle stave. The next use
of the CS command will clear all staves
ready to re-start at the top.

When the two upper staves are full the
screen display may be sent to a printer by
typing P. As written the program calls
Computer Concepts’ Printmaster ROM

9

Musical Muskrats

to produce a screen dump using
*GDUMP 01 21 0 (see line 2490). This
gives full-size music, ready for playing.
This line could be changed to call other
printer dump routines (e.g. BEEBUG’s
Dumpmaster), or a routine of your own.
In fact, the print routine may be called at
any time.

If the transposition involves a key change
the key signature will not be changed
automatically. However, the sharps or
flats needed for the new key can be
entered on the bottom stave and so
positioned that they will appear in their
correct positions on the upper staves
after transposition. For a transposition
from F major, with one flat, to G major,
with one sharp, notes will be raised by
two steps. If then a sharp is entered on
line 07 on the bottom stave it will appear
in its correct position on line 09 on the
upper staves.

UPDATING THE ORIGINAL
PROGRAM

In order to integrate the new facilities
into MUSTRAN, and still allow execution
of the program on BBC Micros without
sideways RAM, it has been necessary to
divide the program into two sections,
one for creation of data files, and the
other for the loading of data for printing.
The two sections mentioned above
correspond to two different programs.
These start off as copies of the original
program and I have called them
MUSKRAT and MUSKOX respectively to
create and load programs.

TECHNICAL NOTES

A new procedure, PROCfile, has been
added to those in the original program. It
prompts the user for a filename and then
opens the file for use in the main parts of
both programs.

10

Several new variables have been added:

EP% is a flag variable taking either a
value of 1 or 0, used in the termination of
the programs under the correct
conditions.

G% contains the value of a GET variable
in both programs.

PR% is another flag wvariable
corresponding to the printing of the score
after plotting is complete. It is set to
either 1 or 0 depending on the response
of the user to the question in line 110.

A$ holds the user’s answer to the
question in line 110 of MUSKOX.

X - This is the identifier of the files
opened and closed in both programs.

TERMINATION OF PROGRAMS
In the original program, the only way to
exit from the symbol entry part was by
pressing Escape or Break. A facility has
been added in MUSKRAT so that
entering QQ as the response to the
prompt for the next symbol closes the
created file, and then terminates the
program through the use of the variable
EP%. This also appears in MUSKOX,
although it is not so important.

USING MUSKRAT

The operating instructions for this
program are basically the same as those
for the original MUSTRAN, with a few
small changes. On entering the program,
the new procedure, PROCfile, asks for a
filename of the file to be created. This
then opens a file of that name. Type in
the score of the music using either one or
two staves. As you type the data in, or
change it, the program sends it to the file.
When you have finished entering all the
correct data, type QQ as the response to

Beebug April 1992

Musical Muskrats

the prompt for the next symbol and this
will close the file and terminate the
program. You should now load
MUSKOX to print your score out.

USING MUSKOX

Having previously created your file, you
should now enter its filename when
prompted. If you require a printed copy
of the score then you should press Y as
your response to the next question. If you
just wish to view the contents of the data
file, enter N as your answer. The file will
be loaded and the score plotted exactly as
displayed before. Printing, if chosen, will
occur here. The program will terminate
after this has finished or, if a printed
copy was not chosen, will terminate after
plotting the score.

MUSTRAN

The original program forms the basis for
the two new ones. It should be stored
with the others, in case you do not wish
to save the score, using MUSKRAT. If this
is so, enter the data into MUSTRAN, and
then print out the score if you wish to.
You may find it helpful to amend
MUSTRAN to allow termination of the
program, by the use of QQ, to occur, by
amending the following lines.

100 MODE 7:PROCtitle:EP%=0:0NERROR GO
TO 250

220 REPEAT:PROCchoosesym:IF EP%$=1 THE
N 30 ELSE UNTIL FALSE

1720IS=GETS :K$=0$+I$:IF K$="QQ" THEN
EP% =1:ENDPROC

IMPLEMENTING THE NEW
FACILITIES

To create the new versions of the
program first type in the MUSTRAN
listing and save it. Make sure you test it
thoroughly before going on to the next
stage.

Beebug April 1992

MUSKRAT

To create the MUSKRAT program load in
your tested version of MUSTRAN and
add the following lines.

105 PROCfile:EP%=0

2570 %

2580 DEFPROCfile:CLOSE#0

2590 INPUT’ "Name of file to be create
S ORTE

2600 X=OPENOUT FI$

2610 ENDPROC

Now change these lines:

120 T=GET:PRINT#X, T:VDUT, 58 :NS=GET: P
RINT#X, NS:VDUNS, 13,10

160 M=GET-48:PRINT#X,M:MODE M

220 REPEAT: PROCchoosesym: IF EP%=1 THE
N 230 ELSE UNTIL FALSE

1010 FOR I=1TO2:PRINTTAB (0, I)CHR$141C
HR $129 CHR$157CHR$131"MUSIC COMPOSITION
: CREATE FILE "CHR$156:NEXT I

1580 Y$:GET$:PRINT#X,Y$:IF YS="C"-FAL
SE

1610 G%:GET:PRINT#X,G%:Yl:G%*48—10*(Y
$= "+")

1690 JS:GET$:PRINT#X,J$:PRINTTAB(O,30
) SPC 26

1720 IS:GET$:PRINT#X,IS:K$:J$+I$:IF K
$= "QQ" THEN CLOSE#X:EP%=1:ENDPROC

1780 vDU4:PRINTTAB(6,30)"C to change:
any key to display";:Q=GET:PRINT #X,0Q

When these changes are complete save
the new program as MUSKRAT.

MUSKOX

To create MUSKOX reload the
MUSTRAN program and add the
following lines.

105 PROCfile

115 (IF INSTR("Yy",AS) THEN PR%=1
2570

2580 DEFPROCfile:CLOSE#0

2590 INPUT'"name of file to be read :

11

Musical Muskrats

HSETS
2600 X=OPENIN FI$
2610 INPUTHX,T
2620 ENDPROC

Delete lines 150, 1640, 1680, 1760, and
1790, and change the following lines.

110 PRINT"Do you want to print the Mu
sic? "; :REPEAT:AS=GETS:UNTIL INSTR ("YyN
n",A$): PRINTAS

120 VDUT, 58 : INPUT#X, NS: VDUNS, 13, 10

160 INPUT#X,M:MODE M

220 REPEAT:PROCchoosesym:IF EP%$=1 THE
N 230 ELSE UNTIL FALSE

1010 FOR I=1TO2:PRINTTAB(0,I)CHR$141C
HR$ 129CHR$157CHR$131"MUSIC COMPOSITION :
LOAD FILE "CHR$156:NEXTI

1580 INPUT#X,YS$:IF Y$="C" =FALSE

1610 INPUTH#X,G%:Y1=G%-48-10*(Y$="+")

1690 INPUTH#X,J$

1720 INPUTH#X,I$:K$=JS+IS:IF K$="QQ" T
HEN CLOSE#X:PROCprint : EP%=1:ENDPROC

1780 vDU4: INPUT#X, Q

Save the new program as MUSKOX.

These changes turn the original program
into a much more powerful tool and add
music processing to the wide range of
tasks the BBC B can undertake.

10 REM Program MUSTRAN

20 REM Version Bl.1

30 REM Author C.A.A. Wass

40 REM BEEBUG Jan/Feb 1988, April 92

50 REM Program subject to copyright

B0

100 MODE 7:PROCtitle:ON ERROR GOTO 250

110 PRINT'"Transpose music?"'"Enter 'U
‘ or 'D' and number of steps."

120 T=GET:VDU T, 58 :NS=GET:VDU NS, 13,10

180 XST1=0:YST1=0:X872=0:Y8T2=0:18=0:L
F=0

140 UD=NS-48+2* (NS-48) * (T=68)

150 PRINT'"MODE -- 0 or 4 ?"

160 M=GET-48:MODE M

170 IF M=4 SP=8 ELSE SP=4
180 XX=4:STNo=2:5T5=288 :KRS="*
190 JU=STNo*STS+16*UD
200 PROCstave(2)
210 PROCvdu:PROCsym
220 REPEAT:PROCchoosesym:UNTIL FALSE
230 END
240 ¢
250 ON ERROR OFF:MODE 7:REPORT
260 PRINT" at line ";ERL:END
A0
1000 DEF PROCtitle
1010 FOR I=1 TO 2:PRINTTAB(5,I)CHR$141C
HR$129CHRS$157CHR$131 "MUSIC COMPOSITION
"CHR$156 :NEXT I
1020 ENDPROC
1030 :
1040 DEF PROCvdu
1050 VDU23,224 €3 127,127 985 2566 127 1
27,63
1060 vDU23,225,0,128,128,192,192,128, 12
8,0
1070 VDU23,226,63,64,64,192,192,64,64,6
3
1080 vDU23,227,128,64,64,96,96,64,64,12
8
1090 vouds 228 0, 128,255 0 0 255 198, 0
1100 vDu23, 230,192, 32 32 48 48,32 32,19
2
10 s 200 0 66 103 140 196 118 23
0
1120 WBU23, 252, 103,118, 1267 108, 250,96, 9
6,0
1130 vpu23,233,0,96,96,96,110,126,118;1
02
1140 vDU23,234 102,110,196 118,6,6,6.0
1150 vDu23,235,96,96,96,96,96,124,126,9
9
1160 vDU23,236,99,99,102,108,104,112,0,
0
1170 vDU23,237%,0,0,0,0,255,0,0,0
1180 vDU23,238,64,32,16,8,14,28,56,56
1190 vDU23,239,24,30,48,48,48,16,14,0
1200 vDU23,240,0,130,254,30,4,4,6,8
1atgenings gdl 94 24 24 24 24 4 0.0

Continued on page 54

12

Beebug April 1992

Ray Tracing in 2D (Part 2)

David Lowndes Williams trips the light fantastic.

In this issue we bring this package to its
breathtaking conclusion as the paths of
light rays are traced through the scenes
that you created with Part 1.

The instructions for use are contained in
the previous issue but as this month’s
program performs the mathematics of
ray tracing, I shall discuss some of the
interesting techniques required. There is
no need to understand any of the
following, since it is all transparent to the
user - but it is very interesting, and
involves the marriage of computing and
mathematics, and also the odd law of
physics.

To use the program type in this month’s
listing and save it as Tracer on the same
disc as the RAYed program from last
month.

HOW IT WORKS

Each object is held as a ring of points in
the arrays sx% and sy%. The sides of the
object join these points. PROCclockwise
ensures that all the points go in the same
direction around the object. This is done
by comparing each pair of adjacent lines
making up the object. FNtest does this,
by using the cross product.

Beebug April 1992

Lines are constructed as either parallel
or radiating, and are stored as two
points, the start and end to each vector.
The program then tests for the
intersection of this line with every line in
the scene, using FNline_line_intersect. It
picks the line of intersection closest to
the vector’s start, lying in front of the
vector. If this intersection point lies on
the screen border then the program has
come to the end of the path for that ray,
and it then traces the next ray. If the
point of intersection lies on a mirror then
PROCreflect is called and the ray
emerging from the mirror is traced in an
identical way through the scene.

Ray Tracing in 2D

The process is a little more complicated
when an intersection occurs with a
refracting surface, since refraction or
reflection could occur - depending on the
incidence angle and the refractive index
of the material (dielectric). Using the
ordered list of points, the program
determines if the ray is emerging from or
incident on the glass. If emergent it sets
the refractive index to the reciprocal of
the index for incident rays. It then calls
PROCrefract. PROCrefract is rather
clever - even if I do say so myself -
making the ray of light obey Snell’s law
(if incident on the appropriate material,
some crystals, including ice and calcite,
have interesting properties which mean
that Snell’s law is not obeyed but this is not
modelled by this program). PROCrefract
constructs the emergent ray using the
vector normal to the surface of intersection
and a couple of right angled triangles.

SAVING SCREENS
The final display, when saved, is put
under the filename screen, the name of
the file may be changed, from immediate
mode, using:

*RENAME screen MYFILE

MYFILE is the new name of the file. Any
previously saved screen may be reloaded
in the usual way, i.e. by typing:

MODE1

*LOAD screen

CONCLUSION

This brings this package to its
conclusion and it demonstrates what the
model B is still capable of. It will be of
particular use in education since it
demonstrates in a tangible way the
validity of the expressions used to
predict the behaviour of light. It may
also be of use to people interested in
gem stones, or in the design of some
optical systems. It would be interesting
to hear from you if you find any other
uses for the program.

14

10 REM Program TRACER
20 REM Version B1.0
30 REM Author David Lowndes Williams
40 REM BEEBUG April 1992
50 REM Program subject to copyright
60 :
100 ON ERROR GOTO 280
110 MODE1
120 M%=TRUE
130 PROCinitScreen
140 PROCload("wkfile")
150 PROCclockwise
160 GCOLO, 3
170 PROCobjects
180
190 PROCtrace
200 GCOLO, 3:PROCObjects
210 PRINTTAB(1,31)"<SPACE> to continue
<S>ave screen.";
220 REPEAT:g%=GET
230 UNTIL g%=32 OR g%=115 OR g%=83
240 IF g%=115 OR g%=83 OSCLI"*SAVE scr
{een 3000 8000"
250 CHAIN"RAYed"
260 END
270
280 IF ERR=17 AND INKEY-1 THEN 310
290 IF ERR=17 CHAIN"RAYed"
300 REPORT:PRINT" at line ";ERL
310 *Fx4,0
320 END
330

Beebug April 1992

Ray Tracing in 2D

| 1000 DEF PROCinitScreen

1010 GCOLO, 3 :COLOUR128:CLS
1020 COLOUR128:VDU31,2,0
1030 COLOUR129:COLOUR3 :PRINT;" Source "
; :COLOUR128 : PRINTSPC2; : COLOUR129 : PRINT; "
Guide ";:COLOUR128:PRINTSPC2; : COLOUR129
:PRINT; " Object ";:COLOUR128:PRINTSPC2; :
COLOURO : COLOUR131

1040 PRINT" Trace ":COLOUR128:COLOUR3
1050 ENDPROC

1066

1070 DEF PROCobjects

1080 FOR n%=5T00 STEP-1

1090 IF sy%(0,n%)=0 GOTO 1150

1100 MOVE sx%(1,n%),sy%(1,n%)

1110 FOR nn%=1TO sx%(0,n%)

1120 DRAW sx%(nn%,n%),sy%(nn%,n%)

1130 NEXT nn$%
1140 DRAW sx%(1,n
1150 NEXT n%

1160 ENDPROC
e

1180 DEF PROCdrawVector(a,b,c,d)
1190 LOCAL p,q

1200 p=.9-a=1025

1210 MOVEa, b:DRAW a+c,b+d

1220 MOVE a+c, b+d

1230 DRAW a+p*c-g*d, b+p*d+g*c

1240 MOVE a+c, b+d

1250 DRAW a+p*c+qg*d, b+p*d-g*c

1260 ENDPROC

1270

1280 DEF FNvectorLength(a,b,s)

1290 LOCAL len

1300 len=SQR(a*a+b*b)

1310 =s/len ;

130l

1330 DEF PROCload(file$)

1340 y=OPENIN(file$)

1350 INPUT#y, Index, Number$, Parallel%
1360 INPUT#y,VSx,VSy, WWx, Wy, VPx, VBy
1370 INPUTHy,L$

1380 DIM ex%(L%) :DIM ey%(L%)

1390 DIM sx%(L$%,5),sy%(L%,5)

1400 FOR n%=0TO4

1410 FOR nn$%=0TOL$%

1420 INPUT#y, sx%(nn%,n%),sy
1430 NEXT:NEXT

%),sy%(1,n3%)

% (nn%, n%)

1440 CLOSE#y

1450 sx%(0,5)=4:sy%(0,5)=10
1460 sx%(1,5)=16:sy%(1,5)=976
1470 sx%(2,5)=1263:sy%(2,5)= 976
1480 sx%(3,5)=1263:sy%(3,5)=4
1490 sx%(4,5)=16:sy%(4 5):48
1500 M$=TRUE

1510 ENDPROC

TRD0

1530 DEF FNline_line_intersect (x1,y1,x2
N2, %3,v3, %4, y4)

1540 LOCAL dl1,d2,ax,ay,bx,by

1550 i%=TRUE

1560 A=-(y2-yl):B

1570 C=A*x1+B*yl

1580 vx=x4-x3:vy=y4-y3

1590 dl=A*vx+B*vy

1600 IF d1=0 i%=FALSE:GOT01690

1610 t=(C-A*x3-B*y3)/dl

1620 IF t<0 OR t>1 1%=FALSE:GOT01690
1630 X=x3+t*vx:Y=y3+t*rvy

1640 d2=(x2-x1)"2+(y2-y1)"2

1650 k=((X-x1)*(x2-x1)+(Y-y1) * (y2-y1))/
d2

1660 ax=x2-x1:ay=y2-yl

1670 bx=x4-x3:by=yd-y3

1680 D%=SGN(ax*by-bx*ay)

1690 =i%

1l

1710 DEF PROCreflect (Rx,Ry,Sx, Sy)

1720 LOCAL Qx,0Qy,k, Px, Py

1730 Px=-Rx:Py=-Ry

1740 k=(Px*Sx+Py*Sy) / (Sx*Sx+Sy*Sy)

1750 Ox=k*Sx:0y=k*Sy

1760 Jx=2*Qx-Px:Jy=2*Qy-Py

1770 REM output (Jx,Jy)T

1780 ENDPROC

1790 ;

1800 DEF PROCrefract (Rx,Ry,Nx,Ny, Indx)
1810 LOCAL k,a,sx, sy

1820 k= (Rx*Nx+Ry*Ny) / (Nx*Nx+Ny*Ny)

1830 Nx=Nx*k:Ny=Ny*k

1840 sx=(Rx-Nx)/Indx:sy=(Ry-Ny)/Indx
1850 a=((Rx*Rx+Ry*Ry)-sx*sx-sy*sy) / (Nx*
Nx+Ny *Ny)

1860 IF a<0 PROCreflect (Rx,Ry,Nx,Ny) :EN
DPROC

1870 a=SQR(a)

=x2-x1

Beebug April 1992

15

Q9

Ray Tracing in 2D

1880 Jx=sx+a*Nx:Jy=sy+a*Ny

1890 ENDPROC

1900 Jx=0Dx*k:Jy=0Dy*k

1910 REM output (Jx,Jy)T

1920 ENDPROC

1930«

1940 DEF FNVectorLength(a,b,s)

1950 LOCAL len i

1960 len=SQR(a*a+b*b)

1970 IF len=0 =0

1980 =s/len

1990 :

2000 DEF PROCtrace

2010 GcoLo, 1

2020 FOR s=0TO Number%

2030 Dax=VPx:Day=VPy

2040 Dbx=s*VVx/Number%+VSx

2050 Dby=s*VVy/Number$+VSy

2060 IF Parallel%=FALSE Ax=Dax:Ay=Day:B
x=Dbx :By=Dby ELSE Ax=Dbx :Ay=Dby:Bx=VVy/3
+AX:By=-VVx/3+Ay

2070 PROCdrawVector (Ax,Ay,Bx-Ax, By-ay)
2080 REPEAT

2090 ka=FNtest (Ax, Ay, Bx,By)

2100 GCOLO, 1:MOVE Ax, Ay :DRAW XX, YY
2110 IF Dir%=TRUE Ind=Index ELSE Ind=1/
Index

2120 RRX=Bx-Ax:RRY=By-Ay

2130 j=FNVectorLength(RRX,RRY, 100)

2140 RRX=RRX*j :RRY=RRY*j

2150 IF TYPE%=1 PROCrefract (RRX,RRY,DDX
,DDY, Ind)

2160 IF TYPE%=2 PROCreflect (RRX,RRY,DDX
,DDY)

2170 IF TYPE%=1 OR TYPE}=2 AX=XX:Ay=YY:
Bx=Ax+JxX:By=Ay+Jy

2180 UNTIL TYPE%=10

2190 NEXTs

2200 ENDPROC

2210 :

2220 DEF FNtest (ax,ay,bx,by)

2230 kaa=1E32

2240 FOR n%=0TO5

2250 IF sy%(0,n%)=0GOTO 2340

2260 cx=sx%(sx%(0,n%),n%)

2270 cy=sy%(sx%(0,n%),n%)

2280 FOR nn%=1TOsx%(0,n%)

2290 dx=sx%(nn%, n%) :dy=sy%(nn%,n%)

2300 type%=sy%(0,n%)

2310 a%=FNline_line_intersect (ax,ay,bx,
by, cx, cy,dx, dy)

2320 IF a%<>TRUE GOTO2340

2330 IF k>0.001 AND k<kaa THEN kaa=k:TY
PE%=type%:XX=X:YY=Y:Dir%=D%:DDX=(cy-dy) :
DDY=- (cx-dx)

2340 cx=dx:cy=dy

2350 NEXT:NEXT

2360 GCOLO, 1:MOVE ax,ay:DRAW XX,YY
2370 =TYPE$

2380 -

2390 DEF PROCclockwise

2400 FOR n$%=0TO5

2410 IF sy%(0,n%)=0G0T02470

2420 A=0

2430 FOR nn%=1TOsx%(0,n%)

2440 A=A+FNdirection(nn%,n%)

2450 NEXT

2460 IF A<0 PROCorder (n%)

2470 NEXT

2480 ENDPROC

2490 :

2500 DEF FNdirection(nn%,n$%)

2510 LOCAL x1%,y1%,x2%,y2%,x3%,y3%, vax%
,vay%, vbx$%, vby%

2520 nnl%=n%-1:IF nnl%<l nnl%=sx%(0,n%)
2530 nn2%=n%

2540 nn3%=n%+1:IF nn3%>sx%(0,n%) nn3%=1
2550 x1%=sx%(nnl%,n%):y1%=sy%(nnl%,n%)
2560 x2%=sx%(nn2%,n%) :y2%=sy%(nn2%,n%)
2570 x3%=sx%(nn3%,n%) :y3%=sy%(nn3%,n%)
2580 vax%=x2%-x1%:vay%=y2%-y1%

2590 vbx%=x3%-x2%:vby%=y3%-v2%

2600 =SGN(vax%*vby$-vbx¥*vay$%)

2610 :

2620 DEF PROCorder (N%)

2630 t%=1

2640 FOR s%=sx%(0,N%)TOl STEP-1

2650 ex%(t%)=sx%(s%,N%)

2660 ey%(t%)=sy%(s%,N%)

2670 t%=t%+1

2680 NEXT

2690 FOR s%=1TO sx%(0,N%)

2700 sx%(s%, N%)=ex%(s%) :sy%(s%, N%)=ey%(
s%)

2710 NEXT

2720 ENDPROC

16

Beebug April 1992

Paradox

Peter Rochford tries out a new game for the Beeb.

Paradox

The Really Good

Software Company

Supplier TCA
39 Carisbrooke Road,
Harpenden, Herts AL5 5QS.
tel: 0582 761395

Price £14.95 on 5.25 disc for BBC

Micro and Master

£15.95 for 3.5 disc for Master

Product
Developer

Compact

It makes a nice change to have something
totally new to review gameswise for the
Beeb, rather than the usual crop of re-
releases from Superior’s ‘Play It Again Sam’
series, that seem to go on forever.

This company, with the rather snappy
title, is new to me, but has come up with a
game called Paradox that claims to be not
only new, but to offer something different
to what we have seen before.

Certainly the storyline that sets the scene
is rather different if not far fetched, and
reads like something out of Star Trek, but I
won't bore you with that. What is on offer
here, is basically an arcade shoot-"em-up
combined with a certain amount of
strategy and puzzle solving.

Essentially, you are a time traveller lost in
space and unable to get back to where you
started, 500 years ago: You must guide
your ship through space, and search for
asteroids which you can heat up by firing
your laser at them to release their energy to
fuel your ship. Having fuelled your space
craft, you can then power your way into a
black hole and travel back ten years in time.
This provides for a 50 levels of play, each of
increasing difficulty and complexity.

As is to be expected, there are the usual
bunch of nasties hanging around waiting to
bring you to an early demise. But there are
also various objects that can be collected or
used to help you in your task.

Beebug April 1992

The screen display in Paradox uses a four
way scrolling and features a separate long
range radar panel at the top, showing you
the whereabouts of all objects in the playing
area. Along with this are displays for time,
score and energy levels. Keys are the usual
‘Snapper’ ones along with Return for fire.
There are also keys allowing pause and
control of sound.

Graphics don't really break any new ground
in Paradox, and the sound I would describe
as minimal and predictable. Nonetheless the
game is well-presented and implemented
with flicker free scrolling. Game play in the
early levels is none too taxing and mercifully
these can be skipped as you progress, via a
password system.

Paradox in play

I wouldn’t say I was absolutely bowled over
by this game and tend to disagree with the
publicity blurb that came with it describing
it as ‘revolutionary’. It does not really
contain anything I haven’t come across
before in one form or another in terms of
graphics and gameplay. Still, it is good to
play and does provide a new challenge with
a decent degree of longevity and of course,
as I've said already, it is something new at a
time when there is depressingly little being
released on the leisure front for the BBC
micro.

17

Wordwise User’s Notebook

Colin Robertson shows how to create and use DATA statements in
Wordwise segments.

INTRODUCTION

The DATA and READ statements in
Basic are a familiar and useful way of
configuring a program with items of
data that can be read progressively as
the program proceeds. A major practical
advantage of this approach is that it is
extremely easy to re-configure the
program with new data simply by
changing the few lines containing the
DATA statements. If the data items had
to be introduced at the points of use, re-
configuration would be extremely
difficult.

The Wordwise Plus programming
language does not contain the keywords
DATA and READ, yet quite often a
segment program may need to be
configured with data items to control its
function. This article shows, by means
of an example program, how batches of
data may be supplied in segment
programs and the data items read and
processed as they are required.

THE SEGMENT

VARPRNI1 is a segment program
performing the simple task of extracting
and printing batches of seven successive
lines from a text file, in much the same
way as would be required to print
address labels. However, it has the
additional feature that the spacing after
each line is individually programmable.
The original was written to print sets of
labels for audio cassettes in batches
comprising several different titles.

Standard cassette labels were used, each
containing five peel-off strips to label
one cassette with up to seven lines of
information. As the label was not
designed with machine printing in
mind, the vertical intervals between the

18

print positions were not uniform or
exact multiples of a normal linefeed.
Also, the peel-off sections themselves
were sized to allow little room for error
in the vertical direction. By making each
line spacing independently configurable,
it was possible to print successfully on
batches of the labels held in a suitable
sprocket driven carrier in the printer.

As listed here, the program is intended
only to illustrate the programming
techniques employed. It could be
modified and extended to handle actual
tasks, including more complex jobs,
such as the entry of sets of particulars
on pre-printed forms.

VARPRNT reads the lines to be printed from
a source text file named, by default,
TXTFILE. This must be a pure ASCII file
containing a series of lines each
terminated with a carriage return. For
test purposes, short lines of poetry are
ideal. If you type the lines in Wordwise
Plus edit mode, and supply the carriage
returns from the keyboard, the saved file
will be suitable as long as there are no
green commands in it. Alternatively, you
could edit an existing document file for
the purpose. A ready-made source file is
included on the monthly magazine disc,
called TXTFILE. This file contains no
blank lines, so that the printed format on
blank paper can be more easily
observed.

ASSIGNING DATA

The approach adopted in VARPRNI is to
produce each inter-line space by the
combination of one or more linefeeds of
standard size (or any predetermined
fixed size) with an appropriate variable
number of additional small increments
of paper movement to make up the

Beebug April 1992

Wordwise User's Notebook

desired total spacing. These increments
are produced by the Epson printer code
ESC J n where n is the number of
increments, each one-third of a printer
dot in size. The distance corresponding
to one third of a dot varies from one type
of printer to another, typically 1/216 inch
and 1/180 inch. When this code is issued,
the paper is advanced once by the
specified amount, with no effect on any
subsequent movements.

Thus, any required spacing, as physically
measured on a sample of the label, can be
expressed by two integer parameters: a
coarse component, M%, representing a
number of linefeeds and a fine
component, N%, representing a number
of one-third dot increments. In the
example, there are seven printable lines
to each label, so seven values each of M%
and N% are required to specify the
spacings for a whole label, including the
jump to the next label.

The required individual values of the
parameters are assigned in two string
variables, M$ and N§$, thus:

M$="Lfeeds,1,1,2,1,1,1,5,"
N$="Increments, 15,15,3,0,4,0,20,"

The appearance of these strings, in which
the items are separated by commas, is
immediately reminiscent of Basic DATA
statements, although two points of
difference are worthy of note. Firstly, two
separate strings have been assigned, one
for each category of data, whereas in
Basic items would normally be listed in a
single DATA statement. The use of two
strings is not essential, but is a
convenient option in this case, making it
easier to read the data items; also it
makes the program listing easier to
follow. Secondly, a comma is used not
only between the items but also at the
end of the string. This again is not
fundamental. The spacing character

Beebug April 1992

could be any character not used in the
data items themselves, and the final one
is used only to support the particular
method used to extract the individual
data items.

This method of holding the data makes it
easy to alter any items if required. Also,
since Wordwise Plus string variables are
language-resident and are not nulled
automatically when a program is
executed, it would be easy to assign the
data externally to the program in which
it is used, for example in another
segment program executed previously.

Although the example strings are quite
short, there is no limitation on their
length other than the normal 255
character limit applying to any one
string, and the limited total string space
available in Wordwise Plus segment
programs (437 characters). Very long data
streams could be handled by reading
from a file.

READING DATA

The data reading operation requires the
means of extracting individual data items
from the strings M$ and N$. However,
the dissection of strings.is not a strong
point in the standard Wordwise Plus
programming language, which contains
none of the string handling functions we
find in Basic. However,'remembering
that Wordwise Plus is primarily a text
editor, we can overcome this limitation if
we first write the strings intc a vacant
segment and then use the powerful
editing commands to locate and extract
the items from the contents of the
segment.

Referring to the listing, the work is done
mainly by the procedure .plusprint from
within which .segput selects and clears
segment 8 and types M$ and NS into it as
separate lines of text. The required values
of M% and N% are acquired by the

19

Wordwise User's Notebook

procedure .params. This in turn uses the
procedure .readdata to access the lines in
segment 8. It does this by finding the
comma preceding the required item and
reading the subsequent characters out
into a string until the next comma is
encountered. The value of 1% controls
which item is to be found; this is an index
variable incremented before the next item
of data is to be acquired.

Although the method implemented in
.readdata is by no means the only one that
could have been used, it does have
certain general advantages. Firstly, since
the required data line is found by
recognising its first item (provided for
this purpose as a “name”), the technique
could be used equally well if there were
considerably more than two data strings
to be considered. Also, strings can be
accessed regardless of their order in the
holding segment. Secondly, the method
allows data lists to wrap over the 40
column editing screen and occupy more
than one screen line if necessary. Thirdly,
since every access to the segment is
absolute and not relative to a previous
cursor position, the technique puts no
limitation on the selection of other
segments between data readings if the
program should require this - Wordwise
Plus stores the cursor position in a
segment only while that segment
remains the one currently selected.

It can be seen, therefore, that this is a
method with wide fields of application,
going far beyond the simple application
mentioned above. A further advantage is
that once the strings M$ and N$ have
been deposited in segment 8, these
variables can be nulled, as in .segput, to
release their reservation of overall string
space even before the data items have
been extracted.

USING VARPRN1
When typing in the listing, you may
choose to abbreviate the keywords,

20

especially PRINT, which appears
frequently and can be abbreviated to “P.”
Also you can ignore any leading spaces
to the program lines, which are included
only for clarity. You can also omit the
spaces in the program lines themselves
unless they are within quotes. If in doubt,
copy the listing as given. Save the
program as VARPRNI.

Before using VARPRN1, you must ensure
that your source text file, named
TXTFILE, is present in the current
directory. You can load VARPRN1 into
any segment except segment 8 and
execute with Shift-fn in the usual way -
fn being the function key with the same
number as the segment.

As it can be very wasteful of time and
paper to test printing utilities repeatedly
with real hard copy output, VARPRN1
offers you the option at start-up to use a
printer sink instead of a real printer.
Otherwise, it is assumed that a parallel
connected printer is in use and that this
is Epson compatible.

Having checked that the program is
operating normally, you can of course
experiment with it, for example by
changing the given values of the data
items and observing the effect on the
inter-line spacing of the printed output. It
is unlikely that you will find VARPRN1
useful without alteration. It is suggested
that you retain it as an example and a
guide to the writing of other programs
that may need to use the same or similar
programming techniques.

V$="VARPRN1" |
REM Printing utility

“RELI\/I with programmable line spacing.
iREM BEEBUG April 1992

‘REM Author C W Robertson

iREM No of lines per set:

IL%=7

}REM source filename: |

Beebug April 1992

Wordwise User's Notebook

[K$="TXTFILE*
‘REM

REM Data strings:
MS='TLifeeds,1,1,2,1,1,1,5,°"
N$="Increments, 15, 15,3,0,4,0,20,"
REM If Q%=73 it's in WW+II, else WW+
0%=2&8017

CLS

VU3

PROCheader

PROCprinterset

PROCprinterinit

7%=0PENIN K$

IFZ%=0 THEN G.nofile

TIME=0

PROCplusprint

T%=TIME

GOTO finish

END

.movepaper

IFM%=0 THEN GOTO badparam
DOTHIS

PRINT
TIMES M%

IFN%>0 THEN VDU1,27,1,74,1,N%
ENDPROC

.plusprint
PROCsegput
REPEAT
I%=1
REPEAT
AS=GLFS$#7%
PRINT AS;
PROCparams
PROCmovepaper
I1%=I1%+1
UNTIL I%>L$% OR EOF#Z%
UNTIL EOF#Z%
DELETE TEXT
SELECT TEXT
ENDPROC

[.params
T$="Lfeeds"
PROCreaddata
M%=P%
T$="Increments"
PROCreaddata
N%=P%

ENDPROC

.readdata
CURSOR TOP
FIND TS
DOTHIS
FIND *,°
IF EOT THEN GOTO badparam
CURSOR RIGHT
TIMES I%
PR=i&
REPEAT
C$=GCTS$
IF EOT THEN GOTO badparam
IF ASC C$<>44 THEN PS$=PS$+C$
UNTIL ASC C$=44
P%=VAL P$
ENDPROC

.header

Y%=2

VDU12,31,14,Y%,134

PRINT V$

VDU 31,3,Y%+2,134

PRINT "Experimental label printer with*
VDU31,6,Y%+3,134,

PRINT "programmed line spacing"
VDU31,6,Y%+4,134

PRINT " (C) C W Robertson 1991"
AS="Wordwise Plus"

IFQ%=73 THEN A$=AS$+" II"
VDU31,0,Y%+6,134

PRINT "Running in";

VDU131

PRINT AS

VDU31,0,Y%+8,134

PRINT "Programmed for";

VDU131

Beebug April 1992

21

Wordwise User's Notebook

e e

VDU134

PRINT "lines per label"
VDU134

PRINT "using";

VDU131

PRINT K$;

VDU134

PRINT "as source."
PRINT

VDU131

PRINT "Use Printer sink? (Y/N)";
VDU130

*FX15,1

A%=GET AND &DF

IF A%=89 THEN *FX5,0

IF A%=89 THEN PRINT "Yes"

IF A%<>89 THEN PRINT "No"
ENDPROC

.printerinit

CLS

VvDU31,0,5,134

PRINT "Printing in progress"
vDU28,0,20,39,19

REM set condensed & L. margin of 10
VDU2,.1,2%,1,64,1,15
VDU1,27,1,108,1,10

ENDPROC

.printerset

IFA%=89 THEN GOTO sink

PRINT

VDU131

PRINT "Please set paper in position"

BemEl T T
SELECT SEGMENT 8

DELETE TEXT

TYPE M$+" |R"

TYPE N$+" |R"

Mg=""

Ng=t

ENDPROC

.abort

Ve 26,12 21.0.5,129
PRINT "Abandoned!"
GOTO abandon

.nofile

VB2 5 0e 12 41 005 199
PRINT "Text file not found"
GOTO terminate

.badparam

CLOSE#Z%

VDUl2. 2 6 17 20 0.5 109

PRINT "Parameter missing or invalid"
GOTO terminate

.finish

CLOSE#Z%

U%=(T%$MOD100)DIV10

T%=T%DIV100

VBOl2,3 26,1231 0 5 134

PRINT "Printing finished";

PRINT * in "+STRSTR:" . "+STRSUZ:" g
GOTO terminate

VDU131 .terminate

PRINT "& ensure printer is on line" vDU2,1,27,1,64,3

.sink .abandon

PRINT *ERS,1

VDU131 VDU131

PRINT "Ready to go? (Y/N)" PRINT "Press any key"

*FAlS, 1 *FX15,1

A%=GET AND &DF A%=GET

IF A%<>89 THEN GOTO abort DISPLAY

ENDPROC END 4 B
22 Beebug April 1992

Cross Reference Lister
by Ian Gooding

This month’s utility (originally published
in Vol.3 No.6) is a very useful program
that provides a cross reference listing of a
Basic program. It builds up lists of all the
variables, procedures, functions, etc.
used in the program, and the lines at
which they are referenced. This program
is a must for the serious developer of
Basic software.

INTRODUCTION

The purpose of this program is to
provide the user with a list of names and
line numbers used within his Basic
program to aid in debugging and
documentation. The program searches
for procedure and function names and
the lines at which they are referenced; it
deals similarly with variable names and
lines which have GOTO or GOSUB
statements referring to them. Support for
printers is included within the program,
and any or all of the search options
mentioned above may be omitted. The
total number of lines in the program is
always displayed after the program has
been run, as is an indication of the
amount of remaining free memory.

USING THE CROSS REFERENCER
The cross referencer should be typed in
and saved away for future use. The
program to be analysed should be first
saved onto disc.

The program as listed appears longer
than it really is as many REM statements
have been included to assist those who
wish to examine the workings of the
program. All REM statements may be
omitted when you type the program in.

Once run, the cross referencer prompts
for your choice of the available options.

Beebug April 1992

These include selecting output to the
printer, and the checking for procedures,
functions, variables, and GOTO and
GOSUB references. There is an option to
reference all the options without having
to type in ‘yes’ to each of them. Having
answered the questions mentioned
above, the program prompts for the file
name of the program to be analysed, and
then proceeds to build up the cross
reference list.

While the program is running, it displays
on the screen the current line being
scanned, the most recent procedure,
function or variable name read, and the
last line number referenced by a GOTO
or GOSUB statement. No information is
displayed for any option omitted (e.g. no
reference to line numbers with GOTO or
GOSUB) though the current line number
is always displayed.

Once the analysis has been completed,
the program lists out the information
collected with coloured highlights, with
the corresponding text sent to the printer
if selected.

The program functions quite happily in a
6502 second processor (there is a
significant speed improvement in fact).
Once the run is finished, you can always
obtain the list of references again by just
typing PROCreport.

The necessary data is contained within
the program in a fairly complex manner,
and space does not permit here a
detailed explanation of how this is
arranged. For the more adventurous
reader, an examination of the program
should prove quite interesting as it is
very well structured.

23

Cross Reference Lister

LIMITATIONS

A consequence of writing a utility like
this in Basic, and keeping the program to
a reasonable length, is that some
simplifications have to be made. Any
computed GOTO or GOSUB line number
references are ignored (these are
impossible to determine in advance
anyway). DATA, REM and assembler
comment blocks are ignored, and any *
calls are treated as variables; e.g.
*FX243,129 is treated as a reference to the
variable FX243. The program will mark
arrays such as A(..) as A(, but for arrays
such as A%(..) or A$(..), then only A% or
A$ will be displayed.

10 REM Program Cross Referencer
20 REM Author Ian Gooding
30 REM Version B1.00
40 REM BEEBUG April 1992
50 REM Program Subject To Copyright
B0

100 ON ERROR MODE7:PROCerror : END

110 MODE 7:crlf$=CHR$13+CHR$10

120 PROCassemble: PROCbanner : PROCoption
$:CLS : PROCbanner

130 FOR I%=16 TO 23:PRINT TAB(0,I%);CH
R$(130) ; :NEXT

140 REM If tape show tape movement, al
low error retries

150 A%=0:Y%=0:T%=(USR&FFDA) AND 15:IF
T%=2 OR T%=3 THEN A%=139:X%=1:Y%=2:CALL&
FFF4 :X%=2:Y%=2:CALL&FFF4

160 VDU15:REM Scroll screen

170 mline%=260:REM Space for current 1
ine

180 DIM line% mline%

190 REM Set up chain heads

200 DIM proc% 3:!proc%¥=-1

210 DIM fn% 3:!fn%=-1

220 DIM var$ 3:!var%=-1

230 DIM goto%$ 3:!goto%=-1

240 DIM gosub% 3:!gosub%=-1

250 REM Set up flags

260 eof%=FALSE:ass%=FALSE:gos%=FALSE

270 count%=0

280 REM Open the program file

290 f%=FNopenfile

24

300 REM Loop reading each line
310 REPEAT
320 PROCreadline
330 IF eof% THEN 360
340 count%=count%+1
350 PROCscanline:REM Store references
360 UNTIL eof%
370 CLOSE #0:MODE 7:PROCreport
380 END
390 .
1000 DEF PROCreport
1010 IF NOT print% THEN VDU 14:prlen%=0
ELSE PROCsetprinter
1020 PROCpdouble ("Program "+prog$, CHRS (
134))
1030 EROCH(*® 4]
1040 PROCp("Total program lines = "+STR
$(count%),CHRS$130)
1050 PROCp("",""):REM blank line
1060 DIM P% -1:PROCp("Memory used = "+S
TRS(INT(100-(100* (HIMEM-P%)) / (HIMEM-TOP)
))+" %", CHRS(130)
1070 PROCp("",""):REM blank line
1080 IF lproc% THEN PROCpvar(!proc%,"PR
OCEDURES", "PROC")
1090 IF 1fn% THEN PROCpvar(!fn%, "FUNCTI
ONS", "FN")
1100 IF lvar% THEN PROCpvar (!var$%, "VARI
ABLES", "*)
1110 IF lgoto% THEN PROCpgo(!goto%, "GOT
0 LINES*, "GOTO")
1120 IF lgosub% THEN PROCpgo(!gosub%,'G
OSUB LINES", "GOSUB")
1130 PRINT:VDU 15
1140 ENDPROC
1150 -
1160 DEF FNopenfile
1170 LOCAL £%:VDU 28,6,23,35,16
1180 REPEAT
1190 INPUT "Program name :"prog$
1200 £%=OPENUP(prog$)
1210 UNTIL f£%<>0
1220 vDU 28,0,24,39,0:=%
1230
1240 DEF PROCreadline
1250 LOCAL i%
1260 VDU 28,6,23,35,16:REM set screen s
ubset up
1270 eline%=1ine%-1:1%=BGET#{%
1280 IF i%<>&0D THEN PRINT "Bad file":E

Beebug April 1992

Cross Reference Lister

ND

1290 nline%=BGET#f%*256+BGET#f%:REM lin
e number in 2 bytes

1300 IF (nline% AND &8000) <> 0 THEN CL
OSE#£%: e0f $=TRUE : ENDPROC

1310 1%=BGET#f%:REM character count
1320 REPEAT

1330 eline%=eline%+1

1340 IF (eline%-line%)>mline% THEN PRIN
T "Line buffer overflow":STOP

1350 ?eline%=BGET#f%

1360 UNTIL (eline%-line%)=(i%-5)

1370 ?(eline%+1)=&0D:REM terminator
1380 vDU 28,0,24,39,0

1390 ENDPROC

1400 :
| 1410 DEF PROCscanline

1420 LOCAL 1%, 3%,k%,q%, quote%, proc$:pro
Rz

1430 def%=FALSE: fnc%=FALSE:quote%=FALSE
:gos%=FALSE
| 1440 A%=P0OS:B%=VPOS:PRINTTAB(8,5);"Line
number : ";RIGHTS(" "+STRS (nline%), 6
) i TAB(A%,B%) ;

1450 FOR i%=line% TO eline%
| 1460 REM &F4 => Keyword "REM", so skip
out

1470 REM &DC = Keyword "DATA", ignore t
his too

1480 IF ?i%=&F4 OR ?1%=&DC THEN i%=elin
e%:G0TO 1890

1490 REM look for start of assembler
1500 IF ?i%=ASC("[") AND NOT quote$¥ THE
N ass$=TRUE:GOT01890

1510 IF ?1%=ASC("]") AND NOT quote$% THE
N ass%=FALSE:GOT01890
| 1520 IF ass% THEN GOTO 1890
1530 REM &DD => Keyword "DEF"
1540 IF ?1%=&DD THEN def%=2

1550 REM ":" is statement separator

1560 IF ?i%=ASC("""") THEN quote%=NOT g
uote%:G0T01890

1570 TF 24%-pSC(%:%) OR i%-AcO(® (") THE

N def%=0:fnc%=0:proc$="":G0T01890
1580 REM Look for GOTO etc line numbers
1590 REM &E4 = GOSUB &E5 = GOTO
| 1600 REM &F7 = RESTORE &8C = THEN
| 1610 IF ?i%=4E4 THEN gos$=TRUE ELSE IF
?1%=&F7 OR ?1%=&E5 OR ?1%=&8C THEN gos%=

FALSE

1620 REM &8D = line number marker

1630 IF ?i%=&8D THEN i%=FNscangoto(i%):
GOTO 1890

1640 IF ?i%=&B8 AND ?(i%+1)=&50 THEN i%
=1%+1:GOTO 1890:REM bodge for TOP = TO+P

1650 REM &F2 => Keyword "PROC"

1660 REM &Ad4 => Keyword "FN"

1670 IF (?1%<>&F2) AND (?i%<>&A4) THEN
GOTO 1780

1680 fnc%=(?1%=&a4)

1690 j%=1%+1

1700 REPEAT

1710 proc$=proc$+CHRS (?3%) :j%=7%+1

1720 UNTIL j%>eline% OR NOT (FNletter(?
J%) OR ?7%=ASC("£") OR 7j%=2ASC(" *) OR F
Ndigit(?3%))

1730 1%=3%-1

1740 IF 1fn% AND fnc% THEN PROCline (FNd
ef (fn¥,proc$)) ELSE IF (NOT fnc%) AND lp
roc¥ THEN PROCline(FNdef (proc%,proc$))

1750 proc$="":fnc%=FALSE:def%=FALSE

1760 GOTO 1890

1770 REM hexadecimal number ?

1780 IF ?i%<>ASC("&") THEN GOTO 1810

1790 REPEAT:i%=1%+1:UNTIL i%>eline$ OR
NOT FNhex(?1%)

1800 1%=1%-1:G0T01890

1810 REM variable reference ?

1820 IF quote$ OR NOT (FNletter(?i%) AN

D ?i%<>ASC("£") AND ?i%<>ASC("_")) THEN
GOTO 1890

1830 var$=""

1840 REPEAT ‘

1850 var$=var$+CHRS (?1%) :1%=1%+1

1860 UNTIL i%>eline% OR NOT (FNletter(?
i%) OR FNdigit(?i%) OR ?i%=ASC("£") OR ?
1%=ASC(" %))

1870 IF 2i%=ASC(" (") OR ?i%=ASC("S") OR

?1%=ASC("%") THEN var$=var$+CHRS (?1%) E
LSE i%=i1%-1

1880 IF lvar% THEN PROCline(FNdef (var$,
var$))

1890 NEXT i%

1900 ENDPROC

194¢ -

1920 DEF FNscangoto(i%)

1930 LOCAL num$:num$=FNgnumber (1%) :REM

extract line number

Beebug April 1992

9

Cross Reference Lister

1940 1%-1%+3:REM skip over it i

1950 IF lgosub% AND gos$ THEN PROCline (
FNgo (gosub%, num%)) ELSE IF (NOT gos%) AN
D lgoto% THEN PROCline(FNgo(goto%,num%))

1960 =i%

1990

1980 DEF FNgnumber (x%)

1990 REM Turn 3 bytes from x% into line

number

2000 REM from internal GOTO format

2010 2&70=2(x%+1) :2&71=2 (x%+2) : ?&72=" (x
%+3)

2020 CALL denumb:=256*?&73+7&74

20305

2040 DEF PROCassemble

2050 DIM denumb 30

2060 P%=denumb: [OPT 2

2070 \ Decode GOTO line ref in &70,&71,
&72

2080 \ to binary line number in &73,&74

2090 \ Temporary storage in &75

2100 LDA &70:ASL A:ASL A:STA &75

2110 AND #&CO:EOR &71:STA &74

2120 LDA &75:ASL A:ASL A:EOR &72:STA &7
3RS

2130]

2140 ENDPROC

2150 |«

2160 DEF FNletter (x%)=((x%>=ASC("A") AN
D x%<=ASC("Z")) OR (x%>=ASC("a") AND x%<
=ASC(M2t)))

2170

2180 DEF FNdigit (x%)=(x%>=ASC("0") AND
X¥<=ASC("9"))

skl

2200 DEF FNhex(x%)=((x%>=ASC("0") AND x
%<=ASC("9")) OR (x%>=ASC("A") AND x%<=AS
Gl

2210 &

2220 DEF FNdef (chain%, name$) i

2230 A%=POS:B%=VPOS:PRINTTAB(8,7) ;"Symb
ol :";name$;SPC(40-POS) ; TAB(A%,B%) ;

2240 LOCAL end$, found%, new%, last%

2250 end%=FALSE: found%=FALSE: last%=chai
n%:chain%=!chain%

2260 REPEAT

2270 IF chain%=-1 THEN end%=TRUE:GOTO 2
300

2280 IF nameS S cha1n%+ll) THEN end%=TR

UE : found%=TRUE :GOTO 2300

2290 IF name$>$(chain%+11) THEN last%=c
hain%:chain%=!chain% ELSE end%=TRUE

2300 UNTIL end%

2310 IF found% THEN GOTO 2380

2320 DIM new% LEN(name$)+11

2330 !last%=new$: !new$=chain%:chain%=ne
w%

2340 $(chain%+11)=name$

2350 ?(chain%+9)=0:?(chain%+10)=0

2360 DIM new? 3:!new%=-1:!(chain%+4)=ne
w3

2370 ?(chain%+8)=0

2380 IF def% THEN ?(chain%+9)=nline%/25
6
2390 IF def% THEN ?(chain%+10)=nline%

2400 =chain%

2410 -

2420 DEF FNgo(chain%, line%)

2430 LOCAL end$, found%, new$, last%

2440 end%=FALSE: found%=FALSE: last%=chai
n%:chain%=!chain%

2450 A%=P0S:B%=VPOS:PRINTTAB(8,9); "Ref
Line 4 RTGHTS (4 "+STRS (1ine%), 6)
;TAB(A%,B%) ;

2460 REPEAT

2470 IF chain%=-1 THEN end%=TRUE:GOTO 2
500

2480 IF FNnumber (chain%+9)=1ine% THEN e
nd%=TRUE : found%=TRUE : GOTO 2500

2490 IF FNnumber (chain%+9)<line% THEN 1
ast%=chain%:chain%=!chain% ELSE end%=TRU
E

2500 UNTIL end%

2510 IF found% THEN =chain$%

2520 DIM new% 10:!last%=new%: !new$=chai
n%:chain%=news

2530 DIM new% 3:!new%=-1:!(chain%+4)=ne
‘w%

| 2540 ?(chain%+8)=0:?(chain%+9)=1ine%/25
6

2550 ?(chain%+10)=1ine%:=chain%

2560 ¢

2570 DEF PROCline(ref%)

2580 LOCAL 1i%,p%,end%, new?,qu
2590 end%=FALSE

2600 last%=!(ref%+4) :p%=!last%

2610 REPEAT

2620 IF p%=-1 THEN DIM new$ 43:!last%=n

%, last%

26

Beebug April 1992

Cross Reference Lister

ew$:p%=new?:FOR 1%=0 TO 40 STEP 4:!(i%+n
ew%)=-1:NEXT 1%

2630 1%=2

2640 REPEAT

2650 1%=1%+2:qu¥=FALSE

2660 IF 1%=42 THEN qu¥=TRUE ELSEIF FNnu
mber (p%+1%) =&FFFF OR FNnumber (p%+1%)=nli
ne% THEN qu%=TRUE

2670 UNTIL qu$

2680 IF i%<42 THEN end%=TRUE ELSE last%
=p%:p%=!p%

2690 UNTIL end%

2700 ?(p%+i%)=nline%/256

2710 ?(p%+i%+1)=nline%

2720 ENDPROC

20

2740 DEF FNnumber (x%)=(?x%)*256+? (x%+1)

2750 ¢

2760 DEF PROCpvar (chain$,title$, type$)

2770 LOCAL a$

2780 PROCpdouble (title$,CHRS (131))

2790 PROCp(Ix 1)

2800 IF chain%=-1 THEN PROCp(" (NONE
)ll, “u) :PR(X:p(" II, Illl) :EI\H)PROC
2810 REPEAT

2820 aS=typeS+" "+$(chain%+11)

2830 IF FNnumber (chain%+9)<>0 THEN a$=a
$+" ("+STRS (FNnumber (chain%+9))+")"

2840 PROCp(a$,CHRS(134))

2850 PROCplines(chain%)

2860 chain%=!chain$%

2870 UNTIL chain%=-1

2880 ENDPROC

2890 :

2900 DEF PROCpgo(chain%,title$,tis)
2910 PROCpdouble(title$,CHRS(130)) :PROC
S

2920 IF chain%=-1 THEN PROCp(" (NONE
)ll, " n) :PROCp(“"/ llll) :ENDPROC
2930 REPEAT

2940 PROCD (" "+ti$+" "+STRS(FNnumber (ch
ain%+9))+" From :",CHR$(134))

2950 PROCplines(chain%)

2960 chain%=!chain%

2970 UNTIL chain%=-1

2980 ENDPROC

2990 :

3000 DEF PROCplines(ref%)

3010 LOCAL p%,1%,end%,aS:p%=!! (ref%+4):

a$=STRINGS (6, " ")

3020 REPEAT

3030 IF p%=-1 THEN GOTO 3110

3040 i%=2:end%=FALSE

3050 REPEAT

3060 1%=1%+2

3070 IF i%<42 AND FNnumber (i%+p%)<>&FFF
F THEN a$=a$+RIGHTS (" "+STRS (FNnumbe
r(i%+p%)),6) ELSE end%=TRUE

3080 IF (print% AND LEN(a$)>prlen%-7) O
R (NOT print% AND LEN(a$)>33) THEN PROCp
(as, ") ;a8=" "

3090 UNTIL end%

3100 p%=!p%

3110 UNTIL p%=-1

3120 PROCp(as, **) :PROCR(" ", ")

3130 ENDPROC

3140

3150 DEF PROCp(text$,control$)

3160 REM print control$+text$ on screen
3170 REM print text$ only on printer
3180 REM if enabled

3190 PRINT control$;

3200 IF print% THEN VDU 2

3210 PRINT text$:VDU 3

3220 ENDPROC

3230

3240 DEF PROCpdouble(text$,control$)
3250 REM print control$ AND text$ in
3260 REM double height on screen,

3270 REM print text$ on printer (once)
3280 REM if enabled

3290 PRINT CHRS$(141);control$;text$
3300 PRINT CHRS$(141);control$;

3310 IF print% THEN VDU 2

3320 PRINT text$:VDU 3

3330 PRINT SPC1;control$;

3340 IF print$% VDU2

3350 PRINT STRINGS (LEN text$,"=")

3360 vDU3

3370 ENDPROC

3380 :

3390 DEF PROCsetprinter

3400 REM user to do whatever needed
3410 prlen%=80:REM line length to use
3420 REM send line feeds

3430 REM *FX6,0 if necessary

3440 ENDPROC

2450 -

Beebug April 1992

Cross Reference Lister

[3460 DEF PROCoptions [3600 PRINT CHRS(141);CHRS(134);SPC(3);:C
3470 REM User inputs options iHR$(157);CHR$(132);CHR$(139);"Cross Refe
3480 REM Is print output required ? | rence Lister ";CHR$(156)

| 3490 print%=FNyesno("Do you want to pri : 3610 NEXT:PRINT ‘

[nt the results"+crlf$+'as well as displa | | 3620 ENDPROC ?

|y them") 3630 -

3500 IF NOT FNyesno('Do you want to lim | 3640 DEF FNyesno (prompt$)

it the types of detailwhich are recorded 3650 LOCAL end$%,ans$:end%=FALSE

") THEN lvar%=TRUE:lproc%=TRUE:1fn%=TRUE 3660 PRINT prompts;" (Y or N}

: 1got 0%=TRUE : 1gosub%=TRUE : ENDPROC 3670 REPEAT

3510 lproc%=FNyesno("Do you want PROCS" 3680 INPUT ans$

) 3690 ans$=LEFTS (ans$,1)

3520 1lfn%=FNyesno("Do you want FNs") 3700 IF ans$="Y" OR ans$="y" OR ans$="N
3530 lvar%=FNyesno("Do you want variabl " OR ans$="n" THEN end%=TRUE ELSE VDU 7:
es") PRINT "Answer Y or N please ";

| 3540 lgoto%=FNyesno("Do you want GOTOs" | 3710 UNTIL end$%

) | 3760 =tanss=fY" OR ansb="y*)
3550 lgosub%=FNyesno("Do you want GOSUB b
S 3740 DEF PROCerror

| 3560 ENDPROC 3750 ON ERROR OFF
3570 : | 3760 IF ERR<>17 REPORT:PRINT" at line "

| 3580 DEF PROCbanner ‘ | i ERL

| 3590 FOR I3=1 TO 2 | 3770 CLOSE#0:END

I3

Desktop Publishing on Acorn Systems

» What are the component parts of a DTP system?

» How can I do DTP using Acorn computer systems?
« How good are they compared with Mac’s and PC’s?
» How much will it all cost?

» Where can I go for expert advice?

All these questions and more are answered in the booklet, “Desktop Publishing on
Acorn Systems”, published by Norwich Computer Services, price 75p (inc p&p).

To get one copy, free of charge, write to us | Please send me a free copy of “Desktop Publish-
stating “I saw your advertisement in Beebug | ing on Acomn Systems”.

magazine. Please send me a free copy of your | Name...........cccoooeee Rl
DTP booklet”. Alternatively, just fill in the

A : Address.....oin
coupon opposite and send it to...
NorwichCompliter sl .~~~
96a Vauxhall Street, Norwich NR2 2SD. | o D
Phone 0603-766592, Fax 0603-764011 BB POStCOdE. ocii oo tiet e

28 Beebug April 1992

course

In the last two
issues I looked in
some detail at Basic’s file handling and
memory management pseudo-variables.
The final group is concerned with the
management of time, and consists of
just two variables: TIME and TIMES. In
fact, unless you have a Master 128, then
you are restricted to just one, since
TIMES$ requires the presence of the
Master’s battery-backed real-time clock.
Basic on a model B is unaware of this
variable, so any attempt to access
TIME$ will produce an error (unless of
course your program has declared a
variable of that name itself), while on a
Master Compact it will simply return a
nonsensical value.

TIME

The pseudo-variable TIME provides a
means of timing events and actions. Built
into the computer is a timing device
known as the system clock (which is
quite separate from the real-time clock
on the Master 128 which keeps a record
of the actual date and time of day). The
system clock is simply a timer which is
reset to zero each time the computer is
switched on or Ctrl-Break is pressed, and
increments once every centisecond
thereafter. The current value can be read
at any time, and equally importantly, a
value can be written to the system clock,
whereupon the timer continues to
increment from that value.

The system clock can be read and written
by using operating system calls. Of more
importance for the purposes of this
article, the current value of the system
clock can be read or written by using the
pseudo-variable TIME. The variable is
very simple to use; for example:

Beebug April 1992

Pseudo-Variables (3)

Alan Wrigley concludes his explanation of pseudo-
variables by looking at those which relate to time.

TIME=0
would reset the timer to zero, while:
PRINT TIME
would display the number of centi-
seconds since the timer was last reset to
zero. Similarly:
elapsed%=TIME
would place that value into a variable
elapsed %.

There are many uses for TIME. For
example, it is often used in games where
a finite amount of time might be
allocated for a particular action. So the
program would set the clock to zero at
the start of the action, and then
continually read the value until it was
greater than the maximum time allowed.
Another common use is in control
applications, where you might be
reading data from the analogue port at
specific time intervals, say. Suppose you
wanted to read the state of an input line
every second. The system clock will
increment 100 times for every second, so
you need to know whenever the value of
the clock crosses a 100-centisecond
boundary. You can do this as follows:

TIME=0:0ldtime%=0

REPEAT :REPEAT

newtime%=TIME DIV 100

UNTIL newtime%>oldtime%

oldtime%¥=newt ime%

PROCreaddata

UNTIL FALSE
The timer is reset at the start, and also a
variable oldtime% is set to zero (we can
use integer variables here since the value
returned by TIME will always be an
integer). This variable will hold the
number of complete seconds which have
elapsed. The inner REPEAT-UNTIL loop
keeps reading the timer until the value
divided by 100 is greater than oldtime%.

29

First Course

At this point, another second will have
passed and so oldtime% is incremented
and the data is read.

I should perhaps mention that there is an
alternative, and possibly better, method
of achieving the same objective by using
events, but that is really only of relevance
to machine code programmers and is
outside the scope of this article. For
simple applications, using TIME in the
way described here is a perfectly valid
method.

If you are developing your own
programs, it can often be very useful to
find out exactly how long a particular
section of code takes to execute, especially
if the actions being performed are time-
critical. Using TIME during program
development can be a very quick and
simple way of doing this. For example,
suppose that you want to try out various
ways of performing a certain action to see
which is the fastest. This could be
achieved by inserting atstatement to write
to the clock at the start of the process, and
another to read the value at the end. By
altering the code in between, you can
compare the timer values to see which
alternative executed more quickly. This
can easily be done as follows:
TIME=0

PRINT TIME
Sometimes, however, the actions you are
timing will take considerably less time
than 1 centisecond to execute, and in
these circumstances the system clock will
obviously be useless since it cannot
register a value of less than 1
centisecond. A useful trick if this is the
case is to perform the actions a number
of times within a loop, and time the
entire loop, for example:

TIME=0

FOR I%=1 TO 1000

30

PRINT TIME
The value returned will, of course, be
1000 times the value obtained from one
individual occurrence of the action.

TIME$
As I mentioned earlier, TIMES$ is used to
read and write the value of the real-time
clock, and hence is only of relevance to
Master 128 owners. The real-time clock
facility is provided by a special
calendar/clock chip, which is powered
by the battery in the computer when
mains power is switched off. Operating
system calls are available to write a value
to the clock and to read it back in a
number of formats. From Basic, however,
the simplest way is to use TIME$. When
reading, TIME$ returns a string of a fixed
format; when writing, it takes a string of
the same format as its argument. The
format is as follows:

Day,dd Mon yyyy.hh:mm:ss
where Day and Mon are the first 3 letters
of the current day and month
respectively, and the other elements are
numerical values representing the date,
year, hours, minutes and seconds. So a
typical string returned by TIME$ would
be:

Wed, 19 Feb 1992.13:32:45
In conjunction with Basic’s string-slicing
facilities, this can often be used to great
effect in your own programs, as the
following examples illustrate:

100 Day$=LEFTS (TIMES, 3)

200 PRINT "Today’s date is ";MIDS (TIMES

way)

300 current$=TIMES

310 PRINT 'At the third stroke, it will

be ";MIDS$(current$,17,5);" and *;RIG

HTS (current$,2) ;" seconds"

Beebug April 1992

First Course

By assigning a value to TIME$ you can
set the real-time clock. You can specify
either the date element or the time
element or both, but in all cases the
format must match exactly that
described above, and punctuation is
critical, as shown in the following
examples:

TIMES="Fri,29 Nov 1991"

TIMES="17:23 :45"

TIME$="Fri, 29 Nov 1991.17:23:45"
It can be useful to do this if the real-time
clock has got out of step with the actual
time, as it tends to do over a period, or
indeed if the battery has to be replaced in
which case the clock will stop when the
machine is switched off. You might also
perhaps want to set a particular date or
time to test a program you are writing -
perhaps to generate an effect on 1st April
or at midnight. Note that because the
expression is a fixed-format string, it
must be exactly the right length, with
spaces inserted if necessary. For example,
the following statement would be
ignored:

TIMES="Fri,8 Nov 1991"
because the date only contains a single
character (“8”) instead of the two
required, whereas either of the following
is acceptable:

TIMES="Fri, 8 Nov 1991"

TIMES="Fri, 08 Nov 1991"
Note that the operating system makes no
attempt to check that the day of the week
you supply matches the date in question
(unlike the Archimedes, where the
correct day will automatically be
substituted).

TOKENS

Before we leave pseudo-variables, it is
worth knowing that they possess one
interesting additional property. As you
will probably know, a Basic program in
memory is tokenised; that is, each Basic
keyword, such as PRINT for example, is
not stored in memory as a string of ASCII

Beebug April 1992

codes, but as a single byte with a value
greater than 128 (these are listed in the
User Guide for reference). Each keyword
is represented by a different byte, and
this is known as its “token”. When the
program is run, the token is read and the
appropriate routine in the Basic ROM is
called. However, apart from EXT# each
pseudo-variable keyword uses one of
two tokens, one for when a value is
assigned to the variable, and another for
when it is read. This is because a
different routine must be called in each
case, and it is generally preferable for
Basic to decide which one at the time of
tokenising rather than when the program
is run.

This property of pseudo-variables has
important consequences for
programmers. For example, on a
Master the command LIST IF is very
useful for finding all occurrences of a
particular string or keyword. However,
LIST IF will match keywords only to
the first token it finds in the token list,
so it will only find occurrences of a
pseudo-variable where it is being read,
and not where it is assigned. Also,
while the keyword THEN is normally
optional after an IF statement, it is
imperative to include it if the first
statement after the condition assigns a
value to a pseudo-variable. In other
words, a line such as:

IF A%=5 PTR#file%=123
will generate a syntax error, while:

IF A%=5 THEN PTR#file%=123
is perfectly acceptable. It is useful to
know this, since otherwise there is no
obvious reason for the error.

I hope this in-depth look at pseudo-
variables has been worthwhile. Next
month we will move on to the subject of
memory usage, and in particular why
and how you might manipulate memory
directly from within your programs. 5

BUSINESS GRAPHICS - for producing graphs, charts and diagrams

VIDEO CATALOGUER - catalogue and print labels for your video cassettes

PHONE BOOK - an on-screen telephone book which can be easily edited and updatc
PERSONALISED LETTER-HEADINGS - design a stylish logo for your letter heads
APPOINTMENTS DIARY - a computerised appointments diary

MAPPING THE BRITISH ISLES - draw a map of the British Isles at any size

SELECTIVE BREEDING - a superb graphical display of selective breeding of insects
Pe I8ED BOOK - on-screen address and phone book

THE EARTH FROM SPACE - draw a picture of the Earth as seen from any point in space
PAGE DESIGNER - a page-making package for Epson compatible printers

WORLD BY NIGHT AND DAY - a display of the world showing night and day for any time and
date of the year

Mile Blandling for All
om the BBC Miero and Acorm Archimedes I
by David Spencer and Mike Williams

Computers are often used for file handling applications yet this is a subject
which computer users find difficult when it comes to developing their own
programs. File Handling for All aims to change that by providing an extensive
and comprehensive introduction to the writing of file handling programs with
particular reference to Basic.

File Handling for All, written by highly experienced authors and programmers David Spencer and Mike Williams,
offers 144 pages of text supported by many useful program listings. It is aimed at Basic programmers, beginners
and advanced users, and anybody interested in File Handling and Databases on the Beeb and the Arc. However, all
the file handling concepts discussed are relevant to most computer systems, making this a suitable introduction to
file handling for all.

The book starts with an introduction to the basic principles of file handling, and in the following chapters develops
an in-depth look at the handling of different types of files e.g. serial files, indexed files, direct access files, and
searching and sorting. A separate chapter is devoted to hierarchical and relational database design, and the book
concludes with a chapter of practical advice on how best to develop file handling programs.

The topics covered by the book include:
Card Index Files, Serial Files, File Headers, Disc and Record Buffering, Using Pointers,
Indexing Files, Searching Techniques, Hashing Functions, Sorting Methods,
Testing and Debugging, Networking Conflicts, File System Calls

The associated disc contains complete working programs based on the routines described in the book and a copy of
Filer, a full-feature Database program originally published in BEEBUG magazine.

ASTAND

Enhanced ASTAAD CAD program for the
Master, offering the following features:

Save | HOUE Text move Line Edge Out) § Forg Fix Recl fbs x«
i Soal

14
tnane FLANGE eisobitines * piagonal 15

0
8
Y
bl
i
L
0
-
/)
0
A

% full mouse and joystick control
% built-in printer dump
% speed improvement
% STEAMS image manipulator
¥ Keystrips for ASTAAD and STEAMS
¥ Comprehensive user guide |
% Sample picture files E
Stock Code Price Stock Code Price
ASTAAD (80 track DFS) 1407a £5.95 ASTAAD (3.5" ADFS) 1408a £595
EDIKIT (EPROM) 1451a £ (.75
EDIKIT (40/80T DFS) 1450a £0.75 EDIKIT (3.5" ADFS) 1452a £575
Applications IT (80 track DFS) 1411a £4.00 Applications II (3.5" ADFS) 1412a £4.00
Applications I Disc (40/80T DFS) 1404a £4.00 Applications I Disc (3.5" ADFS) 1409a £4.00
General Utilities Disc (40/80T DFS) 1405a £4.00 General Utilities Disc (3.5" ADFS) 1413a £4.00
Please add p&p |

RISC Deveélopments Ltd, 117 Herts AL1 4JS.

Board Game

SOLITAIRE - an elegant implementation of this ancient and fascinating
one-player game, and a complete solution for those who are unable to
find it for themselves.

RoLL or HONOUR - Score as many points as possible by throwing the
five dice in this on-screen version of Yahtze',

PATIENCE - a very addictive version of one of the oldest and most
popular games of Patience.

ELEVENSES - another popular version of Patience - lay down cards on
the table in three by three grid and start turning them over until they
add up to eleven.

CRIBBAGE - an authentic implementation of this very traditional card
game for two, where the object {s to score points for various combinations and sequences of cards.

TWIDDLE - a close relative of Sam Lloyd's sliding block puzzle and Rubik's cube, where you have to move numbers round a
grid to match a pattern.

CHINESE CHEQUERS - a traditional board game for two players, where the object is to move your counters, following a
pattern, and occupy the opponent's field.

Aces HIGH - another addictive game of Patience, where the object is to remove the cards from the table and finish with the
aces at the head of each column.

Applications I Dise

CROSSWORD EDITOR - for designing, editing and solving crosswords

MoNTHLY DESK DIARY - a month-to-view calendar which can also be printed

3DL PES - g three d | landscap

REAL TiME CLOCK - a real time digital alarm clock displayed on the screen
RUNNING FOUR TEMPERATURES - calibrates and plots up to four temperatures
JULIA SETS - fascinating extensions of the Mandelbrot set

FOREIGN LANGUAGE TESTER - foreign character definer and language tester

LABEL PROCESSOR - for designing and printing labels on Epson compatible printers
SHARE INVESTOR - assists decision making when buying and selling shares.

Areacle Games

GEORGE AND THE DRAGON - Rescue 'Hideous Hilda' from the flames
of the dragon, but beware the flying arrows and the moving holes on
the floor.

EBONY CASTLE - You, the leader of a secret band, have been captured
and thrown in the dungeons of the infamous Ebony Castle. Can you
escape back to the countryside, fighting off the deadly spiders on the
way and collecting the keys necessary to unlock the coloured doors?
KNIGHT QUEST - You are a Knight on a quest to find the lost crown,
hidden deep in the ruins of a weird castle inhabited by dangerous
monsters and protected by a greedy guardian.

PrrrALL PETE - Collect all the diamonds on the screen, but try not to
trap yourself when you dislodge the many boulders on your way.
BUILDER BOB - Bob is trapped on the bottom of a building that's being demolished. Can you help him build his way out?
MINEFIELD - Find your way through this grid and try to defuse the mines before they explode, but beware the monsters
which increasingly hinder your progress.

ManIc MECHANIC - Try to collect all the spanners and reach the broken-down generator, before the factory freezes up.

QUAD - You will have hours of entertainment trying to get all these different shapes to fit.

i
0
n
*

0
o
:
]
v
C
0

(80p every additional item), Elswhere: £2.60 first item (£1.30 every additional item)

Stock Code Price Stock Code Price
Arcade Games (40/80 track DFS) PAGla £5.95 Arcade Games (3.5" ADFS) PAG2a £595
Board Games (40/80 track DFS) PBGla £5.95 Board Games (3.5" ADFS) PBG2a £5.95
File Handling for All Book BKO2b £995
File Handling for All Disc (40/80T DFS) BKO5a £4.75 File Handling for All Disc (3.5" ADFS) BKO07a £4.75
Joint Offer book and disc (40/80T DFS) BK0O4b £ 11.95 Joint Offer book and disc (3.5" ADFS) BKO6b £ 11.95

Please add p&p. UK: £1.00 first item (50p for every additional item), Europe and Eire: £1.60 first item

|
|
|
|

(0727) 40303 Fax. (0727) 860263

Zeus II - The Final Conflict

Stephen Sexton adds more mind-mangling levels to his game and
shows you how to make your own.

If you thought that nothing could ever be When the game is actually played, blocks
as much fun as last issue’s Zeus program only disappear when they are moved
prepare to be tickled pinker. together, so check that you don’t start
with two similar blocks alongside each
other.

e oo s SR e T G T AR
i vt

e o 5

H
i
(HHHH]

All editing occurs on the scratch
playfield. This is not accessed by the
main game during play - so you can
experiment to your heart’s content
without messing up the other levels.

i
i
I
i
il
!.
1
a
!
i

il
H
i
of
oi
L]
;

il
i!‘i
il
i
Ixi

ik
i
Il

i T
il
E
;
!
l
z
it
i

Screens can by yanked from or shoved
to the scratch playfield by using Y and
S. Yanking a level copies the selected
level to the scratch playfield, whilst
shoving does the opposite. Both
options require numeric input for the
The first gem we bring you is a new set of level to be yanked or shoved - there are 8

levels. Type in the listing BDATA, save it levels to bbcZEUS, so press 1 to 8.
then run it. This will produce a new set of

levels for Zeus. If you want them to load
automatically save the levels as DEFAULT
- if not, save them as something else.

E EERRERE

il
&
111

i

M
HH
|

H
i

When you have had enough of that you
can add the screen editor to the main
program. The Zeus2 (Part 2) listing
should be added to last month’s Zeus?
program and resaved as Zeus2. Now
you will be able to access the editor
from the Zeus instruction screen.

THE ZEUS EDITOR EXPLAINED
On entering the editor you are presented
with the Edit screen. The cursor keys
move the block cursor around, whilst
keys 1 to 7 put a block of type 1-7 at the
cursor. Blocks of type 1 score least on
removal, whilst type 7 score most. Put the
higher scoring blocks on the later levels.

Pressing P allows a playtest of the level
currently in the scratch playfield. If the
level is impossible (i.e. only one block of
a type) the editor says so and continues
editing. This also occurs when shoving a

Return puts a unit of wall at the cursor, level. If the level is deemed clearable, it is
whilst Space puts in a blank - for tunnels, played. The normal 2 lives are given, the
shafts and chambers. score shown, and when clearance occurs,
34 Beebug April 1992

R AR Em==mmmceommomomomommomommmmeeIrrmen

Zeus II - The Final Conflict

or both lives are lost, the editor is re-
entered with the scratch playfield still
intact.

While the program can test for single
blocks it is still possible to design an
unsolvable screen so make sure you can
finish it before adding it to the main
levels.

Q takes you back to the main text screen
and you can save your new levels from
here.

It’s worth noting that if the game
contains large numbers of the same block
that are all cleared at once there will be a
delay while Zeus sorts things out. You
just need to wait until the block cursor
reappears. Have fun!

10 REM Program BDATA
20 REM Author S. Sexton
30 REM Version Al.3
40 REM BEEBUG April 1992
50 REM Program subject to copyright
60 :
100 MODE7
110 INPUT'Filename:"file$
120 out%=OPENOUT(LEFTS (file$,7))
130 RESTORE 1000
140 FOR A%=0 TO 4:PRINT#out%,"T H Pine
apple",300*(5-A%) :NEXT
150 FOR L%$=1 TO 8
160 T%=0:FOR A%=0 TO 7
170 READ X%:T%=T%+X%:PRINTH#out%, X%
180 NEXT
190 FOR B%=1 TO T%:READ X$%,Y%
200 PRINT#out$%,X%,Y%:NEXT
210 NEXT
220 CLOSE#out$:END
230
240 REM Levels Data
1000 DATA 9,2,2,3,0,0,0,0
1010 DATA 4 5 B B 6.5, 6,6, 1,68, 1,7,

8,7, 1.8 17,9

1020 DATA 4,6, 8,9

1030 DATA 5,6, 6,7

1040 DATA 5,7, 6,8, 8,8
1050 :

1060 DATA 15,2,4,4,2,0,0,0

1070 DATA 4 b 5.5 687 5.8 5 46
h,6,16,6, 7,6, 8,6 85 67,8768
8,8

1080 DATA 9,5, 6,9

1000 DATA 9.6, 5.8, 7.8 4.0

1100 DATA 4,7, 9,7,.5,9, 8,9

1110 DATA 7,7, 4,8

1120 -

1130 DATA 15,3,3.0,0,0,0,0

L4 DATA hid) neids g Ay B A g 5 Es
0.6, oty o 61, 1.7, 7,8, 8,8, 7,9
8,9

1150 DATA 4,4, 8,6, 6,9

1160 DATA 4,6, 9,6, 6,8

1i7g -

1180 DATA 8,3,4,4,2,0,0,0

1190 DATA 7.4, 18, 40 0I5 8 Bl 6T
1,8, 1,9

1200 paTA 5,4, 6,5, 8,8

1210 DATA 6,4, 5,6, 6,8, 8,9

1220 DATA 5.5 6,6, 87 5.8

1230 DATA 8,6, 5,9

1240 :

1250 DATA 14,3,3,6,0,0,0,0

1260 DATA 6,5, 8.5 6.6 47 5999
2.7, 5.8 7.8 8.8 59 69 79 610
1270 DATA 5,3, 9,3, 9,5

1280 DATA 7.8, 5,5, 1,5

1290 DATA 5 40 7 40 9 4 6 7 418 116 11
1300

1310 DATA 27,12,7,4,6,3,0.0

1320 PATA 20601 2 6, 2.7 2.8, 2.9 3.0
4.9, 4010, B2, 5.3 5 S50 8 65T
(D8R9, 69, 7.9 g 1083838,
4, 8,5, 8,8, 8,97, 8.8 B9

1380 DATA 2020 4 00l BB dLA LT A s

Beebug April 1992

35

Zeus II - The Final Conflict

e R S

1340 DATA 6,3, 7,7; 2,10, 811

1350 DATA 203 4 30 34 15, 6.6, 47
311

1360 DAY BG4 A B3 AL 410, 5T

1370 DATA 7.6, 6,7, 5,11

1380 :

1390 paTA 8,3,3,2,0,0,0,0

1400 PATA GBS 850 8,6, .6 5 1
1.0,.5,8

1410 DATA 4,5, 6,5, 4,8

1420 DATA 6,6, 8,6, 4,7

1430 DATA 6,7, 8,7

1440 :

1450 DAaTA 10,3,3,2,0,0,0,0

140 DRTA W4y 0,5, B8, 106, 0L T, 8,
8,8, 9,6, 51,58

1470 DATA 6,4, 6,7, 6,9

1480 DATA 6,5, 4,7, 6,8

1490 DATA 4,6, 6,6

10 REM Program Zeus2 (Part2)

20 REM BEEBUG April 1992

e

210 IF G%=101 OR G%=69 PROCedit
2930 DEFPROCclearhi
2940 FOR A%=0 TO 4:hi$(A%)="T H Pineapp
le":hi%(A%)=300*(5-A%) :NEXT
2950 ENDPROC
2960 :
2970 DEFPROCedit:PROCclearhi
2980 PROCshow(9)
2990 COLOUR2:PRINTTAB(15,12)"Edit"
3000 GX%=1:GY%=1:REPEAT
3010 PROCcursor (GX%,GY%,9) :2%=GET
3020 PROCcursor (GX%,GY%,9)
3030 IF (z%=80 OR Z%=112) IF FNlevelok
PROCtest
3040 IF Z%>48 AND Z%<56 PROCdoblock (GX%
,GY%,7%-48)

3050 IF 2%=32 PROCdoblock (GX%,GY$%,0)
3060 IF Z%$=13 PROCdoblock (GX%,GY%,-1)
3070 IF 2%=89 OR Z%=121 PROCcopy (FNsele
ct("Yank from:"),9):PROCshow(9) :COLOUR2:
PRINTTAB(15,12) "Edit"

3080 IF (Z%=83 OR Z%=115) IF FNlevelok
PROCcopy (9, FNselect ("Shove to:"))

3090 IF 7%=82 OR 7%=114 S%=FNselect ("Sw
ap level:"):D%=FNselect ("To level:"):PRO
Ccopy (S%, 0) : PROCcopy (D%, S¥) : PROCcopy (0, D
%)

3100 IF 2%=136 GX%=GX%+(GX%>1)

3110 IF 7%=137 GX%=GX%-(GX%<12)

3120 IF 7%=138 GY%=GY%-(GY%<12)

3130 IF z%=139 GY%=GY%+(GY%>1)

3140 UNTIL z%=81 OR Z%=113:ENDPROC

3150«

3160 DEFPROCdoblock (BX%,BY%,BT%)

3170 IF playfield%(BX%,BY%,9)>=0 IF typ
e% (playfield%(BX%,BY%,9),9)>0 type%(play
field% (BX%,BY%,9),9)=type? (playfield% (BX
%, BY%,9),9)-1

3180 playfield%(BX%,BY%,9)=BT%:IF BT%>=
0 type%(BT%,9)=type%(BT%,9)+1

3190 COLOUR coldat$ (BT%+2) : PRINTTAB (BX%
+1,BY%*2) ;CHRS (240+BT%*2) ; TAB(BX%+1, BY%*
2+1) ;CHRS (241+BT%*2)

3200 ENDPROC

2200

3220 DEF FNselect (A$) :COLOUR3

3230 PRINTTAB(9-LEN(AS)/2,27)A$

3240 REPEATI%=GET:UNTIL I%>48 AND I%<57

3250 PRINTTAB(9-LEN(AS$)/2,27)SPC(LEN(AS
)) :=1%-48

3260 -

3270 DEF FNlevelok:ok=TRUE

3280 FOR T%=0 TO 7 |

3290 IF type%(T%,9)=1 ok=FALSE

3300 NEXT:IF NOT ok COLOUR3:PRINTTAB(2,
27) "Check blocks!":VDU7:PROCwait (40) : PRI
NTTAB(2,27)SPC(13) ‘

3310 =ck }ai

36

Beebug April 1992

512

+ 512 Forum

by Robin Burton

O Over the last
Q three issues
we’ve taken a
fairly detailed
look at various

elements of the GEM system supplied on
the 512’s issue discs.

We'll round off our investigation with a
brief recap of the items covered, but
there are also some overall
considerations that will affect the choices
you'll need to make.

MEMORY CONSTRAINTS

We looked at the various elements that
go to make up the GEM system, so you
know that in essence configuring the
system only involves the changing and
copying of a few files. In the case of the
new black and white screen driver this is
simply so that the program works at all,
while for ASSIGN.SYS the purpose of the
changes is to alter the range of fonts at
your disposal for display on the screen.
The only other thing to do is to copy the
appropriate files to the working GEM
disc.

However, there are other points to weigh
up before you do any of this. The biggest
limiting factor on how many font files
you can include in your new version of
ASSIGN.SYS, for example, will be the
amount of free RAM in your 512. This is
especially critical in unexpanded
machines.

The major factor in this is the number
and size of screen fonts to be included,
because these are memory resident,
even if you don’t use them all. As an
illustration, just adding the two 36 point
font files to a standard system means
that only one full size window can be
opened in GEM Paint for example. By

Beebug April 1992

the way, printer fonts have no effect on
memory, as these files are only loaded
when they’re needed during printing.

You can of course make savings in other
areas, for example you can increase
memory by discarding the desktop
accessories, simply done by deleting their
files. If these files are loaded, like fonts,
they consume RAM even if you don’t use
the accessories. CALCLOCK.ACC
contains the calculator and print spooler,
while SNAPSHOT.ACC is the snapshot
file. Removing these two files will save
about 40K which GEM can use for other
purposes.

On a 1Mb 512 you’ll have fewer
problems, but you need to make
adjustments for GEM to use your extra
memory. The line:

ADDMEM 333
in GEM.BAT needs changing, but there’s
a bit of a compromise here.

Not all GEM applications use allocated
GEM memory in quite the same way.
GEM Paint for example, stores screen
images within the allocated memory, so
purely for the purposes of Paint the
larger the allocation the better.
However, on the other side of the fence,
GEM Write stores working documents
in the memory remaining outside the
specified allocation, so for this
application the smaller the initial
allocation the better, up to a point.

Of course one possibility is to have a
version of GEM.BAT for Paint (perhaps
called PAINT.BAT) and another for
Write, each with different memory
allocations. This does mean however,
that importing a Paint file into a
document could become very tedious if
not impossible, requiring a reboot of
GEM between applications.

37

512 Forum

A more sensible approach is to find a
value that suits both applications in your
system and, if necessary, stick to smaller
documents with more of them. David
Harper suggests that “"ADDMEM 500’ is a
reasonable compromise for expanded
memory 512s.

HINTS, TIPS AND ODDMENTS
I'll use the rest of this Forum to cover a
number of sundry points that, judging by
the occasional but regular queries, still
cause the occasional bit of head
scratching.

First, DOS function keys, with a bit of
background thrown in for general
interest. There are ten standard function
keys on PCs, so a DOS application can
reasonably expect to to use all of them if
it needs to.

As an aside, in fact there are more on
most machines. Twelve is typical on AT-
type PCs, but as many as twenty is
normal on current models. However, for
reasons of backward compatibility with
older hardware such as XT-type PCs,
only the first ten function keys return a
key-code in DOS ‘get character” function
calls. To read the extra keys, programs
must scan the keyboard at a lower level,
but most applications don’t do this
because there are still a lot of ATs, XTs
and earlier models in use.

All this means that most programs,
except the latest that specify a 386
machine as the minimum, will work on
the 512, at least as far as the ten function
keys are concerned. The bit that can
confuse 512 users is that the function
keys are numbered from one to ten on a
PC keyboard, while the BBC micro’s are
zero to nine. There’s no problem though,
as function key zero in the 512 acts as
function key ten in a PC.

I know of one or two quite experienced
512 users who have been caught out by
this bogus problem, although it might

38

seem obvious when it’s explained. Once
again it’s a case of Acorn not
documenting the facts properly.

PC DEVELOPMENTS

I've been asked a few times about what
exactly ‘XT” and ‘AT” mean, particularly
with reference to potential software
compatibility. Having mentioned both of
these this month, here goes.

The first PCs actually used 16-bit
processor chips, but memory handling in
those machines was old 8-bit technology.
The result was that they were slow, since
a ‘load processor register from memory’
instruction required two 8-bit reads of
memory. Of course machines improved,
and along came the XT, short for
‘eXtended- Technology’. These were still
slow by today’s PC standards, using the
same processor chips as their
predecessors, (usually an 8086) but at
least they had a 16-bit data bus so they
were quicker than the earlier models.
Intel then started to develop a new
generation of processors, of which the
80186 used in the 512 was the first
attempt.

The 80186 didn’t catch on for PCs,
primarily because very shortly after it
appeared the 80286 followed (and
everyone knew it was on the way). The
286 had more efficient memory
management which was quicker still, but
which also allowed the processor to
address 16Mb of memory as opposed to
the 1IMb limit of the earlier processors.

The 80286 processor however, was still a
16-bit device, and retained software
compatibility with XTs (and largely the
512 too). All machines using an 80286
chip became generally known as ATs,
short for “Advanced Technology’, after
the IBM machine range of that name. As
can be seen, the 512 fits into the scheme
of things somewhere between an XT and
an AT, both in terms of its origins and its
performance.

Beebug April 1992

512 Forum

After this, hardware remained fairly
static for a time, because although the
80386 chip (a 32-bit processor) appeared
several years ago, the existing XT/AT
software market was much too big to
ignore or abandon. Of course DOS was
occasionally revised and updated while
‘Lotus-Intel-MicroSoft ~ Expanded
Memory System” (LIMS EMS for short)
appeared during this period too.

- Although the 80386 offered yet faster and
better memory management, with the
potential to address up to 2432 bytes (4
gigabytes) with higher processor speeds,
very little software was produced to
exploit the new chip. There were simply
too few 386s to make it worthwhile.

Until now that is. The current top of the
range PC processor is now the 80486
DX33. This is a monster of a chip with
built-in maths co-processor, on-board
high-speed instruction cache with pre-
fetch and pipelining, plus dedicated
built-in fast memory management
circuits. In this chip the processor neither
knows nor cares what’s happening in the
outside world.

The fastest current 486 is 33MHz, the
same clock speed as the fastest 386, but
there the similarity ends. A 33MHz 486
machine is about four to six times faster
than a 33MHz 386 PC and around ten
times the speed of a 12/16MHz 286 AT
machine. That’s not all as a 50MHz 486
is about to appear, plus another add-on
chip which doubles the speed of any 486
processor. There’s also an 80586 lurking
in the future. To put all this in context,
remember that the current Acorn ARM3
runs at 25MHz.

Over the last year, since the appearance
of 486 machines, the price of 386
machines has not only fallen, but
plummeted. What’s more, because of
aggressive marketing in the backwash
from this, so has the cost of a 486 PC.
Basic 486 machines were expected to be in
the £3,000 to £4,000 bracket upwards

Beebug April 1992

(large file-servers and serious CAD
machines still are), but it’s now possible,
with a bit of shopping around, to get an
SVGA 486 PC complete with screen and
hard disc at around £1,500 and a VGA 386
machine at well under £1000 (for example,
BEEBUG can supply their own 33MHz
486 PC for £1699, with SVGA, 60Mb hard
disc, 4Mb RAM, a mouse, Windows 3 and
MS-DOS 5). In fact these falling prices
haven’t quite bottomed-out yet.

THE FUTURE

What'’s this got to do with the 512? Well,
the result of the past year’s price wars,
plus cessation of 286 chip production, is
that both users and software suppliers
alike increasingly see at least a 386 SX (a
16-bit version of the 386) as being the
minimum entry-level to PC computing.
The inevitable consequence of this
change in perception is that software is
now beginning to appear that simply
won’t run on a 286 (much less an XT) or
if it does the machine is on its knees.

For example, MicroSoft Windows is
current ‘flavour of the month’ (it will
probably last longer than a month though)
and Windows-only applications are
naturally appearing too. It’s generally
accepted that a 2Mb 33MHz 386DX is the
minimum system you should try to use to
run this sort of software, but a 4Mb 486
would obviously be very much more
suitable.

For the 512 user this unfortunately means
that more and more new PC software,
including updates to existing packages, can
be expected not to run. It isn’t a new
problem, more of a natural progression, but
it’s certainly becoming very much more
likely that you’ll hit problems as a result of
the changes of the last twelve months.

The problem isn’t only the long known
compatibility difficulties of the 512, nor is
it the anticipated problems of 32-bit
processor architecture. Much more simply

continued on page 48

39

EEREa

ESRsEn
HRER
EHEEE

|
]

L]

I

BEHBEEE

EEEEEE

|

I

EERES
EEEEE

EEnEE
|

EE BT I

|
1

11
1

EEHEERENHEER

EEEEEEEE R EEREERE
EEEER SRR EEE

EEEEE L EEE R LRl

111

Finding a Route in a

Network

by Ian Palmer

Back in BEEBUG (Vol.9
No.3) there was a letter
requesting a program
for a ‘shortest route’
problem. I have not seen
a response before now,
so I hope this article will
explain how this and
related problems can be
solved.

There are five listings
that go with this article.
The first three are
programs proper, while
the final two are just
data which the programs
can use. First you need
to type in all the listings,
separately, and save
them as follows:

Listings 1 and 3 should
be saved as programs
called Routel and Route3
respectively. Listings 2, 4
and 5 should be typed in
as normal but then
spooled out with
filenames Route2a, List1
and List2 respectively.

Both the data files (List1
and List2) can be used
with any of the three
programs, and simply
need to be *EXECed in
after loading the
relevant program. When
typing in the first two
listings (Routel and
Route3) line numbering
is important as the
second listing (Route2a)

should be *EXECed in over the first
listing and then resaved to produce the
second program (Route2).

The programs work on networks of
nodes. The networks can be anything, for
example the first set of data refers to
figure 1, where the nodes are A to J. The
second set of data contains places in
mainland Britain (the nodes are the
places) and the links are road links.

32 F
T e ey
45 50 /j
30
G—45 '
15
20 |/ a3
B—20—g
\
g 20

The first part of each set of data is simply
a list of all the nodes, terminated by
**END. The main part of the data then
follows which is a list of all the links in
the network. This data is of the following
format:

Node, Node, Length of Link, Average
Speed
All links are taken to be bi-directional.

The first program (Routel) will take a
network and try to find the shortest
route such that each node is visited once,
and once only. With this program the

Beebug April 1992

D

Workshop - Finding a Route in a Network

shortest route is that which is of shortest
length, and in fact the average speed part
of the data is ignored by this program.

The crux of the program is the procedure
PROCfind which takes one parameter, the
number of nodes in the current route
found so far (thus it is initiated by the
call PROCfind(0)).

This procedure simply cycles through all
the nodes and tries to assign each to this
next place in the route. It needs to check
that this node has not already been used
in the route and this is done by saving an
array v%() which has one element for
each node which holds TRUE if the node
has been used, and FALSE if not. Also,
the procedure needs to check that this
node can be reached from the previous
node in the route; this is simply looked
up in the array d() which is built up from
the data at the beginning of the program.

All being OK we simply assign this node
to this position in the route and
recursively call PROCfind for the next
position. One other test is needed in
PROCfind and that is the terminating
condition. Here, this is when all nodes
have been assigned (i.e. we have found a
route). This is tested by seeing if the
number of positions found is equal to the
total number of nodes. If so, we print out
the list and try to find the next route.

The list of positions is only printed out if
the total length of the path is less than or
equal to the length of the last path found.
Thus the last list printed before the
program terminates is the shortest route.

You may have noticed that PROCfind isn’t
a particularly well written procedure. For
a start it has dreaded GOTOs in it. There
is, however, a good reason for this. The
GOTOs are trying to emulate a FOR-NEXT
loop as you can only nest up to 10 FOR-
NEXT loops in BBC Basic, and this would
limit us to a network of only 10 nodes.

Beebug April 1992

Even with the GOTOs the size of the
network is still limited because recursion
takes up quite a large amount of room on
Basic’s stack. Thus I have kept the
number of local variables to a minimum
to try to maximize the size of network
allowed. Making sure you have PAGE set
as low as you can will also help. On the
first set of data, the program takes about
one and a half minutes to execute and
yields the result that the shortest route is
AFJECGBDHI with length 264 units (or
the reverse route).

With the second set of data there is no
result, as there is no path which takes you
around all the places without revisiting
some. If you simply add the following line:

1515 DATA Dover, Sheffield, 229, 60

then the program will yield a 1380 mile
route around Britain after about a seven
minute pause.

It’s all very well being able to find the
shortest route around all the places, but
what if you want to go, say, from Dover
to Aberdeen in the shortest distance. Well
the alterations in the second listing
(Route2) will make your program do this.
First the program will pause for a few
seconds while it reads through the data.
Then it will ask you for the start location
and the destination.

The alterations basically limit the start
location to the one you type in and change
the terminating condition inside
PROCfind to testing for the last position in
the route being equal to the destination.
This program executes in less time than
the first program, and again the last
printed route is the shortest (in length).

If, for either Routel or Route2, you wish
that the speed of each link should be
taken into consideration, i.e. you wish to
find the fastest route not just the shortest
in terms of distance, then the following
changes are necessary:

41

L]

Workshop - Finding a Route in a Network

In line 160 change both occurrences of
‘=d’ to ‘=d/t’

Change the word “dist” on line 1130 to
“time”

This sort of problem is one which computers
are often asked to perform. One place
where this problem occurs is in computer
communication. Most large networks are
based on the mesh, similar to that in
figure 1, as opposed to the ring or bus
which both have no problems in routing.

Each node can simply test to see how
long it takes to send a message to one of
its immediate neighbours, and this fact is
used in the following way. What is
desirable is to be able to build up a table
of best routes to use when sending
messages to any node on the network. In
fact all that is needed is to know to which
of its neighbours it should send messages
for each node on the network, as that
node will know the next one, and so on.
The third program (Route3) will build up
just such a table in array s%() which is
indexed by this node number and the
destination node number, and which
yields the node number of the neighbour
to which to send the message.

First the program fills various arrays
with information from the data, and this
time the speed of the link is noted, thus
fastest routes will be obtained. Then
basically each node, in turn, tells each of
its neighbours that it’s there, by calling
procedure PROCinf. This procedure then
works out the time taken to get the
message. This is worked out from the
length and speed of the link. If a message
has already been received via a quicker
route then an exit is made from PROCinf,
otherwise this node then sends this time
to all its neighbours so that they can see
if this route is faster than any they’ve
seen before, and so on.

Effectively, information floods the
network until the shortest routes are

42

known by each node. Then that is all that
is needed to allow any message to go via
the fastest route simply by looking up the
table. This method can be used for our
purpose, although it takes longer for a
single run than Route2 and produces the
same results (if using Route2 where
speed is also taken into account) the
usefulness of this program becomes
apparent when more than one query is
asked.

With Route2 on List2 each query takes
somewhere between 30 seconds and 1
minute to execute. With Route3 there is
about one and a half minute pause while
the table is set up, but then each query is
instantly answered. The only problem
with Route3 is that you are further
limited to the size of network allowed
because of the increased number of local
variables required and the increased
array space.

10 REM Program Routel
20 REM Version B2.00
30 REM Author Ian Palmer
40 REM BEEBUG April 1992
50 REM Program subject to copyright
60 .
100 DIM d(25,25),N$(25),v%(25) ,n%(25)
110 N%=-1:REPEAT:N%=N%+1:READ NS (N%) :U
NTIL N$(N%)="**END"
120 REPEAT:READ S$,FS$,d,t
130 FOR A%=0 TO (N%-1)
140 IF S$=N$(A%) s%=A%:ELSE IF F$=NS (A
%) f%=A%
150 NEXT
160 IF S$<>"**END" d(s%,f%)=d:d(f%,s?%)
!
170 UNTIL 8S$="**END"
180 md=-1:d=0:PROCfind(0)
190 END
200 ¢
1000 DEF PROCfind(A%)
1010 LOCAL B%:B%=0
1020 IF A%=N% PROCprint:ENDPROC
1030 IF B%=N% ENDPROC
1040 IF A%<>0 IF v%(B%) OR d(n%(A%-1),B
%) =0 B%=B%+1:G0T01030

Beebug April 1992

Workshop - Finding a Route in a Network

[1050 v% (B%)=TRUE: IF A%<>0 d=d+d(n%(A%-1
), B%)

1060 n%(A%)=B%:PROCfind(A%+1) :v% (B%)=FA
LSE:IF A%<>0 d=d-d(n%(2%-1),B%)

1070 B%=B%+1:G0T01030

1080 :

1090 DEF PROCprint

1100 IF md<>-1 AND d>md ENDPROC

1110 PRINT"Route : "

1120 FOR C%=0 TO N%-1:PRINTNS(n%(C%));"

] e «NEXT

1130 PRINT"dist " ;d:md=d:ENDPROC

60 REM Program : Route2
70 REM *EXEC over Routel
171 INPUT'"Start : "Ss:INPUT"Dest . "
D$:FOR A%=0 TO N%-1:IF S$=N$(A%) s%=A%:E
LSE IF DS$=N$(A%) f%=A%
172 NEXT
180 md=-1:d=0:v%(s%)=TRUE:n%(0)=s%:PRO
Cfind(1)
1020 IF n%(A%-1)=f% PROCprint :ENDPROC
1120 FORC%$=0 TO A%-1:PRINTNS (n%(C%));"
] P NEXT

10 REM Program Route3
20 REM Version B1.60
30 REM Author Ian Palmer
40 REM BEEBUG April 1992
50 REM Program subject to copyright
60
100 MODE135:vDU23;11,0;0;0;0;
110 PRINTTAB(10,1);CHR$141;CHR$130;"Sh
ortest Route";TAB(10,2);CHRS$141;CHR$130;
"Shortest Route"

120 PRINT'"Setting up table - Please w
ait":DIM d(25,25),t(25,25), 5% (25,25}

130 DIM N$(25) :FOR A%=0 TO 25:FOR B%=0
TO 25:5% (A%, B%) =-1:NEXT:NEXT

140 N%=-1:REPEAT:N%=N%+1:READ N$(N%):U
NTIL NS$(N%)="**END"

150 REPEAT:READ S$,F$,d,t

160 FOR A%=0 TO (N%-1):IF S$=NS(A%) s%
=A%:ELSE IF F$=N$(A%) f%=A%

170 NEXT

180 IF SS<>"**END" d(s%,f%)-d:t (s%,f%)
=d/t:s%(s%, £%)=f%:s%(f%, s%)=s%:t (£%,s%) =
d/t:d(£%,s%)=d

190 UNTIL S$="**BEND®

200 FOR A%=0 TO (N%-1):FOR B%=0 TO (N%
-1) :IF s%(A%,B%)=B% PROCinf (B%,A%,2%,0,0

) :PROCinf(A%,B%,8%,0,0)
210 NEXT:NEXT
220 REPEAT
230 INPUT''Start : "S$:INPUT"Dest. : "
D$:5%=-1:£%=-1:FOR A%=0 TO N%-1:IF N$(A%
)=S$ s%=A%:ELSE IF N$(A%)=D$ f%=A%
240 NEXT
250 IF s%=-1 PRINT"Start not valid"
260 IF f%=-1 PRINT"Dest. not valid"
270 IF s%>=0 AND f£%>=0 PROCshow
280 UNTIL S$="EXIT"
290 END
200
1000 DEF PROCshow
1010 PRINT'"Travel from ";S$;" to ";D$
1020 PRINT'Distance : *;d(s%,f%)
1030 PRINT"Total time ";t(s%,f$%)
1040 PRINT'"Route : ":P%=s%:REPEAT
1050 PRINT"From ";N$(P%);" to ";:P%=s%(
P%,f%) : IF P%<>-1 PRINTNS (P%) :ELSE PRINT"
eek - No route"
1060 UNTIL P%$=f% OR P$%=-1:ENDPROC
1070 -
1080 DEF PROCinf (me%,tm%,to%,d,t)
1090 IF me%=to% OR me%=tm% ENDPROC
1100 IF t(me%,to%)<>0 AND (t+t(tm$,me%)
) >t (me%, to%) ENDPROC
1110 LOCAL I%
1120 d(me%, to%)=d+d(tm%, me$) :t (me$, to%)
=t+t (tm¥, me%) : s% (me%, to%) =tm$
1130 1%=0
1140 IF s%(me%,I%)=I% AND I$<>tm$ PROCi
nf (I%,me%, to%, d(me¥, to%), t (me%, to$))
1150 I%=I%+1:IF I%<N% GOTO1140
1160 ENDPROC

Beebug April 1992

70REM data file : Listl

1170:

1180REM List of nodes (end with **END)
1190DATA A,B,C,D,E,F,G,H,I,J, **END
1200:

1210REM Node Node Length (Speed)
1220DATA A,F,32,70

1230DATA F,J,25,70

1240DATA G, F,50,60

1250DATA A, E, 45,40

1260DATA G, C, 45,40

1270DATA E,C, 15,30

1280DATA E,J, 30,40

1290DATA G, B, 20,30

Continued on page 46
43

Public Domain Software

Alan Blundell looks at the range of utility software available in the
public domain.

As promised last month, I'll take a look
at utility software this month. The public
domain includes a growing amount of
utility software; when I first got involved
in PD software, I expected this to be by
far the largest category of software,
because of the ease with which Acorn
computers can be programmed and the
interest in the inner workings of the
system which large numbers of BBC
owners seem to have. It didn’t turn out
that way, at least so far, as games are
available in larger quantity, but there is a
fair selection of utilities available.

Radio amateurs seem to have a need for
particular utilities as tools for their
hobby, such as bearing and distance
calculations, antenna efficiency
calculations, etc. A small selection of
utilities are available in this area, but
although I profess no great
understanding of the subject, from
comments received they are less than
accurate in their calculations and not
particularly well presented.

A radio amateur logbook program sold
commercially by Technical Software was
at one time mistakenly distributed as PD,
due to a bit of ‘hacking” somewhere
along the line and a consequently
mistaken library submission (if we look
at it charitably...). This is an example of
the problems caused by pseudo-PD
software, and illustrates why I see a need
for PD libraries to exercise great caution
when accepting software submissions. I
still frequently see copyright software
distributed as PD, without evidence of
the copyright holder’s permission.
Although I accept that it can be very

44

difficult to locate an author to gain
permission, this does not mean that such
permission can be assumed! Technical
Software still sell their logbook program
and I would be happy to pass on their
address if anyone wants it. A distance
and bearing utility written by Glynn
Fowler has recently become available as
PD and is understood to be of better
quality than most PD utilities of this

type.

There are a number of utility ROM
images available which will be of wider
interest. A.M.Flintham, whose games
(such as Sorcerer’s Domain, Exiz, Zedon)
are popular, has also written a selection
of ROM images which include a toolkit
ROM and a set of sideways RAM
notepad utilities. Steven Flintham (no
relation, to the best of my knowledge)
has also produced a range of utilities,
including a Master series initialisation
ROM, an ADFS utilities ROM, a text
compression utility, an ADFS directory
tree viewer and several others. Some of
Steven'’s projects, for example the ADFS
Utilities ROM, are early versions, which
do not include a vast range of facilities.
He has released them as ‘freeware’
(effectively PD software for which the
author retains copyright) so that others
can help him to add to the software by
offering their own “*command’ routines
for example, enabling each to become a
strong and genuinely useful piece of
software over time.

One particularly good aspect of Steven’s
work deserves mention - his
documentation. Every program comes
with a text file containing comprehensive

Beebug April 1992

Public Domain Software

documentation, which is genuinely useful
with any software except perhaps simple
games which are completely self-
explanatory. The more we see of this
standard of documentation, the better in
my view. If you are writing software
which you want to release to other people,
remember that documentation takes little
time compared with how long it takes you
to complete your masterpiece, but can
make all the difference to someone trying
to make use of it.

The documentation provided for the small
but well-produced range of PD software
available from Lancaster University’s
National Public Domain Software Archive
is also exemplary. NPDSA is a central
resource maintained by the University
which covers a range of micros. Large
ranges of software for PCs, Amigas and
STs are available, but there is a BBC area.
It includes some less common utilities
such as a file archive/unarchive system, a
customisable toolkit ROM, ‘HandiROM’,
which is useful as an aid to some disabled
people in their use of their micro, a printer
redirection utility and a function keystrip
printer.

Lars Osterballe, who seems to have been
mentioned more than once in this
column, has produced several utilities,
including a disc cache program which
uses spare sideways RAM to buffer disc
accesses. Although I haven’t used it
myself, I see this being most useful for
byte level access to files, rather than
straightforward load/save functions.
Also of note is his ‘Dynamics ROM’,
which is a system for collecting your
favourite machine code utilities into one
ROM image for use in sideways RAM:
the ‘dynamic’ refers to the fact that these
utilities may be added to or removed
from the system at your convenience.

Beebug April 1992

Specifically for Master users, Andrew
Fiddaman has developed a Master series
utility ROM with a wide range of
commands which he has released as
shareware.

As you might expect, there are quite a
number of commonly used utilities such
as character designers, font designers,
function keystrip printers and sound
envelope designers. Each tends to have
its own strengths and weaknesses, but I
think that most people probably have at
least one or two such utilities by now,
unless they have no use for them at all, as
programs of this type have been
published in quantity over the years in
magazines, via telesoftware and by small
commercial operations.

Sideways ROM/RAM utilities are
another popular area with programmers,
with programs such as ROM image
load/save utilities, ROM managers,
emulations of the Master’s *UNPLUG
command, and others for Model B
owners. Andrew Pepperell has produced
a memory utilities ROM for use on either
range of micros, which includes the full
source code on disc. In my opinion, this is
an excellent practice; if you release your
work as PD, what is the point of keeping
the source code to yourself? Availability
of source code helps less experienced
programmers to develop their own skills
and someone may even produce an
improved version of your program which
will be of benefit to you as well as to
others. So long as everyone acts
honourably and doesn’t try to pass off
your work as their own, everyone gains.

Allan Kelly has produced a range of
utilities which were originally
distributed by the BBC’s Telesoftware
service before it sadly ceased to operate.

45

Public Domain Software

As you will know from last month’s
column, telesoftware is not automatically
PD, although large numbers of people
may have received copies free of charge.
However, Allan has re-released his
programs as PD, including a memory
‘snapshot” utility for sideways RAM,
“Eclipse” which is a SWR utilities system
and macro language, ‘Banners’ - a utility
for printing large text, and printer dump
utilities.

Finally, several teletext editors have been
released as PD. ‘Teletext Editor’ is not
really a good name for these as several
include screen editors, carousel display
facilities and generally everything
needed to set up a complete viewdata
system. Systems written by Rafael Jay,
Jonathan Harston and Alan Phillips
(mentioned previously for his 6502
assembler system) are available; choice is

probably a personal issue and all are well-
produced, but my choice would be Alan
Phillips” “Fanfare’ system for complete-
ness and for documentation. It has the
additional advantage of being in the form
of a ROM image for convenience,
although I accept that this is no advantage
if you have no sideways RAM!

That’s all there is room for this month,
but I think PD utilities have now
received a fair airing. I have received a
fair bit of educational software recently,
so it seems appropriate to turn our
attention to that next month. I hope to
cover Peter Davey’s work (mentioned
briefly last month) and a range of
software recently re-released as
shareware by John Lyons Educational
Software, as well as an overview of what
is generally available in the public
domain for educational use. 3

BEEBUG Workshop (continued from page 43)

B, E, 20,30
E,D,20,30
B, D 25,30
D, H, 22,60
H,I,40,60
1,D,40,60
DT, 43590
**END, **END, 0,0

[1300DATA
1310DATA
1320DATA
1330DATA
1340DATA
1350DATA
1360DATA
1370DATA

70REM data file : List2

1170:

1180REM List of nodes (end with **END)
1190

1200DATA London, Birmingham, Leeds
1210DATA Glasgow,Manchester, Dover
1220DATA Aberdeen, Nottingham, Cardiff
1230DATA Oxford, Canterbury,Lincoln
1240DATA York, Sheffield, Blackpool
1250DATA Liverpool,Norwich, Hull

| 1260DATA **END

1270

1280REM Node Node Length Speed

1290:

46

I T

|

:, 1350DATA Manchester, Leeds, 41,70
1360DATA Leeds,Hull, 56,70

1300DATA Dover,Canterbury, 15,70 |
1310DATA London, Canterbury, 58,70 ‘
1320DATA London, Birmingham, 111,70

1330DATA Birmingham, Nottingham, 49,70
1340DATA Nottingham,Manchester, 71,70

1370DATA Lincoln,Hull, 38,60
1380DATA Nottingham,Lincoln, 35,70
1390DATA Liverpool,Manchester, 34,70
1400DATA Liverpool, Blackpool, 46,70
1410DATA Manchester, Blackpool, 47,70
1420DATA Glasgow, Blackpool, 189,70
1430DATA Glasgow,Aberdeen, 145,70
1440DATA Norwich, Birmingham, 161,70 1
1450DATA Norwich,London, 114,70 !
1460DATA Oxford, London, 56,70

1470DATA Oxford, Cardiff, 104,70

| 1480DATA Cardiff,Birmingham, 102,70 }

1490DATA Hull,York, 39,70
1500DATA Leeds, York, 24,70
1510DATA Sheffield, Leeds, 34,70
1520DATA **END, **END, 0, 0

Beebug Apnl 1992

N e e T e .

Mr Toad’s Machine Code Corner

by David Holton

In the next few issues this column will be
concentrating solely on assembly
language programming, not only for the
‘old hands’, but also for beginners; we
hope, in fact, that we may encourage
those Basic programmers who are
looking at machine code much as one
looks at a cold swimming pool,
wondering if the time is right to take the
plunge - and yes, we all went through
that stage. We don’t intend to give a
course, more a bit of everything; above
all, we’d like some active response from
you. We hope to give you some hints and
tips and print any you may send in; there
will be one or two puzzles and some
discussions of assembly language
techniques, until all the triodes and
pentodes in the old Beeb finally burn
out.

During the first World War, a certain
crossroads on the Menin Road out of
Ypres was nicknamed “Hell Fire Corner”
because it was in full view of the
Germans and was shelled day and night.
Mr Toad has a feeling that his Machine
Code Corner is going to be a bit like that
when the letters start flowing in,
pointing out all the mistakes and bugs
and dodgy pokes.

Let’s start with a bit of deep philosophy.
A month or two ago, a reader passed on
a useful address for poking in some
value or other, but ended his letter by
saying that direct manipulation of
memory is not to be recommended. Mr
Toad thinks that those days are past. As
long as there was a prospect of new
versions of the MOS coming out, it was
in everyone’s interest to stick to
OSBYTEs and OSWORDs instead of
going straight to the system variables. It
is now clear that no more versions of the
BBC will ever appear, and so long as we
know that a certain address has the same

Beebug April 1992

function in all existing machines, we
may as well cut corners. Writers of big
pieces of commercial software -
assuming that any such are still likely to
be written, which is a big ‘if’ - might still
need to take account of such things as
BBC emulators on other computers, but
most of the kind of stuff we type in from
magazines such as BEEBUG will run on
machines which will never again be
altered.

Another important issue is Tube
compatibility: many of the common
pokes to variables in page zero, page two
and so on cause chaos when the code is
running on the far side of the Tube,
because the whole organisation of
memory is different and many areas of
the I/0O side have no counterparts there.
Most of the OSBYTEs and documented
routines take account of this, but how
many people have 6502 co-processors
and keep their machines configured to
TUBE? I've got the Turbo board on one
of my machines, and my own Toad ROM
90 contains a star command to turn it on
and off easily, but I rarely use the Turbo
board because a lot of the commercial
software I use won’t run on it. I suspect
that this is the norm. More about the
Tube in another issue, by the way.

Some examples of what we are talking
about: OSBYTE &FC reads the number
of the current language ROM, but why
bother when we all know that the
number lives in location &028C? The
fact is well documented and applies to
all versions. The currently active ROM,
of course - which is not the same thing
as the current language - has its number
at &F4, and everybody uses that one.
It’s only a copy; as we all know, the
address that really matters is ROMSEL
at &FE30. Writing to that address
actually switches ROMs, but &FE30 is

47

Mr Toad's Machine Code Corner

stated in all the books I've ever read to
be a ‘write-only” address, being in the
memory select chip and not in RAM. It
is the programmer’s responsibility to
update the copy in &F4 whenever he
writes to ROMSEL. I always do it
myself. Just turn on your machine now,
though, wait for the steam pressure to
build up, then type P.?&F4, then try
P.?&FE30. See? It never fails, and Mr T
knows of at least one MOS routine
which shamelessly reads &FE30 directly.

Going back to OSBYTEs, it is well known
and documented that in all machines,
locations &236 to &28F contain the single
bytes accessed by OSBYTEs &A6 TO
&FFE. Just add &190 (or 400, if you're one
of those pecple) to the OSBYTE number
and use the address directly. There are
one or two common sense exceptions,
that’s all, but why set up two or three
registers and do a JSR just to alter the
attributes of the ‘bleep’ note? Don’t get

me wrong; there are a lot of OSBYTEs
which are very useful, and some are
essential, but many have lost their raison
d’etre, which was simply to assure
compatibility with future operating
systems.

Right - that should have stirred you all
up a bit. Write in to Mr Toad and tell
him what a load of trash he has just
spouted. Soon in this spot I intend to
pass on some useful page zero addresses
for various languages and filing
systems; a little less well known, I hope,
than gems like the high byte of PAGE
being at &18. If you know any, send
them in. That’s it for this month, except
to thank Jon Tottman for his super Toad
logo. Next month, another lively
discussion on whether magnetic-core
memory will ever supplant our trusty
mercury-filled glass tubes, and whether
these new-fangled germanium diodes
will ever catch on. B

512 Forum (continued from page 39)

it’s the amount of processor power
needed to drive current applications. If it's
any consolation at all, bear in mind that a
vast number of XT and AT users are now
increasingly finding themselves in much
the same boat.

This means that shareware is even more
important to 512 users now than before.
It’s true that “Windows’ shareware is
appearing, but shareware is becoming the
most likely if not the only place to find
new DOS software suitable for trying in
the 512. Bear in mind too that existing
shareware catalogues will be maintained
for the millions of XT and AT users.
Conversely, commercial suppliers usually
supply and support only the latest version
of any package, so when a new one
appears the old version is discarded.

There’s no need to be depressed, nor to
throw your system away and start again.

48

Just like millions of XTs and ATs, the 512
still does a perfectly adequate job for a
huge number of applications. I still use
mine for writing books and programs. A
486 might be very much faster, but for
this sort of job it wouldn’t make much
practical difference. The only operation
in which I'd expect to see any material
gain is spell checking, and that’s hardly a
continuous job.

Maybe your 512 does take a minute to
recalculate a large spreadsheet and a fast
486 would do the same job in 2.5
seconds, but does it matter?

I can only paraphrase Mike Williams’
words from Postbag in issue 8. Many
users still receive excellent service from
old and trusted equipment. If you're one
of them, why worry about it so long as
support continues. Just pity the poor A

owner! 3

Beebug April 1992

S .

Storeprint

Graham Nunn takes some of the pain out of setting up ViewStore,
Acorn’s database for the BBC micro.

THE PROBLEM

After using ViewStore for several years
and building up a couple of fairly large
and useful databases, I had found
ViewStore lacking in one particular area.
When I wanted information from a
database without too much fuss, usually
when the computer was not in use, I had
to completely setup ViewStore and its
associated utilities to access the required
data.

This wasn’t much of a problem if I only
wanted to read the data from the screen,
but if a printout was required then far
more effort and key presses were needed;
the SELECT UTILITY is required to
choose the required data; you then wait
while a SELECT file is created before you
finally use the REPORT UTILITY to print
our your data, assuming you have a
suitable REPORT file already created.

I therefore decided to write a program to
simplify all the operations I have
described above and alleviate all that
keyboard work.

THE SOLUTION

The Storeprint program works in mode 3
and, depending on the number of fields
in the selected data file, it should work
without the luxurious hardware of either
shadow RAM or a second processor.

It reads the data file in the D directory,
calculates how many fields there are in
each record and then all fields are
displayed and/or printed when a search
match is found.

When run the program first asks
whether a printout is required - all that is
needed is a single key Y or N; no Return
is necessary. If you want to use your
printer you need to add any set-up codes
in PROCprint_codes at line 1630.

Beebug April 1992

Next you will be asked if your search is
case dependent; again all that’s required
is a single key Y or N. If N is entered
matches will be found for strings
irrespective of case. When N is pressed
the program will internally convert all
search string and data string inputs to
upper case (using the FNswap() function
from the BEEBUG Function Library). The
exception to this is when a numeric
search string is entered, when case
dependency automatically switches to Y.

The advantage of a case dependent
search is that, because the program is not
converting to upper case, it runs much
faster.

The next input is the name of the
ViewStore file, the program automatically
adds “D.” A heading will now appear to
show the number of fields per record,
name of data file and its length in bytes.

Now enter the string you are looking for;
the program will search every field of
each record for a match and each time a
match is found the whole record will be
printed out, either just to the screen or to
screen and printer depending on your
earlier choice. Blank fields appear as
empty curly brackets.

Pressing Escape at any time during a
search will stop the program reporting
the number of matches found and
records searched. The same will occur
when the end of the data file is reached.
You will be then given the opportunity to
re-search the file using a different search
string or quit the program, using either R
or Q respectively.

The program should work with any
ViewStore data file and without any of
the ViewStore utilities or ROM being
present.

49

Storeprint

10 REM Program Storeprint

20 REM Version B1.2

30 REM Author Graham Nunn

40 REM BEEBUG April 1992

50 REM Program Subject to copyright
60 :

100 ON ERROR GOTO 1710

110 MODE3:CLOSE#0

120 PROCtitle

130 PRINT"Do you want print out (Y/N)
" :REPEAT:Q$=GETS : Q$=FNswap (Q$, 1) : UNTIL
08="Y" OR Q$="N":PRINTQS:IF QS$="Y" THEN
PROCprint_codes:print$=2 ELSEprint%=3

140 PRINTSPC7"Case Dependant (Y/N) *;:
REPEAT:Q$=GETS : Q$=FNswap (Q$, 1) :UNTIL Q$=
HYHCOR QS="N" :PRINTQS:TF'QS="Y" THEN cas
e%=FALSE ELSE case%=TRUE

150 INPUTSPC9"Name of Datafile :
FLENF$>10 THEN110

160 F$="D."+F$:CLS

170 PROCno_of_fields

180 PROCsetup

190 VDU12,print%:PRINT"No. of Fields =

", field%;SPCY;"Filename : ";F$;SPC7"Fil
e length = ";length%;" Bytes":VDUprint$%:
PRINTTAB (0, 1) ; STRINGS (79, "-"

200 vDU28,0,24,79,2:0N ERROR GOTO 1710

210 INPUTLINE"Enter Keyword to search
for : "KWS$

220 K%=LEN (KWS)

230 IF VAL(KWS)>0 THEN case%=FALSE

240 PRINTSTRINGS(79,"-")

250 vDU28,0,24,79,4:VvDU3

260 IF case% THEN KW$=FNswap (KWS$,1)

270 PROCkeyword

280 CLOSE#0

290 PRINTSTRINGS(79,"=")TAB(0); found$"

Matches found"TAB(33)"END OF SEARCH"TAB
(60)record¥; " Records searched"'STRINGS (
78 =) VD03

300 PRINT"Enter 'Q' to QUIT or 'R’ to
RE-SEARCH again : “;

310 REPEAT:Q$=GETS$:0$=FNswap(Q$,1) :UNT
1L 05="0! OR O5=fR"

320 IF Q$="R" THEN PRINT:record%=0:fou
nd%=0:FOR X%=1 TO field%:R$(X%)="":NEXT:
VDU26 :GOT0190 ELSE END

330 END

34400 -

1000 DEF PROCsetup
1010 record%=0:found%=0:size%=FALSE

SES T

1020 DIM R$(field%),CS(field$)

1030 ENDPROC

1040 :

1050 DEFPROCno_of_fields

1060 F$=OPENUP (F$) : CLOSE#F$%

1070 IF F%=0 CLS:PRINT"File does not ex
ist!":GOT0150

1080 F%=OPENUP (F$) : PTR#F%=0

1090 length%=EXT#F%

1100 REPEAT:B%=BGET#F%

1110 IFB%=&09 THEN field%=field%+l

1120 IFB%=&0D THEN GOT01140

1130 UNTILFALSE

1140 CLOSE#0

1150 ENDPROC

601

1170 DEF PROCkeyword

1180 record%$=0:CLS

1190 F$=OPENUP (FS) : PTR#F%=0

1200 REPEAT:MATCH=FALSE

1210 FOR X%=1 TO field%

1220 REPEAT

1230 B%=BGET#F%

1240 IF B%=&03 OR B%=&D THEN 1340

1250 IF B%<>&09 THEN C$=CHRSB%

1260 IF B%=&01 THEN 1340

1270 IF B%<>&09 THEN RS$(X%)=R$(X%)+CS:C
$(X%) =RS (X%)

1280 UNTIL B%=&09

1290 IF K%>=LEN(RS(X%)) THEN size%=FALS
E ELSE size%=TRUE

1300 IF case% AND size% THEN CS$(X%)=FNs
wap (C$(X%),1)

1310 IF size% THEN Z%=INSTR(CS(X%),KWS)
:IF Z%>0 THEN MATCH=TRUE

1320 NEXT:record%=record$+1

1330 PROCprint_match

1340 UNTIL B%=&01

1350 ENDPROC

1360

1370 DEF PROCprint_match

1380 IF MATCH=FALSE THEN 1440

1390 FOR X%=1 TO field%

1400 IFR$(X%)="" THEN VDUprint%:PRINT"({

}" ELSE VDUprint%:PRINTRS (X%)

1410 NEXT:PRINTSTRINGS(35,"-");"Record
No:";record$;

1420 PRINT;STRINGS((79-POS),"-"

1430 found%=found%+1

1440 FOR X%=1 TO field$

Continued on page 52

N I

Beebug April 1992

BEEBUG

‘0 by R.W.Smith
This month we present further
functions and procedures from R.W.
Smith. Some of these are needed by the
procedures in last month’s issue on
printing. Here we have some useful
snippets to help deal with dates and
user numbers as well as an

Function/Procedure Library (10)

extension to the BBC’s own error
reporting system.

Next month we’ll be rounding off this
particular series with some very useful
stuff to help you get the most out of
sideways RAM.

THE FUNCTION/PROCEDURE LIBRARY (PART 10)

Routine 25.
Type:
Syntax:
Purpose:

Date conversion routine.
FUNCTION
N%=FNjdat(K%)

a) To reduce a numerical
date into an integer of
maximum size of 5375 for
packing into two bytes.

b) To cause the date to have
a numerical sequence for
sorting purposes (e.g. birth
dates).

K% is a numerical date in
the form of an integer
expressed in decimal as
DDMMYY.

This routine is not a
‘number of days’ routine.
The routine is useful to hold
dates infree bytes for
passing from one program
to another, such as an
operational date.

Routine 26 converts the
output of this routine to
DDMMYY form.

Parameters:

Notes:

Related:

Example:
10 N% =FNjdat(120191):?&90=N% DIV 256:
2&91=N%

Routine 26: Condensed date conversion
routine.

Type: FUNCTION

Syntax: K%=FNfjdat(N%)

Purpose: To convert a two digit

condensed date into the
accepted form of numerical
date.

Beebug April 1992

It can be used in
conjunction with routine 19
FNpformat to printout a
date in the form of
DD/MM/YY

The date must have been
previously condensed by
function 25.

Notes:

Related:

Example:
10 N%=2&90 *256+ 2&91
20 K%=FNfjdat (N%)
30 PRINT FNpformat (N%,6,"D")

Routine 27: Retrieve date and user
number from free memory.
FUNCTION

DAT=FNrdat

To retain a user number and
operational date in free
memory and call this data
in any program. Used for
printing to establish
operator identity

The data is placed into free
memory by adding the User
number (Maximum 6) *
10000 to the date, before
using routine 25 FNjdat.
Uses the variable USN% to
place user number in.

Uses FNfjdat.

Used by PROCptrset

Type:
Syntax:
Purpose:

Notes:

Related:

Example:

10 DAT=FNrdat

20 PRINT FNpformat (DAT, 6, "D"),
FNpformat (USN%,3,"I")

51

BEEBUG Function/Procedure Library

Routine 28: Error routine with error 30230 REM Date Conversion Routine.
line printout. 30240 :

Type: PROCEDURE 30250 REM Convert to Condensed Form.

Syntax: PROCerr 30260 :

Purpose: To extend the BBC Basic 30270 DEFFNjdat(_%):=(_%DIV10000)+((((_%
Error Report to give the line DIV100)MOD100)-1)*32)+(((_%MOD100)-80)*3
; . 84)
in which the error has

30280 :
occurred as well. 30290 REM Convert from Condensed Form.
Parameters: None. “0500 -
: ling this procedure - :

Notes: When calling proce 30310 DEFFNfjdat(_%):=_%$DIV384+80+(((%M
on an ONERROR line it 0D384)DIV32)+1) *100+ {_$MOD32) *10000
should be followed by some 20320 :
other action like RUN, END 30330 REM Retrieve Date & User No. from
etc. Memory Bytes &90 & &91.

Related: Uses PROCtell 30340 :

30350 DEFFNrdat: %=2690%256+2&91:USN%=_%

Example: ONERROR PROCerr:END DIV10000:=FNfjdat (_%MOD10000)

30368

Routine 29: Print out buffer message. 30370 REM Error Routine.

Type: PROCEDURE 30380 :

Syntax: PROCtell(X%,N$) 30390 DEFPROCerr: CLS: ONERROROFF:REPORT

Purpose; To insert a command into a 30400 _S$="L."+STRS(ERL) :PROCtell (0, _$):E
buffer and to cause this to NDEROC
be executed. S0 i

Parameters: X% is the buffer number (0 gggg B BEIRL Oux Butfer Neesage.
is keyboard buffer). N$ is 30440 DEFPROCtell (X% , _$)
the command in string form. 30450 _$- $+CHRS13

Notes: None e

91ES, ;) 30460 FOR_%=1 TO LEN(_§) : A%=138 : Y3=A
Related: Used by routine 28. SCIMIDS (LS, %,1))
Example: 30470 CALL&FFF4 : NEXT
10 N$="SAVE FRED" 30480 ENDPROC =
20 PROCtell (0,NS) .

Storeprint (continued from page 50)

1480 DEF FNswap(S$,M%)
1490 IF S$:ll " :Il "
1500 LOCAL A%,F%,H%,I%,L%:L¥=LEN(SS):AS

1510 FOR I%=1 TO L%
1520 H%=ASC (MIDS (S$,1%,1))

1550 IF (H%>=97 AND H%<=122) F%=TRUE

1450 R$(X%)="":CS(X%)="" :NEXT 1600 :
1460 ENDPROC 1610 DEF PROCprint_codes
14700 1620 VDU2

1630 REM put print codes here **

1640 vDU3

1650 ENDPROC

1660 :

1670 DEF PROCtitle

1680 PRINTTAB(29, 0)*s TORE -PRIN

1530 IF H%<65 OR (H%>90 AND H%<97) OR H THSTRINGS (80, ")
$>122 THEN 1570 1690 ENDPROC
1540 IF (H%>=65 AND H%<=90) F%=FALSE 1700 :

1710 ON ERROR OFF
1720 IF ERR=17 THEN GOT0280

1560 IF NOT(F%) AND (M%=0 OR M%=2) H%¥=H

%+32 ELSE IF F$ AND (M%=1 OR MR=2) H%=H% 1730 PRINT"E R R O R"'' :REPORT:PRINT® a

-32 t line ":;ERL

1570 A$=AS+CHRSH% 1740 CLOSE#0

1580 NEXT I% 1750 END

1590 =A$ B]
o 52 Beebug April 1992

= U S o Y I T I = e,

BEEBUG

Software for the BBC Micro and
Master Series

Beebug C Programming
Language

Beebug C is the much acclaimed C
programming language for the BBC
Micro and Master 128. Although
normally only available on more
powerful computers, Beebug C is a full
implementation of the Kernighan &
Ritchie standard. Features include:

* Runs on BBC B, B+ and M128.

* Comprehensive set of ANSI functions.
* OS functions vdu, osbyte, mode etc.
* Command line interpreter.

* Floating-point maths.

% Linker for multi-source programs.
* Expandable run-time library.

* Optional stand alone generator.

% Optional maths functions.

% Full macro handling facilities.

* Supplied on 2 ROMs & library disc

Normal price: £60.28 inc VAT

Members price: £45.21 inc VAT
Stock code: 0074 40T, 0075 80T
Please add £2.00 carriage.

[
|
i

keyboa

MATHN MENU
- Load Font 1
7

Text
Printer Tupe

- Alter
- Buit
- % Commands

. .
Printwise
Printwise is a low-cost publishing aid
allowing you to create professional
looking magazines, leaflets, posters etc -
the possibilities are endless. Simply take
your text file, use embedded commands
to specify the font styles you require,
and let Printwise do the rest.

% 9 authentic fonts from 4pt to 40pt.

* Font designer for creating new fonts.
“* Fonts may be used on the same line.
% Italics, bold, condensed, reversed etc.
“ Proportional spacing.

% Subscript and superscript.

* Left, centre, right & full justification.
% Suitable for Epson compatible printers.

Printwise is easy to use and requires no
programming skills. It may be used with
text files created on Wordwise, View,
InterWord, Mini Office and almost any
text editor.

Normal price: £30.66 inc VAT

Members price: £22.99 inc VAT
Stock code: 0085 40T, 0086 80T
Pleasc add £2.00 carriage.

Master ROM

The Master ROM is a powerful 32K
ROM packed with features to enhance
the facilities of the Master 128.

Disc Menu - A single command takes
you to a full feature disc menu displaying
all the items in the current directory. You
can change directories or run, copy,
delete, rename selected files.

Control panel - This displays all the
computers status settings and the ROMs
fitted. The cursor keys may be used to
adjust any of the settings, which may be
saved for future loading at any time.

Disc commands - A whole range of
useful ADFS commands, including:
*FIND, *FORMAT, *VERIFY,
*BACKUP, *MERGE, *WIPE etc.

16K-64K Printer buffer
Simple 16K-64K RAM disc
Diary and automatic alarm

Plus:

Normal price: £39.84 inc VAT

Members price: £29.88 inc VAT
Stock code: 0087 ROM
Please add £2.00 carriage.

Studio 8

Studio 8 is a real-time studio system with
digital recorder, rhythm and drum machines
which give hours of entertainment.

Studio - Allows playing and recording in
real time with keyboard and sequencer.
Editor - A full-screen editor allowing the
precise editing of notes.

Envelope editor - allows the definition of up
to 16 amplitude and pitch envelopes.

Instrument definer - Create up to 32

instruments by combining pitch and

amplitude envelopes, volume & sustain.
Plus many more features.

Normal price: £22.48 inc VAT

Members price: £16.86 inc VAT
Stock code: 0009 80T
Please add £2.00 carriage.

Musical Muskrats (continued from page 12)

1220 VDU23, 242 0,130, 254,30 1132, 252,24,
8

1230 VDU23, 243,285, 265, 25500.0,0,0, 0
1240 vpu23,244,0,0,0,0,0,255, 255, 255
1250 ENDPROC

1260

1270 DEF PROCsym

1280 SH$=CHR$231+CHR$8+CHR$10+CHRS232
1290 NAS=CHR$233+CHR$8+CHRS$10+CHRS234
1300 FL$=CHR$235+CHR$10+CHR$8+CHRS236
1310 RW$=CHR$243 : RM$=CHR$244

1320 RC$=CHR$238+CHR$10+CHR$8+CHRS239
1330 RQ$=CHR$240+CHR$10+CHR$8+CHRS241
1340 RS$=CHR$242+CHR$10+CHR$8+CHRS241
1350 WWS=CHR$226+CHR$230

1360 BB$=CHR$224+CHR$225

130 TSt

1380 ENDPROC

1390

1400 DEF PROCstave(SS)

1410 VDU5:FOR $=0 TO SS

1420 FOR L=0 TO 4

1430 MOVEQ, 132+32*L+288*S:PLOT21,1276, 1
32+32*L+288*S

1440 NEXT L, S

1450 FOR LiNo=-4 TO 14 STEP 2

1460 Ypos=124+16*LiNo:Yval$=FNjust (LiNo
)
1470 MOVE1220, Ypos :PRINT Yval$

1480 IF Rflag MOVEL168, Ypos+8:PLOT21,12
08, Ypos+8

1490 NEXT LiNo

1500 ENDPROC

1510+

1520 DEF FNjust (n) :Rflag=FALSE

1530 IF n>=0 AND n<10 n$="0"+STRS(n) EL
SE n$=STRS(n) : IF n<13 Rflag=TRUE

1540 =n$

1550 -

1560 DEF FNpos

1570 IF J$="R" OR J$="B" OR K$="CS" YP=
0:=TRUE

1580 YS=GETS:IF Y$="C" =FALSE

1590 IF INSTR("-10",Y$)=0 GOTO 1580
10000 TR yab b gg N

1610 Y1=GET-48-10*(Y$="+")

L

1620 Y2$=Y$+STRS (Y1)

1630 YP=VAL(Y2$) :YY=132+16*YP

1640 VDU4:PRINTTAB(3,30);Y2$

1650 =TRUE

1660 :

1670 DEF PROCchoosesym

1680 VDU4:PRINTTAB(0,30)"Enter symbol a
nd position"

1690 J$=GETS:PRINTTAB(0,30)SPC26

1700 IF gs-="p" PROCprint : ENDPROC

1710 IF J$="E" PROCerase:ENDPROC

1720 I$=GETS:K$=J$+I$

1730 IF K$="CS" PROCchst :ENDPROC

1740 IF K$="CB" PROCbar:ENDPROC

1750 IF K$="BQ" OR K$="BS" PROCbar :ENDP
ROC

1760 VDU4:PRINTTAB(0,30)K$;";"

1770 IF NOT FNpos ENDPROC

1780 VDU4:PRINTTAB(6,30)"C to change: a
ny key to display";:Q=GET

1790 PRINTTAB(0,30)SPC38;

1800 IF Q<>67 PROCif

1810 ENDPROC

1820

1830 DEF PROCif:VDU5:YA=228

1840 FOR CL=1 TO 2

1850 IF K$:"BQ“ OR K$="BS" PROCbar :ENDP
ROC

1860 IF K$="SH" MOVE XX,YY+16:PRINT SHS

1870 IF K$="NA" MOVE XX,YY+16:PRINT NAS

1880 IF K$="FL" MOVE XX,YY+16:PRINT FLS

1890 IF K$="RW" MOVE XX+2*SP,YA:PRINT R
WS : XX=XX+2*SP

1900 IF K$="RM" MOVE XX,YA:PRINT RMS

1910 IF K$="RC" MOVE XX,YA:PRINT RC$

1920 IF K$="RQ" MOVE XX, YA:PRINT RQ$

1930 IF K$="RS" MOVE XX, YA:PRINT RS$

1940 IF K$="BL" MOVE XX+2*SP,YA+32:DRAW‘
XX+2*SP,YA-96

1950 IF K$="WW" MOVE XX+4*SP,YY:PRINT W
WS :LS=XX+3*SP: LF=XX+11*SP

1960 IF (KR$="QU" OR KRS="0D" OR KR$="S
U* OR KR3=SDY) XX=XX+5*SP:KR$=CHR$32

1970 IF K$="MU" MOVE XX+2*SP,YY:PRINT W
WS :MOVE XX+7.5*SP,YY:DRAW XX+7.5*SP,YY+8
4:LS=XX+SP:LF=XX+9*SP

54

Beebug April 1992

Musical Muskrats

[1980 IF KS="DT" MOVE XX-8,YY+16:PRINT D |
s

1990 IF K$="MD" MOVE XX+2*SP,YY:PRINTWW
$:MOVE XX+2*SP,YY:DRAW XX4+2*SP,YY-104:LS
=XX+SP: LF=XX+9*SP

2000 IF K$="CU" AND CL=1 XST2=XST1:YST2
=YST1 :XST1=XX+5*SP:YST1=YY+78

2010 IF K$="CU" MOVE XX, YY:PRINT BBS:MO |
VE XX+5*SP, YY-20:DRAW XX+5*SP,YY+78:LS=X
X-SP:LF=XX+6*SP

2020 IF K$="CD" AND CL=1 XST2=XSTI:YST2
=YST1 :XST1=XX:YST1=YY-102

2030 IF K$="CD" MOVE XX, YY:PRINT BBS:MO
VE XX,YY-24:DRAW XX, YY-102:LS=XX-SP:LF=X
X+6*SP

2040 IF K$="QU" OR K$="SU" MOVE XX,YY:P
RINT BBS:MOVE XX+5*SP,YY-20:DRAW XX+5*SP
,YY+78:DRAW XX+8.5*SP,YY+50:IF K$="SU" M
OVE XX+6*SP,YY+50 :DRAW XX+8.5*SP, YY+30
2050 IF K$="QU" OR K$="SU" LS=XX-SP:LF=
XX+6*SP

2060 IF K$="QD" OR K$="SD" MOVE XX+3*SP
,YY:PRINT BBS:MOVE XX+3*SP,YY-24:DRAW XX
+3%SP,YY-102:DRAW XX+6.5*SP,YY-74:IF K$=
"SD" MOVE XX+3*SP,YY-82:DRAW XX+6.5*SP,Y
Y-54:LS=XX+2*SP

2070 IF K$="QD" OR K$="SD" LS=XX+2*SP:L
| F=XX+9*SP

2080 YY=YY+STNo*STS+16*UD

2090 YA=YA+STNO*STS

2100 NEXT CL

2110 IF YP<0 OR YP>10 OR (YP+UD)<0 OR (
YP+UD)>10 PROCleger

2120 IF K$="CU" XX=XX+1.5*SP

2130 IF KS="WW" XX=XX+9*SP

2140 IF K$="MU" OR K$="MD" XX=XX+4*SP
2150 IF K$="BL" XX=XX+5*SP ELSE XX=XX+7
*SPp

2160 KR$=K$:ENDPROC

200

2180 DEF PROCleger

2190 JL=STNO*STS

2200 YP2=YP+UD ‘
2210 IF YP>10 MOVE LS,292 :DRAW LF,292:T |
F YP>12 MOVE LS,324:DRAW LF,324:IF YP>14
MOVE LS, 356:DRAW LF, 356

Beebug April 1992

2220 IF YP<0 MOVE LS,100:DRAW LF,100:IF
YP<-2 MOVE LS, 68 :DRAW LF, 68

2230 YP2=YP+UD

2240 IF YP2>10 MOVE LS,292+JL:DRAW LF,2
92+JL:IF YP2>12 MOVE LS, 324+JL:DRAW LF,3
24+JL:TIF YP2>14 MOVE LS, 356+JL:DRAW LF,3
56+JL

2250 IF YP2<0 MOVE LS, 100+JL:DRAW LF, 10
0+JL:IF YP2<-2 MOVE LS, 68+JL:DRAW LF, 68+
JL

2260 ENDPROC

2270 :

2280 DEF PROCchst

2290 GCOLO, 0

2300 IF STNo=1 THEN STNo=2 ELSE STNo=1
2310 Ypos=704*STNo-352

2320 VDU24,0;0;1279;Ypos; :CLG:VDU26
2330 JU=STNo*STS+16*UD

2340 GCOLO,1:XX=0

2350 PROCstave (STNo)

2360 ENDPROC

23070

2380 DEF PROCbar

2390 IF XST2=0 ENDPROC

2400 MOVE XST1,YSTI1:DRAW XST2,YST2

2410 MOVE XST1,YST1+JU:DRAW XST2,YST2+J
U

2420 IF K$="BQ" GOTO 2450

2430 MOVE XST1,YST1+12:DRAW XST2,YST2+1
2

2440 MOVE XST1,YST1+12+JU:DRAW XST2,YST
2+12+JU

2450 XST1=0:YST1=0:XST2=0:YST2=0

2460 ENDPROC

20701

2480 DEF PROCprint

2490 VDU2:*GDUMP 0 1 2 1

2500 ENDPROC

2500

2520 DEF PROCerase

2530 GCOLO, 0:MOVE XX, 340:DRAW XX-SP,340
:PLOT85, XX, 0:PLOT85, XX-SP, 0

2540 GCOLO, 0:MOVE XX,340+JU:DRAW XX-SP,
340+JU:PLOT85, XX, JU: PLOT85, XX-SP, JU

2550 GCOLO, 1:XX=XX-SP:PROCstave (2)

2560 ENDPROC B

Magscan

Comprehensive Magazine Database
for the BBC Micro and the Master 128

An updated version of Magscan, which contains the
complete indexes to all BEEBUG magazines from
Volume 1 Issue 1 to Volume 10 Issue 5

BEEBUG MAGSCAN YOLUMES 1-9
:123456789
All

: BASIC
PROGRAM
ND

Volume
Tupe
String 1
String 2 :
Logic

Edikit (Part S)

Basic Program Utility/Toolkit ROM
Programming Utilities

Vol 9 No 1 Page 30

Bas128 (Part 1)

Thanks for the Memory -
Main Memory Resident Version of Basic
Sideways RAM Program Storage

Vol 9 No 3 Page 20

Hxnt Improved Move-Down Routine
g Additional Program Lines
Ba:xc/PHPE/Hemarg Restrictions

Vol 9 No 4 Page 61

Magscan with disc and manual £9.95+p&p

Stock codes: 0005a 5.25"disc 40 track DFS

0006a 5.25"disc 80 track DFS

1457a 3.5" ADFS disc
Magscan update £4.75 +p&p
Stock codes: 0011a 5.25"disc 40 track DFS

0010a 5.25"disc 80 track DFS

1458a 3.5" ADFS disc

Special Offers to BEEBUG Members April 1992

Magscan allows you to locate instantly all references
to any chosen subject mentioned anywhere in the 95
issues of BEEBUG magazine to date.

Just type in one or two descriptive words (using
AND/OR logic), and you can find any article or
program you need, together with a brief description
and reference to the volume, issue and page
numbers. You can also perform a search by article
type and/or volume number.

The Magscan database can be easily updated to
include future magazines. Annual updates are
available from BEEBUG for existing Magscan users.

Some of the features Magscan offers include:

® full access to all BEEBUG magazines

® rapid keyword search

@ flexible search by volume number, article type
and up to two keywords

® keyword entry with selectable AND/OR logic

cxtensive on-screen help

@ hard copy option

casily updatable to include future magazines

@ yearly updates available from BEEBUG

1407a ASTAADS3 - 5" Disc (DFS) D.95
1408a ASTAADS3 - 3.5" Disc (ADFS) 595
1404a Beebug Applics I - 5" Disc 4.00
1409a Beebug Applics I - 3.5"Disc 4.00
1411a Beebug Applics II - 5" Disc 4.00
1412a Beebug Applics I1 - 3.5" Disc 4.00
14052 Beebug Utilities - 5" Disc 4.00
14132 Beebug Utilities - 3.5" Disc 4.00
1450a EdiKit 40/80 Track 8.75
1451a EdiKit EPROM 05
1452a EdiKit 3.5" 575
0005b Magscan Vol.1 - 8 40 Track 9.95
0006b Magscan Vol.1 - 8 80 Track 9.95
1457b Magscan Vol 1 - 8 3.5" ADFS 9.95
0011a Magscan Update 40 track 475
0010a Magscan Update 80 track 4.75
1458a Magscan Update 3.5" ADFS 27>

PAGla Arcade Games (5.25" 40/80T) 5.95
PAG2a Arcade Games (3.5") 5.9
PBGla Board Games (5.25" 40/80T) 595
PBG2a Board Games (3.5") 595
1600a Beebug magazine disc 4.75
0077b C - Stand Alone Generator 14.56
0081b Masterfile ADFS M128 80 T 16.86
0024b Masterfile DFS40 T 16.86
0025b Masterfile DFS80 T 16.86
0074b Beebug C 40 Track 45.21
0075b Beebug C 80 Track 45.21
0084b Command 29.88
0073b Command(Hayes compatible) 29.88
0053b Dumpmaster Il 23.76
0004b Exmon II 24.52
0087b Master ROM 29.88
1421b Beebug Binder 4.20

Have you got your BEEBUG Binder for Volume 10?

Only £4.20

RISC Developments Ltd, 117 Hatfield Road, St Albans, Herts AL1 4JS. Tel (0727) 40303 Fax (0727) 860263

H'E,I??fm Hlo‘lﬂ'gjM Hlﬁ;l'gw le‘g’#@ Hlmgﬁ@

Please keep sending in your hints and tips, and
don’t forget we pay for all those we publish.

PROGRAMMING THE f-KEYS FOR
MODE?7
Brian E. Lowe
In the Dec 1991 (Vol.10 No.7) issue of Beebug,
D.N.Atkinson showed how to program the
red function keys for use in the Teletext
Mode. The following program offers an
alternative:

100 *Fx18

110 *KEY8"|!|L"

120 *KEY9L #] | [M®

130 *Fx226,128

140 *Fx227,144

150 *Fx228,154

This program doesn’t have the single-key
press advantage for text colours, but instead,
the alpha/graphic colours, steady and flash
are available with their original key
combinations as shown in the User Guide.
The following additional key combinations
are also provided:
f8 - normal height
{9 - double height
Ctrl-f8 - conceal display
Ctrl-f9 - contiguous graphics
Shift-Ctrl-f0 - separated graphics
Shift-Ctrl-f2 - black background
Shift-Ctrl-f3 - new background
Shift-Ctrl-f4 - hold graphics
Shift-Ctrl-f5 - release graphics
Shift-Ctrl-f6 - filled block (CHR$160)
Shift-Ctrl-f8 - quotation mark (CHR$162)

The last two key combinations were not
previously available directly from the
keyboard. The normal quotation mark
character, obtained by Shift-2, has character
code 34. This cannot be used for display
purposes because it is used for starting and
ending a string in a PRINT statement.
Function keys f0/f7 are free for programming
by the user in the normal way.

Beebug April 1992

NEXT BEST THING

John Tupper

There is an undocumented way of terminating
multiple FOR-NEXT loops that doesn’t seem
to be documented anywhere. You can replace
the statements NEXT:NEXT by NEXT, to
terminate two loops at the same time, and
NEXT-NEXT:NEXT can be replaced by NEXT,
and so on. I personally feel that it is bad
practice not to write out NEXT:NEXT in full,
particularly in BEEBUG magazine where
many members still enjoy typing in the
monthly listings, because omitting the comma
will cause an error that is hard to track down.
However, this method can be very useful in
short programs or when typing at the Basic
prompt. (Ed: We first published this hint in
BEEBUG Vol.1 No.8, Dec 1982, page 16!)

HOW DO YOU SPELL ADFS
Denis Atkinson

The BEEBUG program PreView (Vol.9 No.9)
presented me with a new challenge - to apply
the ViewSpell checker to a file saved to an
ADFS disc. The ViewSpell instruction booklet
touches on this briefly at the foot of page 13,
but for some time I was unable to persuade
ViewSpell to work. Eventually I succeeded
with the following method: put the ADFS
disc into drive 0 and *MOUNT it; put the
ViewSpell disc into drive 1, change to DFS
(by *DISC) and select drive 1 (by *DRIVE 1);
then type the following:

*SPELL

PREFIX T -ADFS-:0.$.

PREFIX M ;1.

LOAD $.filename
where filename is the name of the file to be
checked. While on the subject of ViewSpell
and ADFS, note that ViewSpell limits the
prefix to 13 characters and the filename to 10
characters. If, therefore, the file is in a
subdirectory, then when ViewSpell loads it or
sets the prefix, it may generate a “Too Long”
error message. In such a case it is necessary to
transfer the file to the root directory $. .

5}

57

eading Heading 9/

[Stock Huber |
ype Toe _ig
e

ize

Data 1

ane ORI ;
DVTEITIN Tist(4806...5999) | Validate 9|

9 TN
Qturer Cf]

Boolean
Date
Text
DrawFile
Sprite

s THE ARC
2 ationaly 5°°
ter rchimede®
TOR

SUBSCRIPTION DETAILS

As a member of BEEBUG you may extend

your subscription to include RISC User for only:
Destination Additional Cost

UK,BFPO &Ch Is £10.50

Rest of Europe and Eire £15.40
Middle East £19.60

Americas an d Africa £21.90
Elsewhere £33.00

UPDATING THE DISC ORGANISER

I find the Disc Organiser for ADFS (BEEBUG
Vol.10 Nos.7 & 8) to be perhaps the most
useful utility you’ve published in the 10 years
I have been a member of BEEBUG.

However, I should like to offer a few
enhancements. In order to prevent file names
overwriting the control bar at the base of the
screen, if there are more than 20 files in a
directory, change as follows:

Lines 1910 & 2150 - change 22 to 20

Line 2530 - change PRINTTAB(0,24) to

PRINTTAB(0,23)

Line 2390 - change VDU24 to VDU22 (twice).

One further enhancement is to add:

4925 PROCunlock

4945 PROCrelock
This allows you to move a file without having
to access it first to change its attributes (i.e. to
unlock it), and it allows you to move the file
to another directory/disc even if it already
exists in that directory/disc. After having
moved the file, it automatically deletes the
original file and relocks all files in that
directory. The definitions of the two
procedures are given below.

5650 :

5660 DEF PROCunlock

5670 drivefrom$=MIDS (from$,2,1)

5680 driveto$=MID$(to$,2,1)

5690 OSCLI("MOUNT "+drivefrom$)

5700 IF side$="left" THEN OSCLI("DIR "+
1dir$) ELSE OSCLI("DIR "+rdir$)

5710 OSCLI("ACCESS "+name$+" WR")

5720 OSCLI("MOUNT *"+driveto$)

5730 IF side$="left" THEN OSCLI("DIR "+
rdir$) ELSE OSCLI("DIR "+1dir$)

5740 IF filecount%=0 THEN ENDPROC

5750 OSCLI("ACCESS * WR")

5760 ENDPROC

Beebug April 1992

5770:
5780 DEF PROCrelock
5790 driveto$=MIDS$(to$,2,1)
5800 OSCLI ("MOUNT "+driveto$)
5810 IF side$="left" THEN OSCLI("DIR "+
rdir$) ELSE OSCLI("DIR "+1dir$)
5820 OSCLI("Access * WR")
5830 ENDPROC
Ian Crawford

Note the use of lower case L’ in the above (Idir).

PC DISCS ON A BEEB WITH WATFORD
DDFS

The programs presented in BEEBUG Vol.10
No.4 do not work with the original version of
the Watford DDFS disc controller, although
this does use the 1770 chip. Limited but
practical operation has been found possible
by making the following changes. They apply
to the original Watford DDFS controller with
single 80 track drive on a model B.

MS-DOS TO BBC TRANSFER

140 D=0

1510 val=rst

1680 wd=&FE84:ctrl=&FE80:sel=2:dden=8:
rst=&20

1710 ?ctrl=rst:ENDPROC
BBC TO MS-DOS TRANSFER

160 D=0

1810 val=rst

1960 wd=&FE84:ctrl=4FE80:sel=2:dden=8:
rst=&20

1990 ?ctrl=rst:ENDPROC
PC FORMATTING

255 ENDPROC:REM Disables drive selecti
on

760 IF M%=251 OR M%<1 cmd%=&FE84:ctrl%
= &FE80:M%=FALSE:fc%(0)=32:fc%(1)=34

Can anyone add to these to cover multiple
drives or the Mk 2 controller?
PJ.Lawrence 3

59

Personal Ads

BEEBUG members may advertise unwanted computer hardware and software through personal ads
(including 'wants’) in BEEBUG. These are completely free of charge but please keep your ad as short as
possible. Although we will try to include all ads received, we reserve the right to edit or reject any if
necessary. Any ads which cannot be accommodated in one issue will be held over to the next, so please
advise us if you do not wish us to do this. We will accept adverts for software, but prospective purchasers
should ensure that they always receive original copies including documentation to avoid any abuse of

this facility.

We also accept members' Business Ads at the rate of 40p per word (inclusive of VAT) and these will be
featured separately. Please send us all ads (personal and business) to MEMBERS' ADS, BEEBUG, 117
Hatfield Road, St. Albans, Herts AL1 4JS. The normal copy date for receipt of all ads will be the 5th of

3D snooker, Tarzan and
Hypersports for BBC B only £5
for all 3. PRES Advanced File
Manager and Advanced Control
Panel £20 each or £35 for both.
Acornsoft Overview cartridge
(includes Viewstore, Viewspell
and rest of View family) £35, CC
Accelerator (2 ROMs) £20.
Bargain-buy the lot for £75. Tel.
061-226 1802 after 5pm.

BBC B with Watford 32k
Shadow RAM board, Watford
128k ROM/RAM board (16k
battery backed) and a Challenger
3256k RAM disc and 40/80 D/D
D/S disc drive, amongst the
other items are an AMX mouse,
Superart, Stop Press and Replay
ROMs, a spare Power Supply
unit and many manuals £350
o.n.0. Tel. (0532) 755756.

BBC issue 4, DFS, ATPL board
with 16k sideways RAM,
Watford shadow RAM board,
View 3 + printer driver disc,
Viewsheet, Viewstore + Dabs
guide to Viewsheet and
Viewstore, Viewchart disc,
Viewspell, Hyperdrive ROM and
disc and manual, excellent
condition, sensible offers around
£185. Ideal for word processing,
in any mode, to include Watford
shadow RAM manual and View
suite manuals. Dual 40/80T disc
drive in piggy back case with
mains PSU £120. Tel. 071-494
1365 office hours only.

60

each month.

Econet Filestore E20 + 4 Master
E.T. terminals. Offers? Tel. (0584)
872846 day or (0568) 85410 eves.

M128, 512 co-processor, Acorn
reference manuals, Dabs 512
books and discs, Essential
Software mouse, dual disc drives,
Taxan amber monitor, case
cartridges, various ROMs inc. 'B
ROMs, various Beeb books,
magazines and BEEBUG discs,
GIS teletext adaptor, ATPL
ROM/RAM board, must go!
£650 or might split. Tel. (0789)
266946.

WANTED: For BBC Master
Compact, Mertec compact
companion or a PearTree HC1
2MHz Bus interface, Morley
teletext adaptor, RS232 interface
IC's. Tel. (0452) 830146 eves or
305752 day.

BBC 512 co-processor in
Watford co-pro adaptor, (DOS
2.1) complete with manuals,
Gem software and mouse,
Dabhand User and Technical
guides with discs, Essential
Softwares RAMDISC and
TRNSLATE, Shibumi Problem
Solver, Shareware etc. £120. Tel.
081-368 5535.

Competition Pro joystick £5,
Voltmace twin joysticks £11,
Care (Master) 4 way cartridge
£7.50, 5 (27128-16k) EPROMs
£10, Tapes of Knitwear Design

£2.50, Mastermind £2.50, Mini
Office 1 £3.50. Tel. (0752) 896077.

ATPL Sideways ROM board
£15, BEEBUG Toolkit plus ROM
£10, both with original
instructions. Tel. (0628) 819394.

Volumes 3 to 8.5 of BEEBUG,
perfectly clean, offers? Tel.
(0923) 823659.

A3000 with Philips colour
monitor 2Mb memory expansion
includes monitor stand, all leads
and manuals £600. Tel. (0865)
864182.

Archimedes A310, Philips 8833
colour monitor, manuals, boxes,
some software £650. Tel. (0792)
404331 after 6pm.

Taxan Kaga KP810 DM printer,
internal RAM chips plus Master
cartridge and NLQ designer
ROM and over 20 fonts for
downloading to printer £75,
EXMON II ROM £12, Play it
again Sam 1 £5, Repton 3 £5,
AMX mouse £5, Acorn Tape
machine £5, bundle of 7 good
BBC B tapes £10, best offers
considered. Tel. (0283) 31403
anytime.

JUKI 6100 daisywheel printer
many fonts £95, BBC Watford
Video Digitiser with ROM £45,
780 2nd Processor with CP/M
software £80, Centronics 739 dot

Beebug April 1992

I e Rt e o e,

matrix printer with Dump ROM
£45, AMX mouse £15, Light Pen
with Pen Pal software £9,
11x1987 Acorn User magazines
(August missing) £11, 12 x1986/7
Micro User magazines in binder
£12. Tel. (0252) 510486.

M128 with upgrade OS chip,
twin Cumana 40/80T switchable
DD with PSU, Master internal
modem 14" colour TV/RGB
monitor, Smart cartridge,
Dumpmaster I (ROM), plus lots
of games/utilities and reference
books etc. £500. Tel. (0895) 672132
after 7.30pm.

A310M, DTP software, PC
Emulator (1.6), Render Bender,
Genesis and games, all for

Epson LX800 printer with
manuals, original packaging and
2 spare ribbons £100, Acorn
Desktop Assembler SKB76 new
unused £100. Tel. (0935) 77581

eves.

Archimedes A310, Philips 8833
colour monitor, manuals, boxes,
some software £650. Tel. (0792)
404331. After 6pm.

BBC B 512k, 2nd processor and
Watford co-processor box £100
o.n.o. Tel. (0277) 821620 anytime.

WANTED: Acorn ISO-Pascal
and Acorn Micro-Prolog with
documentation for a BBC B
computer. Tel. (0705) 733281.

If you are interested in either
[BM or Archimedes software and
programming (particularly in
Basic) or even in swopping ideas
for programs. Please write to me
at East House, Michaelhouse,
Balgowan, 3275, South Africa.

A3000 with colour monitor as
new £625, RICOH daisywheel
printer as new £75, A3000
carrying case £15, Parallel
printer cable £5, BEEBDOS £20,
BEEBPC £20. WANTED: A3000
Disc Buffer and/or RAM
upgrade. Tel. (0483) 480632.

WANTED: Official manual for
BBC LISP, "LISP on the BBC
Microcomputer" by Norman and

Cattell. Tel. (0829) 270176

£540, will split, Old PRMs
£9, various computer
magazines, EMR sound
sampler £60, Watford
video digitiser £75, Acorn
colour monitor £110. Tel.
061-973 0529 after 6pm.

M512, Acorn amber
monitor, dual 5.25" & 3.5"
drives, 6502 second
processor, Bitstik, Citizen
120D printer £450. Tel.
081-698 3772.

Wish something new was happening for
your BBC Micro, Master or Electron?

Something is!

Plague Planet adventure
An excellent ex-commercial game.

Available as shareware now from BBC PD
Send £1.50 for catalogue and sampler disc to;

BBC PD, 18 Carlton Close, Blackrod,

Bolton, BL6 5DL

Make cheques payable to;
'A Blundell' or send an A5 s.a.e for more details
(Please state disc size and format)

eves.

Archimedes A420/1,
colour monitor, 2Mb
RAM and 20Mb St502
hard drive, only 16
months old, very good
condition, Panasonic
KXP-1124 pin printer,
will throw in some
games, dust covers and
other extras! The whole
lot for £1,200! Ideal set-
up for word processing.
Tel. (0707) 323032 eves.

M512, 40/80T plinthed
DD, cartridge, mouse, joysticks,
GEM software and books £500 +
carriage. Philips TTL/RGB
colour monitor £200 + carriage.
Tel. 010 468 767 9295 daytime
(Note: this is an overseas
number).

BBC computer software and
hardware, Viewsheet ROM,
manuals £9, Interword ROM,
manuals £10, Solidisc 2Mb 128k
board and disc £20, Solidisc 128
sideways RAM & 13 discs £25.
Tel. (0726) 814488.

Archimedes 440, 53Mb hard
disc, Taxan 770+, multisync
monitor, loads of software.
Offers? Tel. 081-445 7875.

Beebug April 1992

Has anyone use for several PETS
and Apple Ile computers
including manuals and software in
working order? Tel. 081-395 2346.

Master Compact (no monitor)
including manual in good
condition £150. Tel. 081-395 2346.

BBC B issue 4 fitted with DFS
and Econet £45. Tel. 081-318 5155.

I have a Penman plotter that has
ceased to function, due, I believe
to a problem with one of its
location devices and its associated
diffraction grating. I need
someone to repair it for me since
the company that made it has
ceased to exist. Tel. (0526) 22381.

A3000 with 2Mb RAM upgrade,
Philips CM8833 stereo colour
monitor, Pres: monitor stand,
system housing, 5.25" disc drive,
disc buffer, 65Host DFS, podule
case, latest PC emulator, covers,
all manuals etc. As new, the
perfect educational system £875.
Tel. (0444) 454348 eves.

Potential purchasers are advised
to insist that it is the seller’s
responsibility to ensure that

goods arrive with the purchaser

ina fit state as described. In the
event of damage in transit,
contact the seller before taking
further action.

61

membership queries and orders for back issues to the
should be in pqunds glerling drawn (for

bersh\p rengwa\s, !

Send applications for merm
address pelow. Al membership fees, including overseas,
cheques) ond K bank. Mermbers may also subscribe 10 RISC User ata special reduced rate
BEEBUG SUBSCR\PT\ON RATES BEEBUG & RISC USER
£18.40 1 year (10 issues) UK, BFPO, ch.l £28.90
£27.50 1 of Europe & Eire £42.90
£33.50 Middle East ¢53.10
£36.50 Americas Africa £58.40
£39.50 Elsewhere £62.50
BACK \SSUE PRICES (per issue) 1 July 1991
All overseas items aré sent
airmail. We will accept official
UK orders for subscriptions and
Jease noté

pack issues: u
" be a £1 handling

orders under £10

quire an invoice.

Note that there is N0 VAT in

magazines:

Destlnat\on

pOST AN
Please & st of p&P
en ordering individual items UK, BFPO + CM
2 Europe +EiI®
See table opposite: Eisewhere
BEEBUG
117 Hatfield Road, st.Albans, Herts AL1 AJS
Tel. St.Albans (0727) 40303 FAX: (0727) 860263
Manned Mon-Fri gam-5pM (for orders only m-6pm and g9am-5pM Salurdays)
phone for onne isa orders and subscr'\ptions)

EBUG PROGRAMS AND

(24hr Answer

CONT! RIBUTING TO BE

BEEBUG MAGAZINE is ploduced by
RIsC Developments Ld. ARTICLES
ing good g
programs publication BEEBUG.
id for to £50 per page: but

substantial that you
i ' js availab

3 1| Anderson

nt: Sheila Stoneman ite. A lealle

h Shrive ipt of an r) SAE.

Sheﬂdan\N\\\'\ams i r contributions on disc or
ication may be View,

Al rights yeserved. No part of this publ
eproduced W -+ witien permission of the Publisner.
The Publisher pt any ibil
i rams, of adV ftisements d.)
al is jou e In all communic
membership number.

for errors In W
nions expressed on e
! esgayiy 0se
RISC Deve\opment

0929)

The Op!
those of the aut
ofthe Publisher, R velol d.
Printed by Arlon Printers

DISC CONTENTS

e of short programs

THE HIDDEN PERSUADERS -2 coupl
| some secret information hidden in your

which help toreved
Master ROMs.
MUSICAL MUSKRATS -an enhanced yersion of the Mustran
rogram, pub\‘\shed inVol.6No8, whichis avaluable aid for
producing and printing rmusical scores.
RAY TRACING IN 9D (Part2) he concluding part of this
g s rays through the

oD ray racing package, which trace

shapes created in part 1-
. an example program
ata may be supplie

WORDWISE USER'S
which demonstrates NO patches of d
p o and the data iterns read an
asihey are required.
CROSS REFERENCE LISTER -avey useful utility which
providesd cross reference figting of @ Basic program- amu
for the serious developer of Basic software.
AL CONFUCT (Part2) - this month's two
re levels tothe mind-bending puzzle game
an editor 10 create your own levels.
BEEBUG WORKSHOP: FINDING A ROUTE IN A
NETWORK - five programs providing the routines and the
data for resolving the ‘shortest route' problem.
STOREPR\NT - aprogram which helps you pri
viewstore files directly.
RY (10) -2 new

ONIPROCEDURE LIBRA
Jtines some of which aré needed when

programs &
and provide

nt out

FUNCT!
instalment o510

printing.
MAGSCAN DATA

- bibliography for this issue.

ALL THIS FOR £4.75 (5.25" & 35"
505" and 3 5" disce from VO 5 No.1)

Back jssues (2=

CH ADD\T\ONAL

RIPTION RATES UK ONLY
£25.50

4.5") SUBSC
£50.00

pDISC (525 9
(& months 5 issues)

12 months (10 issues)
Prices aré inclusive of

yAT and postage

\TEM)

OVERSEAS
£30:00
£56.00

as apph‘cable sterling only please

: st.Albans, Her

BEEBUU[E The Archimedes Specialists

A3000 Hard Drive DTP System

a Acorn A3000 Computer
0 Genuine Acorn Colour Monitor
If you have been thinking of g gﬁf\)nnt;tgﬁ\l/:nth
i ﬁztf;?(ﬁ?;here fgs nove O 20 Mbyte Internal Hard Drive
. COMPUTERS, 2 Ovation DTP

This special offer provides an excellent P g %f'?:ifiw Normal Price £1299 + VAT
system ready for immediate use. The Save Over £300

hard drive, RAM and Ovation are all
installed ready so you can simply turn
on and start.

Ovation is the highly acclaimed package
combining word processing and DTP.
Widely used in education it offers a
whole host of features and is powerful
yet simple to use.

Our high speed IDE unit was designed
especially for the A3000. It has an
access time faster than SD506 or 8 bit
SCSI, features auto-parking and sleep
mode and is fitted in the internal
expansion slot. :

The A5000 Learning Curve

Special Offer £999 + VAT
(£1173.83 inc. VAT)

The A3000 Learning Curve is also
available if required.

This includes Pacmania game,
Genesis Plus Database, 1st Word
Plus, Acorn PC Emulator and a 120
min audioTraining Tape.

Just add £40 + VAT (£47.00 inc VAT).
Courier delivery please add £9.00.

AS5000 Features

The A5000 is now available from BEEBUG, 0 RISCOS Version 3
either from our showroom or mail-order. J ARM 3 For Unbelievable Speed
We are one of Acorns largest dealers and Q 16 N{’b F‘)m;fl Floppy Drive
have been supporting the Archimedes range 0 40 Mb IDE Hard Drive
since its launch. 3 Acorn Multi-Scan Monitor
You can have total confidence in BEEBUG. . 4\
Our technical team are always on-hand to e Icfxrnmg Gumye Eack
provide any assistance and help that you 0 New Multi-tasking PC Emulator
may need with the A5000. [Genesis plus Database
BEEBUG & RISC Developments also 0 1st Word Plus Wordprocessor
produce the magazine RISC User, dedicated 0 Acorn DTP
to the Archimedes range. a }?Aacdmar;la Gach

: ; o 1 Audio Training Tape
BEEBUG - The Archimedes Specialists 0 Optional 300 dpi Ink Jet Printer

The A5000 Learning Curve complete with Acorn Multi-scan
Monitor Is now available for £1799 inc. VAT.
Phone or write to reserve yours Now !

Courier delivery please add £9.00.

Educational Establishments
Please ask for our Educational
AS5000 price.

— o

Phone or write for an Information Pack

All products covered by 12 months full warranty

Access / Visa / Switch / Cheque / Official Orders Welcome
Showroom hours Mon to Sat 9 am - 6 pm (Thu until 8 pm)

BEEBUG Ltd, 117 Hatfield Road, St. Albans, Herts. AL1 4JS. Tel. 0727 40303

Fax. 0727 860263

